1
|
Okamoto M, Sasai M, Kuratani A, Okuzaki D, Arai M, Wing JB, Sakaguchi S, Yamamoto M. A genetic method specifically delineates Th1-type Treg cells and their roles in tumor immunity. Cell Rep 2023; 42:112813. [PMID: 37440410 DOI: 10.1016/j.celrep.2023.112813] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 04/06/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Regulatory T (Treg) cells expressing the transcription factor (TF) Foxp3 also express other TFs shared by T helper (Th) subsets under certain conditions. Here, to determine the roles of T-bet-expressing Treg cells, we generate a mouse strain, called VeDTR, in which T-bet/Foxp3 double-positive cells are engineered to be specifically labeled and depleted by a combination of Cre- and Flp-recombinase-dependent gene expression control. Characterization of T-bet+Foxp3+ cells using VeDTR mice reveals high resistance under oxidative stress, which is involved in accumulation of T-bet+Foxp3+ cells in tumor tissues. Moreover, short-term depletion of T-bet+Foxp3+ cells leads to anti-tumor immunity but not autoimmunity, whereas that of whole Treg cells does both. Although ablation of T-bet+Foxp3+ cells during Toxoplasma infection slightly enhances Th1 immune responses, it does not affect the course of the infection. Collectively, the intersectional genetic method reveals the specific roles of T-bet+Foxp3+ cells in suppressing tumor immunity.
Collapse
Affiliation(s)
- Masaaki Okamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ayumi Kuratani
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaya Arai
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - James B Wing
- Laboratory of Human Immunology (Single Cell Immunology), WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Human Immunology Team, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Liu Q, Zhu F, Liu X, Lu Y, Yao K, Tian N, Tong L, Figge DA, Wang X, Han Y, Li Y, Zhu Y, Hu L, Ji Y, Xu N, Li D, Gu X, Liang R, Gan G, Wu L, Zhang P, Xu T, Hu H, Hu Z, Xu H, Ye D, Yang H, Li B, Tong X. Non-oxidative pentose phosphate pathway controls regulatory T cell function by integrating metabolism and epigenetics. Nat Metab 2022; 4:559-574. [PMID: 35606596 DOI: 10.1038/s42255-022-00575-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 04/11/2022] [Indexed: 01/14/2023]
Abstract
Regulatory T (Treg) cells are critical for maintaining immune homeostasis and preventing autoimmunity. Here, we show that the non-oxidative pentose phosphate pathway (PPP) regulates Treg function to prevent autoimmunity. Deletion of transketolase (TKT), an indispensable enzyme of non-oxidative PPP, in Treg cells causes a fatal autoimmune disease in mice, with impaired Treg suppressive capability despite regular Treg numbers and normal Foxp3 expression levels. Mechanistically, reduced glycolysis and enhanced oxidative stress induced by TKT deficiency triggers excessive fatty acid and amino acid catabolism, resulting in uncontrolled oxidative phosphorylation and impaired mitochondrial fitness. Reduced α-KG levels as a result of reductive TCA cycle activity leads to DNA hypermethylation, thereby limiting functional gene expression and suppressive activity of TKT-deficient Treg cells. We also find that TKT levels are frequently downregulated in Treg cells of people with autoimmune disorders. Our study identifies the non-oxidative PPP as an integrator of metabolic and epigenetic processes that control Treg function.
