1
|
Sharma Y, Vo K, Shila S, Paul A, Dahiya V, Fields PE, Rumi MAK. mRNA Transcript Variants Expressed in Mammalian Cells. Int J Mol Sci 2025; 26:1052. [PMID: 39940824 PMCID: PMC11817330 DOI: 10.3390/ijms26031052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Gene expression or gene regulation studies often assume one gene expresses one mRNA. However, contrary to the conventional idea, a single gene in mammalian cells can express multiple transcript variants translated into several different proteins. The transcript variants are generated through transcription from alternative start sites and alternative post-transcriptional processing of the precursor mRNA (pre-mRNA). In addition, gene mutations and RNA editing further enhance the diversity of the transcript variants. The transcript variants can encode proteins with various domains, expanding the functional repertoire of a single gene. Some transcript variants may not encode proteins but function as non-coding RNAs and regulate gene expression. The expression level of the transcript variants may vary between cell types or within the same cells under different biological conditions. Transcript variants are characteristic of cell differentiation in a particular tissue, and the variants may play a key role in normal development and aging. Studies also reported that some transcript variants may have roles in disease pathogenesis. The biological significances urge studying the complexity of gene expression at the transcript level. This article updates the molecular basis of transcript variants in mammalian cells, including the formation mechanisms and potential roles in host biology. Gaining insight into the transcript variants will not only identify novel mechanisms of gene regulation but also unravel the role of the variants in health and disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (Y.S.); (K.V.); (S.S.); (A.P.); (V.D.); (P.E.F.)
| |
Collapse
|
2
|
Hernández-García F, Fernández-Iglesias Á, Rodríguez Suárez J, Gil Peña H, López JM, Pérez RF. The Crosstalk Between Cartilage and Bone in Skeletal Growth. Biomedicines 2024; 12:2662. [PMID: 39767569 PMCID: PMC11727353 DOI: 10.3390/biomedicines12122662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 01/04/2025] Open
Abstract
While the flat bones of the face, most of the cranial bones, and the clavicles are formed directly from sheets of undifferentiated mesenchymal cells, most bones in the human body are first formed as cartilage templates. Cartilage is subsequently replaced by bone via a very tightly regulated process termed endochondral ossification, which is led by chondrocytes of the growth plate (GP). This process requires continuous communication between chondrocytes and invading cell populations, including osteoblasts, osteoclasts, and vascular cells. A deeper understanding of these signaling pathways is crucial not only for normal skeletal growth and maturation but also for their potential relevance to pathophysiological processes in bones and joints. Due to limited information on the communication between chondrocytes and other cell types in developing bones, this review examines the current knowledge of how interactions between chondrocytes and bone-forming cells modulate bone growth.
Collapse
Affiliation(s)
- Frank Hernández-García
- Departamento de Medicina, Oviedo University, 33003 Oviedo, Spain; (F.H.-G.); (J.R.S.)
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
| | - Ángela Fernández-Iglesias
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
| | - Julián Rodríguez Suárez
- Departamento de Medicina, Oviedo University, 33003 Oviedo, Spain; (F.H.-G.); (J.R.S.)
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
- AGC de Infancia y Adolescencia, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- RICORS-SAMID (RD21/0012), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Helena Gil Peña
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
- AGC de Infancia y Adolescencia, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- RICORS2040 (RD21/0005/0011), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José M. López
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
- Departamento de Morfología y Biología Celular, Oviedo University, 33003 Oviedo, Spain
| | - Rocío Fuente Pérez
- Universidad Europea de Madrid, Department of Nursing, Faculty of Medicine, Health and Sports, 28670 Madrid, Spain
| |
Collapse
|
3
|
Díaz-González F, Sentchordi-Montané L, Lucas-Castro E, Modamio-Høybjør S, Heath KE. Variants in both the N- or C-terminal domains of IHH lead to defective secretion causing short stature and skeletal defects. Eur J Endocrinol 2024; 191:38-46. [PMID: 38917024 DOI: 10.1093/ejendo/lvae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/08/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Heterozygous Indian Hedgehog gene (IHH) variants are associated with brachydactyly type A1 (BDA1). However, in recent years, numerous variants have been identified in patients with short stature and more variable forms of brachydactyly. Many are located in the C-terminal domain of IHH (IHH-C), which lacks signaling activity but is critical for auto-cleavage and activation of the N-terminal (IHH-N) peptide. The absence of functional studies of IHH variants, particularly for those located in IHH-C, has led to these variants being classified as variants of uncertain significance (VUS). OBJECTIVE To establish a simple functional assay to determine the pathogenicity of IHH VUS and confirm that variants in the C-terminal domain affect protein function. DESIGN/METHODS In vitro studies were performed for 9 IHH heterozygous variants, to test their effect on secretion and IHH intracellular processing by western blot of cells expressing each variant. RESULTS IHH secretion was significantly reduced in all mutants, regardless of the location. Similarly, intracellular levels of N-terminal and C-terminal IHH peptides were severely reduced in comparison with the control. Two variants present at a relatively high frequency in the general population also reduced secretion but to a lesser degree in the heterozygous state. CONCLUSIONS These studies provide the first evidence that variants in the C-terminal domain affect the secretion capacity of IHH and thus, reduce availability of IHH ligand, resulting in short stature and mild skeletal defects. The secretion assay permits a relatively easy test to determine the pathogenicity of IHH variants. All studied variants affected secretion and interestingly, more frequent population variants appear to have a deleterious effect and thus contribute to height variation.
Collapse
Affiliation(s)
- Francisca Díaz-González
- Institute of Medical and Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario La Paz, UAM, 28046 Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit (UMDE-ERN BOND), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Lucía Sentchordi-Montané
- Institute of Medical and Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario La Paz, UAM, 28046 Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit (UMDE-ERN BOND), Hospital Universitario La Paz, 28046 Madrid, Spain
- Department of Pediatrics, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
- Department of Pediatrics, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Elsa Lucas-Castro
- Institute of Medical and Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario La Paz, UAM, 28046 Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit (UMDE-ERN BOND), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Silvia Modamio-Høybjør
- Institute of Medical and Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario La Paz, UAM, 28046 Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit (UMDE-ERN BOND), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Karen E Heath
- Institute of Medical and Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario La Paz, UAM, 28046 Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit (UMDE-ERN BOND), Hospital Universitario La Paz, 28046 Madrid, Spain
- CIBERER, ISCIII, 28029 Madrid, Spain
| |
Collapse
|
4
|
Mamachan M, Sharun K, Banu SA, Muthu S, Pawde AM, Abualigah L, Maiti SK. Mesenchymal stem cells for cartilage regeneration: Insights into molecular mechanism and therapeutic strategies. Tissue Cell 2024; 88:102380. [PMID: 38615643 DOI: 10.1016/j.tice.2024.102380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
The use of mesenchymal stem cells (MSCs) in cartilage regeneration has gained significant attention in regenerative medicine. This paper reviews the molecular mechanisms underlying MSC-based cartilage regeneration and explores various therapeutic strategies to enhance the efficacy of MSCs in this context. MSCs exhibit multipotent capabilities and can differentiate into various cell lineages under specific microenvironmental cues. Chondrogenic differentiation, a complex process involving signaling pathways, transcription factors, and growth factors, plays a pivotal role in the successful regeneration of cartilage tissue. The chondrogenic differentiation of MSCs is tightly regulated by growth factors and signaling pathways such as TGF-β, BMP, Wnt/β-catenin, RhoA/ROCK, NOTCH, and IHH (Indian hedgehog). Understanding the intricate balance between these pathways is crucial for directing lineage-specific differentiation and preventing undesirable chondrocyte hypertrophy. Additionally, paracrine effects of MSCs, mediated by the secretion of bioactive factors, contribute significantly to immunomodulation, recruitment of endogenous stem cells, and maintenance of chondrocyte phenotype. Pre-treatment strategies utilized to potentiate MSCs, such as hypoxic conditions, low-intensity ultrasound, kartogenin treatment, and gene editing, are also discussed for their potential to enhance MSC survival, differentiation, and paracrine effects. In conclusion, this paper provides a comprehensive overview of the molecular mechanisms involved in MSC-based cartilage regeneration and outlines promising therapeutic strategies. The insights presented contribute to the ongoing efforts in optimizing MSC-based therapies for effective cartilage repair.
Collapse
Affiliation(s)
- Merlin Mamachan
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India; Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan.
| | - S Amitha Banu
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sathish Muthu
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India; Orthopaedic Research Group, Coimbatore, Tamil Nadu, India; Department of Orthopaedics, Government Medical College, Kaur, Tamil Nadu, India
| | - Abhijit M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Laith Abualigah
- Artificial Intelligence and Sensing Technologies (AIST) Research Center, University of Tabuk, Tabuk 71491, Saudi Arabia; Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman 19328, Jordan; Computer Science Department, Al al-Bayt University, Mafraq 25113, Jordan; MEU Research Unit, Middle East University, Amman 11831, Jordan; Department of Electrical and Computer Engineering, Lebanese American University, Byblos 13-5053, Lebanon; Applied Science Research Center, Applied Science Private University, Amman 11931, Jordan; School of Engineering and Technology, Sunway University Malaysia, Petaling Jaya 27500, Malaysia
| | - Swapan Kumar Maiti
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
5
|
Leung AOW, Poon ACH, Wang X, Feng C, Chen P, Zheng Z, To MK, Chan WCW, Cheung M, Chan D. Suppression of apoptosis impairs phalangeal joint formation in the pathogenesis of brachydactyly type A1. Nat Commun 2024; 15:2229. [PMID: 38472182 PMCID: PMC10933404 DOI: 10.1038/s41467-024-45053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/12/2024] [Indexed: 03/14/2024] Open
Abstract
Apoptosis occurs during development when a separation of tissues is needed. Synovial joint formation is initiated at the presumptive site (interzone) within a cartilage anlagen, with changes in cellular differentiation leading to cavitation and tissue separation. Apoptosis has been detected in phalangeal joints during development, but its role and regulation have not been defined. Here, we use a mouse model of brachydactyly type A1 (BDA1) with an IhhE95K mutation, to show that a missing middle phalangeal bone is due to the failure of the developing joint to cavitate, associated with reduced apoptosis, and a joint is not formed. We showed an intricate relationship between IHH and interacting partners, CDON and GAS1, in the interzone that regulates apoptosis. We propose a model in which CDON/GAS1 may act as dependence receptors in this context. Normally, the IHH level is low at the center of the interzone, enabling the "ligand-free" CDON/GAS1 to activate cell death for cavitation. In BDA1, a high concentration of IHH suppresses apoptosis. Our findings provided new insights into the role of IHH and CDON in joint formation, with relevance to hedgehog signaling in developmental biology and diseases.
Collapse
Affiliation(s)
- Adrian On Wah Leung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Andrew Chung Hin Poon
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xue Wang
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chen Feng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- Hebei Orthopedic Clinical Research Center, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China
| | - Peikai Chen
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong -Shenzhen Hospital (HKU-SZH), Shenzhen, China
| | - Zhengfan Zheng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Michael KaiTsun To
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong -Shenzhen Hospital (HKU-SZH), Shenzhen, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wilson Cheuk Wing Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong -Shenzhen Hospital (HKU-SZH), Shenzhen, China.
| | - Martin Cheung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
6
|
Youngblood MW, Erson-Omay Z, Li C, Najem H, Coșkun S, Tyrtova E, Montejo JD, Miyagishima DF, Barak T, Nishimura S, Harmancı AS, Clark VE, Duran D, Huttner A, Avşar T, Bayri Y, Schramm J, Boetto J, Peyre M, Riche M, Goldbrunner R, Amankulor N, Louvi A, Bilgüvar K, Pamir MN, Özduman K, Kilic T, Knight JR, Simon M, Horbinski C, Kalamarides M, Timmer M, Heimberger AB, Mishra-Gorur K, Moliterno J, Yasuno K, Günel M. Super-enhancer hijacking drives ectopic expression of hedgehog pathway ligands in meningiomas. Nat Commun 2023; 14:6279. [PMID: 37805627 PMCID: PMC10560290 DOI: 10.1038/s41467-023-41926-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/25/2023] [Indexed: 10/09/2023] Open
Abstract
Hedgehog signaling mediates embryologic development of the central nervous system and other tissues and is frequently hijacked by neoplasia to facilitate uncontrolled cellular proliferation. Meningiomas, the most common primary brain tumor, exhibit Hedgehog signaling activation in 6.5% of cases, triggered by recurrent mutations in pathway mediators such as SMO. In this study, we find 35.6% of meningiomas that lack previously known drivers acquired various types of somatic structural variations affecting chromosomes 2q35 and 7q36.3. These cases exhibit ectopic expression of Hedgehog ligands, IHH and SHH, respectively, resulting in Hedgehog signaling activation. Recurrent tandem duplications involving IHH permit de novo chromatin interactions between super-enhancers within DIRC3 and a locus containing IHH. Our work expands the landscape of meningioma molecular drivers and demonstrates enhancer hijacking of Hedgehog ligands as a route to activate this pathway in neoplasia.
