1
|
Yang H, Zhou H, Fu M, Xu H, Huang H, Zhong M, Zhang M, Hua W, Lv K, Zhu G. TMEM64 aggravates the malignant phenotype of glioma by activating the Wnt/β-catenin signaling pathway. Int J Biol Macromol 2024; 260:129332. [PMID: 38232867 DOI: 10.1016/j.ijbiomac.2024.129332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/19/2024]
Abstract
Transmembrane protein 64 (TMEM64), a member of the family of transmembrane protein, is an α-helical membrane protein. Its precise role in various types of tumors, including glioma, is unclear. This study used immunohistochemical (IHC) staining, western blotting, and quantitative reverse transcription polymerase chain reaction (qRT-PCR) techniques to show that TMEM64 expression was significantly higher in glioma cells and tissues compared to normal cells and tissues, respectively. Additionally, a correlation between high TMEM64 expression and higher grade as well as a worse prognosis was found. TMEM64 enhanced cell proliferation and tumorigenicity while inhibiting glioma cell apoptosis in vitro and in vivo, according to loss- and gain-of-function studies. Mechanistically, it was discovered that TMEM64 increased the malignant phenotype of gliomas by accelerating the translocation of β-catenin from the cytoplasm to the nucleus, thereby activating the Wnt/β-catenin signaling pathway. Stimulation with the Wnt/β-catenin signaling pathway activator CHIR-99021 successfully reversed the malignant phenotype of glioma; however, these effects were inhibited upon TMEM64 silencing. Stimulation with the Wnt/β-catenin signaling pathway inhibitor XAV-939 successfully rescued the malignant phenotype of glioma, which was promoted upon TMEM64 overexpression. Our results provide that TMEM64 as a novel prognostic biomarker and a potential treatment target for glioma.
Collapse
Affiliation(s)
- Hui Yang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241001, Anhui, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241001, Anhui, China
| | - Hanyu Zhou
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Minjie Fu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Neurosurgical Institute of Fudan University, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Hao Xu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Neurosurgical Institute of Fudan University, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Haoyu Huang
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Min Zhong
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Mengying Zhang
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China; Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Neurosurgical Institute of Fudan University, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.
| | - Kun Lv
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241001, Anhui, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241001, Anhui, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu 241001, Anhui, China; Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China.
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241001, Anhui, China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation (Wannan Medical College), Wuhu 241001, Anhui, China; Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241001, Anhui, China.
| |
Collapse
|
2
|
Xie Y, Chen Z, Li S, Yan M, He W, Li L, Si J, Wang Y, Li X, Ma K. A network pharmacology- and transcriptomics-based investigation reveals an inhibitory role of β-sitosterol in glioma via the EGFR/MAPK signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 56:223-238. [PMID: 38143380 PMCID: PMC10984875 DOI: 10.3724/abbs.2023251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/21/2023] [Indexed: 12/26/2023] Open
Abstract
Glioma is characterized by rapid cell proliferation, aggressive invasion, altered apoptosis and a poor prognosis. β-Sitosterol, a kind of phytosterol, has been shown to possess anticancer activities. Our current study aims to investigate the effects of β-sitosterol on gliomas and reveal the underlying mechanisms. Our results show that β-sitosterol effectively inhibits the growth of U87 cells by inhibiting proliferation and inducing G2/M phase arrest and apoptosis. In addition, β-sitosterol inhibits migration by downregulating markers of epithelial-mesenchymal transition (EMT). Mechanistically, network pharmacology and transcriptomics approaches illustrate that the EGFR/MAPK signaling pathway may be responsible for the inhibitory effect of β-sitosterol on glioma. Afterward, the results show that β-sitosterol effectively suppresses the EGFR/MAPK signaling pathway. Moreover, β-sitosterol significantly inhibits tumor growth in a U87 xenograft nude mouse model. β-Sitosterol inhibits U87 cell proliferation and migration and induces apoptosis and cell cycle arrest in U87 cells by blocking the EGFR/MAPK signaling pathway. These results suggest that β-sitosterol may be a promising therapeutic agent for the treatment of glioma.