Collapse
Affiliation(s)
- Qi Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangming Zhu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xinnan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Lu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Yao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Na Tian
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lingfeng Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - David A Figge
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xiuwen Wang
- Department of Rheumatology and Immunology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yichao Han
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yakui Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yemin Zhu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Hu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingning Ji
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nannan Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaochuan Gu
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Rui Liang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guifang Gan
- Shanghai Ninth People's Hospital, Department of Clinical Laboratories, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifang Wu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianle Xu
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Hu
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Huji Xu
- Department of Rheumatology and Immunology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Dan Ye
- Molecular and Cell Biology Lab of Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, College of Life Science, Fudan University, Shanghai, China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Bin Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xuemei Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Mesenchymal stem cells transfer mitochondria to allogeneic Tregs in an HLA-dependent manner improving their immunosuppressive activity. Nat Commun 2022; 13:856. [PMID: 35165293 PMCID: PMC8844425 DOI: 10.1038/s41467-022-28338-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
Cell-based immunotherapies can provide safe and effective treatments for various disorders including autoimmunity, cancer, and excessive proinflammatory events in sepsis or viral infections. However, to achieve this goal there is a need for deeper understanding of mechanisms of the intercellular interactions. Regulatory T cells (Tregs) are a lymphocyte subset that maintain peripheral tolerance, whilst mesenchymal stem cells (MSCs) are multipotent nonhematopoietic progenitor cells. Despite coming from different origins, Tregs and MSCs share immunoregulatory properties that have been tested in clinical trials. Here we demonstrate how direct and indirect contact with allogenic MSCs improves Tregs’ potential for accumulation of immunosuppressive adenosine and suppression of conventional T cell proliferation, making them more potent therapeutic tools. Our results also demonstrate that direct communication between Tregs and MSCs is based on transfer of active mitochondria and fragments of plasma membrane from MSCs to Tregs, an event that is HLA-dependent and associates with HLA-C and HLA-DRB1 eplet mismatch load between Treg and MSC donors. Regulatory T (Treg) cells and mesenchymal stem cells (MSCs) are both cell populations capable of immune tolerance induction. Here the authors show that the transfer of mitochondria from mesenchymal stem cells to allogeneic Treg cells in an HLA-dependent manner results in enhanced immunosuppressive functions of Treg cells.
Collapse
|
4
|
Wagner JC, Leicht S, Hofmann M, Seifert F, Gahn S, Germer CT, Beyersdorf N, Otto C, Klein I. CD28 Superagonist D665-mediated activation of mouse regulatory T cells maintains their phenotype without loss of suppressive quality. Immunobiology 2021; 226:152144. [PMID: 34624625 DOI: 10.1016/j.imbio.2021.152144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/14/2021] [Accepted: 09/26/2021] [Indexed: 01/07/2023]
Abstract
Regulatory T cells (Tregs) maintain immune homeostasis by regulating the activation of other immune cells. Preclinical studies show that the infusion of Tregs can promote immunological tolerance to allografts and prevent or cure multiple autoimmune diseases. However, Treg therapy is limited by high numbers of cells required to induce tolerance. In this study, we aimed at improving the in vitro expansion of sort purified mouse Tregs using the CD28 Superagonist (CD28-SA) D665 and comparing it to the conventional expansion using anti-CD3/anti-CD28 Dynabeads®. CD28-SA-stimulated Tregs expanded more than Dynabead®-stimulated Tregs while maintaining their phenotype by expressing the same level of CD4, CD25 and Foxp3. CD28-SA-expanded Tregs produced comparable amounts of IL-10 and TGFβ while showing a slightly superior suppressive capacity compared to Dynabead®-stimulated Tregs. Thus, stimulating murine Tregs with the CD28-SA is a promising alternative since it maintains their suppressive capacity without altering their phenotype and yields a higher fold expansion within 14 days.
Collapse
Affiliation(s)
- Johanna C Wagner
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University of Würzburg Medical Center, Oberdürrbacherstr. 6, 97080 Würzburg, Germany; Department of Surgery, Division of Transplant Surgery, University of California San Francisco, 513 Parnassus Ave, San Francisco, CA 94143, USA.