Collapse
Affiliation(s)
- Mark W Youngblood
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neurological Surgery, Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zeynep Erson-Omay
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Chang Li
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Sun Yat-sen University Cancer Center, 510060, Guangzhou, P. R. China
| | - Hinda Najem
- Department of Neurological Surgery, Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Süleyman Coșkun
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Evgeniya Tyrtova
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, University of Washington, Seattle, WA, USA
| | - Julio D Montejo
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Danielle F Miyagishima
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Tanyeri Barak
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Sayoko Nishimura
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Akdes Serin Harmancı
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Victoria E Clark
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Daniel Duran
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Anita Huttner
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Timuçin Avşar
- Department of Neurosurgery, Bahcesehir University, School of Medicine, Istanbul, Turkey
| | - Yasar Bayri
- Department of Neurosurgery, Marmara University School of Medicine, 34854, Istanbul, Turkey
| | | | - Julien Boetto
- Department of Neurosurgery, Hopital Pitie-Salpetriere, AP-HP & Sorbonne Université, F-75103, Paris, France
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Matthieu Peyre
- Department of Neurosurgery, Hopital Pitie-Salpetriere, AP-HP & Sorbonne Université, F-75103, Paris, France
| | - Maximilien Riche
- Department of Neurosurgery, Hopital Pitie-Salpetriere, AP-HP & Sorbonne Université, F-75103, Paris, France
| | - Roland Goldbrunner
- Center for Neurosurgery, University Hospital of Cologne, 50937, Cologne, Germany
| | - Nduka Amankulor
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Angeliki Louvi
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Kaya Bilgüvar
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Yale Center for Genome Analysis, Yale University West Campus, Orange, CT, USA
- Department of Medical Genetics Acibadem Mehmet Ali Aydınlar University, School of Medicine, Istanbul, 34848, Turkey
| | - M Necmettin Pamir
- Department of Neurosurgery, Acibadem Mehmet Ali Aydınlar University, School of Medicine, Istanbul, 34848, Turkey
| | - Koray Özduman
- Department of Neurosurgery, Acibadem Mehmet Ali Aydınlar University, School of Medicine, Istanbul, 34848, Turkey
| | - Türker Kilic
- Department of Neurosurgery, Bahcesehir University, School of Medicine, Istanbul, Turkey
| | - James R Knight
- Yale Center for Genome Analysis, Yale University West Campus, Orange, CT, USA
| | - Matthias Simon
- University of Bonn Medical School, 53105, Bonn, Germany
- Department of Neurosurgery, Bethel Clinic, University of Bielefeld Medical Center OWL, Bielefeld, Germany
| | - Craig Horbinski
- Department of Neurological Surgery, Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michel Kalamarides
- Department of Neurosurgery, Hopital Pitie-Salpetriere, AP-HP & Sorbonne Université, F-75103, Paris, France
| | - Marco Timmer
- Center for Neurosurgery, University Hospital of Cologne, 50937, Cologne, Germany
| | - Amy B Heimberger
- Department of Neurological Surgery, Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ketu Mishra-Gorur
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Jennifer Moliterno
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Katsuhito Yasuno
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
| | - Murat Günel
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
7
|
Onodera S, Azuma T. Hedgehog-Related Mutation Causes Bone Malformations with or without Hereditary Gene Mutations. Int J Mol Sci 2023; 24:12903. [PMID: 37629084 PMCID: PMC10454035 DOI: 10.3390/ijms241612903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The hedgehog (Hh) family consists of numerous signaling mediators that play important roles at various stages of development. Thus, the Hh pathway is essential for bone tissue development and tumorigenesis. Gorlin syndrome is a skeletal and tumorigenic disorder caused by gain-of-function mutations in Hh signaling. In this review, we first present the phenotype of Gorlin syndrome and the relationship between genotype and phenotype in bone and craniofacial tissues, including the causative gene as well as other Hh-related genes. Next, the importance of new diagnostic methods using next-generation sequencing and multiple gene panels will be discussed. We summarize Hh-related genetic disorders, including cilia disease, and the genetics of Hh-related bone diseases.
Collapse
Affiliation(s)
- Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan;
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan;
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| |
Collapse
|
8
|
Wang Y, Dong Z, Yang R, Zong S, Wei X, Wang C, Guo L, Sun J, Li H, Li P. Inactivation of Ihh in Sp7-Expressing Cells Inhibits Osteoblast Proliferation, Differentiation, and Bone Formation, Resulting in a Dwarfism Phenotype with Severe Skeletal Dysplasia in Mice. Calcif Tissue Int 2022; 111:519-534. [PMID: 35731246 DOI: 10.1007/s00223-022-00999-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022]
Abstract
Indian hedgehog (Ihh) is an indispensable paracrine factor for proper tissue patterning, skeletogenesis, and cellular proliferation. Recent genetic studies have revealed critical roles of chondrocyte-derived Ihh in regulating chondrocyte proliferation, hypertrophy and cartilage ossification. However, the functions of Sp7-expressing cell-derived Ihh in osteoblast differentiation and bone formation remain unclear. Sp7 is an essential transcription factor for osteoblast differentiation. In the current study, we generated Sp7-iCre; Ihhfl/fl mice, in which the Ihh gene was specifically deleted in Sp7-expressing cells to investigate the roles of Ihh. Ihh ablation in Sp7-expressing cells resulted in a dwarfism phenotype with severe skeletal dysplasia and lethality at birth, but with normal joint segmentation. Sp7-iCre; Ihhfl/fl mice had fewer osteoblasts, almost no cortical and trabecular bones, smaller skulls, and wider cranial sutures. Additionally, the levels of osteogenesis- and angiogenesis-related genes, and of major bone matrix protein genes were significantly reduced. These results demonstrated that Ihh regulates bone formation in Sp7-expressing cells. Ihh deficiency in primary osteoblasts cultured in vitro inhibited their proliferation, differentiation, and mineralization ability, and reduced the expression of osteogenesis-related genes. Moreover, the deletion of Ihh also attenuated the Bmp2/Smad/Runx2 pathway in E18.5 tibial and primary osteoblasts. The activity of primary osteoblasts in mutant mice was rescued after treatment with rhBMP2. In summary, our data revealed that Ihh in Sp7-expressing cells plays an indispensable role in osteoblast differentiation, mineralization, and embryonic osteogenesis, further implicated that its pro-osteogenic role may be mediated through the canonical Bmp2/Smad/Runx2 pathway.
Collapse
Affiliation(s)
- YunFei Wang
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhengquan Dong
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruijia Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Sujing Zong
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaochun Wei
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chunfang Wang
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Guo
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jian Sun
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Haoqian Li
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Pengcui Li
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
9
|
Shao J, Liu Y, Zhao S, Sun W, Zhan J, Cao L. A novel variant in the ROR2 gene underlying brachydactyly type B: a case report. BMC Pediatr 2022; 22:528. [PMID: 36064339 PMCID: PMC9446770 DOI: 10.1186/s12887-022-03564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background Brachydactyly type B is an autosomal dominant disorder that is characterized by hypoplasia of the distal phalanges and nails and can be divided into brachydactyly type B1 (BDB1) and brachydactyly type B2 (BDB2). BDB1 is the most severe form of brachydactyly and is caused by truncating variants in the receptor tyrosine kinase–like orphan receptor 2 (ROR2) gene. Case presentation Here, we report a five-generation Chinese family with brachydactyly with or without syndactyly. The proband and her mother underwent digital separation in syndactyly, and the genetic analyses of the proband and her parents were provided. The novel heterozygous frameshift variant c.1320dupG, p.(Arg441Alafs*18) in the ROR2 gene was identified in the affected individuals by whole-exome sequencing and Sanger sequencing. The c.1320dupG variant in ROR2 is predicted to produce a truncated protein that lacks tyrosine kinase and serine/threonine- and proline-rich structures and remarkably alters the tertiary structures of the mutant ROR2 protein. Conclusion The c.1320dupG, p.(Arg441Alafs*18) variant in the ROR2 gene has not been reported in any databases thus far and therefore is novel. Our study extends the gene variant spectrum of brachydactyly and may provide information for the genetic counselling of family members. Supplementary Information The online version contains supplementary material available at 10.1186/s12887-022-03564-z.
Collapse
Affiliation(s)
- Jiaqi Shao
- College of Kinesiology, Shenyang Sport University, No. 36 Jinqiansong East Road, Sujiatun District, Shenyang, 110102, China
| | - Yue Liu
- Hand SurgeryCentral Hospital Affiliated to Shenyang Medical CollegeTiexi District, Dept.4No. 5 Nanqi West Road, Shenyang, 110024, China
| | - Shuyang Zhao
- College of Kinesiology, Shenyang Sport University, No. 36 Jinqiansong East Road, Sujiatun District, Shenyang, 110102, China
| | - Weisheng Sun
- College of Kinesiology, Shenyang Sport University, No. 36 Jinqiansong East Road, Sujiatun District, Shenyang, 110102, China
| | - Jie Zhan
- Hand SurgeryCentral Hospital Affiliated to Shenyang Medical CollegeTiexi District, Dept.4No. 5 Nanqi West Road, Shenyang, 110024, China.
| | - Lihua Cao
- College of Kinesiology, Shenyang Sport University, No. 36 Jinqiansong East Road, Sujiatun District, Shenyang, 110102, China.
| |
Collapse
|
10
|
The molecular genetics of human appendicular skeleton. Mol Genet Genomics 2022; 297:1195-1214. [PMID: 35907958 DOI: 10.1007/s00438-022-01930-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/09/2022] [Indexed: 10/16/2022]
Abstract
Disorders that result from de-arrangement of growth, development and/or differentiation of the appendages (limbs and digit) are collectively called as inherited abnormalities of human appendicular skeleton. The bones of appendicular skeleton have central role in locomotion and movement. The different types of appendicular skeletal abnormalities are well described in the report of "Nosology and Classification of Genetic skeletal disorders: 2019 Revision". In the current article, we intend to present the embryology, developmental pathways, disorders and the molecular genetics of the appendicular skeletal malformations. We mainly focused on the polydactyly, syndactyly, brachydactyly, split-hand-foot malformation and clubfoot disorders. To our knowledge, only nine genes of polydactyly, five genes of split-hand-foot malformation, nine genes for syndactyly, eight genes for brachydactyly and only single gene for clubfoot have been identified to be involved in disease pathophysiology. The current molecular genetic data will help life sciences researchers working on the rare skeletal disorders. Moreover, the aim of present systematic review is to gather the published knowledge on molecular genetics of appendicular skeleton, which would help in genetic counseling and molecular diagnosis.
Collapse
|
11
|
Zeng F, Liu H, Xia X, Shu Y, Cheng W, Xu H, Yin G, Xie Q. Case Report: Brachydactyly Type A1 Induced by a Novel Variant of in-Frame Insertion in the IHH Gene. Front Genet 2022; 13:814786. [PMID: 35669189 PMCID: PMC9163809 DOI: 10.3389/fgene.2022.814786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
Brachydactyly type A1 (BDA1) is an autosomal dominant inherited disease characterized by the shortness/absence of the middle phalanges, which can be induced by mutations in the Indian hedgehog gene (IHH). Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease characterized by joint destruction, synovitis, and the presence of autoantibodies. In this study, the proband was diagnosed with both BDA1 and RA. We performed whole-exome sequencing in a four-generation Chinese family to investigate their inherited causal mutation to BDA1. A novel in-frame insertion variant in IHH: NM_002,181.4: c.383_415dup/p.(R128_H138dup) was identified in the BDA1 pedigree. This insertion of 11 amino acids was located in the highly conserved amino-terminal signaling domain of IHH and co-segregated with the disease status. This adds one to the total number of different IHH mutations found to cause BDA1. Moreover, we found a potential causal germline variant in CRY1 for a molecular biomarker of RA (i.e., a high level of anti-cyclic citrullinated peptide). Collectively, we identified novel variants in IHH for inherited BDA1, which highlights the important role of this gene in phalange development.