Collapse
Affiliation(s)
- Yufang Xie
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesMinistry of EducationShihezi University School of MedicineShihezi832000China
- Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated HospitalShihezi University School of MedicineShihezi832000China
- Department of PhysiologyShihezi University School of MedicineShihezi832000China
| | - Zhijian Chen
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesMinistry of EducationShihezi University School of MedicineShihezi832000China
- Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated HospitalShihezi University School of MedicineShihezi832000China
- Department of PathophysiologyShihezi University School of MedicineShihezi832000China
| | - Shuang Li
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesMinistry of EducationShihezi University School of MedicineShihezi832000China
- Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated HospitalShihezi University School of MedicineShihezi832000China
- Department of PathophysiologyShihezi University School of MedicineShihezi832000China
| | - Meijuan Yan
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesMinistry of EducationShihezi University School of MedicineShihezi832000China
- Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated HospitalShihezi University School of MedicineShihezi832000China
- Department of PhysiologyShihezi University School of MedicineShihezi832000China
| | - Wenjun He
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesMinistry of EducationShihezi University School of MedicineShihezi832000China
- Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated HospitalShihezi University School of MedicineShihezi832000China
- Department of PhysiologyShihezi University School of MedicineShihezi832000China
| | - Li Li
- Department of PhysiologyShihezi University School of MedicineShihezi832000China
| | - Junqiang Si
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesMinistry of EducationShihezi University School of MedicineShihezi832000China
- Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated HospitalShihezi University School of MedicineShihezi832000China
- Department of PhysiologyShihezi University School of MedicineShihezi832000China
| | - Yan Wang
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesMinistry of EducationShihezi University School of MedicineShihezi832000China
- Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated HospitalShihezi University School of MedicineShihezi832000China
| | - Xinzhi Li
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesMinistry of EducationShihezi University School of MedicineShihezi832000China
- Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated HospitalShihezi University School of MedicineShihezi832000China
- Department of PathophysiologyShihezi University School of MedicineShihezi832000China
| | - Ketao Ma
- Key Laboratory of Xinjiang Endemic and Ethnic DiseasesMinistry of EducationShihezi University School of MedicineShihezi832000China
- Key Laboratory of Prevention and Treatment of Central Asia High Incidence DiseasesFirst Affiliated HospitalShihezi University School of MedicineShihezi832000China
- Department of PhysiologyShihezi University School of MedicineShihezi832000China
| |
Collapse
|
3
|
Du L, Wang P, Huang H, Li M, Roy S, Zhang Y, Guo B. Light-activatable and hyperthermia-sensitive "all-in-one" theranostics: NIR-II fluorescence imaging and chemo-photothermal therapy of subcutaneous glioblastoma by temperature-sensitive liposome-containing AIEgens and paclitaxel. Front Bioeng Biotechnol 2023; 11:1343694. [PMID: 38213575 PMCID: PMC10782224 DOI: 10.3389/fbioe.2023.1343694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Nowadays, it is still quite difficult to combat glioblastoma, which is one of the most lethal cancers for human beings. Combinatory therapy, which could not only improve therapeutic efficacy and overcome multiple drug resistance but also decrease the threshold therapeutic drug dosage and minimize side effects, would be an appealing candidate for glioblastoma treatment. Herein, we report fluorescence imaging in the second near-infrared window (NIR-II)-guided combinatory photothermal therapy (PTT) and chemotherapy of glioblastoma with a newly formulated nanomedicine termed PATSL. It is composed of temperature-sensitive liposome (TSL) carriers, NIR-II emissive and photothermal aggregation-induced emission (AIE) dyes, and chemotherapeutic paclitaxel (PTX) as well. PATSL shows spherical morphology with diameters of approximately 55 and 85 nm by transmission electron microscopy and laser light scattering, respectively, a zeta potential of -14.83 mV, good stability in both size and photoactivity, strong light absorption with a peak of approximately 770 nm, and bright emission from 900 nm to 1,200 nm. After excitation with an 808-nm laser with good spatiotemporal controllability, PATSL emits bright NIR-II fluorescence signals for tumor diagnosis in vivo, exhibits high photothermal conversion efficiency (68.8%), and triggers drug release of PTX under hypothermia, which assists in efficient tumor ablation in vitro and in vivo. This research demonstrates that "all-in-one" theranostics with NIR-II fluorescence imaging-guided combinatory PTT and chemotherapy is an efficient treatment paradigm for improving the prognosis of brain cancers.
Collapse
Affiliation(s)
- Lixin Du
- Department of Medical Imaging, Shenzhen Longhua District Central Hospital, The Key Laboratory of Neuroimaging, Shenzhen, China
| | - Pan Wang
- Department of Medical Imaging, Shenzhen Longhua District Central Hospital, The Key Laboratory of Neuroimaging, Shenzhen, China
| | - Haiyan Huang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, China
| | - Menglong Li
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, China
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, China
| | - Yinghe Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, China
| |
Collapse
|
4
|
Kumari S, Gupta R, Ambasta RK, Kumar P. Emerging trends in post-translational modification: Shedding light on Glioblastoma multiforme. Biochim Biophys Acta Rev Cancer 2023; 1878:188999. [PMID: 37858622 DOI: 10.1016/j.bbcan.2023.188999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Recent multi-omics studies, including proteomics, transcriptomics, genomics, and metabolomics have revealed the critical role of post-translational modifications (PTMs) in the progression and pathogenesis of Glioblastoma multiforme (GBM). Further, PTMs alter the oncogenic signaling events and offer a novel avenue in GBM therapeutics research through PTM enzymes as potential biomarkers for drug targeting. In addition, PTMs are critical regulators of chromatin architecture, gene expression, and tumor microenvironment (TME), that play a crucial function in tumorigenesis. Moreover, the implementation of artificial intelligence and machine learning algorithms enhances GBM therapeutics research through the identification of novel PTM enzymes and residues. Herein, we briefly explain the mechanism of protein modifications in GBM etiology, and in altering the biologics of GBM cells through chromatin remodeling, modulation of the TME, and signaling pathways. In addition, we highlighted the importance of PTM enzymes as therapeutic biomarkers and the role of artificial intelligence and machine learning in protein PTM prediction.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India; School of Medicine, University of South Carolina, Columbia, SC, United States of America
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India; Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India.