| | - Svenja Leicht
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University of Würzburg Medical Center, Oberdürrbacherstr. 6, 97080 Würzburg, Germany; Experimental Visceral Surgery, Department of General, Visceral, Transplantation, Vascular, and Pediatric Surgery, University Hospital Würzburg, Oberdürrbacher Str. 6, D-97080 Würzburg, Germany
| | - Manuela Hofmann
- Experimental Visceral Surgery, Department of General, Visceral, Transplantation, Vascular, and Pediatric Surgery, University Hospital Würzburg, Oberdürrbacher Str. 6, D-97080 Würzburg, Germany
| | - Franziska Seifert
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Sabine Gahn
- Experimental Visceral Surgery, Department of General, Visceral, Transplantation, Vascular, and Pediatric Surgery, University Hospital Würzburg, Oberdürrbacher Str. 6, D-97080 Würzburg, Germany
| | - Christoph-Thomas Germer
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University of Würzburg Medical Center, Oberdürrbacherstr. 6, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken, Core Unit Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Christoph Otto
- Experimental Visceral Surgery, Department of General, Visceral, Transplantation, Vascular, and Pediatric Surgery, University Hospital Würzburg, Oberdürrbacher Str. 6, D-97080 Würzburg, Germany
| | - Ingo Klein
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University of Würzburg Medical Center, Oberdürrbacherstr. 6, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken, Core Unit Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Experimental Visceral Surgery, Department of General, Visceral, Transplantation, Vascular, and Pediatric Surgery, University Hospital Würzburg, Oberdürrbacher Str. 6, D-97080 Würzburg, Germany
| |
Collapse
|
5
|
Akkaya B, Shevach EM. Regulatory T cells: Master thieves of the immune system. Cell Immunol 2020; 355:104160. [PMID: 32711171 DOI: 10.1016/j.cellimm.2020.104160] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022]
Abstract
Treg cells are the immune system's in-house combatants against pathological immune activation. Because they are vital to maintenance of peripheral tolerance, it is important to understand how they perform their functions. To this end, various mechanisms have been proposed for Treg-mediated immune inhibition. A major group of mechanisms picture Treg cells as skilled thieves stealing a plethora of molecules that would otherwise promote immune effector functions. This suggests that several million years of evolution have endowed Treg cells with efficient ways to deprive immune effectors of activating stimuli to prevent immunopathology for survival of the host. Although we are still long way from deciphering their complete set of tricks, this review will focus on the types of "crimes" committed by these master thieves in both secondary lymphoid organs and non-lymphoid tissue.
Collapse
Affiliation(s)
- Billur Akkaya
- Laboratory of Immune System Biology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ethan M Shevach
- Laboratory of Immune System Biology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Xiang Y, Wang J, Li JP, Guo W, Huang F, Zhang HM, Li HH, Dai ZT, Zhang ZJ, Li H, Bao LY, Gu CJ, Chen K, Zhang TC, Liao XH. MKL-1 is a coactivator for STAT5b, the regulator of Treg cell development and function. Cell Commun Signal 2020; 18:107. [PMID: 32646440 PMCID: PMC7350762 DOI: 10.1186/s12964-020-00574-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 04/01/2020] [Indexed: 01/01/2023] Open
Abstract
Background Foxp3+CD4+ regulatory T cells (Treg) constitutes a key event in autoimmune diseases. STAT5b is the critical link between the IL-2/15 and FOXP3, the master regulator of Treg cells. Methods The CD3+T cell and Foxp3+CD4+ regulatory T cells were overexpressioned or knockdown MKL-1 and STAT5a and tested for Treg cell development and function. Direct interaction of MKL-1 and STAT5a were analyzed by coimmunoprecipitation assays, Luciferase assay, Immunofluoresence Staining and Yeast two-hybrid screening. The effect of MKL-1 and STAT5a on the Treg genes expression was analyzed by qPCR and western blotting and Flow cytometry. Results However, the molecular mechanisms mediating STAT5b-dependent Treg genes expression and Treg cell phenotype and function in autoimmune diseases are not well defined. Here, we report that the MKL-1 is a coactivator for the major Treg genes transcription factor STAT5b, which is required for human Treg cell phenotype and function. The N terminus of STAT5b, which contains a basic coiled-coil protein–protein interaction domain, binds the C-terminal activation domain of MKL-1 and enhances MKL-1 mediated transcriptional activation of Treg-specific, CArG containing promoters, including the Treg-specific genes Foxp3. Suppression of endogenous STAT5b expression by specific small interfering RNA attenuates MKL-1 transcriptional activation in cultured human cells. The STAT5b–MKL-1 interaction identifies a role of Treg-specific gene regulation and regulated mouse Treg cell development and function and suggests a possible mechanism for the protective effects of autoimmune disease Idiopathic Thrombocytopenic Purpura (ITP). Conclusions Our studies demonstrate for the first time that MKL-1 is a coactivator for STAT5b, the regulator of Treg cell development and function. Video abstract
Collapse
Affiliation(s)
- Yuan Xiang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, PR China
| | - Jun Wang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, PR China
| | - Jia Peng Li
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, PR China
| | - Wei Guo
- Shenzhen Ritzcon Biological Technology Co., LTD, Shenzhen, Guangdong, 518000, PR China
| | - Feng Huang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, PR China
| | - Hui Min Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, PR China
| | - Han Han Li
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, PR China
| | - Zhou Tong Dai
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, PR China
| | - Zi Jian Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, PR China
| | - Hui Li
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, PR China
| | - Le Yuan Bao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, PR China
| | - Chao Jiang Gu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, PR China
| | - Kun Chen
- Medical School, Liaocheng University, No.1 Hunan Road, Liaocheng, 252000, China
| | - Tong Cun Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, PR China. .,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China, 300457.