Collapse
Affiliation(s)
- Feier Zeng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Xuyang Xia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Shu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, Department of Gastrointestinal Surgery, West China Hospital, Chengdu, China
| | - Wei Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Chengdu, China
- *Correspondence: Heng Xu, ; Geng Yin, ; Qibing Xie,
| | - Geng Yin
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Heng Xu, ; Geng Yin, ; Qibing Xie,
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Heng Xu, ; Geng Yin, ; Qibing Xie,
| |
Collapse
|
12
|
Hoyle DJ, Dranow DB, Schilling TF. Pthlha and mechanical force control early patterning of growth zones in the zebrafish craniofacial skeleton. Development 2022; 149:dev199826. [PMID: 34919126 PMCID: PMC8917414 DOI: 10.1242/dev.199826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/07/2021] [Indexed: 11/23/2022]
Abstract
Secreted signals in patterning systems often induce repressive signals that shape their distributions in space and time. In developing growth plates (GPs) of endochondral long bones, Parathyroid hormone-like hormone (Pthlh) inhibits Indian hedgehog (Ihh) to form a negative-feedback loop that controls GP progression and bone size. Whether similar systems operate in other bones and how they arise during embryogenesis remain unclear. We show that Pthlha expression in the zebrafish craniofacial skeleton precedes chondrocyte differentiation and restricts where cells undergo hypertrophy, thereby initiating a future GP. Loss of Pthlha leads to an expansion of cells expressing a novel early marker of the hypertrophic zone (HZ), entpd5a, and later HZ markers, such as ihha, whereas local Pthlha misexpression induces ectopic entpd5a expression. Formation of this early pre-HZ correlates with onset of muscle contraction and requires mechanical force; paralysis leads to loss of entpd5a and ihha expression in the pre-HZ, mislocalized pthlha expression and no subsequent ossification. These results suggest that local Pthlh sources combined with force determine HZ locations, establishing the negative-feedback loop that later maintains GPs.
Collapse
Affiliation(s)
| | | | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92693, USA
| |
Collapse
|
13
|
Baz-Redón N, Soler-Colomer L, Fernández-Cancio M, Benito-Sanz S, Garrido M, Moliné T, Clemente M, Camats-Tarruella N, Yeste D. Novel variant in HHAT as a cause of different sex development with partial gonadal dysgenesis associated with microcephaly, eye defects, and distal phalangeal hypoplasia of both thumbs: Case report. Front Endocrinol (Lausanne) 2022; 13:957969. [PMID: 36303863 PMCID: PMC9592858 DOI: 10.3389/fendo.2022.957969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
The palmitoylation of the Hedgehog (Hh) family of morphogens, named sonic hedgehog (SHH), desert hedgehog (DHH), and Indian hedgehog (IHH), is crucial for effective short- and long-range signaling. The hedgehog acyltransferase (HHAT) attaches the palmitate molecule to the Hh; therefore, variants in HHAT cause a broad spectrum of phenotypes. A missense HHAT novel variant c.1001T>A/p.(Met334Lys) was described in a patient first referred for a 46,XY different sexual development with partial gonadal dysgenesis but with microcephaly, eye defects, and distal phalangeal hypoplasia of both thumbs. The in silico analysis of the variant predicted an affectation of the nearest splicing site. Thus, in vitro minigene studies were carried out, which demonstrated that the variant does not affect the splicing. Subsequent protein in silico studies supported the pathogenicity of the variant, and, in conclusion, this was considered the cause of the patient's phenotype.
Collapse
Affiliation(s)
- Noelia Baz-Redón
- Growth and Development Group, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Pediatrics, Obstetrics and Gynecology and Preventive Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Soler-Colomer
- Pediatric Endocrinology Section, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Mónica Fernández-Cancio
- Growth and Development Group, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Sara Benito-Sanz
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autonóma de Madrid, Madrid, Spain
| | - Marta Garrido
- Department of Pathology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Teresa Moliné
- Department of Pathology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - María Clemente
- Growth and Development Group, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Pediatrics, Obstetrics and Gynecology and Preventive Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pediatric Endocrinology Section, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Núria Camats-Tarruella
- Growth and Development Group, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- *Correspondence: Núria Camats-Tarruella,
| | - Diego Yeste
- Growth and Development Group, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Pediatrics, Obstetrics and Gynecology and Preventive Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pediatric Endocrinology Section, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
14
|
Onuki T, Shibata N, Hiroshima S, Sawano K, Nagasaki K. A Japanese family with a heterozygous novel mutation in the Indian hedgehog gene exhibiting a broad spectrum of clinical features and radiological findings. Congenit Anom (Kyoto) 2022; 62:47-48. [PMID: 34591992 DOI: 10.1111/cga.12445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/04/2021] [Accepted: 09/16/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Takanori Onuki
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nao Shibata
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shota Hiroshima
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kentaro Sawano
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Keisuke Nagasaki
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
15
|
Murata A. The third patient with Tsukahara-Azuno-Kaiji syndrome with type A1 brachydactyly, dwarfism, microcephaly, scoliosis, intellectual disability, ptosis, and hearing loss. Radiol Case Rep 2021; 17:181-184. [PMID: 34815823 PMCID: PMC8593260 DOI: 10.1016/j.radcr.2021.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 01/24/2023] Open
Abstract
We report the case of the third patient with Tsukahara-Azuno-Kaiji syndrome. It is characterized by brachydactyly A1, dwarfism, microcephaly, scoliosis, intellectual disability, ptosis, and hearing loss. The first patient was reported in 1989, and the second in 2010. The present patient had many features in common with the previous 2 patients, with a few minor differences. Although this combination of symptoms is very characteristic, the clinicians should know about this syndrome to diagnose it. The syndrome in this patient appeared sporadically, and chromosome G-banding revealed a normal female karyotype of 46XX. However, further genetic research could not be performed. Steady accumulation of information will enable us to discover the true clinical and genetic nature of the disease and to make the diagnosis more easily.
Collapse
|
16
|
Ttc30a affects tubulin modifications in a model for ciliary chondrodysplasia with polycystic kidney disease. Proc Natl Acad Sci U S A 2021; 118:2106770118. [PMID: 34548398 PMCID: PMC8488674 DOI: 10.1073/pnas.2106770118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Cilia are tubulin-based cellular appendages, and their dysfunction has been linked to a variety of genetic diseases. Ciliary chondrodysplasia is one such condition that can co-occur with cystic kidney disease and other organ manifestations. We modeled skeletal ciliopathies by mutating two established disease genes in Xenopus tropicalis frogs. Bioinformatic analysis identified ttc30a as a ciliopathy network component, and targeting it replicated skeletal malformations and renal cysts as seen in patients and the amphibian models. A loss of Ttc30a affected cilia by altering posttranslational tubulin modifications. Our findings identify TTC30A/B as a component of ciliary segmentation essential for cartilage differentiation and renal tubulogenesis. These findings may lead to novel therapeutic targets in treating ciliary skeletopathies and cystic kidney disease. Skeletal ciliopathies (e.g., Jeune syndrome, short rib polydactyly syndrome, and Sensenbrenner syndrome) are frequently associated with nephronophthisis-like cystic kidney disease and other organ manifestations. Despite recent progress in genetic mapping of causative loci, a common molecular mechanism of cartilage defects and cystic kidneys has remained elusive. Targeting two ciliary chondrodysplasia loci (ift80 and ift172) by CRISPR/Cas9 mutagenesis, we established models for skeletal ciliopathies in Xenopus tropicalis. Froglets exhibited severe limb deformities, polydactyly, and cystic kidneys, closely matching the phenotype of affected patients. A data mining–based in silico screen found ttc30a to be related to known skeletal ciliopathy genes. CRISPR/Cas9 targeting replicated limb malformations and renal cysts identical to the models of established disease genes. Loss of Ttc30a impaired embryonic renal excretion and ciliogenesis because of altered posttranslational tubulin acetylation, glycylation, and defective axoneme compartmentalization. Ttc30a/b transcripts are enriched in chondrocytes and osteocytes of single-cell RNA-sequenced embryonic mouse limbs. We identify TTC30A/B as an essential node in the network of ciliary chondrodysplasia and nephronophthisis-like disease proteins and suggest that tubulin modifications and cilia segmentation contribute to skeletal and renal ciliopathy manifestations of ciliopathies in a cell type–specific manner. These findings have implications for potential therapeutic strategies.
Collapse
|
17
|
The Hedgehog Signaling Pathway is Expressed in the Adult Mouse Hypothalamus and Modulated by Fasting. eNeuro 2021; 8:ENEURO.0276-21.2021. [PMID: 34535504 PMCID: PMC8482854 DOI: 10.1523/eneuro.0276-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/28/2021] [Accepted: 08/10/2021] [Indexed: 11/21/2022] Open
Abstract
The hedgehog signaling pathway is best known for its role in developmental patterning of the neural tube and limb bud. More recently, hedgehog signaling has been recognized for its roles in growth of adult tissues and maintenance of progenitor cell niches. However, the role of hedgehog signaling in fully differentiated cells like neurons in the adult brain is less clear. In mammals, coordination of hedgehog pathway activity relies on primary cilia and patients with ciliopathies such as Bardet–Biedl and Alström syndrome exhibit clinical features clearly attributable to errant hedgehog such as polydactyly. However, these ciliopathies also present with features not clearly associated with hedgehog signaling such as hyperphagia-associated obesity. How hedgehog signaling may contribute to feeding behavior is complex and unclear, but cilia are critical for proper energy homeostasis. Here, we provide a detailed analysis of the expression of core components of the hedgehog signaling pathway in the adult mouse hypothalamus with an emphasis on feeding centers. We show that hedgehog pathway genes continue to be expressed in differentiated neurons important for the regulation of feeding behavior. Furthermore, we demonstrate for the first time that pathway activity is regulated at the transcriptional level by fasting. These data suggest that hedgehog signaling is involved in the proper functioning of brain regions that regulate feeding behavior and that hedgehog pathway dysfunction may play a role in the obesity observed in certain ciliopathies.
Collapse
|
18
|
Ozaki N, Okuda H, Kobayashi H, Harada KH, Inoue S, Youssefian S, Koizumi A. Deletion of 2 amino acids in IHH in a Japanese family with brachydactyly type A1. BMC Med Genomics 2021; 14:190. [PMID: 34315464 PMCID: PMC8314500 DOI: 10.1186/s12920-021-01042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 07/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brachydactyly type A1 (BDA1) is an autosomal dominant disorder characterized by uniform shortening of the middle phalanges in all digits. It is associated with variants in the Indian Hedgehog (IHH) gene, which plays a key role in endochondral ossification. To date, heterozygous pathogenic IHH variants involving several codons, which are restricted to a specific region of the N-terminal active fragment of IHH, have been reported. The purpose of this study was to identify the pathogenic variant in a Japanese family with BDA1 and to evaluate its pathogenesis with regard to previous reports. METHODS The proband, a 9-year-old boy, his siblings, and his father had shortened digits and a short stature of variable severity. Based on physical examinations, radiographic findings and family history, they were diagnosed with BDA1. This family is the first case of an isolated malformation in Japan. Sanger sequencing of IHH was performed on these individuals and on the proband's unaffected mother. The significance of the variants was assessed using three-dimensional analysis methods. RESULTS Sanger sequencing showed a novel IHH heterozygous variant, NM_002181.4:c.544_549delTCAAAG(p.Ser182Lys183del) [NC_000002.12:g.219057461_219057466del].. These two residues are located outside the cluster region considered a hotspot of pathogenic variants. Three-dimensional modelling showed that S182 and K183 are located on the same surface as other residues associated with BDA1. Analysis of residue interactions across the interface between IHH and its interacting receptor protein revealed the presence of hydrogen bonds between them. CONCLUSIONS We report a novel variant, NM_002181.4:c.544_549delTCAAAG (p.Ser182Lys183del) [NC_000002.12:g.219057461_219057466del] in a Japanese family with BDA1. Indeed, neither variations in codons 182 or 183 nor with such two-amino-acid deletions in IHH have been reported previously. Although these two residues are located outside the cluster region considered a hotspot of pathogenic variants, we speculate that this variant causes BDA1 through impaired interactions between IHH and target receptor proteins in the same manner as other pathogenic variants located in the cluster region. This report expands the genetic spectrum of BDA1.
Collapse
Affiliation(s)
- Nozomu Ozaki
- Department of Pediatrics, Kadono-Sanjo Children's Clinic, Kyoto, Japan.
| | - Hiroko Okuda
- Department of Pain Pharmacogenetics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hatasu Kobayashi
- Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sumiko Inoue
- Department of Pain Pharmacogenetics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shohab Youssefian
- Department of Pain Pharmacogenetics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Molecular Biosciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akio Koizumi
- Department of Pain Pharmacogenetics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute of Public Health and Welfare, Kyoto-Hokenkai, Kyoto, Japan
| |
Collapse
|
19
|
Wang X, Liu H, Liu Y, Han G, Wang Y, Chen H, He L, Ma G. Highly Conserved C-Terminal Region of Indian Hedgehog N-Fragment Contributes to Its Auto-Processing and Multimer Formation. Biomolecules 2021; 11:biom11060792. [PMID: 34070546 PMCID: PMC8227148 DOI: 10.3390/biom11060792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/30/2022] Open
Abstract
Hedgehog (HH) is a highly conserved secretory signalling protein family mainly involved in embryonic development, homeostasis, and tumorigenesis. HH is generally synthesised as a precursor, which subsequently undergoes autoproteolytic cleavage to generate an amino-terminal fragment (HH-N), mediating signalling, and a carboxyl-terminal fragment (HH-C), catalysing the auto-processing reaction. The N-terminal region of HH-N is required for HH multimer formation to promote signal transduction, whilst the functions of the C-terminal region of HH-N remain ambiguous. This study focused on Indian Hedgehog (IHH), a member of the HH family, to explore the functions of the C-terminal region of the amino-terminal fragment of IHH (IHH-N) via protein truncation, cell-based assays, and 3D structure prediction. The results revealed that three amino acids, including S195, A196, and A197, were crucial for the multimer formation by inserting the mutual binding of IHH-N proteins. K191, S192, E193, and H194 had an extremely remarkable effect on IHH self-cleavage. In addition, A198, K199, and T200 evidently affected the stability of IHH-N. This work suggested that the C-terminus of IHH-N played an important role in the physiological function of IHH at multiple levels, thus deepening the understanding of HH biochemical properties.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China;
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (G.H.); (Y.W.)
| | - Hao Liu
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Yanfang Liu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (G.H.); (Y.W.)
| | - Gefei Han
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (G.H.); (Y.W.)
| | - Yushu Wang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (G.H.); (Y.W.)
| | - Haifeng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
- Correspondence: (H.C.); (L.H.); (G.M.)
| | - Lin He
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (G.H.); (Y.W.)