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India.
| |
Collapse
|
5
|
Bian Y, Wang Y, Chen X, Zhang Y, Xiong S, Su D. Image‐guided diagnosis and treatment of glioblastoma. VIEW 2023. [DOI: 10.1002/viw.20220069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Yongning Bian
- Center of Excellence for Environmental Safety and Biological Effects Beijing Key Laboratory for Green Catalysis and Separation Department of Chemistry Beijing University of Technology Beijing P. R. China
| | - Yaling Wang
- Center of Excellence for Environmental Safety and Biological Effects Beijing Key Laboratory for Green Catalysis and Separation Department of Chemistry Beijing University of Technology Beijing P. R. China
| | - Xueqian Chen
- Center of Excellence for Environmental Safety and Biological Effects Beijing Key Laboratory for Green Catalysis and Separation Department of Chemistry Beijing University of Technology Beijing P. R. China
| | - Yong Zhang
- Center of Excellence for Environmental Safety and Biological Effects Beijing Key Laboratory for Green Catalysis and Separation Department of Chemistry Beijing University of Technology Beijing P. R. China
| | - Shaoqing Xiong
- Center of Excellence for Environmental Safety and Biological Effects Beijing Key Laboratory for Green Catalysis and Separation Department of Chemistry Beijing University of Technology Beijing P. R. China
| | - Dongdong Su
- Center of Excellence for Environmental Safety and Biological Effects Beijing Key Laboratory for Green Catalysis and Separation Department of Chemistry Beijing University of Technology Beijing P. R. China
| |
Collapse
|
6
|
Yao Z, Jiang X, Yao H, Wu Y, Zhang F, Wang C, Qi C, Zhao C, Wu Z, Qi M, Zhang J, Cao X, Wang Z, Wu F, Yao C, Liu S, Ling S, Xia H. Efficiently targeted therapy of glioblastoma xenograft via multifunctional biomimetic nanodrugs. Biomater Res 2022; 26:71. [PMID: 36461108 PMCID: PMC9717509 DOI: 10.1186/s40824-022-00309-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/20/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a fatal malignant primary brain tumor in adults. The therapeutic efficacy of chemotherapeutic drugs is limited due to the blood-brain barrier (BBB), poor drug targeting, and short biological half-lives. Multifunctional biomimetic nanodrugs have great potential to overcome these limitations of chemotherapeutic drugs. METHODS We synthesized and characterized a biomimetic nanodrug CMS/PEG-DOX-M. The CMS/PEG-DOX-M effectively and rapidly released DOX in U87 MG cells. Cell proliferation and apoptosis assays were examined by the MTT and TUNEL assays. The penetration of nanodrugs through the BBB and anti-tumor efficacy were investigated in the orthotopic glioblastoma xenograft models. RESULTS We showed that CMS/PEG-DOX-M inhibited cell proliferation of U87 MG cells and effectively induced cell apoptosis of U87 MG cells. Intracranial antitumor experiments showed that free DOX hardly penetrated the BBB, but CMS/PEG-DOX-M effectively reached the orthotopic intracranial tumor through the BBB and significantly inhibited tumor growth. Immunofluorescence staining of orthotopic tumor tissue sections confirmed that nanodrugs promoted apoptosis of tumor cells. This study developed a multimodal nanodrug treatment system with the enhanced abilities of tumor-targeting, BBB penetration, and cancer-specific accumulation of chemotherapeutic drugs by combining chemotherapy and photothermal therapy. It can be used as a flexible and effective GBM treatment system and it may also be used for the treatment of other central nervous systems (CNS) tumors and extracranial tumors.
Collapse
Affiliation(s)
- Zhipeng Yao
- School of Chemistry and Chemical Engineering & Interdisciplinary Innovation Institute for Medicine and Engineering, Southeast University, Nanjing, 211189, China
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, People's Republic of China
- Department of Pathology, Nanjing Drum Tower Hospital & Drum Tower Clinical College & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaochun Jiang
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, People's Republic of China
| | - Hong Yao
- The Department of Cancer Biotherapy Center& The Institute of Cancer Research, The Third Affiliated Hospital of Kunming Medical University & The Cancer Hospital of Yunnan province, Kunming, 650000, China
| | - Yafeng Wu
- School of Chemistry and Chemical Engineering & Interdisciplinary Innovation Institute for Medicine and Engineering, Southeast University, Nanjing, 211189, China
| | - Fan Zhang
- Department of Pathology, Nanjing Drum Tower Hospital & Drum Tower Clinical College & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 211166, China
| | - Cheng Wang
- Department of Pathology, Nanjing Drum Tower Hospital & Drum Tower Clinical College & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 211166, China
| | - Chenxue Qi
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, People's Republic of China
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Chenhui Zhao
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, People's Republic of China
| | - Zeyu Wu
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, People's Republic of China
| | - Min Qi
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, People's Republic of China
| | - Jia Zhang
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, People's Republic of China
| | - Xiaoxiang Cao
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, People's Republic of China
| | - Zhichun Wang
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, People's Republic of China
| | - Fei Wu
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, People's Republic of China
| | - Chengyun Yao
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Songqin Liu
- School of Chemistry and Chemical Engineering & Interdisciplinary Innovation Institute for Medicine and Engineering, Southeast University, Nanjing, 211189, China
| | - Shizhang Ling
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, People's Republic of China
| | - Hongping Xia
- School of Chemistry and Chemical Engineering & Interdisciplinary Innovation Institute for Medicine and Engineering, Southeast University, Nanjing, 211189, China
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, People's Republic of China
- Department of Pathology, Nanjing Drum Tower Hospital & Drum Tower Clinical College & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 211166, China
- The Department of Cancer Biotherapy Center& The Institute of Cancer Research, The Third Affiliated Hospital of Kunming Medical University & The Cancer Hospital of Yunnan province, Kunming, 650000, China
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|
7
|
Qiao L, Yang H, Shao XX, Yin Q, Fu XJ, Wei Q. Research Progress on Nanoplatforms and Nanotherapeutic Strategies in Treating Glioma. Mol Pharm 2022; 19:1927-1951. [DOI: 10.1021/acs.molpharmaceut.1c00856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Li Qiao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
