1
|
Haig D. Germline ecology: Managed herds, tolerated flocks, and pest control. J Hered 2024; 115:643-659. [PMID: 38447039 DOI: 10.1093/jhered/esae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
Multicopy sequences evolve adaptations for increasing their copy number within nuclei. The activities of multicopy sequences under constraints imposed by cellular and organismal selection result in a rich intranuclear ecology in germline cells. Mitochondrial and ribosomal DNA are managed as domestic herds subject to selective breeding by the genes of the single-copy genome. Transposable elements lead a peripatetic existence in which they must continually move to new sites to keep ahead of inactivating mutations at old sites and undergo exponential outbreaks when the production of new copies exceeds the rate of inactivation of old copies. Centromeres become populated by repeats that do little harm. Organisms with late sequestration of germ cells tend to evolve more "junk" in their genomes than organisms with early sequestration of germ cells.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
2
|
Shao DD, Zhao Y, Ghosh U, Brew J, Zhao S, Qian X, Tran J, Taketomi T, Tsuruta F, Park PJ, Walsh CA. Perinatal Reduction of Genetically Aberrant Neurons from Human Cerebral Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617159. [PMID: 39416114 PMCID: PMC11482944 DOI: 10.1101/2024.10.08.617159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Since human neurons are postmitotic and long-lived, the regulation of their genomic content is crucial. Normal neuronal function is uniquely dependent on gene dosage, with diverse genome copy number alterations (CNA) associated with neurodevelopmental and neuropsychiatric conditions 1-3 . In this study, we evaluated the landscape of CNA arising in normal human brains, focusing on prenatal and perinatal ages. We surveyed ∼5,897 CNA in >1,200 single neurons from human postmortem brain of individuals without a neurological diagnosis, ranging in age from gestational week (GW) 14 to 90 years old. Using Tn5-based single-cell whole-genome amplification (scWGA) and informatic advances to validate CNAs in single neurons, we determined that a striking proportion of neurons (up to 45%) in human prenatal cortex showed aberrant genomes, characterized by large-scale CNAs in multiple chromosomes, which reduces significantly during the perinatal period (p<0.1). Furthermore, we identified micronuclei in the developing cortex, reflecting genetic instability reminiscent of that described in early embryonic development 4-6 . The scale of CNA appeared to alter the trajectory of neuronal elimination, as subchromosomal CNAs were more slowly eliminated, over the course of a lifetime. CNAs were depleted for dosage-sensitive genes and genes involved in neurodevelopmental disorders (p<.05), and thus represent genomic quality control mechanisms that eliminate selectively those neurons with CNA involving critical genes. Perinatal elimination of defective neuronal genomes may in turn reflect a developmental landmark essential for normal cognitive function.
Collapse
|
3
|
Shahbazi MN, Pasque V. Early human development and stem cell-based human embryo models. Cell Stem Cell 2024; 31:1398-1418. [PMID: 39366361 DOI: 10.1016/j.stem.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/18/2024] [Accepted: 09/02/2024] [Indexed: 10/06/2024]
Abstract
The use of stem cells to model the early human embryo promises to transform our understanding of developmental biology and human reproduction. In this review, we present our current knowledge of the first 2 weeks of human embryo development. We first focus on the distinct cell lineages of the embryo and the derivation of stem cell lines. We then discuss the intercellular crosstalk that guides early embryo development and how this crosstalk is recapitulated in vitro to generate stem cell-based embryo models. We highlight advances in this fast-developing field, discuss current limitations, and provide a vision for the future.
Collapse
Affiliation(s)
| | - Vincent Pasque
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; Leuven Stem Cell Institute & Leuven Institute for Single-Cell Omics (LISCO), Leuven, Belgium.
| |
Collapse
|
4
|
Benn P, Merrion K. Chromosome segregation of human nonhomologous Robertsonian translocations: insights from preimplantation genetic testing. Eur J Hum Genet 2024:10.1038/s41431-024-01693-w. [PMID: 39341985 DOI: 10.1038/s41431-024-01693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/15/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Robertsonian translocations (robs) are associated with a high risk for unbalanced segregations. Preimplantation Genetic Testing (PGT) offers an early opportunity to evaluate segregation patterns and selection against chromosome imbalances. The objective of this study was to evaluate the chromosome complements in blastocysts for male and female rob carriers and provide information useful in PGT counseling for rob carriers. PGT results were reviewed for 296 couples where a balanced and nonhomologous rob was present in one member of the couple. All embryos had day 5/6 trophectoderm biopsy and SNP-based PGT. The study included 2235 blastocysts, of which 2151 (96.2%) had results. Significantly fewer blastocysts were available for female rob carriers (mean 4.60/IVF cycle) compared to males (5.49/cycle). Male carriers were more likely to have blastocysts with a normal/balanced chromosome complement; 84.8% versus 62.8% (P < 0.00001). Male carriers had fewer blastocysts with monosomy (60/152, 39.5%) compared to female carriers (218/396, 55.1%) (P = 0.001). Twenty-one (1%) blastocysts showed 3:0 segregation; these were mostly double trisomies and derived from female carriers. Differences between chromosome complements for male versus female carriers suggest that selection against unbalanced forms may occur during spermatogenesis. Six blastocyst samples showed an unexpected ("noncanonical") combination of trisomy and monosomy. One case of uniparental disomy was identified. For female carriers, there was no association between unbalanced segregation and parental age but for male carriers, there was an inverse association. PGT is a highly beneficial option for rob carriers and patients can be counseled using our estimates for the chance of at least one normal/balanced embryo.