- Correspondence: (H.C.); (L.H.); (G.M.)
| | - Gang Ma
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China;
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (G.H.); (Y.W.)
- Correspondence: (H.C.); (L.H.); (G.M.)
| |
Collapse
|
20
|
Guasto A, Cormier-Daire V. Signaling Pathways in Bone Development and Their Related Skeletal Dysplasia. Int J Mol Sci 2021; 22:4321. [PMID: 33919228 PMCID: PMC8122623 DOI: 10.3390/ijms22094321] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Bone development is a tightly regulated process. Several integrated signaling pathways including HH, PTHrP, WNT, NOTCH, TGF-β, BMP, FGF and the transcription factors SOX9, RUNX2 and OSX are essential for proper skeletal development. Misregulation of these signaling pathways can cause a large spectrum of congenital conditions categorized as skeletal dysplasia. Since the signaling pathways involved in skeletal dysplasia interact at multiple levels and have a different role depending on the time of action (early or late in chondrogenesis and osteoblastogenesis), it is still difficult to precisely explain the physiopathological mechanisms of skeletal disorders. However, in recent years, significant progress has been made in elucidating the mechanisms of these signaling pathways and genotype-phenotype correlations have helped to elucidate their role in skeletogenesis. Here, we review the principal signaling pathways involved in bone development and their associated skeletal dysplasia.
Collapse
Affiliation(s)
- Alessandra Guasto
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France;
| | - Valérie Cormier-Daire
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France;
- Centre de Référence Pour Les Maladies Osseuses Constitutionnelles, Service de Génétique Clinique, AP-HP, Hôpital Necker-Enfants Malades, 75015 Paris, France
| |
Collapse
|
21
|
Donsante S, Palmisano B, Serafini M, Robey PG, Corsi A, Riminucci M. From Stem Cells to Bone-Forming Cells. Int J Mol Sci 2021; 22:ijms22083989. [PMID: 33924333 PMCID: PMC8070464 DOI: 10.3390/ijms22083989] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 12/22/2022] Open
Abstract
Bone formation starts near the end of the embryonic stage of development and continues throughout life during bone modeling and growth, remodeling, and when needed, regeneration. Bone-forming cells, traditionally termed osteoblasts, produce, assemble, and control the mineralization of the type I collagen-enriched bone matrix while participating in the regulation of other cell processes, such as osteoclastogenesis, and metabolic activities, such as phosphate homeostasis. Osteoblasts are generated by different cohorts of skeletal stem cells that arise from different embryonic specifications, which operate in the pre-natal and/or adult skeleton under the control of multiple regulators. In this review, we briefly define the cellular identity and function of osteoblasts and discuss the main populations of osteoprogenitor cells identified to date. We also provide examples of long-known and recently recognized regulatory pathways and mechanisms involved in the specification of the osteogenic lineage, as assessed by studies on mice models and human genetic skeletal diseases.
Collapse
Affiliation(s)
- Samantha Donsante
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina 324, 00161 Rome, Italy; (S.D.); (B.P.); (A.C.)
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo, 20900 Monza, Italy;
| | - Biagio Palmisano
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina 324, 00161 Rome, Italy; (S.D.); (B.P.); (A.C.)
| | - Marta Serafini
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo, 20900 Monza, Italy;
| | - Pamela G. Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA;
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina 324, 00161 Rome, Italy; (S.D.); (B.P.); (A.C.)
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina 324, 00161 Rome, Italy; (S.D.); (B.P.); (A.C.)
- Correspondence:
| |
Collapse
|
22
|
Genovesi ML, Guadagnolo D, Marchionni E, Giovannetti A, Traversa A, Panzironi N, Bernardo S, Palumbo P, Petrizzelli F, Carella M, Mazza T, Pizzuti A, Caputo V. GDF5 mutation case report and a systematic review of molecular and clinical spectrum: Expanding current knowledge on genotype-phenotype correlations. Bone 2021; 144:115803. [PMID: 33333243 DOI: 10.1016/j.bone.2020.115803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/09/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Brachydactyly is a bone development abnormality presenting with variable phenotypes and different transmission patterns. Mutations in GDF5 (Growth and Differentiation Factor 5, MIM *601146) account for a significant amount of cases. Here, we report on a three-generation family, where the proband and the grandfather have an isolated brachydactyly with features of both type A1 (MIM #112500) and type C (MIM #113100), while the mother shows only subtle hand phenotype signs. MATERIALS AND METHODS Whole Exome Sequencing (WES) was performed on the two affected individuals. An in-depth analysis of GDF5 genotype-phenotype correlations was performed through literature reviewing and retrieving information from several databases to elucidate GDF5-related molecular pathogenic mechanisms. RESULTS WES analysis disclosed a pathogenic variant in GDF5 (NM_000557.5:c.157dup; NP_000548.2:p.Leu53Profs*41; rs778834209), segregating with the phenotype. The frameshift variant was previously associated with Brachydactyly type C (MIM #113100), in heterozygosity, and with the severe Grebe type chondrodysplasia (MIM #200700), in homozygosity. In-depth analysis of literature and databases allowed to retrieve GDF5 mutations and correlations to phenotypes. We disclosed the association of 49 GDF5 pathogenic mutations with eight phenotypes, with both autosomal dominant and recessive transmission patterns. Clinical presentations ranged from severe defects of limb morphogenesis to mild redundant ossification. We suggest that such clinical gradient can be linked to a continuum of GDF5-activity variation, with loss of GDF5 activity underlying bone development defects, and gain of function causing disorders with excessive bone formation. CONCLUSIONS Our analysis of GDF5 pathogenicity mechanisms furtherly supports that mutation and zygosity backgrounds resulting in the same level of GDF5 activity may lead to similar phenotypes. This information can aid in interpreting the potential pathogenic effect of new variants and in supporting an appropriate genetic counseling.
Collapse
Affiliation(s)
- Maria Luce Genovesi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniele Guadagnolo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Enrica Marchionni
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Agnese Giovannetti
- Laboratory of Clinical Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Alice Traversa
- Laboratory of Clinical Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Noemi Panzironi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvia Bernardo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Pietro Palumbo
- Laboratory of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Francesco Petrizzelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy; Laboratory of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Massimo Carella
- Laboratory of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Tommaso Mazza
- Laboratory of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy; Laboratory of Clinical Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Viviana Caputo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
23
|
Ohba S. Hedgehog Signaling in Skeletal Development: Roles of Indian Hedgehog and the Mode of Its Action. Int J Mol Sci 2020; 21:E6665. [PMID: 32933018 PMCID: PMC7555016 DOI: 10.3390/ijms21186665] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
Hedgehog (Hh) signaling is highly conserved among species and plays indispensable roles in various developmental processes. There are three Hh members in mammals; one of them, Indian hedgehog (Ihh), is expressed in prehypertrophic and hypertrophic chondrocytes during endochondral ossification. Based on mouse genetic studies, three major functions of Ihh have been proposed: (1) Regulation of chondrocyte differentiation via a negative feedback loop formed together with parathyroid hormone-related protein (PTHrP), (2) promotion of chondrocyte proliferation, and (3) specification of bone-forming osteoblasts. Gli transcription factors mediate the major aspect of Hh signaling in this context. Gli3 has dominant roles in the growth plate chondrocytes, whereas Gli1, Gli2, and Gli3 collectively mediate biological functions of Hh signaling in osteoblast specification. Recent studies have also highlighted postnatal roles of the signaling in maintenance and repair of skeletal tissues.
Collapse
Affiliation(s)
- Shinsuke Ohba
- Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| |
Collapse
|
24
|
Zhang M, Lu L, Wei B, Zhang Y, Li X, Shi Y, Ge W, Sun M. Brachydactyly type A3 is caused by a novel 13 bp HOXD13 frameshift deletion in a Chinese family. Am J Med Genet A 2020; 182:2432-2436. [PMID: 32789964 DOI: 10.1002/ajmg.a.61788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/01/2020] [Accepted: 07/11/2020] [Indexed: 12/13/2022]
Abstract
Brachydactyly type A (BDA) is defined as short middle phalanges of the affected digits and is subdivided into four types (BDA1-4). To date, the molecular cause is unknown. However, there is some evidence that pathogenic variants of HOXD13 could be associated with BDA3 and BDA4. Here, we report a Chinese autosomal dominant BDA3 pedigree with a novel HOXD13 mutation. The affected individuals presented with an obviously shorter fifth middle phalanx. The radial side of the middle phalanx was shorter than the ulnar side, and the terminal phalanx of the fifth finger inclined radially and formed classical clinodactyly. Interestingly, the index finger was normal. The initial diagnosis was BDA3. However, the distal third and fourth middle phalanges were also slightly affected, resulting in mild radial clinodactyly. Both feet showed shortening of the middle phalanges, which were fused to the distal phalanges of the second to the fifth toes, as reported in BDA4. Therefore, this pedigree had combined BDA3 and atypical BDA4. By direct sequencing, a 13 bp deletion within exon 1 of HOXD13 (NM_000523.4: c.708_720del13; NP_000514.2: p.Gly237fs) was identified. The 13 bp deletion resulted in a frameshift and premature termination of HOXD13. This study provides further evidences that variants in HOXD13 cause BDA3-BDA4 phenotypes.
Collapse
Affiliation(s)
- Mengshu Zhang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Likui Lu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bin Wei
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yingying Zhang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiang Li
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yajun Shi
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Ge
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
25
|
Sentchordi-Montané L, Benito-Sanz S, Aza-Carmona M, Pereda A, Parrón-Pajares M, de la Torre C, Vasques GA, Funari MFA, Travessa AM, Dias P, Suarez-Ortega L, González-Buitrago J, Portillo-Najera NE, Llano-Rivas I, Martín-Frías M, Ramírez-Fernández J, Sánchez Del Pozo J, Garzón-Lorenzo L, Martos-Moreno GA, Alfaro-Iznaola C, Mulero-Collantes I, Ruiz-Ocaña P, Casano-Sancho P, Portela A, Ruiz-Pérez L, Del Pozo A, Vallespín E, Solís M, Lerario AM, González-Casado I, Ros-Pérez P, Pérez de Nanclares G, Jorge AAL, Heath KE. Clinical and Molecular Description of 16 Families With Heterozygous IHH Variants. J Clin Endocrinol Metab 2020; 105:5822861. [PMID: 32311039 DOI: 10.1210/clinem/dgaa218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/17/2020] [Indexed: 12/29/2022]
Abstract
CONTEXT Heterozygous variants in the Indian hedgehog gene (IHH) have been reported to cause brachydactyly type A1 and mild hand and feet skeletal anomalies with short stature. Genetic screening in individuals with short stature and mild skeletal anomalies has been increasing over recent years, allowing us to broaden the clinical spectrum of skeletal dysplasias. OBJECTIVE The objective of this article is to describe the genotype and phenotype of 16 probands with heterozygous variants in IHH. PATIENTS AND METHODS Targeted next-generation sequencing or Sanger sequencing was performed in patients with short stature and/or brachydactyly for which the genetic cause was unknown. RESULTS Fifteen different heterozygous IHH variants were detected, one of which is the first reported complete deletion of IHH. None of the patients showed the classical phenotype of brachydactyly type A1. The most frequently observed clinical characteristics were mild to moderate short stature as well as shortening of the middle phalanx on the fifth finger. The identified IHH variants were demonstrated to cosegregate with the short stature and/or brachydactyly in the 13 probands whose family members were available. However, clinical heterogeneity was observed: Two short-statured probands showed no hand radiological anomalies, whereas another 5 were of normal height but had brachydactyly. CONCLUSIONS Short stature and/or mild skeletal hand defects can be caused by IHH variants. Defects in this gene should be considered in individuals with these findings, especially when there is an autosomal dominant pattern of inheritance. Although no genotype-phenotype correlation was observed, cosegregation studies should be performed and where possible functional characterization before concluding that a variant is causative.