| | - Huishu Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xin-xin Shao
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
| | - Qiuyan Yin
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xian-Jun Fu
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
- Shandong Engineering and Technology Research Center of Traditional Chinese Medicine, Jinan 250355, China
| | - Qingcong Wei
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
8
|
Zhang C, Guo L, Su Z, Luo N, Tan Y, Xu P, Ye L, Tong S, Liu H, Li X, Chen Q, Tian D. Tumor Immune Microenvironment Landscape in Glioma Identifies a Prognostic and Immunotherapeutic Signature. Front Cell Dev Biol 2021; 9:717601. [PMID: 34650972 PMCID: PMC8507498 DOI: 10.3389/fcell.2021.717601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/03/2021] [Indexed: 12/21/2022] Open
Abstract
The tumor immune microenvironment (TIME) has been recognized to be associated with sensitivity to immunotherapy and patient prognosis. Recent research demonstrates that assessing the TIME patterns on large-scale samples will expand insights into TIME and will provide guidance to formulate immunotherapy strategies for tumors. However, until now, thorough research has not yet been reported on the immune infiltration landscape of glioma. Herein, the CIBERSORT algorithm was used to unveil the TIME landscape of 1,975 glioma observations. Three TIME subtypes were established, and the TIMEscore was calculated by least absolute shrinkage and selection operator (LASSO)–Cox analysis. The high TIMEscore was distinguished by an elevated tumor mutation burden (TMB) and activation of immune-related biological process, such as IL6-JAK-STAT3 signaling and interferon gamma (IFN-γ) response, which may demonstrate that the patients with high TIMEscore were more sensitive to immunotherapy. Multivariate analysis revealed that the TIMEscore could strongly and independently predict the prognosis of gliomas [Chinese Glioma Genome Atlas (CGGA) cohort: hazard ratio (HR): 2.134, p < 0.001; Gravendeel cohort: HR: 1.872, p < 0.001; Kamoun cohort: HR: 1.705, p < 0.001; The Cancer Genome Atlas (TCGA) cohort: HR: 2.033, p < 0.001; the combined cohort: HR: 1.626, p < 0.001], and survival advantage was evident among those who received chemotherapy. Finally, we validated the performance of the signature in human tissues from Wuhan University (WHU) dataset (HR: 15.090, p = 0.008). Our research suggested that the TIMEscore could be applied as an effective predictor for adjuvant therapy and prognosis assessment.
Collapse
Affiliation(s)
- Chunyu Zhang
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| | - Lirui Guo
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| | - Zhongzhou Su
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Na Luo
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Yinqiu Tan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengfei Xu
- Sun Yat-sen University, The Seventh Affiliated Hospital, Shenzhen, China
| | - Liguo Ye
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| | - Shiao Tong
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| | - Haitao Liu
- Department of Cardiothoracic Surgery, Jiaxing University, The First Affiliated Hospital, Jiaxing, China
| | - Xiaobin Li
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Qianxue Chen
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| | - Daofeng Tian
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan, China
| |
Collapse
|
9
|
P2Y 12 Purinergic Receptor and Brain Tumors: Implications on Glioma Microenvironment. Molecules 2021; 26:molecules26206146. [PMID: 34684726 PMCID: PMC8540665 DOI: 10.3390/molecules26206146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
Gliomas are the most common malignant brain tumors in adults, characterized by a high proliferation and invasion. The tumor microenvironment is rich in growth-promoting signals and immunomodulatory pathways, which increase the tumor's aggressiveness. In response to hypoxia and glioma therapy, the amounts of adenosine triphosphate (ATP) and adenosine diphosphate (ADP) strongly increase in the extracellular space, and the purinergic signaling is triggered by nucleotides' interaction in P2 receptors. Several cell types are present in the tumor microenvironment and can facilitate tumor growth. In fact, tumor cells can activate platelets by the ADP-P2Y12 engagement, which plays an essential role in the cancer context, protecting tumors from the immune attack and providing molecules that contribute to the growth and maintenance of a rich environment to sustain the protumor cycle. Besides platelets, the P2Y12 receptor is expressed by some tumors, such as renal carcinoma, colon carcinoma, and gliomas, being related to tumor progression. In this context, this review aims to depict the glioma microenvironment, focusing on the relationship between platelets and tumor malignancy.
Collapse
|
10
|
Xiao Y, Ma W, Hu W, Di Q, Zhao X, Ma X, Chen X, Sun P, Wu H, Wu Z, Chen W. Ubiquitin-specific peptidase 39 promotes human glioma cells migration and invasion by facilitating ADAM9 mRNA maturation. Mol Oncol 2021; 16:388-404. [PMID: 33811456 PMCID: PMC8763660 DOI: 10.1002/1878-0261.12958] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/03/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
Glioma cells are characterized by high migration and invasion ability; however, the molecular mechanism behind both processes still remains to be investigated. Several studies have demonstrated that ubiquitin‐specific protease 39 (USP39) plays an oncogenic role in various cancer types. Here, we investigated the expression and function of USP39 in patients with glioma. Oncomine database analysis revealed that high USP39 expression was significantly correlated with poor overall survival in patients with glioma. Knockdown of USP39 in U251 and U87 cell lines significantly inhibited their migration and invasion in vitro. Gene expression profiling of glioma cells transduced with short hairpin RNA (shRNA) against USP39 revealed that disintegrin and metalloproteinase domain‐containing protein 9 (ADAM9), a molecule previously related to tumor cell migration and invasion, was significantly downregulated. Furthermore, USP39 induced ADAM9 messenger RNA (mRNA) maturation and decreased the expression of integrin β1. Additionally, overexpression of ADAM9 inhibited the migration and invasion of glioma cells caused by USP39 depletion in vitro. USP39 promoted the invasion of glioma cells in vivo and reduced the overall survival of the mice. Altogether, our data show that USP39 induces mRNA maturation and elevates the expression of ADAM9 in glioma cells and may thus be considered potential target for treating patients with glioma.