Collapse
Affiliation(s)
- Peter Benn
- University of Connecticut Health Center, Farmington, CT, 06030, USA.
| | | |
Collapse
|
5
|
Mizobe Y, Kuwatsuru Y, Kuroki Y, Fukumoto Y, Tokudome M, Moewaki H, Orita Y, Iwakawa T, Takeuchi K. Formation of the first plane of division relative to the pronuclear axis predicts embryonic ploidy. Reprod Biomed Online 2024; 49:104110. [PMID: 38968730 DOI: 10.1016/j.rbmo.2024.104110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 07/07/2024]
Abstract
RESEARCH QUESTION Is there a relationship between the pronuclear axis and the first cleavage plane formation in human pronuclear-stage embryos, and what are the effects on ploidy and clinical pregnancy rates? DESIGN Transferred embryos were followed up until their prognoses. A total of 762 embryos formed two cells and reached the blastocyst stage after normal fertilization in a time-lapse incubator. Embryos were classified into three groups: group A: embryos in which the first plane of division was formed parallel to the axis of the pronucleus; group B: embryos in which cases of oblique formation were observed; and group C: embryos in which cases of perpendicular formation were observed. RESULTS The euploidy rate was significantly higher in groups A and B than those in group C (P < 0.01), whereas the aneuploidy rate was significantly higher in group C (P < 0.01) than in groups A and B. No differences were found between the three groups in frequency of positive HCG-based pregnancy tests, frequency of clinical pregnancies, miscarriage rates or delivery rates. CONCLUSIONS The formation pattern of the first plane of division relative to the pronuclear axis was a predictor of embryonic ploidy, with a reduced rate of euploidy and a high probability of aneuploidy observed when the first plane of division was perpendicular to the pronuclear axis.
Collapse
Affiliation(s)
- Yamato Mizobe
- Takeuchi Ladies Clinic/Center for Reproductive Medicine, 502-2 Higashimochida, Aira-shi, Kagoshima 899-5421, Japan.
| | - Yukari Kuwatsuru
- Takeuchi Ladies Clinic/Center for Reproductive Medicine, 502-2 Higashimochida, Aira-shi, Kagoshima 899-5421, Japan
| | - Yuko Kuroki
- Takeuchi Ladies Clinic/Center for Reproductive Medicine, 502-2 Higashimochida, Aira-shi, Kagoshima 899-5421, Japan
| | - Yumiko Fukumoto
- Takeuchi Ladies Clinic/Center for Reproductive Medicine, 502-2 Higashimochida, Aira-shi, Kagoshima 899-5421, Japan
| | - Mari Tokudome
- Takeuchi Ladies Clinic/Center for Reproductive Medicine, 502-2 Higashimochida, Aira-shi, Kagoshima 899-5421, Japan
| | - Harue Moewaki
- Takeuchi Ladies Clinic/Center for Reproductive Medicine, 502-2 Higashimochida, Aira-shi, Kagoshima 899-5421, Japan
| | - Yuji Orita
- Takeuchi Ladies Clinic/Center for Reproductive Medicine, 502-2 Higashimochida, Aira-shi, Kagoshima 899-5421, Japan
| | - Tokiko Iwakawa
- Takeuchi Ladies Clinic/Center for Reproductive Medicine, 502-2 Higashimochida, Aira-shi, Kagoshima 899-5421, Japan
| | - Kazuhiro Takeuchi
- Takeuchi Ladies Clinic/Center for Reproductive Medicine, 502-2 Higashimochida, Aira-shi, Kagoshima 899-5421, Japan
| |
Collapse
|
6
|
Kohlrausch FB, Wang F, McKerrow W, Grivainis M, Fenyo D, Keefe DL. Mapping of long interspersed element-1 (L1) insertions by TIPseq provides information about sub chromosomal genetic variation in human embryos. J Assist Reprod Genet 2024; 41:2257-2269. [PMID: 38951360 PMCID: PMC11405744 DOI: 10.1007/s10815-024-03176-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 06/12/2024] [Indexed: 07/03/2024] Open
Abstract
PURPOSE Retrotransposons play important roles during early development when they are transiently de-repressed during epigenetic reprogramming. Long interspersed element-1 (L1), the only autonomous retrotransposon in humans, comprises 17% of the human genome. We applied the Single Cell Transposon Insertion Profiling by Sequencing (scTIPseq) to characterize and map L1 insertions in human embryos. METHODS Sixteen cryopreserved, genetically tested, human blastocysts, were accessed from consenting couples undergoing IVF at NYU Langone Fertility Center. Additionally, four trios (father, mother, and embryos) were also evaluated. scTIPseq was applied to map L1 insertions in all samples, using L1 locations reported in the 1000 Genomes as controls. RESULTS Twenty-nine unknown and unique insertions were observed in the sixteen embryos. Most were intergenic; no insertions were located in exons or immediately upstream of genes. The location or number of unknown insertions did not differ between euploid and aneuploid embryos, suggesting they are not merely markers of aneuploidy. Rather, scTIPseq provides novel information about sub-chromosomal structural variation in human embryos. Trio analyses showed a parental origin of all L1 insertions in embryos. CONCLUSION Several studies have measured L1 expression at different stages of development in mice, but this study for the first time reports unknown insertions in human embryos that were inherited from one parent, confirming no de novo L1 insertions occurred in parental germline or during embryogenesis. Since one-third of euploid embryo transfers fail, future studies would be useful for understanding whether these sub-chromosomal genetic variants or de novo L1 insertions affect embryo developmental potential.
Collapse
Affiliation(s)
- Fabiana B Kohlrausch
- Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, 24210-201, Brazil.
- Department of Obstetrics and Gynecology, New York University, New York, NY, 10016, USA.
| | - Fang Wang
- Department of Obstetrics and Gynecology, New York University, New York, NY, 10016, USA
| | - Wilson McKerrow
- Institute for Systems Genetics, New York University, New York, NY, 10016, USA
| | - Mark Grivainis
- Institute for Systems Genetics, New York University, New York, NY, 10016, USA
| | - David Fenyo
- Institute for Systems Genetics, New York University, New York, NY, 10016, USA
| | - David L Keefe
- Department of Obstetrics and Gynecology, New York University, New York, NY, 10016, USA
| |
Collapse
|
7
|
Takahashi S, Kyogoku H, Hayakawa T, Miura H, Oji A, Kondo Y, Takebayashi SI, Kitajima TS, Hiratani I. Embryonic genome instability upon DNA replication timing program emergence. Nature 2024; 633:686-694. [PMID: 39198647 PMCID: PMC11410655 DOI: 10.1038/s41586-024-07841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/17/2024] [Indexed: 09/01/2024]
Abstract
Faithful DNA replication is essential for genome integrity1-4. Under-replicated DNA leads to defects in chromosome segregation, which are common during embryogenesis5-8. However, the regulation of DNA replication remains poorly understood in early mammalian embryos. Here we constructed a single-cell genome-wide DNA replication atlas of pre-implantation mouse embryos and identified an abrupt replication program switch accompanied by a transient period of genomic instability. In 1- and 2-cell embryos, we observed the complete absence of a replication timing program, and the entire genome replicated gradually and uniformly using extremely slow-moving replication forks. In 4-cell embryos, a somatic-cell-like replication timing program commenced abruptly. However, the fork speed was still slow, S phase was extended, and markers of replication stress, DNA damage and repair increased. This was followed by an increase in break-type chromosome segregation errors specifically during the 4-to-8-cell division with breakpoints enriched in late-replicating regions. These errors were rescued by nucleoside supplementation, which accelerated fork speed and reduced the replication stress. By the 8-cell stage, forks gained speed, S phase was no longer extended and chromosome aberrations decreased. Thus, a transient period of genomic instability exists during normal mouse development, preceded by an S phase lacking coordination between replisome-level regulation and megabase-scale replication timing regulation, implicating a link between their coordination and genome stability.