Collapse
Affiliation(s)
- Lucía Sentchordi-Montané
- Institute of Medical and Molecular Genetics (INGEMM); IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- Department of Pediatrics, Hospital Universitario Infanta Leonor, Madrid, Spain
- Department of Pediatrics, School of Medicine, Complutense University of Madrid, Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit (UMDE), Hospital Universitario La Paz, Madrid, Spain
| | - Sara Benito-Sanz
- Institute of Medical and Molecular Genetics (INGEMM); IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, ISCIII, Madrid, Spain
| | - Miriam Aza-Carmona
- Institute of Medical and Molecular Genetics (INGEMM); IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit (UMDE), Hospital Universitario La Paz, Madrid, Spain
- CIBERER, ISCIII, Madrid, Spain
| | - Arrate Pereda
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, BioAraba Health Research Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Manuel Parrón-Pajares
- Skeletal Dysplasia Multidisciplinary Unit (UMDE), Hospital Universitario La Paz, Madrid, Spain
- Department of Radiology, Hospital Universitario La Paz, Madrid, Spain
| | - Carolina de la Torre
- Institute of Medical and Molecular Genetics (INGEMM); IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Gabriela A Vasques
- Unidades de Endocrinologia Genetica (LIM/25), Hospital das Clinicas da Faculdades de Medicina, Universidades de São Paulo, São Paulo, Universidades de São Paulo, São Paulo, Brazil
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Mariana F A Funari
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - André M Travessa
- Serviςo de Genética Médica, Departamento de Pediatria, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Patrícia Dias
- Serviςo de Genética Médica, Departamento de Pediatria, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | | | | | | | - Isabel Llano-Rivas
- Osakidetza Basque Health Service, Cruces University Hospital Department of Genetics, Barakaldo, Bizkaia, Spain
| | - María Martín-Frías
- Department of Pediatric Endocrinology, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Jaime Sánchez Del Pozo
- Department of Pediatric Endocrinology, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Lucía Garzón-Lorenzo
- Department of Pediatric Endocrinology, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Gabriel A Martos-Moreno
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
- Department of Pediatrics, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- CIBEROBN, ISCIII, Madrid, Spain
| | | | | | - Pablo Ruiz-Ocaña
- Department of Pediatrics, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Paula Casano-Sancho
- Department of Pediatric Endocrinology, Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, University of Barcelona, 08950 Espluges de Llobregat, Barcelona, Spain and CIBERDEM, ISCIII, Madrid, Spain
| | - Ana Portela
- Department of Pediatric Endocrinology, Pediatric Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerif, Spain
| | - Lorea Ruiz-Pérez
- Department of Pediatric Endocrinology, Hospital General Universitario de Alicante, Alicante, Spain
| | - Angela Del Pozo
- Department of Pediatrics, School of Medicine, Complutense University of Madrid, Madrid, Spain
- CIBERER, ISCIII, Madrid, Spain
| | - Elena Vallespín
- Department of Pediatrics, School of Medicine, Complutense University of Madrid, Madrid, Spain
- CIBERER, ISCIII, Madrid, Spain
| | - Mario Solís
- Department of Pediatrics, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Antônio M Lerario
- Unidades de Endocrinologia Genetica (LIM/25), Hospital das Clinicas da Faculdades de Medicina, Universidades de São Paulo, São Paulo, Universidades de São Paulo, São Paulo, Brazil
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, US
| | - Isabel González-Casado
- Skeletal Dysplasia Multidisciplinary Unit (UMDE), Hospital Universitario La Paz, Madrid, Spain
- Department of Pediatric Endocrinology, Hospital Universitario La Paz, Madrid, Spain
| | - Purificación Ros-Pérez
- Department of Pediatrics, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - Guiomar Pérez de Nanclares
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, BioAraba Health Research Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Alexander A L Jorge
- Unidades de Endocrinologia Genetica (LIM/25), Hospital das Clinicas da Faculdades de Medicina, Universidades de São Paulo, São Paulo, Universidades de São Paulo, São Paulo, Brazil
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Karen E Heath
- Institute of Medical and Molecular Genetics (INGEMM); IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit (UMDE), Hospital Universitario La Paz, Madrid, Spain
- CIBERER, ISCIII, Madrid, Spain
| |
Collapse
|
26
|
Engle SE, Bansal R, Antonellis PJ, Berbari NF. Cilia signaling and obesity. Semin Cell Dev Biol 2020; 110:43-50. [PMID: 32466971 DOI: 10.1016/j.semcdb.2020.05.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/11/2022]
Abstract
An emerging number of rare genetic disorders termed ciliopathies are associated with pediatric obesity. It is becoming clear that the mechanisms associated with cilia dysfunction and obesity in these syndromes are complex. In addition to ciliopathic syndromic forms of obesity, several cilia-associated signaling gene mutations also lead to morbid obesity. While cilia have critical and diverse functions in energy homeostasis including their roles in centrally mediated food intake as well as in peripheral tissues, many questions remain. Here, we briefly discuss the syndromic ciliopathies and monoallelic cilia signaling gene mutations associated with obesity. We also describe potential ways cilia may be involved in common obesity. We discuss how neuronal cilia impact food intake potentially through leptin signaling and changes in ciliary G protein-coupled receptor (GPCR) signaling. We highlight several recent studies that have implicated the potential for cilia in peripheral tissues such as adipose and the pancreas to contribute to metabolic dysfunction. Then we discuss the potential for cilia to impact energy homeostasis through their roles in both development and adult tissue homeostasis. The studies discussed in this review highlight how a comprehensive understanding of the requirement of cilia for the regulation of diverse biological functions will contribute to our understanding of common forms of obesity.
Collapse
Affiliation(s)
- Staci E Engle
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Ruchi Bansal
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Patrick J Antonellis
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Nicolas F Berbari
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
27
|
Amano K, Okuzaki D, Aikawa T, Kogo M. Indian hedgehog in craniofacial neural crest cells links to skeletal malocclusion by regulating associated cartilage formation and gene expression. FASEB J 2020; 34:6791-6807. [PMID: 32223017 DOI: 10.1096/fj.201903269r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 12/29/2022]
Abstract
The frontal craniofacial skeleton derived from neural crest cells is vital for facial structure and masticatory functions. The exact role of Indian hedgehog (Ihh) in facial and masticatory development has not been fully explored. In this study, we generated craniofacial neural crest cells-specific Ihh deletion mice (Wnt1-Cre;Ihhfl/fl ;Tomatofl/+ ) and found the gradual dwarfism without perinatal lethality. Morphological and histological analyses revealed unambiguous craniofacial phenotypes in mutants, where we observed skeletal malocclusion accompanied by markedly hypoplastic nasomaxillary complex and reversed incisor occlusion. Both the replacement of nasal concha cartilage by turbinate bones and the endochondral ossification of nasal septum ethmoid bone were substantially delayed. We also observed hypoplastic mandibles in mutants where the mandibular ramus was unexpectedly the most affected. Both the condylar process and mandibular angle cartilages were distorted. However, dental examination showed no significant changes in teeth and dentition. Finally, a comprehensive RNA sequence analysis utilizing condylar cartilage identified Ihh-associated gene network including several cell cycle genes and 16 genes related to the extracellular matrix, sulfate transporters, transcription factors, receptors, a ciliogenesis factor, and an adhesion molecule. Our data provide direct in vivo evidence that Ihh plays crucial roles in midface and masticatory system formation, likely by activating key genes.
Collapse
Affiliation(s)
- Katsuhiko Amano
- The First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Tomonao Aikawa
- The First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Mikihiko Kogo
- The First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Japan
| |
Collapse
|
28
|
Yang Q, Wang J, Tian X, Shen F, Lan J, Zhang Q, Fan X, Yi S, Li M, Shen Y. A novel variant of IHH in a Chinese family with brachydactyly type 1. BMC MEDICAL GENETICS 2020; 21:60. [PMID: 32209048 PMCID: PMC7092535 DOI: 10.1186/s12881-020-01000-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 03/17/2020] [Indexed: 11/15/2022]
Abstract
Background Brachydactyly type A1(BDA-1) is an autosomal dominant disorder which is caused by heterozygous pathogenic variants in a specific region of the N-terminal active fragment of Indian Hedgehog (IHH). The disorder is mainly characterized by shortening or missing of the middle phalanges. In this study, Our purpose is to identify the pathogenic variations associated with BDA-1 involved in a five-generation Chinese family. Methods A BDA-1 family with 8 affected and 14 unaffected family members was recruited. Whole exome sequencing (WES) was performed to identify the pathogenic variant in the proband, and which was later confirmed and segregated by Sanger sequencing. The significance of variants were assessed using several molecular and bioinformatics analysis methods. Results We uncovered a novel heterozygous missense variant c.299A > G (p.D100G) at the mutational hotspot of IHH gene following whole-exome sequencing of a Chinese family with BDA-1. The variant co-segregated with BDA-1 in the pedigree, showed 100% penetrance for phalange phenotype with variable expressivity. Conclusions In conclusion, this study reports a five-generation Chinese family with BDA-1 due to a novel pathogenic variant (c.299A > G (p.D100G)) of IHH and expands the clinical and genetic spectrum of BDA-1.
Collapse
Affiliation(s)
- Qi Yang
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China
| | - Jin Wang
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China
| | - Xiaoxian Tian
- Department of Ultrasonography, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China
| | - Fei Shen
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China
| | - Jing Lan
- Department of Gynaecology, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China
| | - Qiang Zhang
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China
| | - Xin Fan
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China
| | - Shang Yi
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China
| | - Mengting Li
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China
| | - Yiping Shen
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China. .,Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China. .,Division of Genetics and Genomics, Boston Children's Hospital; Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
29
|
Recent Insights into Long Bone Development: Central Role of Hedgehog Signaling Pathway in Regulating Growth Plate. Int J Mol Sci 2019; 20:ijms20235840. [PMID: 31757091 PMCID: PMC6928971 DOI: 10.3390/ijms20235840] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/30/2022] Open
Abstract
The longitudinal growth of long bone, regulated by an epiphyseal cartilaginous component known as the “growth plate”, is generated by epiphyseal chondrocytes. The growth plate provides a continuous supply of chondrocytes for endochondral ossification, a sequential bone replacement of cartilaginous tissue, and any failure in this process causes a wide range of skeletal disorders. Therefore, the cellular and molecular characteristics of the growth plate are of interest to many researchers. Hedgehog (Hh), well known as a mitogen and morphogen during development, is one of the best known regulatory signals in the developmental regulation of the growth plate. Numerous animal studies have revealed that signaling through the Hh pathway plays multiple roles in regulating the proliferation, differentiation, and maintenance of growth plate chondrocytes throughout the skeletal growth period. Furthermore, over the past few years, a growing body of evidence has emerged demonstrating that a limited number of growth plate chondrocytes transdifferentiate directly into the full osteogenic and multiple mesenchymal lineages during postnatal bone development and reside in the bone marrow until late adulthood. Current studies with the genetic fate mapping approach have shown that the commitment of growth plate chondrocytes into the skeletal lineage occurs under the influence of epiphyseal chondrocyte-derived Hh signals during endochondral bone formation. Here, we discuss the valuable observations on the role of the Hh signaling pathway in the growth plate based on mouse genetic studies, with some emphasis on recent advances.
Collapse
|
30
|
Sasai N, Toriyama M, Kondo T. Hedgehog Signal and Genetic Disorders. Front Genet 2019; 10:1103. [PMID: 31781166 PMCID: PMC6856222 DOI: 10.3389/fgene.2019.01103] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
The hedgehog (Hh) family comprises sonic hedgehog (Shh), Indian hedgehog (Ihh), and desert hedgehog (Dhh), which are versatile signaling molecules involved in a wide spectrum of biological events including cell differentiation, proliferation, and survival; establishment of the vertebrate body plan; and aging. These molecules play critical roles from embryogenesis to adult stages; therefore, alterations such as abnormal expression or mutations of the genes involved and their downstream factors cause a variety of genetic disorders at different stages. The Hh family involves many signaling mediators and functions through complex mechanisms, and achieving a comprehensive understanding of the entire signaling system is challenging. This review discusses the signaling mediators of the Hh pathway and their functions at the cellular and organismal levels. We first focus on the roles of Hh signaling mediators in signal transduction at the cellular level and the networks formed by these factors. Then, we analyze the spatiotemporal pattern of expression of Hh pathway molecules in tissues and organs, and describe the phenotypes of mutant mice. Finally, we discuss the genetic disorders caused by malfunction of Hh signaling-related molecules in humans.