Collapse
Affiliation(s)
- Yue Xiao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, School of Medicine, Shenzhen University, China
| | - Wenjing Ma
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, School of Medicine, Shenzhen University, China
| | - Weiwei Hu
- Department of Neurosurgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qianqian Di
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, School of Medicine, Shenzhen University, China
| | - Xibao Zhao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, School of Medicine, Shenzhen University, China
| | - Xingyu Ma
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, School of Medicine, Shenzhen University, China
| | - Xinyi Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, School of Medicine, Shenzhen University, China
| | - Ping Sun
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, School of Medicine, Shenzhen University, China
| | - Han Wu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, School of Medicine, Shenzhen University, China
| | - Zherui Wu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, School of Medicine, Shenzhen University, China
| | - Weilin Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, School of Medicine, Shenzhen University, China
| |
Collapse
|
11
|
Salinomycin-loaded injectable thermosensitive hydrogels for glioblastoma therapy. Int J Pharm 2021; 598:120316. [PMID: 33540001 DOI: 10.1016/j.ijpharm.2021.120316] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 12/20/2022]
Abstract
Local drug delivery approaches for treating brain tumors not only diminish the toxicity of systemic chemotherapy, but also circumvent the blood-brain barrier (BBB) which restricts the passage of most chemotherapeutics to the brain. Recently, salinomycin has attracted much attention as a potential chemotherapeutic agent in a variety of cancers. In this study, poly (ethylene oxide)/poly (propylene oxide)/poly (ethylene oxide) (PEO-PPO-PEO, Pluronic F127) and poly (dl-lactide-co-glycolide-b-ethylene glycol-b-dl-lactide-co-glycolide) (PLGA-PEG-PLGA), the two most common thermosensitive copolymers, were utilized as local delivery systems for salinomycin in the treatment of glioblastoma. The Pluronic and PLGA-PEG-PLGA hydrogels released 100% and 36% of the encapsulated salinomycin over a one-week period, respectively. While both hydrogels were found to be effective at inhibiting glioblastoma cell proliferation, inducing apoptosis and generating intracellular reactive oxygen species, the Pluronic formulation showed better biocompatibility, a superior drug release profile and an ability to further enhance the cytotoxicity of salinomycin, compared to the PLGA-PEG-PLGA hydrogel formulation. Animal studies in subcutaneous U251 xenograftednudemice also revealed that Pluronic + salinomycin hydrogel reduced tumor growth compared to free salinomycin- and PBS-treated mice by 4-fold and 6-fold, respectively within 12 days. Therefore, it is envisaged that salinomycin-loaded Pluronic can be utilized as an injectable thermosensitive hydrogel platform for local treatment of glioblastoma, providing a sustained release of salinomycin at the tumor site and potentially bypassing the BBB for drug delivery to the brain.
Collapse
|
12
|
Norouzi M, Yathindranath V, Thliveris JA, Kopec BM, Siahaan TJ, Miller DW. Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: a combinational approach for enhanced delivery of nanoparticles. Sci Rep 2020; 10:11292. [PMID: 32647151 PMCID: PMC7347880 DOI: 10.1038/s41598-020-68017-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/16/2020] [Indexed: 01/05/2023] Open
Abstract
Although doxorubicin (DOX) is an effective anti-cancer drug with cytotoxicity in a variety of different tumors, its effectiveness in treating glioblastoma multiforme (GBM) is constrained by insufficient penetration across the blood–brain barrier (BBB). In this study, biocompatible magnetic iron oxide nanoparticles (IONPs) stabilized with trimethoxysilylpropyl-ethylenediamine triacetic acid (EDT) were developed as a carrier of DOX for GBM chemotherapy. The DOX-loaded EDT-IONPs (DOX-EDT-IONPs) released DOX within 4 days with the capability of an accelerated release in acidic microenvironments. The DOX-loaded EDT-IONPs (DOX-EDT-IONPs) demonstrated an efficient uptake in mouse brain-derived microvessel endothelial, bEnd.3, Madin–Darby canine kidney transfected with multi-drug resistant protein 1 (MDCK-MDR1), and human U251 GBM cells. The DOX-EDT-IONPs could augment DOX’s uptake in U251 cells by 2.8-fold and significantly inhibited U251 cell proliferation. Moreover, the DOX-EDT-IONPs were found to be effective in apoptotic-induced GBM cell death (over 90%) within 48 h of treatment. Gene expression studies revealed a significant downregulation of TOP II and Ku70, crucial enzymes for DNA repair and replication, as well as MiR-155 oncogene, concomitant with an upregulation of caspase 3 and tumor suppressors i.e., p53, MEG3 and GAS5, in U251 cells upon treatment with DOX-EDT-IONPs. An in vitro MDCK-MDR1-GBM co-culture model was used to assess the BBB permeability and anti-tumor activity of the DOX-EDT-IONPs and DOX treatments. While DOX-EDT-IONP showed improved permeability of DOX across MDCK-MDR1 monolayers compared to DOX alone, cytotoxicity in U251 cells was similar in both treatment groups. Using a cadherin binding peptide (ADTC5) to transiently open tight junctions, in combination with an external magnetic field, significantly enhanced both DOX-EDT-IONP permeability and cytotoxicity in the MDCK-MDR1-GBM co-culture model. Therefore, the combination of magnetic enhanced convective diffusion and the cadherin binding peptide for transiently opening the BBB tight junctions are expected to enhance the efficacy of GBM chemotherapy using the DOX-EDT-IONPs. In general, the developed approach enables the chemotherapeutic to overcome both BBB and multidrug resistance (MDR) glioma cells while providing site-specific magnetic targeting.