Collapse
Affiliation(s)
- Saori Takahashi
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Hirohisa Kyogoku
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan.
| | - Takuya Hayakawa
- Laboratory of Molecular & Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Hisashi Miura
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Asami Oji
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Yoshiko Kondo
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Shin-Ichiro Takebayashi
- Laboratory of Molecular & Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Tomoya S Kitajima
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
| |
Collapse
|
8
|
Sran S, Ringland A, Bedrosian TA. Building the brain mosaic: an expanded view. Trends Genet 2024; 40:747-756. [PMID: 38853120 PMCID: PMC11387136 DOI: 10.1016/j.tig.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024]
Abstract
The complexity of the brain is closely tied to its nature as a genetic mosaic, wherein each cell is distinguished by a unique constellation of somatic variants that contribute to functional and phenotypic diversity. Postzygotic variation arising during neurogenesis is recognized as a key contributor to brain mosaicism; however, recent advances have broadened our understanding to include sources of neural genomic diversity that develop throughout the entire lifespan, from embryogenesis through aging. Moving beyond the traditional confines of neurodevelopment, in this review, we delve into the complex mechanisms that enable various origins of brain mosaicism.
Collapse
Affiliation(s)
- Sahibjot Sran
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Amanda Ringland
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Tracy A Bedrosian
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
9
|
Malumbres M, Villarroya-Beltri C. Mosaic variegated aneuploidy in development, ageing and cancer. Nat Rev Genet 2024:10.1038/s41576-024-00762-6. [PMID: 39169218 DOI: 10.1038/s41576-024-00762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 08/23/2024]
Abstract
Mosaic variegated aneuploidy (MVA) is a rare condition in which abnormal chromosome counts (that is, aneuploidies), affecting different chromosomes in each cell (making it variegated) are found only in a certain number of cells (making it mosaic). MVA is characterized by various developmental defects and, despite its rarity, presents a unique clinical scenario to understand the consequences of chromosomal instability and copy number variation in humans. Research from patients with MVA, genetically engineered mouse models and functional cellular studies have found the genetic causes to be mutations in components of the spindle-assembly checkpoint as well as in related proteins involved in centrosome dynamics during mitosis. MVA is accompanied by tumour susceptibility (depending on the genetic basis) as well as cellular and systemic stress, including chronic immune response and the associated clinical implications.
Collapse
Affiliation(s)
- Marcos Malumbres
- Cancer Cell Cycle Group, Systems Oncology Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO) Madrid, Madrid, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA) Barcelona, Barcelona, Spain.
| | | |
Collapse
|
10
|
Kubota K. Molecular approaches to mammalian uterine receptivity for conceptus implantation. J Reprod Dev 2024; 70:207-212. [PMID: 38763760 PMCID: PMC11310385 DOI: 10.1262/jrd.2024-022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024] Open
Abstract
Mammalian reproduction is more inefficient than expected and embryo/conceptus implantation into the maternal endometrium is considered to be a rate-limiting process. Although extensive physiological and structural diversity exists among mammalian species, the basic molecular mechanisms underlying successful implantation are conserved. The extensive use of genetically engineered mouse models has provided considerable information on uterine receptivity for embryo implantation. The molecular mechanisms and cellular processes identified thus far require further validation in other mammalian species. In this review, representative ovarian steroid hormone-induced signaling pathways controlling uterine adaptation are presented based on the results of rodent studies. Selected examples of functional conservation in mammals, such as humans and cattle, are briefly described. To date, molecular therapeutic trials for fertility improvement have not been conducted. Considerable efforts are required to provide further understanding of these molecular mechanisms. Such understanding will contribute to the development of reliable clinical diagnostics and therapeutics for implantation failure, leading to reproductive success in a wide variety of mammals in the future.
Collapse
Affiliation(s)
- Kaiyu Kubota
- Division of Advanced Feeding Technology Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tochigi 329-2793, Japan
- Present: Research Promotion Office, Core Technology Research Headquaters, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8517, Japan
| |
Collapse
|
11
|
Sanchez-Vasquez E, Bronner ME, Zernicka-Goetz M. HIF1A contributes to the survival of aneuploid and mosaic pre-implantation embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.04.556218. [PMID: 39071426 PMCID: PMC11275769 DOI: 10.1101/2023.09.04.556218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Human fertility is suboptimal, partly due to error-prone divisions in early cleavage-stages that result in aneuploidy. Most human pre-implantation are mosaics of euploid and aneuploid cells, however, mosaic embryos with a low proportion of aneuploid cells have a similar likelihood of developing to term as fully euploid embryos. How embryos manage aneuploidy during development is poorly understood. This knowledge is crucial for improving fertility treatments and reducing developmental defects. To explore these mechanisms, we established a new mouse model of chromosome mosaicism to study the fate of aneuploid cells during pre-implantation development. We previously used the Mps1 inhibitor reversine to generate aneuploidy in embryos. Here, we found that treatment with the more specific Mps1 inhibitor AZ3146 induced chromosome segregation defects in pre-implantation embryos, similar to reversine. However, AZ3146-treated embryos showed a higher developmental potential than reversine-treated embryos. Unlike reversine-treated embryos, AZ3146-treated embryos exhibited transient upregulation of Hypoxia Inducible-Factor-1A (HIF1A) and lacked p53 upregulation. Pre-implantation embryos develop in a hypoxic environment in vivo, and hypoxia exposure in vitro reduced DNA damage in response to Mps1 inhibition and increased the proportion of euploid cells in the mosaic epiblast. Inhibiting HIF1A in mosaic embryos also decreased the proportion of aneuploid cells in mosaic embryos. Our work illuminates potential strategies to improve the developmental potential of mosaic embryos.