Collapse
Affiliation(s)
- Noriaki Sasai
- Developmental Biomedical Science, Division of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Michinori Toriyama
- Systems Neurobiology and Medicine, Division of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
31
|
Sun L, Liang B, Zhu L, Shen Y, He L. The rise of the genetic counseling profession in China. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:170-176. [PMID: 30860676 PMCID: PMC6593421 DOI: 10.1002/ajmg.c.31693] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/18/2022]
Abstract
The rapid development of genetic and genomic technologies has greatly boosted medical genetic researches and clinical services worldwide. Since last century, genetic counseling in the United States has helped individuals and families understand, accept, and cope with their genetic issues. This fledging profession, which is in essence a branch of social work, emerged in China relatively late but has rapidly grown over the last few years. We believe that genetic counseling will continue to play a pivotal role in building communication channels between medical doctors and their patients, the government and the general public, and social organizations and their customers in China. The growth of genetic counseling aims to enable patients and family members to make informed decision which in turn will lead to the reduction of the birth prevalence of severe congenital anomalies and genetic disorders.
Collapse
Affiliation(s)
- Liya Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.,Shanghai Center for Women and Children's Health, Shanghai, China
| | - Bo Liang
- Chinese Board of Genetic Counseling, Shanghai, China
| | - Liping Zhu
- Shanghai Center for Women and Children's Health, Shanghai, China
| | - Yiping Shen
- Maternal and Child Health Hospital, Children's Hospital and Birth Defect Prevention Research Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.,Shanghai Children's Medical Center, Shanghai Jiao Tong University, Shanghai, China.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.,Chinese Board of Genetic Counseling, Shanghai, China.,Shanghai Center for Women and Children's Health, Shanghai, China.,Sanming Project of Medicine in Shenzhen-Brith Defects Prevention Research and Transformation Team (No. SZSM201406007), Baoan Maternal and Child Health Hospital, Jinan University, Shenzhen, 518102, China
| |
Collapse
|
32
|
Yue S, Whalen P, Jee YH. Genetic regulation of linear growth. Ann Pediatr Endocrinol Metab 2019; 24:2-14. [PMID: 30943674 PMCID: PMC6449614 DOI: 10.6065/apem.2019.24.1.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022] Open
Abstract
Linear growth occurs at the growth plate. Therefore, genetic defects that interfere with the normal function of the growth plate can cause linear growth disorders. Many genetic causes of growth disorders have already been identified in humans. However, recent genome-wide approaches have broadened our knowledge of the mechanisms of linear growth, not only providing novel monogenic causes of growth disorders but also revealing single nucleotide polymorphisms in genes that affect height in the general population. The genes identified as causative of linear growth disorders are heterogeneous, playing a role in various growth-regulating mechanisms including those involving the extracellular matrix, intracellular signaling, paracrine signaling, endocrine signaling, and epigenetic regulation. Understanding the underlying genetic defects in linear growth is important for clinicians and researchers in order to provide proper diagnoses, management, and genetic counseling, as well as to develop better treatment approaches for children with growth disorders.
Collapse
Affiliation(s)
- Shanna Yue
- Pediatric Endocrine, Metabolism and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Philip Whalen
- Pediatric Endocrine, Metabolism and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Youn Hee Jee
- Pediatric Endocrine, Metabolism and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA,Address for correspondence: Youn Hee Jee, MD Pediatric Endocrine, Metabolism and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive MSC 1103, Bethesda, MD 20892-1103, USA Tel: +1-301-435-5834 Fax: +1-301-402-0574 E-mail:
| |
Collapse
|
33
|
Shen L, Ma G, Shi Y, Ruan Y, Yang X, Wu X, Xiong Y, Wan C, Yang C, Cai L, Xiong L, Gong X, He L, Qin S. p.E95K mutation in Indian hedgehog causing brachydactyly type A1 impairs IHH/Gli1 downstream transcriptional regulation. BMC Genet 2019; 20:10. [PMID: 30651074 PMCID: PMC6335781 DOI: 10.1186/s12863-018-0697-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023] Open
Abstract
Background Brachydactyly type A1 (BDA1, OMIM 112500) is a rare inherited malformation characterized primarily by shortness or absence of middle bones of fingers and toes. It is the first recorded disorder of the autosomal dominant Mendelian trait. Indian hedgehog (IHH) gene is closely associated with BDA1, which was firstly mapped and identified in Chinese families in 2000. Previous studies have demonstrated that BDA1-related mutant IHH proteins affected interactions with its receptors and impaired IHH signaling. However, how the altered signaling pathway affects downstream transcriptional regulation remains unclear. Results Based on the mouse C3H10T1/2 cell model for IHH signaling activation, two recombinant human IHH-N proteins, including a wild type protein (WT, amino acid residues 28–202) and a mutant protein (MT, p.E95k), were analyzed. We identified 347, 47 and 4 Gli1 binding sites in the corresponding WT, MT and control group by chromatin immunoprecipitation and the overlapping of these three sets was poor. The putative cis regulated genes in WT group were enriched in sensory perception and G-protein coupled receptor-signaling pathway. On the other hand, putative cis regulated genes were enriched in Runx2-related pathways in MT group. Differentially expressed genes in WT and MT groups indicated that the alteration of mutant IHH signaling involved cell-cell signaling and cellular migration. Cellular assay of migration and proliferation validated that the mutant IHH signaling impaired these two cellular functions. Conclusions In this study, we performed integrated genome-wide analyses to characterize differences of IHH/Gli1 downstream regulation between wild type IHH signaling and the E95K mutant signaling. Based on the cell model, our results demonstrated that the E95K mutant signaling altered Gli1-DNA binding pattern, impaired downstream gene expressions, and leaded to weakened cellular proliferation and migration. This study may help to deepen the understanding of pathogenesis of BDA1 and the role of IHH signaling in chondrogenesis. Electronic supplementary material The online version of this article (10.1186/s12863-018-0697-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China
| | - Gang Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China
| | - Ye Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China
| | - Yunfeng Ruan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China
| | - Xuhan Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China
| | - Xi Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yuyu Xiong
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China
| | - Chao Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China
| | - Lei Cai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China
| | - Likuan Xiong
- Center Laboratory, Baoan Maternal and Children Healthcare Hospital, Shenzhen, China.,Key Laboratory of Birth Defects Research, Shenzhen, China.,Birth Defects Prevention Research and Transformation Team, Shenzhen, China
| | - Xueli Gong
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China. .,Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China. .,Shanghai Center for Women and Children's Health, Shanghai, 200062, People's Republic of China.
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, 209 Little White House, 1954 Hua Shan Road, Shanghai, 200030, People's Republic of China. .,The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, People's Republic of China.
| |
Collapse
|
34
|
DeLaurier A, Alvarez CL, Wiggins KJ. hdac4 mediates perichondral ossification and pharyngeal skeleton development in the zebrafish. PeerJ 2019; 7:e6167. [PMID: 30643696 PMCID: PMC6329341 DOI: 10.7717/peerj.6167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/27/2018] [Indexed: 01/18/2023] Open
Abstract
Background Histone deacetylases (HDACs) are epigenetic factors that function to repress gene transcription by removing acetyl groups from the N-terminal of histone lysines. Histone deacetylase 4 (HDAC4), a class IIa HDAC, has previously been shown to regulate the process of endochondral ossification in mice via repression of Myocyte enhancer factor 2c (MEF2C), a transcriptional activator of Runx2, which in turn promotes chondrocyte maturation and production of bone by osteoblasts. Methods & Materials In this study, we generated two zebrafish lines with mutations in hdac4 using CRISPR/Cas9 and analyzed mutants for skeletal phenotypes and expression of genes known to be affected by Hdac4 expression. Results Lines have insertions causing a frameshift in a proximal exon of hdac4 and a premature stop codon. Mutations are predicted to result in aberrant protein sequence and a truncated protein, eliminating the Mef2c binding domain and Hdac domain. Zygotic mutants from two separate lines show a significant increase in ossification of pharyngeal ceratohyal cartilages at 7 days post fertilization (dpf) (p < 0.01, p < 0.001). At 4 dpf, mutant larvae have a significant increase of expression of runx2a and runx2b in the ceratohyal cartilage (p < 0.05 and p < 0.01, respectively). A subset of maternal-zygotic (mz) mutant and heterozygote larvae (40%) have dramatically increased ossification at 7 dpf compared to zygotic mutants, including formation of a premature anguloarticular bone and mineralization of the first and second ceratobranchial cartilages and symplectic cartilages, which normally does not occur until fish are approximately 10 or 12 dpf. Some maternal-zygotic mutants and heterozygotes show loss of pharyngeal first arch elements (25.9% and 10.2%, respectively) and neurocranium defects (30.8% and 15.2%, respectively). Analysis of RNA-seq mRNA transcript levels and in situ hybridizations from zygotic stages to 75–90% epiboly indicates that hdac4 is highly expressed in early embryos, but diminishes by late epiboly, becoming expressed again in larval stages. Discussion Loss of function of hdac4 in zebrafish is associated with increased expression of runx2a and runx2b targets indicating that a role for hdac4 in zebrafish is to repress activation of ossification of cartilage. These findings are consistent with observations of precocious cartilage ossification in Hdac4 mutant mice, demonstrating that the function of Hdac4 in skeletal development is conserved among vertebrates. Expression of hdac4 mRNA in embryos younger than 256–512 cells indicates that there is a maternal contribution of hdac4 to the early embryo. The increase in ossification and profound loss of first pharyngeal arch elements and anterior neurocranium in a subset of maternal-zygotic mutant and heterozygote larvae suggests that maternal hdac4 functions in cartilage ossification and development of cranial neural crest-derived structures.
Collapse
Affiliation(s)
- April DeLaurier
- Department of Biology and Geology, University of South Carolina-Aiken, Aiken, SC, United States of America
| | - Cynthia Lizzet Alvarez
- Department of Biology and Geology, University of South Carolina-Aiken, Aiken, SC, United States of America
| | - Kali J Wiggins
- Department of Biology and Geology, University of South Carolina-Aiken, Aiken, SC, United States of America
| |
Collapse
|
35
|
Yip RK, Chan D, Cheah KS. Mechanistic insights into skeletal development gained from genetic disorders. Curr Top Dev Biol 2019; 133:343-385. [DOI: 10.1016/bs.ctdb.2019.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Ho R, McIntyre AD, Kennedy BA, Hegele RA. Whole-exome sequencing identifies a novel IHH insertion in an Ontario family with brachydactyly type A1. SAGE Open Med Case Rep 2018; 6:2050313X18818711. [PMID: 30574312 PMCID: PMC6295682 DOI: 10.1177/2050313x18818711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 11/19/2018] [Indexed: 11/22/2022] Open
Abstract
Isolated brachydactyly is an umbrella term describing disproportionally shortened fingers and toes, often following an autosomal dominant mode of inheritance. Various forms of brachydactyly have been characterized and several causative genes have been found, but many types remain genetically undefined. We describe an Ontario family with mild brachydactyly in which whole-exome sequencing identified a novel variant for brachydactyly type A1 (exon 1, c.285_287dupGAA, p.Glu95_Asn96insLys) in the Indian hedgehog (IHH) gene. This rare variant co-segregated with affected status in the pedigree and was associated with (1) shortened middle phalange length by 21.1% (p < 0.001); (2) shortened palm length by 13.8% (p < 0.01); (3) reduced digit-palm ratio by 6.8% (p < 0.03); and (4) reduced stature by 9.5% (p < 0.001). We report the first IHH in-frame insertion causing brachydactyly type A1.
Collapse
Affiliation(s)
- Rosettia Ho
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Adam D McIntyre
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Brooke A Kennedy
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Robert A Hegele
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
37
|
Finken MJJ, van der Steen M, Smeets CCJ, Walenkamp MJE, de Bruin C, Hokken-Koelega ACS, Wit JM. Children Born Small for Gestational Age: Differential Diagnosis, Molecular Genetic Evaluation, and Implications. Endocr Rev 2018; 39:851-894. [PMID: 29982551 DOI: 10.1210/er.2018-00083] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/21/2018] [Indexed: 12/25/2022]
Abstract
Children born small for gestational age (SGA), defined as a birth weight and/or length below -2 SD score (SDS), comprise a heterogeneous group. The causes of SGA are multifactorial and include maternal lifestyle and obstetric factors, placental dysfunction, and numerous fetal (epi)genetic abnormalities. Short-term consequences of SGA include increased risks of hypothermia, polycythemia, and hypoglycemia. Although most SGA infants show catch-up growth by 2 years of age, ∼10% remain short. Short children born SGA are amenable to GH treatment, which increases their adult height by on average 1.25 SD. Add-on treatment with a gonadotropin-releasing hormone agonist may be considered in early pubertal children with an expected adult height below -2.5 SDS. A small birth size increases the risk of later neurodevelopmental problems and cardiometabolic diseases. GH treatment does not pose an additional risk.