Collapse
Affiliation(s)
- Mohammad Norouzi
- Department of Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada.,Department of Pharmacology and Therapeutics, University of Manitoba, A205 Chown Bldg., 753 McDermot Avenue, Winnipeg, MB, Canada
| | - Vinith Yathindranath
- Department of Pharmacology and Therapeutics, University of Manitoba, A205 Chown Bldg., 753 McDermot Avenue, Winnipeg, MB, Canada
| | - James A Thliveris
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Brian M Kopec
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Donald W Miller
- Department of Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada. .,Department of Pharmacology and Therapeutics, University of Manitoba, A205 Chown Bldg., 753 McDermot Avenue, Winnipeg, MB, Canada.
| |
Collapse
|
13
|
Marisetty AL, Lu L, Veo BL, Liu B, Coarfa C, Kamal MM, Kassem DH, Irshad K, Lu Y, Gumin J, Henry V, Paulucci-Holthauzen A, Rao G, Baladandayuthapani V, Lang FF, Fuller GN, Majumder S. REST-DRD2 mechanism impacts glioblastoma stem cell-mediated tumorigenesis. Neuro Oncol 2020; 21:775-785. [PMID: 30953587 DOI: 10.1093/neuonc/noz030] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a lethal, heterogeneous human brain tumor, with regulatory mechanisms that have yet to be fully characterized. Previous studies have indicated that the transcriptional repressor REST (repressor element-1 silencing transcription factor) regulates the oncogenic potential of GBM stem cells (GSCs) based on level of expression. However, how REST performs its regulatory role is not well understood. METHODS We examined 2 independent high REST (HR) GSC lines using genome-wide assays, biochemical validations, gene knockdown analysis, and mouse tumor models. We analyzed in-house patient tumors and patient data present in The Cancer Genome Atlas (TCGA). RESULTS Genome-wide transcriptome and DNA-binding analyses suggested the dopamine receptor D2 (DRD2) gene, a dominant regulator of neurotransmitter signaling, as a direct target of REST. Biochemical analyses and mouse intracranial tumor models using knockdown of REST and double knockdown of REST and DRD2 validated this target and suggested that DRD2 is a downstream target of REST regulating tumorigenesis, at least in part, through controlling invasion and apoptosis. Further, TCGA GBM data support the presence of the REST-DRD2 axis and reveal that high REST/low DRD2 (HRLD) and low REST/high DRD2 (LRHD) tumors are specific subtypes, are molecularly different from the known GBM subtypes, and represent functional groups with distinctive patterns of enrichment of gene sets and biological pathways. The inverse HRLD/LRHD expression pattern is also seen in in-house GBM tumors. CONCLUSIONS These findings suggest that REST regulates neurotransmitter signaling pathways through DRD2 in HR-GSCs to impact tumorigenesis. They further suggest that the REST-DRD2 mechanism forms distinct subtypes of GBM.
Collapse
Affiliation(s)
- Anantha L Marisetty
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Lu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bethany L Veo
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bin Liu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Mohamed Mostafa Kamal
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dina Hamada Kassem
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khushboo Irshad
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yungang Lu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Verlene Henry
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gregory N Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sadhan Majumder
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
14
|
Gold Nanoparticles in Glioma Theranostics. Pharmacol Res 2020; 156:104753. [PMID: 32209363 DOI: 10.1016/j.phrs.2020.104753] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 01/07/2023]
Abstract
Despite many endeavors to treat malignant gliomas in the last decades, the median survival of patients has not significantly improved. The infiltrative nature of high-grade gliomas and the impermeability of the blood-brain barrier to the most therapeutic agents remain major hurdles, impeding an efficacious treatment. Theranostic platforms bridging diagnosis and therapeutic modalities aim to surmount the current limitations in diagnosis and therapy of glioma. Gold nanoparticles (AuNPs) due to their biocompatibility and tunable optical properties have widely been utilized for an assortment of theranostic purposes. In this Review, applications of AuNPs as imaging probes, drug/gene delivery systems, radiosensitizers, photothermal transducers, and multimodal theranostic agents in malignant gliomas are discussed. This Review also aims to provide a perspective on cancer theranostic applications of AuNPs in future clinical trials.