| | - Xing Hua Liao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, PR China. .,Shenzhen Ritzcon Biological Technology Co., LTD, Shenzhen, Guangdong, 518000, PR China.
| |
Collapse
|
7
|
Urbano PCM, He X, van Heeswijk B, Filho OPS, Tijssen H, Smeets RL, Joosten I, Koenen HJPM. TNFα-Signaling Modulates the Kinase Activity of Human Effector Treg and Regulates IL-17A Expression. Front Immunol 2020; 10:3047. [PMID: 32038615 PMCID: PMC6986271 DOI: 10.3389/fimmu.2019.03047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022] Open
Abstract
Maintenance of regulatory T cells CD4+CD25highFOXP3+ (Treg) stability is vital for proper Treg function and controlling the immune equilibrium. Treg cells are heterogeneous and can reveal plasticity, exemplified by their potential to express IL-17A. TNFα-TNFR2 signaling controls IL-17A expression in conventional T cells via the anti-inflammatory ubiquitin-editing and kinase activity regulating enzyme TNFAIP3/A20 (tumor necrosis factor-alpha-induced protein 3). To obtain a molecular understanding of TNFα signaling on IL-17 expression in the human effector (effTreg, CD25highCD45RA−) Treg subset, we here studied the kinome activity regulation by TNFα signaling. Using FACS-sorted naïve (naïveTreg, CD25highCD45RA+) and effTreg subsets, we demonstrated a reciprocal relationship between TNFα and IL-17A expression; effTreg (TNFαlow/IL-17Ahigh) and naïveTreg (TNFαhigh/IL-17Alow). In effTreg, TNFα-TNFR2 signaling prevented IL-17A expression, whereas inhibition of TNFα signaling by clinically applied anti-TNF antibodies led to increased IL-17A expression. Inhibition of TNFα signaling led to reduced TNFAIP3 expression, which, by using siRNA inhibition of TNFAIP3, appeared causally linked to increased IL-17A expression in effTreg. Kinome activity screening of CD3/CD28-activated effTreg revealed that anti-TNF-mediated neutralization led to increased kinase activity. STRING association analysis revealed that the TNF suppression effTreg kinase activity network was strongly associated with kinases involved in TCR, JAK, MAPK, and PKC pathway signaling. Small-molecule-based inhibition of TCR and JAK pathways prevented the IL-17 expression in effTreg. Together, these findings stress the importance of TNF-TNFR2 in regulating the kinase architecture of antigen-activated effTreg and controlling IL-17 expression of the human Treg. These findings might be relevant for optimizing anti-TNF-based therapy and may aid in preventing Treg plasticity in case of Treg-based cell therapy.
Collapse
Affiliation(s)
- Paulo C M Urbano
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Xuehui He
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bennie van Heeswijk
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Omar P S Filho
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, Netherlands
| | - Henk Tijssen
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ruben L Smeets
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Irma Joosten
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hans J P M Koenen
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
8
|
Rocamora-Reverte L, Tuzlak S, von Raffay L, Tisch M, Fiegl H, Drach M, Reichardt HM, Villunger A, Tischner D, Wiegers GJ. Glucocorticoid Receptor-Deficient Foxp3 + Regulatory T Cells Fail to Control Experimental Inflammatory Bowel Disease. Front Immunol 2019; 10:472. [PMID: 30936873 PMCID: PMC6431616 DOI: 10.3389/fimmu.2019.00472] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/21/2019] [Indexed: 01/12/2023] Open
Abstract
Activation of the immune system increases systemic adrenal-derived glucocorticoid (GC) levels which downregulate the immune response as part of a negative feedback loop. While CD4+ T cells are essential target cells affected by GC, it is not known whether these hormones exert their major effects on CD4+ helper T cells, CD4+Foxp3+ regulatory T cells (Treg cells), or both. Here, we generated mice with a specific deletion of the glucocorticoid receptor (GR) in Foxp3+ Treg cells. Remarkably, while basal Treg cell characteristics and in vitro suppression capacity were unchanged, Treg cells lacking the GR did not prevent the induction of inflammatory bowel disease in an in vivo mouse model. Under inflammatory conditions, GR-deficient Treg cells acquired Th1-like characteristics and expressed IFN-gamma, but not IL-17, and failed to inhibit pro-inflammatory CD4+ T cell expansion in situ. These findings reveal that the GR is critical for Foxp3+ Treg cell function and suggest that endogenous GC prevent Treg cell plasticity toward a Th1-like Treg cell phenotype in experimental colitis. When equally active in humans, a rationale is provided to develop GC-mimicking therapeutic strategies which specifically target Foxp3+ Treg cells for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Lourdes Rocamora-Reverte