Collapse
Affiliation(s)
- Martijn J J Finken
- Department of Pediatrics, VU University Medical Center, MB Amsterdam, Netherlands
| | - Manouk van der Steen
- Department of Pediatrics, Erasmus University Medical Center/Sophia Children's Hospital, CN Rotterdam, Netherlands
| | - Carolina C J Smeets
- Department of Pediatrics, Erasmus University Medical Center/Sophia Children's Hospital, CN Rotterdam, Netherlands
| | - Marie J E Walenkamp
- Department of Pediatrics, VU University Medical Center, MB Amsterdam, Netherlands
| | - Christiaan de Bruin
- Department of Pediatrics, Leiden University Medical Center, RC Leiden, Netherlands
| | - Anita C S Hokken-Koelega
- Department of Pediatrics, Erasmus University Medical Center/Sophia Children's Hospital, CN Rotterdam, Netherlands
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Center, RC Leiden, Netherlands
| |
Collapse
|
38
|
Abstract
First described in Drosophila, Hedgehog signalling is a key regulator of embryonic development and tissue homeostasis and its dysfunction underlies a variety of human congenital anomalies and diseases. Although now recognised as a major target for cancer therapy as well as a mediator of directed stem cell differentiation, the unveiling of the function and mechanisms of Hedgehog signalling was driven largely by an interest in basic developmental biology rather than clinical need. Here, I describe how curiosity about embryonic patterning led to the identification of the family of Hedgehog signalling proteins and the pathway that transduces their activity, and ultimately to the development of drugs that block this pathway.
Collapse
Affiliation(s)
- Philip W Ingham
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
| |
Collapse
|
39
|
miR-324-5p is up regulated in end-stage osteoarthritis and regulates Indian Hedgehog signalling by differing mechanisms in human and mouse. Matrix Biol 2018; 77:87-100. [PMID: 30193893 PMCID: PMC6456721 DOI: 10.1016/j.matbio.2018.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 01/07/2023]
Abstract
The Hedgehog (Hh) signalling pathway plays important roles during embryonic development and in adult tissue homeostasis, for example cartilage, where its deregulation can lead to osteoarthritis (OA). microRNAs (miRNAs) are important regulators of gene expression, and have been implicated in the regulation of signalling pathways, including Hh, thereby impacting upon development and disease. Our aim was to identify the function of miRNAs whose expression is altered in OA cartilage. Here we identified an increase in miR-324-5p expression in OA cartilage and hypothesised that, as in glioma, miR-324-5p would regulate Hh signalling. We determined that miR-324-5p regulates osteogenesis in human mesenchymal stem cells (MSCs) and in mouse C3H10T1/2 cells. Luciferase reporter assays demonstrated that miR-324-5p directly regulated established targets GLI1 and SMO in human but not in mouse, suggesting species-dependent mechanism of Hh pathway regulation. Stable Isotope Labelling with Amino acids in Cell culture (SILAC), mass spectrometry and whole genome transcriptome analysis identified Glypican 1 (Gpc1) as a novel miR-324-5p target in mouse, which was confirmed by real-time RT-PCR, immunoblotting and 3′UTR-luciferase reporters. Knockdown of Gpc1 reduced Hh pathway activity, and phenocopied the effect of miR-324-5p on osteogenesis, indicating that miR-324-5p regulates Hh signalling in mouse via direct targeting of Gpc1. Finally, we showed that human GPC1 is not a direct target of miR-324-5p. Importantly, as well as identifying novel regulation of Indian Hedgehog (Ihh) signalling, this study demonstrates how a miRNA can show conserved pathway regulation in two species but by distinct mechanisms and highlights important differences between human diseases and mouse models.
Collapse
|
40
|
Sun J, Wei X, Li S, Sun C, Wang C, Li P, Wei DL, Wei L. The Effects of Indian Hedgehog Deletion on Mesenchyme Cells: Inducing Intermediate Cartilage Scaffold Ossification to Cause Growth Plate and Phalange Joint Absence, Short Limb, and Dwarfish Phenotypes. Stem Cells Dev 2018; 27:1412-1425. [PMID: 30032718 DOI: 10.1089/scd.2018.0071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The endochondral ossification plays a critical role in vertebrate limb development and skeletal homeostasis, where limb mesenchyme cells form an intermediate cartilage scaffold that develops into growth plates and then replaced by bone. Although Indian hedgehog (Ihh) is known to control the hypertrophic differentiation process of chondrocytes, its role from the mesenchyme cells to the early stages of chondrogenesis is unclear. To define the function of Ihh in the mesenchymal cell's early stages of chondrogenesis, we specifically delete Ihh in Prx1-expressed mesenchyme cells at E9.5 using Prx1-Cre;Ihhfl/fl;Rosa26-ZsGreen1 mice. We found that deleting Ihh in the mesenchyme cells results in an early and quick ossification of the intermediate cartilage scaffold, causing the growth plate and phalange joint absence, short limbs, and dwarfishness. The green fluorescent protein (GFP)-positive cells derived from deleted Ihh mesenchyme cells overlap with von Kossa- and osteocalcin-positive staining area. These deleted Ihh/GFP-positive cells isolated from Prx1-Cre;Ihhfl/fl;Rosa26-ZsGreen1 newborn mice had osteogenic differentiation by showing a positive Alizarin red and von Kossa staining, as well as an enhanced Col1a1, osteocalcin, and Runx2 expression. Our findings demonstrate that deleting Ihh in mesenchyme cells during early limb development promotes intermediate cartilage scaffold ossification, which prevents growth plate formation that causes phalange joint absence, short limb, and dwarfish phenotype.
Collapse
Affiliation(s)
- Jian Sun
- 1 Department of Orthopaedics, The Second Hospital of Shanxi Medical University , Taiyuan, China
| | - Xiaochun Wei
- 1 Department of Orthopaedics, The Second Hospital of Shanxi Medical University , Taiyuan, China
| | - Shengchun Li
- 1 Department of Orthopaedics, The Second Hospital of Shanxi Medical University , Taiyuan, China
| | - Changqi Sun
- 2 Department of Rheumatology, Warren Alpert Medical School of Brown University/Rhode Island Hospital , Providence, Rhode Island
| | - Chunfang Wang
- 3 Experimental Animal Center, Shanxi Medical University , Taiyuan, China
| | - Pengcui Li
- 1 Department of Orthopaedics, The Second Hospital of Shanxi Medical University , Taiyuan, China
| | - Dennis L Wei
- 4 Department of Engineering, Northeastern University , Boston, Massachusetts
| | - Lei Wei
- 1 Department of Orthopaedics, The Second Hospital of Shanxi Medical University , Taiyuan, China .,5 Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital , Providence, Rhode Island
| |
Collapse
|
41
|
Iezaki T, Fukasawa K, Horie T, Park G, Robinson S, Nakaya M, Fujita H, Onishi Y, Ozaki K, Kanayama T, Hiraiwa M, Kitaguchi Y, Kaneda K, Yoneda Y, Takarada T, Guo XE, Kurose H, Hinoi E. The MAPK Erk5 is necessary for proper skeletogenesis involving a Smurf-Smad-Sox9 molecular axis. Development 2018; 145:dev.164004. [PMID: 29986870 DOI: 10.1242/dev.164004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/20/2018] [Indexed: 12/25/2022]
Abstract
Erk5 belongs to the mitogen-activated protein kinase (MAPK) family. Following its phosphorylation by Mek5, Erk5 modulates several signaling pathways in a number of cell types. In this study, we demonstrated that Erk5 inactivation in mesenchymal cells causes abnormalities in skeletal development by inducing Sox9, an important transcription factor of skeletogenesis. We further demonstrate that Erk5 directly phosphorylates and activates Smurf2 (a ubiquitin E3 ligase) at Thr249, which promotes the proteasomal degradation of Smad proteins and phosphorylates Smad1 at Ser206 in the linker region known to trigger its proteasomal degradation by Smurf1. Smads transcriptionally activated the expression of Sox9 in mesenchymal cells. Accordingly, removal of one Sox9 allele in mesenchymal cells from Erk5-deficient mice rescued some abnormalities of skeletogenesis. These findings highlight the importance of the Mek5-Erk5-Smurf-Smad-Sox9 axis in mammalian skeletogenesis.
Collapse
Affiliation(s)
- Takashi Iezaki
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan.,Venture Business Laboratory, Organization of Frontier Science and Innovation, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Kazuya Fukasawa
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Tetsuhiro Horie
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Gyujin Park
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Samuel Robinson
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Michio Nakaya
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroyuki Fujita
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuki Onishi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Kakeru Ozaki
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Takashi Kanayama
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Manami Hiraiwa
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuka Kitaguchi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Yukio Yoneda
- Section of Prophylactic Pharmacology, Venture Business Laboratory, Organization of Frontier Science and Innovation, Kanazawa University Kanazawa, Ishikawa 920-1192, Japan
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - X Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
42
|
Cooperation of BMP and IHH signaling in interdigital cell fate determination. PLoS One 2018; 13:e0197535. [PMID: 29771958 PMCID: PMC5957397 DOI: 10.1371/journal.pone.0197535] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/03/2018] [Indexed: 01/20/2023] Open
Abstract
The elaborate anatomy of hands and feet is shaped by coordinated formation of digits and regression of the interdigital mesenchyme (IM). A failure of this process causes persistence of interdigital webbing and consequently cutaneous syndactyly. Bone morphogenetic proteins (BMPs) are key inductive factors for interdigital cell death (ICD) in vivo. NOGGIN (NOG) is a major BMP antagonist that can interfere with BMP-induced ICD when applied exogenously, but its in vivo role in this process is unknown. We investigated the physiological role of NOG in ICD and found that Noggin null mice display cutaneous syndactyly and impaired interdigital mesenchyme specification. Failure of webbing regression was caused by lack of cell cycle exit and interdigital apoptosis. Unexpectedly, Noggin null mutants also exhibit increased Indian hedgehog (Ihh) expression within cartilage condensations that leads to aberrant extension of IHH downstream signaling into the interdigital mesenchyme. A converse phenotype with increased apoptosis and reduced cell proliferation was found in the interdigital mesenchyme of Ihh mutant embryos. Our data point towards a novel role for NOG in balancing Ihh expression in the digits impinging on digit-interdigit cross talk. This suggests a so far unrecognized physiological role for IHH in interdigital webbing biology.
Collapse
|
43
|
Andrade AC, Jee YH, Nilsson O. New Genetic Diagnoses of Short Stature Provide Insights into Local Regulation of Childhood Growth
. Horm Res Paediatr 2018; 88:22-37. [PMID: 28334714 DOI: 10.1159/000455850] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022] Open
Abstract
Idiopathic short stature is a common condition with a heterogeneous etiology. Advances in genetic methods, including genome sequencing techniques and bioinformatics approaches, have emerged as important tools to identify the genetic defects in families with monogenic short stature. These findings have contributed to the understanding of growth regulation and indicate that growth plate chondrogenesis, and therefore linear growth, is governed by a large number of genes important for different signaling pathways and cellular functions, including genetic defects in hormonal regulation, paracrine signaling, cartilage matrix, and fundamental cellular processes. In addition, mutations in the same gene can cause a wide phenotypic spectrum depending on the severity and mode of inheritance of the mutation.
.
Collapse
Affiliation(s)
- Anenisia C Andrade
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Youn Hee Jee
- Section of Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Ola Nilsson
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Sciences, Örebro University and University Hospital, Örebro, Sweden
| |
Collapse
|
44
|
Khan S, Mudassir M, Khan N, Marwat A. Brachdactyly Instigated as a Result of Mutation in GDF5 and NOG Genes in Pakistani Population. Pak J Med Sci 2018; 34:82-87. [PMID: 29643884 PMCID: PMC5857035 DOI: 10.12669/pjms.341.12885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objectives Brachdactyly a genetic disorder associated with the abnormal development of metacarpals, phalanges or both which results in the shortening of hands and feet. Mutations in the contributing genes has been recognized with the majority of the investigated syndromic form of brachdactyly. The current study was proposed to examine mutation in NOG and GDF5 genes in a Pakistani family. Methods Poly Acrylamide Gel Electrophoresis and Polymerase Chain Reaction was used for the genomic screening and linkage analysis to observe the mutation in genes. The samples were collected from Luckki Marwat district, KPK, while the research study was conducted in the department of Biochemistry, Quaid-I-Azam University, Islamabad, Pakistan. Results After survey, family was identified with brachdactyly type A2 and investigated a heterozygous arginine to glutamine exchange in the growth demarcation factor 5 in all the victim persons. Different types of skeletal dysplasia resulted due to mutation in the GDF5 genes. Novel GDF5 genes mutations were reported with distinct limb malformation and sequencing of coding region revealed that the mildly affected individuals were heterozygous while the harshly affected individuals were homozygous. Conclusion The current study reported the genetic variability and concluded that the Brachdacytyly type A2 and type B2 resulted due to mutation in GDF5 and NOG genes respectively. A new subtype of brachydactyly (BDB2) was instigated as a result of novel mutations in NOG. The mutation has been reported for the first time in Pakistani population and especially in Pushtoon ethnic population.