Collapse
|
15
|
Mirabdaly S, Elieh Ali Komi D, Shakiba Y, Moini A, Kiani A. Effects of temozolomide on U87MG glioblastoma cell expression of CXCR4, MMP2, MMP9, VEGF, anti-proliferatory cytotoxic and apoptotic properties. Mol Biol Rep 2020; 47:1187-1197. [PMID: 31897867 DOI: 10.1007/s11033-019-05219-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/30/2019] [Indexed: 12/13/2022]
Abstract
Temozolomide is an alkylating agent which is used in glioblastoma treatment. We aimed to investigate the effects of different concentrations of temozolomide and exposure time on U87MG glioblastoma cell expression of CXCR4, MMP2, MMP9 and VEGF. U87MG cells were cultured in different temozolomide concentrations and incubation time and the effects of temozolomide on inducing apoptosis was investigated. The levels of VEGF and CXCR4 expression were measured by RT-PCR and flowcytometry. Moreover, MMP2 and MMP9 activity and expression were assessed by ELISA and zymography. CXCR4 and VEGF expression levels decreased upon applying higher concentration of temozolomide. MMP2 and MMP-9 had lower activity in cells with longer exposure time or higher doses of temozolomide. Temozolomide induces the apoptosis in U87MG glioblastoma cells at therapeutic or higher dose. It is capable of decreasing their expression levels of VEGF and CXCR4.
Collapse
Affiliation(s)
- Seyedsaber Mirabdaly
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Daniel Elieh Ali Komi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Shakiba
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, PO-Box: 6714869914, Kermanshah, Iran
| | - Ali Moini
- Department of Internal Medicine Imam, Reza Hospital Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, PO-Box: 6714869914, Kermanshah, Iran. .,Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
16
|
Wu M, Chen W, Chen Y, Zhang H, Liu C, Deng Z, Sheng Z, Chen J, Liu X, Yan F, Zheng H. Focused Ultrasound-Augmented Delivery of Biodegradable Multifunctional Nanoplatforms for Imaging-Guided Brain Tumor Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700474. [PMID: 29721406 PMCID: PMC5908350 DOI: 10.1002/advs.201700474] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/02/2017] [Indexed: 05/18/2023]
Abstract
The blood brain barrier is the main obstacle to delivering diagnostic and therapeutic agents to the diseased sites of brain. It is still of great challenge for the combined use of focused ultrasound (FUS) and theranostic nanotechnology to achieve noninvasive and localized delivery of chemotherapeutic drugs into orthotopic brain tumor. In this work, a unique theranostic nanoplatform for highly efficient photoacoustic imaging-guided chemotherapy of brain tumor both in vitro and in vivo, which is based on the utilization of hollow mesoporous organosilica nanoparticles (HMONs) to integrate ultrasmall Cu2-x Se particles on the surface and doxorubicin inside the hollow interior, is synthesized. The developed multifunctional theranostic nanosystems exhibit tumor-triggered programmed destruction due to the reducing microenvironment-responsive cleavage of disulfide bonds that are incorporated into the framework of HMONs and linked between HMONs and Cu2-x Se, resulting in tumor-specific biodegradation and on-demand drug-releasing behavior. Such tumor microenvironment-responsive biodegradable and biocompatible theranostic nanosystems in combination with FUS provide a promising delivery nanoplatform with high performance for orthotopic brain tumor imaging and therapy.
Collapse
Affiliation(s)
- Meiying Wu
- Paul C. Lauterbur Research Center for Biomedical ImagingInstitute of Biomedical and Health EngineeringShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Wenting Chen
- Paul C. Lauterbur Research Center for Biomedical ImagingInstitute of Biomedical and Health EngineeringShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Haixian Zhang
- Paul C. Lauterbur Research Center for Biomedical ImagingInstitute of Biomedical and Health EngineeringShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular ImagingInstitute of Biomedical and Health EngineeringShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Zhiting Deng
- Paul C. Lauterbur Research Center for Biomedical ImagingInstitute of Biomedical and Health EngineeringShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical ImagingInstitute of Biomedical and Health EngineeringShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Jingqin Chen
- Research Laboratory for Biomedical Optics and Molecular ImagingInstitute of Biomedical and Health EngineeringShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical ImagingInstitute of Biomedical and Health EngineeringShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Fei Yan
- Paul C. Lauterbur Research Center for Biomedical ImagingInstitute of Biomedical and Health EngineeringShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical ImagingInstitute of Biomedical and Health EngineeringShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| |
Collapse
|
17
|
Anticancer activity of osmium(VI) nitrido complexes in patient-derived glioblastoma initiating cells and in vivo mouse models. Cancer Lett 2017; 416:138-148. [PMID: 29246647 DOI: 10.1016/j.canlet.2017.11.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/20/2017] [Accepted: 11/30/2017] [Indexed: 11/24/2022]
Abstract
Glioblastoma is the most prevalent and lethal primary intrinsic brain tumor with a median patient survival of less than two years, even with the optimal standard of care, namely, surgical resection followed by radiotherapy with adjuvant temozolomide chemotherapy. Long-term survival is extremely rare and there is a tremendous need for novel GBM therapies. Following our prior reports on the anticancer activity of osmium(VI) nitrido compounds and their effectiveness against cancer initiating cells, we investigated the efficacy of Os(VI) on GBM initiating cells in vitro and in vivo. Conventional MTT and 3D cytotoxicity assays revealed that patient-derived GBM models were sensitive to cisplatin, TMZ, and two Os(IV) derivatives. Rapid cell death occurred at low micromolar concentrations of the Os(IV) compounds. Cell cycle analysis, Os uptake studies, and cellular distribution experiments provided further insight into the anticancer properties of these compounds, indicating differential uptake for both compounds and a modest G2/M arrest after treatment. Moreover, in vivo experiments showed a significant increase in survival after a single intracranial chemotherapeutic injection, results that warrant further studies using this approach.