Collapse
Affiliation(s)
| | - Marianne E. Bronner
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA 91125, USA
| | - Magdalena Zernicka-Goetz
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Goulart MB, Vieira Neto E, Garcia DRN, Guimarães MM, de Paiva IS, de Ferran K, dos Santos NCK, Barbosa LS, de Figueiredo AF, Ribeiro MCM, Ribeiro MG. Cell Cycle Kinetics and Sister Chromatid Exchange in Mosaic Turner Syndrome. Life (Basel) 2024; 14:848. [PMID: 39063601 PMCID: PMC11278208 DOI: 10.3390/life14070848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Turner syndrome (TS) is caused by a complete or partial absence of an X or Y chromosome, including chromosomal mosaicism, affecting 1 in 2500 female live births. Sister chromatid exchange (SCE) is used as a sensitive indicator of spontaneous chromosome instability. Cells from mosaic patients constitute useful material for SCE evaluations as they grow under the influence of the same genetic background and endogenous and exogenous factors. We evaluated the proliferation dynamics and SCE frequencies of 45,X and 46,XN cells of 17 mosaic TS patients. In two participants, the 45,X cells exhibited a proliferative disadvantage in relation to 46,XN cells after 72 h of cultivation. The analysis of the mean proliferation index (PI) showed a trend for a significant difference between the 45,X and 46,X+der(X)/der(Y) cell lineages; however, there were no intra-individual differences. On the other hand, mean SCE frequencies showed that 46,X+der(X) had the highest mean value and 46,XX the lowest, with 45,X occupying an intermediate position among the lineages found in at least three participants; moreover, there were intra-individual differences in five patients. Although 46,X+der(X)/der(Y) cell lineages, found in more than 70% of participants, were the most unstable, they had a slightly higher mean PI than the 45,X cell lineages in younger (≤17 years) mosaic TS participants. This suggests that cells with a karyotype distinct from 45,X may increase with time in mosaic TS children and adolescents.
Collapse
Affiliation(s)
- Miriam Beatriz Goulart
- Laboratory of Genetics, Institute of Childcare and Pediatrics Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-912, RJ, Brazil; (M.B.G.); (D.R.N.G.); (A.F.d.F.); (M.C.M.R.); (M.G.R.)
| | - Eduardo Vieira Neto
- Genetic and Genomic Medicine Division, Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Daniela R. Ney Garcia
- Laboratory of Genetics, Institute of Childcare and Pediatrics Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-912, RJ, Brazil; (M.B.G.); (D.R.N.G.); (A.F.d.F.); (M.C.M.R.); (M.G.R.)
| | - Marília Martins Guimarães
- Pediatric Endocrinology Service, IPPMG, UFRJ, Rio de Janeiro 21941-912, RJ, Brazil; (M.M.G.); (K.d.F.); (N.C.K.d.S.)
| | - Isaías Soares de Paiva
- Faculty of Medicine, University of Grande Rio (Unigranrio), Duque de Caxias 25071-202, RJ, Brazil;
- Faculty of Medicine, Serra dos Órgãos Educational Center (UNIFESO), Teresópolis 25964-004, RJ, Brazil
| | - Karina de Ferran
- Pediatric Endocrinology Service, IPPMG, UFRJ, Rio de Janeiro 21941-912, RJ, Brazil; (M.M.G.); (K.d.F.); (N.C.K.d.S.)
| | | | - Luciana Santos Barbosa
- Laboratory of Genetics, Institute of Childcare and Pediatrics Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-912, RJ, Brazil; (M.B.G.); (D.R.N.G.); (A.F.d.F.); (M.C.M.R.); (M.G.R.)
| | - Amanda F. de Figueiredo
- Laboratory of Genetics, Institute of Childcare and Pediatrics Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-912, RJ, Brazil; (M.B.G.); (D.R.N.G.); (A.F.d.F.); (M.C.M.R.); (M.G.R.)
| | - Maria Cecília Menks Ribeiro
- Laboratory of Genetics, Institute of Childcare and Pediatrics Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-912, RJ, Brazil; (M.B.G.); (D.R.N.G.); (A.F.d.F.); (M.C.M.R.); (M.G.R.)
- NUMPEX-BIO Laboratory, Campus Duque de Caxias, UFRJ, Duque de Caxias 25240-005, RJ, Brazil
| | - Márcia Gonçalves Ribeiro
- Laboratory of Genetics, Institute of Childcare and Pediatrics Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-912, RJ, Brazil; (M.B.G.); (D.R.N.G.); (A.F.d.F.); (M.C.M.R.); (M.G.R.)
- Medical Genetics Service, IPPMG, UFRJ, Rio de Janeiro 21941-912, RJ, Brazil
| |
Collapse
|
13
|
Gualtieri R, De Gregorio V, Candela A, Travaglione A, Genovese V, Barbato V, Talevi R. In Vitro Culture of Mammalian Embryos: Is There Room for Improvement? Cells 2024; 13:996. [PMID: 38920627 PMCID: PMC11202082 DOI: 10.3390/cells13120996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Preimplantation embryo culture, pivotal in assisted reproductive technology (ART), has lagged in innovation compared to embryo selection advancements. This review examines the persisting gap between in vivo and in vitro embryo development, emphasizing the need for improved culture conditions. While in humans this gap is hardly estimated, animal models, particularly bovines, reveal clear disparities in developmental competence, cryotolerance, pregnancy and live birth rates between in vitro-produced (IVP) and in vivo-derived (IVD) embryos. Molecular analyses unveil distinct differences in morphology, metabolism, and genomic stability, underscoring the need for refining culture conditions for better ART outcomes. To this end, a deeper comprehension of oviduct physiology and embryo transport is crucial for grasping embryo-maternal interactions' mechanisms. Research on autocrine and paracrine factors, and extracellular vesicles in embryo-maternal tract interactions, elucidates vital communication networks for successful implantation and pregnancy. In vitro, confinement, and embryo density are key factors to boost embryo development. Advanced dynamic culture systems mimicking fluid mechanical stimulation in the oviduct, through vibration, tilting, and microfluidic methods, and the use of innovative softer substrates, hold promise for optimizing in vitro embryo development.