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Selma Tuzlak
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Laura von Raffay
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Marcel Tisch
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Heidi Fiegl
- Department of Obstetrics and Gynecology, Innsbruck University Hospital, Innsbruck, Austria
| | - Mathias Drach
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Holger M Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Denise Tischner
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - G Jan Wiegers
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Schneider-Schaulies J, Beyersdorf N. CD4+ Foxp3+ regulatory T cell-mediated immunomodulation by anti-depressants inhibiting acid sphingomyelinase. Biol Chem 2018; 399:1175-1182. [DOI: 10.1515/hsz-2018-0159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/30/2018] [Indexed: 01/14/2023]
Abstract
AbstractAcid sphingomyelinase (ASM) is the rate-limiting enzyme cleaving sphingomyelin into ceramide and phosphorylcholin. CD4+Foxp3+regulatory T (Treg) cells depend on CD28 signaling for their survival and function, a receptor that activates the ASM. Both, basal and CD28-induced ASM activities are higher in Treg cells than in conventional CD4+T (Tconv) cells. In ASM-deficient (Smpd1−/−) as compared to wt mice, membranes of T cells contain 7–10-fold more sphingomyelin and two- to three-fold more ceramide, and are in a state of higher order than membranes of T cells from wt mice, which may facilitate their activation. Indeed, the frequency of Treg cells among CD4+T cells in ASM-deficient mice and their suppressive activityin vitroare increased. Moreover,in vitrostimulation of ASM-deficient T cells in the presence of TGF-β and IL-2 leads to higher numbers of induced Treg cells. Pharmacological inhibition of the ASM with a clinically used tricyclic antidepressant such as amitriptyline in mice or in tissue culture of murine or human T cells induces higher frequencies of Treg cells among CD4+T cells within a few days. This fast alteration of the balance between T cell populationsin vitrois due to the elevated cell death of Tconv cells and protection of the CD25highTreg cells by IL-2. Together, these findings suggest that ASM-inhibiting antidepressants, including a fraction of the serotonin re-uptake inhibitors (SSRIs), are moderately immunosuppressive and should be considered for the therapy of inflammatory and autoimmune disorders.
Collapse
|
10
|
Bonura A, Vizzini A, Vlah S, Gervasi F, Longo A, Melis MR, Schildberg FA, Colombo P. Ci8 short, a novel LPS-induced peptide from the ascidian Ciona intestinalis, modulates responses of the human immune system. Immunobiology 2017; 223:210-219. [PMID: 29066254 DOI: 10.1016/j.imbio.2017.10.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/08/2017] [Indexed: 01/06/2023]
Abstract
The selective modulation of immunity is an emerging concept driven by the vast advances in our understanding of this crucial host defense system. Invertebrates have raised researchers' interest as potential sources of new bioactive molecules owing to their antibacterial, anticancer and immunomodulatory activities. A LipoPolySaccharide (LPS) challenge in the ascidian Ciona intestinalis generates the transcript, Ci8 short, with cis-regulatory elements in the 3' UTR region that are essential for shaping innate immune responses. The derived amino acidic sequence in silico analysis showed specific binding to human Major Histocompatibility Complex (MHC) Class I and Class II alleles. The role of Ci8 short peptide was investigated in a more evolved immune system using human Peripheral Blood Mononuclear Cells (PBMCs) as in vitro model. The biological activities of this molecule include the activation of 70kDa TCR ζ chain Associated Protein kinase (ZAP-70) and T Cell Receptor (TCR) Vβ oligo clonal selection on CD4+ T lymphocytes as well as increased proliferation and IFN-γ secretion. Furthermore Ci8 short affects CD4+/CD25high induced regulatory T cells (iTreg) subset selection which co-expressed the functional markers TGF-β1/Latency Associated Protein (LAP) and CD39/CD73. This paper describes a new molecule that modulates important responses of the human adaptive immune system.