Collapse
|
18
|
Lannes N, Eppler E, Etemad S, Yotovski P, Filgueira L. Microglia at center stage: a comprehensive review about the versatile and unique residential macrophages of the central nervous system. Oncotarget 2017; 8:114393-114413. [PMID: 29371994 PMCID: PMC5768411 DOI: 10.18632/oncotarget.23106] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023] Open
Abstract
Microglia cells are the unique residential macrophages of the central nervous system (CNS). They have a special origin, as they derive from the embryonic yolk sac and enter the developing CNS at a very early stage. They play an important role during CNS development and adult homeostasis. They have a major contribution to adult neurogenesis and neuroinflammation. Thus, they participate in the pathogenesis of neurodegenerative diseases and contribute to aging. They play an important role in sustaining and breaking the blood-brain barrier. As innate immune cells, they contribute substantially to the immune response against infectious agents affecting the CNS. They play also a major role in the growth of tumours of the CNS. Microglia are consequently the key cell population linking the nervous and the immune system. This review covers all different aspects of microglia biology and pathology in a comprehensive way.
Collapse
Affiliation(s)
- Nils Lannes
- Albert Gockel, Anatomy, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Elisabeth Eppler
- Pestalozzistrasse Zo, Department of BioMedicine, University of Basel, CH-4056 Basel, Switzerland
| | - Samar Etemad
- Building 71/218 RBWH Herston, Centre for Clinical Research, The University of Queensland, QLD 4029 Brisbane, Australia
| | - Peter Yotovski
- Albert Gockel, Anatomy, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Luis Filgueira
- Albert Gockel, Anatomy, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
19
|
Ge J, Hu W, Zhou H, Yu J, Sun C, Chen W. Ubiquitin carboxyl-terminal hydrolase isozyme L5 inhibits human glioma cell migration and invasion via downregulating SNRPF. Oncotarget 2017; 8:113635-113649. [PMID: 29371935 PMCID: PMC5768352 DOI: 10.18632/oncotarget.23071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022] Open
Abstract
Ubiquitin C-terminal Hydrolase-L5 (UCH-L5/UCH37), a member of the deubiquitinases (DUBs), suppresses protein degeneration via removing ubiquitin from the distal subunit of the polyubiquitin chain. The activity of UCH-L5 is enhanced when UCH-L5 combines with proteasome 19S regulatory subunit by Rpn13/Admr1 receptor and inhibited when UCH-L5 interacts with NFRKB. But the role of UCH-L5 in gliomas remains unknown. In this study, analysis of 19 frozen and 51 paraffin-embedded clinic pathological cases showed that UCH-L5 expression in glioma tissues was lower than normal brain tissues. In vitro, we found that UCH-L5 could inhibit migration and invasion of U87MG and U251 cells. It has been reported that the expression of SNRPN, SNRPF, and CKLF was abnormal in gliomas or other tumors. We also found that SNRPF-siRNA, SNRPN-siRNA and CKLF-siRNA could inhibit migration and invasion of U87MG cells. And knockdown of UCH-L5 expression improved both mRNA expression and protein level of SNRPF. The relationship between UCH-L5 and SNRPF was further confirmed in 293T cells. Our study showed that UCH-L5 could inhibit migration and invasion of glioma cells via down regulating expression of SNRPF. And the above findings suggest that UCH-L5 may inhibit occurrence and metastasis of gliomas.
Collapse
Affiliation(s)
- Jiafeng Ge
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Weiwei Hu
- Department of Neurosurgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hui Zhou
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Juan Yu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chongran Sun
- Department of Neurosurgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Weilin Chen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| |
Collapse
|
20
|
Schiffer D, Mellai M, Bovio E, Annovazzi L. The neuropathological basis to the functional role of microglia/macrophages in gliomas. Neurol Sci 2017; 38:1571-1577. [PMID: 28593528 DOI: 10.1007/s10072-017-3002-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/19/2017] [Indexed: 12/19/2022]
Abstract
The paper wants to be a tracking shot of the main recent acquisitions on the function and significance of microglia/macrophages in gliomas. The observations have been principally carried out on in vitro cultures and on tumor transplants in animals. Contrary to what is deduced from microglia in non-neoplastic pathologic conditions of central nervous system (CNS), most conclusions indicate that microglia acts favoring tumor proliferation through an immunosuppression induced by glioma cells. By immunohistochemistry, different microglia phenotypes are recognized in gliomas, from ramified microglia to frank macrophagic aspect. One wonders whether the functional conclusions drawn from many microglia studies, but not in conditions of human pathology, apply to all the phenotypes recognizable in them. It is difficult to verify in human pathology a prognostic significance of microglia. Only CD163-positive microglia/macrophages inversely correlate with glioma patients' survival, whereas the total number of microglia does not change with the malignancy grade.
Collapse
Affiliation(s)
- Davide Schiffer
- Research Center, Policlinico di Monza Foundation, Via Pietro Micca 29, 13100, Vercelli, Italy.
| | - Marta Mellai
- Research Center, Policlinico di Monza Foundation, Via Pietro Micca 29, 13100, Vercelli, Italy
| | - Enrica Bovio
- Research Center, Policlinico di Monza Foundation, Via Pietro Micca 29, 13100, Vercelli, Italy
| | - Laura Annovazzi
- Research Center, Policlinico di Monza Foundation, Via Pietro Micca 29, 13100, Vercelli, Italy
| |
Collapse
|