Collapse
Affiliation(s)
- Roberto Gualtieri
- Department of Biology, University of Naples ‘’Federico II’’, Complesso Universitario Di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy; (V.D.G.); (A.C.); (A.T.); (V.G.); (V.B.); (R.T.)
| | | | | | | | | | | | | |
Collapse
|
14
|
Go M, Shim SH. Genomic aspects in reproductive medicine. Clin Exp Reprod Med 2024; 51:91-101. [PMID: 38263590 PMCID: PMC11140259 DOI: 10.5653/cerm.2023.06303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 01/25/2024] Open
Abstract
Infertility is a complex disease characterized by extreme genetic heterogeneity, compounded by various environmental factors. While there are exceptions, individual genetic and genomic variations related to infertility are typically rare, often family-specific, and may serve as susceptibility factors rather than direct causes of the disease. Consequently, identifying the cause of infertility and developing prevention and treatment strategies based on these factors remain challenging tasks, even in the modern genomic era. In this review, we first examine the genetic and genomic variations associated with infertility, and subsequently summarize the concepts and methods of preimplantation genetic testing in light of advances in genome analysis technology.
Collapse
Affiliation(s)
- Minyeon Go
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Republic of Korea
| | - Sung Han Shim
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Republic of Korea
| |
Collapse
|
15
|
Ya A, Deng C, Godek KM. Cell Competition Eliminates Aneuploid Human Pluripotent Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593217. [PMID: 38766106 PMCID: PMC11100710 DOI: 10.1101/2024.05.08.593217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Human pluripotent stem cells (hPSCs) maintain diploid populations for generations despite a persistently high rate of mitotic errors that cause aneuploidy, or chromosome imbalances. Consequently, to maintain genome stability, aneuploidy must inhibit hPSC proliferation, but the mechanisms are unknown. Here, we surprisingly find that homogeneous aneuploid populations of hPSCs proliferate unlike aneuploid non-transformed somatic cells. Instead, in mosaic populations, cell non-autonomous competition between neighboring diploid and aneuploid hPSCs eliminates less fit aneuploid cells. Aneuploid hPSCs with lower Myc or higher p53 levels relative to diploid neighbors are outcompeted but conversely gain a selective advantage when Myc and p53 relative abundance switches. Thus, although hPSCs frequently missegregate chromosomes and inherently tolerate aneuploidy, Myc- and p53-driven cell competition preserves their genome integrity. These findings have important implications for the use of hPSCs in regenerative medicine and for how diploid human embryos are established despite the prevalence of aneuploidy during early development.
Collapse
Affiliation(s)
- Amanda Ya
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Chenhui Deng
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Kristina M. Godek
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Lead contact
| |
Collapse
|
16
|
Arends T, Tsuchida H, Adeyemi RO, Tapscott SJ. DUX4-induced HSATII transcription causes KDM2A/B-PRC1 nuclear foci and impairs DNA damage response. J Cell Biol 2024; 223:e202303141. [PMID: 38451221 PMCID: PMC10919155 DOI: 10.1083/jcb.202303141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/02/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
Polycomb repressive complexes regulate developmental gene programs, promote DNA damage repair, and mediate pericentromeric satellite repeat repression. Expression of pericentromeric satellite repeats has been implicated in several cancers and diseases, including facioscapulohumeral dystrophy (FSHD). Here, we show that DUX4-mediated transcription of HSATII regions causes nuclear foci formation of KDM2A/B-PRC1 complexes, resulting in a global loss of PRC1-mediated monoubiquitination of histone H2A. Loss of PRC1-ubiquitin signaling severely impacts DNA damage response. Our data implicate DUX4-activation of HSATII and sequestration of KDM2A/B-PRC1 complexes as a mechanism of regulating epigenetic and DNA repair pathways.
Collapse
Affiliation(s)
- Tessa Arends
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Hiroshi Tsuchida
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Richard O. Adeyemi
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stephen J. Tapscott
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
Zhang X, Zheng PS. Mechanism of chromosomal mosaicism in preimplantation embryos and its effect on embryo development. J Assist Reprod Genet 2024; 41:1127-1141. [PMID: 38386118 PMCID: PMC11143108 DOI: 10.1007/s10815-024-03048-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
Aneuploidy is one of the main causes of miscarriage and in vitro fertilization failure. Mitotic abnormalities in preimplantation embryos are the main cause of mosaicism, which may be influenced by several endogenous factors such as relaxation of cell cycle control mechanisms, defects in chromosome cohesion, centrosome aberrations and abnormal spindle assembly, and DNA replication stress. In addition, incomplete trisomy rescue is a rare cause of mosaicism. However, there may be a self-correcting mechanism in mosaic embryos, which allows some mosaicisms to potentially develop into normal embryos. At present, it is difficult to accurately diagnose mosaicism using preimplantation genetic testing for aneuploidy. Therefore, in clinical practice, embryos diagnosed as mosaic should be considered comprehensively based on the specific situation of the patient.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Reproductive Medicine, The First Affiliated Hospital, Xi'an Jiaotong University of Medical School, Xi'an, 710061, Shanxi, P.R. China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital, Xi'an Jiaotong University of Medical School, Xi'an, 710061, Shanxi, P.R. China.
- Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of People's Republic of China, Xi'an, 710061, Shanxi, P.R. China.
| |
Collapse
|
18
|
Vitetta G, Desiderio L, Baccolini I, Uliana V, Lanzoni G, Ghi T, Pilu G, Ambrosini E, Caggiati P, Barili V, Trotta AC, Liuti MR, Malpezzi E, Pittalis MC, Percesepe A. Mosaic derivative chromosomes at chorionic villi (CV) sampling are expression of genomic instability and precursors of cryptic disease-causing rearrangements: report of further four cases. Mol Cytogenet 2024; 17:8. [PMID: 38589928 PMCID: PMC11003029 DOI: 10.1186/s13039-024-00675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Mosaic chromosomal anomalies arising in the product of conception and the final fetal chromosomal arrangement are expression of complex biological mechanisms. The rescue of unbalanced chromosome with selection of the most viable cell line/s in the embryo and the unfavourable imbalances in placental tissues was documented in our previous paper and in the literature. We report four additional cases with mosaic derivative chromosomes in different feto-placental tissues, further showing the instability of an intermediate gross imbalance as a frequent mechanism of de novo cryptic deletions and duplications. In conclusion we underline how the extensive remodeling of unbalanced chromosomes in placental tissues represents the 'backstage' of de novo structural rearrangements, as the early phases of a long selection process that the genome undergo during embryogenesis.
Collapse
Affiliation(s)
- Giulia Vitetta
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Laura Desiderio
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Ilaria Baccolini
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Vera Uliana
- Medical Genetics Unit, University Hospital of Parma, Parma, Italy
| | - Giulia Lanzoni
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tullio Ghi
- Obstetrics & Gynecology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gianluigi Pilu
- Obstetric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Enrico Ambrosini
- Medical Genetics Unit, University Hospital of Parma, Parma, Italy
| | | | - Valeria Barili
- Medical Genetics, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | - Elisabetta Malpezzi
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Maria Carla Pittalis
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Antonio Percesepe
- Medical Genetics Unit, University Hospital of Parma, Parma, Italy
- Medical Genetics, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
19
|
Martín Á, Mercader A, Beltrán D, Mifsud A, Nohales M, Pardiñas ML, Ortega-Jaén D, de Los Santos MJ. Trophectoderm cells of human mosaic embryos display increased apoptotic levels and impaired differentiation capacity: a molecular clue regarding their reproductive fate? Hum Reprod 2024; 39:709-723. [PMID: 38308811 DOI: 10.1093/humrep/deae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/29/2023] [Indexed: 02/05/2024] Open
Abstract
STUDY QUESTION Are there cell lineage-related differences in the apoptotic rates and differentiation capacity of human blastocysts diagnosed as euploid, mosaic, and aneuploid after preimplantation genetic testing for aneuploidy (PGT-A) based on concurrent copy number and genotyping analysis? SUMMARY ANSWER Trophectoderm (TE) cells of mosaic and aneuploid blastocysts exhibit significantly higher levels of apoptosis and significantly reduced differentiation capacity compared to those of euploid blastocysts. WHAT IS KNOWN ALREADY Embryos diagnosed as mosaic after PGT-A can develop into healthy infants, yet understanding the reasons behind their reproductive potential requires further research. One hypothesis suggests that mosaicism can be normalized through selective apoptosis and reduced proliferation of aneuploid cells, but direct evidence of these mechanisms in human embryos is lacking. Additionally, data interpretation from studies involving mosaic embryos has been hampered by retrospective analysis methods and the high incidence of false-positive mosaic diagnoses stemming from the use of poorly specific PGT-A platforms. STUDY DESIGN, SIZE, DURATION Prospective cohort study performing colocalization of cell-lineage and apoptotic markers by immunofluorescence (IF). We included a total of 64 human blastocysts donated to research on Day 5 or 6 post-fertilization (dpf) by 43 couples who underwent in vitro fertilization treatment with PGT-A at IVI-RMA Valencia between September 2019 and October 2022. A total of 27 mosaic blastocysts were analyzed. PARTICIPANTS/MATERIALS, SETTING, METHODS The study consisted of two phases: Phase I (caspase-3, n = 53 blastocysts): n = 13 euploid, n = 22 mosaic, n = 18 aneuploid. Phase II (terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL), n = 11 blastocysts): n = 2 euploid, n = 5 mosaic, n = 4 aneuploid. Following donation for research, vitrified blastocysts were warmed, cultured until re-expansion, fixed, processed for IF, and imaged using confocal microscopy. For each blastocyst, the following cell counts were conducted: total cells (DAPI+), TE cells (GATA3+), inner cell mass (ICM) cells (GATA3-/NANOG+), and apoptotic cells (caspase-3+ or TUNEL+). The incidence of apoptosis was calculated for each blastocyst by dividing the number of caspase-3+ cells (Phase I) or TUNEL+ cells (Phase II) by the number of TE or ICM cells. Statistical analysis was performed according to data type and distribution (P < 0.05 was considered statistically significant). MAIN RESULTS AND THE ROLE OF CHANCE Phase I: Mosaic blastocysts displayed a similar number of total cells (49.6 ± 15 cells at 5 dpf; 58.8 ± 16.9 cells at 6 dpf), TE cells (38.8 ± 13.7 cells at 5 dpf; 49.2 ± 16.2 cells at 6 dpf), and ICM cells (10.9 ± 4.2 cells at 5 dpf; 9.7 ± 7.1 cells at 6 dpf) compared to euploid and aneuploid blastocysts (P > 0.05). The proportion of TE cells retaining NANOG expression increased gradually from euploid blastocysts (9.7% = 63/651 cells at 5 dpf; 0% = 0/157 cells at 6 dpf) to mosaic blastocysts (13.1% = 104/794 cells at 5 dpf; 3.4% = 12/353 cells at 6 dpf) and aneuploid blastocysts (27.9% = 149/534 cells at 5 dpf; 4.6% = 19/417 cells at 6 dpf) (P < 0.05). At the TE level, caspase-3+ cells were frequently observed (39% = 901/2310 cells). The proportion of caspase-3+ TE cells was significantly higher in mosaic blastocysts (44.1% ± 19.6 at 5 dpf; 43% ± 16.8 at 6 dpf) and aneuploid blastocysts (45.9% ± 16.1 at 5 dpf; 49% ± 15.1 at 6 dpf) compared to euploid blastocysts (26.6% ± 16.6 at 5 dpf; 17.5% ± 14.8 at 6 dpf) (P < 0.05). In contrast, at the ICM level, caspase-3+ cells were rarely observed (1.9% = 11/596 cells), and only detected in mosaic blastocysts (2.6% = 6/232 cells) and aneuploid blastocysts (2.5% = 5/197 cells) (P > 0.05). Phase II: Consistently, TUNEL+ cells were only observed in TE cells (32.4% = 124/383 cells). An increasing trend was identified toward a higher proportion of TUNEL+ cells in the TE of mosaic blastocysts (37.2% ± 21.9) and aneuploid blastocysts (39% ± 41.7), compared to euploid blastocysts (23% ± 32.5), although these differences did not reach statistical significance (P > 0.05). LIMITATIONS, REASONS FOR CAUTION The observed effects on apoptosis and differentiation may not be exclusive to aneuploid cells. Additionally, variations in aneuploidies and unexplored factors related to blastocyst development and karyotype concordance may introduce potential biases and uncertainties in the results. WIDER IMPLICATIONS OF THE FINDINGS Our findings demonstrate a cell lineage-specific effect of aneuploidy on the apoptotic levels and differentiation capacity of human blastocysts. This contributes to unravelling the biological characteristics of mosaic blastocysts and supports the concept of clonal depletion of aneuploid cells in explaining their reproductive potential. STUDY FUNDING/COMPETING INTEREST(S) This work was funded by grants from Centro para el Desarrollo Tecnológico Industrial (CDTI) (20190022) and Generalitat Valenciana (APOTIP/2019/009). None of the authors has any conflict of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Ángel Martín