Collapse
Affiliation(s)
- Angela Bonura
- Istituto di Biomedicina e di Immunologia Molecolare "Alberto Monroy" del Consiglio Nazionale delle Ricerche, Palermo, Italy.
| | - Aiti Vizzini
- Marine Immunobiology Laboratory, Department of Biological Chemical Pharmaceutical Science and Technology, University of Palermo, Italy
| | - Sara Vlah
- Istituto di Biomedicina e di Immunologia Molecolare "Alberto Monroy" del Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Francesco Gervasi
- U.O.S.D. Laboratorio Specialistico Oncologia, Ematologia e Colture Cellulari per Uso Clinico, ARNAS Civico, Palermo, Italy
| | - Alessandra Longo
- Istituto di Biomedicina e di Immunologia Molecolare "Alberto Monroy" del Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Mario R Melis
- Istituto di Biomedicina e di Immunologia Molecolare "Alberto Monroy" del Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Frank A Schildberg
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Paolo Colombo
- Istituto di Biomedicina e di Immunologia Molecolare "Alberto Monroy" del Consiglio Nazionale delle Ricerche, Palermo, Italy
| |
Collapse
|
11
|
Metabolic pressure and the breach of immunological self-tolerance. Nat Immunol 2017; 18:1190-1196. [DOI: 10.1038/ni.3851] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022]
|
12
|
Hollmann C, Werner S, Avota E, Reuter D, Japtok L, Kleuser B, Gulbins E, Becker KA, Schneider-Schaulies J, Beyersdorf N. Inhibition of Acid Sphingomyelinase Allows for Selective Targeting of CD4+Conventional versus Foxp3+Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:3130-3141. [DOI: 10.4049/jimmunol.1600691] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/20/2016] [Indexed: 01/01/2023]
|
13
|
The NF-κB transcription factor RelA is required for the tolerogenic function of Foxp3(+) regulatory T cells. J Autoimmun 2016; 70:52-62. [PMID: 27068879 DOI: 10.1016/j.jaut.2016.03.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/29/2022]
Abstract
The properties of CD4(+) regulatory T cell (Treg) subsets are dictated by distinct patterns of gene expression determined by FOXP3 and different combinations of various transcription factors. Here we show the NF-κB transcription factor RelA is constitutively active in naïve and effector Tregs. The conditional inactivation of Rela in murine FOXP3(+) cells induces a rapid onset, multi-focal autoimmune disease that depends on RelA being expressed in conventional T cells. In addition to promoting Treg lineage stability, RelA determines the size of the effector Treg population, a function influenced by the presence or absence of RelA in conventional T cells. These findings showing that RelA controls Treg stability and promotes the competitive fitness of effector Tregs highlight the importance of RelA activity in peripheral Treg induced tolerance.
Collapse
|
14
|
Polyclonal Recipient nTregs Are Superior to Donor or Third-Party Tregs in the Induction of Transplantation Tolerance. J Immunol Res 2015; 2015:562935. [PMID: 26273682 PMCID: PMC4530277 DOI: 10.1155/2015/562935] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/16/2015] [Accepted: 06/21/2015] [Indexed: 12/22/2022] Open
Abstract
Induction of donor-specific tolerance is still considered as the "Holy Grail" in transplantation medicine. The mixed chimerism approach is virtually the only tolerance approach that was successfully translated into the clinical setting. We have previously reported successful induction of chimerism and tolerance using cell therapy with recipient T regulatory cells (Tregs) to avoid cytotoxic recipient treatment. Treg therapy is limited by the availability of cells as large-scale expansion is time-consuming and associated with the risk of contamination with effector cells. Using a costimulation-blockade based bone marrow (BM) transplantation (BMT) model with Treg therapy instead of cytoreductive recipient treatment we aimed to determine the most potent Treg population for clinical translation. Here we show that CD4(+)CD25(+) in vitro activated nTregs are superior to TGFβ induced iTregs in promoting the induction of chimerism and tolerance. Therapy with nTregs (but not iTregs) led to multilineage chimerism and donor-specific tolerance in mice receiving as few as 0.5 × 10(6) cells. Moreover, we show that only recipient Tregs, but not donor or third-party Tregs, had a beneficial effect on BM engraftment at the tested doses. Thus, recipient-type nTregs significantly improve chimerism and tolerance and might be the most potent Treg population for translation into the clinical setting.
Collapse
|