Collapse
Affiliation(s)
- Samiullah Khan
- Dr. Samiullah Khan, Ph.D. Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, KPK, Pakistan
| | - Muhammad Mudassir
- Mr. Muhammad Mudassir, M. Phil (Scholar). Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, KPK, Pakistan
| | - Naqab Khan
- Mr. Naqab Khan, Ph. D (Scholar). Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, KPK, Pakistan
| | - Asmatullah Marwat
- Dr. Asmatullah Marwat, Ph.D. Chairman Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
45
|
Vasques GA, Funari MFA, Ferreira FM, Aza-Carmona M, Sentchordi-Montané L, Barraza-García J, Lerario AM, Yamamoto GL, Naslavsky MS, Duarte YAO, Bertola DR, Heath KE, Jorge AAL. IHH Gene Mutations Causing Short Stature With Nonspecific Skeletal Abnormalities and Response to Growth Hormone Therapy. J Clin Endocrinol Metab 2018; 103:604-614. [PMID: 29155992 DOI: 10.1210/jc.2017-02026] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/10/2017] [Indexed: 11/19/2022]
Abstract
CONTEXT Genetic evaluation has been recognized as an important tool to elucidate the causes of growth disorders. OBJECTIVE To investigate the cause of short stature and to determine the phenotype of patients with IHH mutations, including the response to recombinant human growth hormone (rhGH) therapy. PATIENTS AND METHODS We studied 17 families with autosomal-dominant short stature by using whole exome sequencing and screened IHH defects in 290 patients with growth disorders. Molecular analyses were performed to evaluate the potential impact of N-terminal IHH variants. RESULTS We identified 10 pathogenic or possibly pathogenic variants in IHH, an important regulator of endochondral ossification. Molecular analyses revealed a smaller potential energy of mutated IHH molecules. The allele frequency of rare, predicted to be deleterious IHH variants found in short-stature samples (1.6%) was higher than that observed in two control cohorts (0.017% and 0.08%; P < 0.001). Identified IHH variants segregate with short stature in a dominant inheritance pattern. Affected individuals typically manifest mild disproportional short stature with a frequent finding of shortening of the middle phalanx of the fifth finger. None of them have classic features of brachydactyly type A1, which was previously associated with IHH mutations. Five patients heterozygous for IHH variants had a good response to rhGH therapy. The mean change in height standard deviation score in 1 year was 0.6. CONCLUSION Our study demonstrated the association of pathogenic variants in IHH with short stature with nonspecific skeletal abnormalities and established a frequent cause of growth disorder, with a preliminary good response to rhGH.
Collapse
Affiliation(s)
- Gabriela A Vasques
- Unidade de Endocrinologia Genetica (LIM/25), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Mariana F A Funari
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM/42), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Frederico M Ferreira
- Laboratorio de Imunologia, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Miriam Aza-Carmona
- Institute of Medical and Molecular Genetics, IdiPAZ, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigacion Biomedica em Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit, Hospital Universitario La Paz, Madrid, Spain
| | - Lucia Sentchordi-Montané
- Institute of Medical and Molecular Genetics, IdiPAZ, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigacion Biomedica em Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Jimena Barraza-García
- Institute of Medical and Molecular Genetics, IdiPAZ, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigacion Biomedica em Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit, Hospital Universitario La Paz, Madrid, Spain
| | - Antonio M Lerario
- Unidade de Endocrinologia Genetica (LIM/25), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Guilherme L Yamamoto
- Unidade de Genetica Clinica, Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Centro de Pesquisa sobre o Genoma Humano e Células Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Michel S Naslavsky
- Centro de Pesquisa sobre o Genoma Humano e Células Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Yeda A O Duarte
- Departamento de Epidemiologia da Faculdade de Saude Publica, Universidade de São Paulo, São Paulo, Brazil
| | - Debora R Bertola
- Unidade de Genetica Clinica, Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Karen E Heath
- Institute of Medical and Molecular Genetics, IdiPAZ, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigacion Biomedica em Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit, Hospital Universitario La Paz, Madrid, Spain
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genetica (LIM/25), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
Salian S, Shukla A, Nishimura G, Girisha KM. Severe Form of Brachydactyly Type A1 in a Child with a c.298G > A Mutation in IHH Gene. J Pediatr Genet 2017; 6:177-180. [PMID: 28794911 DOI: 10.1055/s-0037-1599201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/23/2017] [Indexed: 01/26/2023]
Abstract
Brachydactyly type A1 (BDA1) is characterized by short middle phalanges. We report the case of a child with a severe form of BDA1 with complete absence of the middle phalanges of all extremities. He had c.298G > A (p.D100N) mutation in IHH gene.
Collapse
Affiliation(s)
- Smrithi Salian
- Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal, India
| | - Gen Nishimura
- Department of Pediatric Imaging, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal, India
| |
Collapse
|
47
|
Abstract
ROR-family receptor tyrosine kinases form a small subfamily of receptor tyrosine kinases (RTKs), characterized by a conserved, unique domain architecture. ROR RTKs are evolutionary conserved throughout the animal kingdom and act as alternative receptors and coreceptors of WNT ligands. The intracellular signaling cascades activated downstream of ROR receptors are diverse, including but not limited to ROR-Frizzled-mediated activation of planar cell polarity signaling, RTK-like signaling, and antagonistic regulation of WNT/β-Catenin signaling. In line with their diverse repertoire of signaling functions, ROR receptors are involved in the regulation of multiple processes in embryonic development such as development of the axial and paraxial mesoderm, the nervous system and the neural crest, the axial and appendicular skeleton, and the kidney. In humans, mutations in the ROR2 gene cause two distinct developmental syndromes, recessive Robinow syndrome (RRS; MIM 268310) and dominant brachydactyly type B1 (BDB1; MIM 113000). In Robinow syndrome patients and animal models, the development of multiple organs is affected, whereas BDB1 results only in shortening of the distal phalanges of fingers and toes, reflecting the diversity of functions and signaling activities of ROR-family RTKs. In this chapter, we give an overview on ROR receptor structure and function. We discuss their signaling functions and role in vertebrate embryonic development with a focus on those developmental processes that are affected by mutations in the ROR2 gene in human patients.
Collapse
|
48
|
Jin S, Zhu F, Wang Y, Yi G, Li J, Lian L, Zheng J, Xu G, Jiao R, Gong Y, Hou Z, Yang N. Deletion of Indian hedgehog gene causes dominant semi-lethal Creeper trait in chicken. Sci Rep 2016; 6:30172. [PMID: 27439785 PMCID: PMC4954956 DOI: 10.1038/srep30172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/28/2016] [Indexed: 11/30/2022] Open
Abstract
The Creeper trait, a classical monogenic phenotype of chicken, is controlled by a dominant semi-lethal gene. This trait has been widely cited in the genetics and molecular biology textbooks for illustrating autosomal dominant semi-lethal inheritance over decades. However, the genetic basis of the Creeper trait remains unknown. Here we have utilized ultra-deep sequencing and extensive analysis for targeting causative mutation controlling the Creeper trait. Our results indicated that the deletion of Indian hedgehog (IHH) gene was only found in the whole-genome sequencing data of lethal embryos and Creeper chickens. Large scale segregation analysis demonstrated that the deletion of IHH was fully linked with early embryonic death and the Creeper trait. Expression analysis showed a much lower expression of IHH in Creeper than wild-type chickens. We therefore suggest the deletion of IHH to be the causative mutation for the Creeper trait in chicken. Our findings unravel the genetic basis of the longstanding Creeper phenotype mystery in chicken as the same gene also underlies bone dysplasia in human and mouse, and thus highlight the significance of IHH in animal development and human haploinsufficiency disorders.
Collapse
Affiliation(s)
- Sihua Jin
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Feng Zhu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Yanyun Wang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Guoqiang Yi
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Ling Lian
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Jiangxia Zheng
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Guiyun Xu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Rengang Jiao
- Rural Energy Management Station of Guizhou Province, Guiyang, 550001, China
| | - Yu Gong
- Livestock Genetic Resources Management Station of Guizhou Province, Guiyang, 550001, China
| | - Zhuocheng Hou
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
49
|
Le Minor J, Mousson J, de Mathelin P, Bierry G. Non-metric variation of the middle phalanges of the human toes (II-V): long/short types and their evolutionary significance. J Anat 2016; 228:965-74. [PMID: 27031825 PMCID: PMC5341584 DOI: 10.1111/joa.12462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2016] [Indexed: 11/30/2022] Open
Abstract
The human lateral toes are characterised by extreme reduction compared with other primates, and in particular other hominoids. Some phalangeal non-metric variants have been well identified in humans, in particular: triphalangeal/biphalangeal patterns, and the presence/absence of phalangeal secondary centres of ossification. The purpose of the present study was to describe and analyse an original non-metric variation of the middle phalanges of the lateral toes. The material consisted of 2541 foot radiographs that came from 2541 different European adult individuals. Two morphological types of the middle phalanx were defined as a simple binary trait: long type (L) and short type (S). In feet with a triphalangeal pattern in all lateral toes (1413 cases), a mediolateral increasing gradient was observed in the occurrence of type S: 8.1% in II; 30.7% in III; 68.4% in IV; and 99.1% in V. In feet with a biphalangeal pattern in one or more lateral toes (III-V; 1128 cases), type S occurred more frequently than in triphalangeal feet. Of the 30 theoretical arrangements of the L/S types in the lateral toes (II-V) in a complete foot, only 13 patterns were observed. Seven patterns represented 95.6% of the population: LLSS (20.9%), LLLS (17.1%), LSS (15.9%), SSS (14.5%), LSSS (12.7%), LLS (10.1%) and SSSS (4.4%). Type L can be interpreted as the primitive pattern (plesiomorphy), and type S as a derived pattern (apomorphy) that seems specific to the human species (i.e. autapomorphy). Within the specific evolution of the human foot in relation to the acquisition of constant erect posture and bipedalism, the short type of the middle phalanges can reasonably be considered as directly linked to the reduction of the lateral toes.
Collapse
Affiliation(s)
- Jean‐Marie Le Minor
- Institute of AnatomyFaculty of MedicineUniversity of StrasbourgStrasbourgFrance
- Department of RadiologyUniversity HospitalStrasbourgFrance
| | | | - Pierre de Mathelin
- Institute of AnatomyFaculty of MedicineUniversity of StrasbourgStrasbourgFrance
| | | |
Collapse
|
50
|
Amano K, Densmore M, Fan Y, Lanske B. Ihh and PTH1R signaling in limb mesenchyme is required for proper segmentation and subsequent formation and growth of digit bones. Bone 2016; 83:256-266. [PMID: 26620087 DOI: 10.1016/j.bone.2015.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/03/2015] [Accepted: 11/23/2015] [Indexed: 10/22/2022]
Abstract
Digit formation is a process, which requires the proper segmentation, formation and growth of phalangeal bones and is precisely regulated by several important factors. One such factor is Ihh, a gene linked to BDA1 and distal symphalangism in humans. In existing mouse models, mutations in Ihh have been shown to cause multiple synostosis in the digits but lead to perinatal lethality. To better study the exact biological and pathological events which occur in these fused digits, we used a more viable Prx1-Cre;Ihh(fl/fl) model in which Cre recombinase is expressed during mesenchymal condensation in the earliest limb buds at E9.5 dpc and found that mutant digits continuously fuse postnatally until phalanges are finally replaced by an unsegmented "one-stick bone". Mutant mice displayed osteocalcin-positive mature osteoblasts, but had reduced proliferation and abnormal osteogenesis. Because of the close interaction between Ihh and PTHrP during endochondral ossification, we also examined the digits of Prx1-Cre;PTH1R(fl/fl) mice, where the receptor for PTHrP was conditionally deleted. Surprisingly, we found PTH1R deletion caused symphalangism, demonstrating another novel function of PTH1R signaling in digit formation. We characterized the symphalangism process whereby initial cartilaginous fusion prevented epiphyseal growth plate formation, resulting in resorption and replacement of the remaining cartilage by bony tissue. Chondrocyte differentiation displayed abnormal directionality in both mutants. Lastly, Prx1-Cre;Ihh(fl/fl);Jansen Tg mice, in which a constitutively active PTH1R allele was introduced into Ihh mutants, were established to address the possible involvement of PTH1R signaling in Ihh mutant digits. These rescue mice failed to show significantly improved phenotype, suggesting that PTH1R signaling in chondrocytes is not sufficient to restore digit formation. Our results demonstrate that Ihh and PTH1R signaling in limb mesenchyme are both essential to regulate proper development of digit structures, although they appear to use different mechanisms.
Collapse
Affiliation(s)
- Katsuhiko Amano
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Michael Densmore
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Yi Fan
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Beate Lanske
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA.
| |
Collapse
|