- Department of Innovation, IVIRMA Global Research Alliance, IVI Foundation, Health Research Institute La Fe, Valencia, Spain
| | - Amparo Mercader
- Department of Innovation, IVIRMA Global Research Alliance, IVI Foundation, Health Research Institute La Fe, Valencia, Spain
- Department of Research, IVF Laboratory, IVIRMA Global, Valencia, Spain
| | - Diana Beltrán
- Department of Research, IVF Laboratory, IVIRMA Global, Valencia, Spain
| | - Amparo Mifsud
- Department of Research, IVF Laboratory, IVIRMA Global, Valencia, Spain
| | - Mar Nohales
- Department of Research, IVF Laboratory, IVIRMA Global, Valencia, Spain
| | - María Luisa Pardiñas
- Department of Innovation, IVIRMA Global Research Alliance, IVI Foundation, Health Research Institute La Fe, Valencia, Spain
| | - David Ortega-Jaén
- Department of Innovation, IVIRMA Global Research Alliance, IVI Foundation, Health Research Institute La Fe, Valencia, Spain
| | - María José de Los Santos
- Department of Innovation, IVIRMA Global Research Alliance, IVI Foundation, Health Research Institute La Fe, Valencia, Spain
- Department of Research, IVF Laboratory, IVIRMA Global, Valencia, Spain
| |
Collapse
|
20
|
Robertson SA, Richards RI. Single-cell sequencing shows mosaic aneuploidy in most human embryos. J Clin Invest 2024; 134:e179134. [PMID: 38488008 PMCID: PMC10940079 DOI: 10.1172/jci179134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024] Open
Abstract
Mammalian preimplantation embryos often contain chromosomal defects that arose in the first divisions after fertilization and affect a subpopulation of cells - an event known as mosaic aneuploidy. In this issue of the JCI, Chavli et al. report single-cell genomic sequencing data for rigorous evaluation of the incidence and degree of mosaic aneuploidy in healthy human in vitro fertilization (IVF) embryos. Remarkably, mosaic aneuploidy occurred in at least 80% of human blastocyst-stage embryos, with often less than 20% of cells showing defects. These findings confirm that mosaic aneuploidy is prevalent in human embryos, indicating that the process is a widespread event that rarely has clinical consequences. There are major implications for preimplantation genetic testing of aneuploidy (PGT-A), a test commonly used to screen and select IVF embryos for transfer. The application and benefit of this technology is controversial, and the findings provide more cause for caution on its use.
Collapse
Affiliation(s)
| | - Robert I. Richards
- School of Molecular Bioscience, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
21
|
Budrewicz J, Chavez SL. Insights into embryonic chromosomal instability: mechanisms of DNA elimination during mammalian preimplantation development. Front Cell Dev Biol 2024; 12:1344092. [PMID: 38374891 PMCID: PMC10875028 DOI: 10.3389/fcell.2024.1344092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
Mammalian preimplantation embryos often contend with aneuploidy that arose either by the inheritance of meiotic errors from the gametes, or from mitotic mis-segregation events that occurred following fertilization. Regardless of the origin, mis-segregated chromosomes become encapsulated in micronuclei (MN) that are spatially isolated from the main nucleus. Much of our knowledge of MN formation comes from dividing somatic cells during tumorigenesis, but the error-prone cleavage-stage of early embryogenesis is fundamentally different. One unique aspect is that cellular fragmentation (CF), whereby small subcellular bodies pinch off embryonic blastomeres, is frequently observed. CF has been detected in both in vitro and in vivo-derived embryos and likely represents a response to chromosome mis-segregation since it only appears after MN formation. There are multiple fates for MN, including sequestration into CFs, but the molecular mechanism(s) by which this occurs remains unclear. Due to nuclear envelope rupture, the chromosomal material contained within MN and CFs becomes susceptible to double stranded-DNA breaks. Despite this damage, embryos may still progress to the blastocyst stage and exclude chromosome-containing CFs, as well as non-dividing aneuploid blastomeres, from participating in further development. Whether these are attempts to rectify MN formation or eliminate embryos with poor implantation potential is unknown and this review will discuss the potential implications of DNA removal by CF/blastomere exclusion. We will also extrapolate what is known about the intracellular pathways mediating MN formation and rupture in somatic cells to preimplantation embryogenesis and how nuclear budding and DNA release into the cytoplasm may impact overall development.
Collapse
Affiliation(s)
- Jacqueline Budrewicz
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, United States
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Shawn L. Chavez
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, United States
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, United States
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, United States
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
22
|
Xue Y, Su Z, Lin X, Ho MK, Yu KHO. Single-cell lineage tracing with endogenous markers. Biophys Rev 2024; 16:125-139. [PMID: 38495438 PMCID: PMC10937880 DOI: 10.1007/s12551-024-01179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/18/2024] [Indexed: 03/19/2024] Open
Abstract
Resolving lineage relationships between cells in an organism provides key insights into the fate of individual cells and drives a fundamental understanding of the process of development and disease. A recent rapid increase in experimental and computational advances for detecting naturally occurring somatic nuclear and mitochondrial mutation at single-cell resolution has expanded lineage tracing from model organisms to humans. This review discusses the advantages and challenges of experimental and computational techniques for cell lineage tracing using somatic mutation as endogenous DNA barcodes to decipher the relationships between cells during development and tumour evolution. We outlook the advantages of spatial clonal evolution analysis and single-cell lineage tracing using endogenous genetic markers.
Collapse
Affiliation(s)
- Yan Xue
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Units 1201-1206, 1223 & 1225, 12/F, Building 19W, 19 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - Zezhuo Su
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Units 1201-1206, 1223 & 1225, 12/F, Building 19W, 19 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xinyi Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Mun Kay Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ken H. O. Yu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Units 1201-1206, 1223 & 1225, 12/F, Building 19W, 19 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
| |
Collapse
|
23
|
De Coster T, Zhao Y, Tšuiko O, Demyda-Peyrás S, Van Soom A, Vermeesch JR, Smits K. Genome-wide equine preimplantation genetic testing enabled by simultaneous haplotyping and copy number detection. Sci Rep 2024; 14:2003. [PMID: 38263320 PMCID: PMC10805710 DOI: 10.1038/s41598-023-48103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/22/2023] [Indexed: 01/25/2024] Open
Abstract
In different species, embryonic aneuploidies and genome-wide errors are a major cause of developmental failure. The increasing number of equine embryos being produced worldwide provides the opportunity to characterize and rank or select embryos based on their genetic profile prior to transfer. Here, we explored the possibility of generic, genome-wide preimplantation genetic testing concurrently for aneuploidies (PGT-A) and monogenic (PGT-M) traits and diseases in the horse, meanwhile assessing the incidence and spectrum of chromosomal and genome-wide errors in in vitro-produced equine embryos. To this end, over 70,000 single nucleotide polymorphism (SNP) positions were genotyped in 14 trophectoderm biopsies and corresponding biopsied blastocysts, and in 26 individual blastomeres from six arrested cleavage-stage embryos. Subsequently, concurrent genome-wide copy number detection and haplotyping by haplarithmisis was performed and the presence of aneuploidies and genome-wide errors and the inherited parental haplotypes for four common disease-associated genes with high carrier frequency in different horse breeds (GBE1, PLOD1, B3GALNT2, MUTYH), and for one color coat-associated gene (STX17) were compared in biopsy-blastocyst combinations. The euploid (n = 12) or fully aneuploid (n = 2) state and the inherited parental haplotypes for 42/45 loci of interest of the biopsied blastocysts were predicted by the biopsy samples in all successfully analyzed biopsy-blastocyst combinations (n = 9). Two biopsies showed a loss of maternal chromosome 28 and 31, respectively, which were confirmed in the corresponding blastocysts. In one of those biopsies, additional complex aneuploidies not present in the blastocyst were found. Five out of six arrested embryos contained chromosomal and/or genome-wide errors in most of their blastomeres, demonstrating their contribution to equine embryonic arrest in vitro. The application of the described PGT strategy would allow to select equine embryos devoid of genetic errors and pathogenetic variants, and with the variants of interest, which will improve foaling rate and horse quality. We believe this approach will be a gamechanger in horse breeding.
Collapse
Affiliation(s)
- T De Coster
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Belgium.
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
| | - Y Zhao
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - O Tšuiko
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - S Demyda-Peyrás
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Department of Animal Production, Veterinary School, National University of La Plata, La Plata, Argentina
| | - A Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Belgium
| | - J R Vermeesch
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - K Smits
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
24
|
Dai YF, Wu XQ, Huang HL, He SQ, Guo DH, Li Y, Lin N, Xu LP. Experience of copy number variation sequencing applied in spontaneous abortion. BMC Med Genomics 2024; 17:15. [PMID: 38191380 PMCID: PMC10775620 DOI: 10.1186/s12920-023-01699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/13/2023] [Indexed: 01/10/2024] Open
Abstract
PURPOSE We evaluated the value of copy number variation sequencing (CNV-seq) and quantitative fluorescence (QF)-PCR for analyzing chromosomal abnormalities (CA) in spontaneous abortion specimens. METHODS A total of 650 products of conception (POCs) were collected from spontaneous abortion between April 2018 and May 2020. CNV-seq and QF-PCR were performed to determine the characteristics and frequencies of copy number variants (CNVs) with clinical significance. The clinical features of the patients were recorded. RESULTS Clinically significant chromosomal abnormalities were identified in 355 (54.6%) POCs, of which 217 (33.4%) were autosomal trisomies, 42(6.5%) were chromosomal monosomies and 40 (6.2%) were pathogenic CNVs (pCNVs). Chromosomal trisomy occurs mainly on chromosomes 15, 16, 18, 21and 22. Monosomy X was not associated with the maternal or gestational age. The frequency of chromosomal abnormalities in miscarriages from women with a normal live birth history was 55.3%; it was 54.4% from women without a normal live birth history (P > 0.05). There were no significant differences among women without, with 1, and with ≥ 2 previous miscarriages regarding the rate of chromosomal abnormalities (P > 0.05); CNVs were less frequently detected in women with advanced maternal age than in women aged ≤ 29 and 30-34 years (P < 0.05). CONCLUSION Chromosomal abnormalities are the most common cause of pregnancy loss, and maternal and gestational ages are strongly associated with fetal autosomal trisomy aberrations. Embryo chromosomal examination is recommended regardless of the gestational age, modes of conception or previous abortion status.
Collapse
Affiliation(s)
- Yi-Fang Dai
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No.18 Daoshan Road, Fuzhou, Fujian, 350001, China
- Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, No.18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Xiao-Qing Wu
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No.18 Daoshan Road, Fuzhou, Fujian, 350001, China
- Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, No.18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Hai-Long Huang
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No.18 Daoshan Road, Fuzhou, Fujian, 350001, China
- Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, No.18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Shu-Qiong He
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No.18 Daoshan Road, Fuzhou, Fujian, 350001, China
- Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, No.18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Dan-Hua Guo
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No.18 Daoshan Road, Fuzhou, Fujian, 350001, China
- Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, No.18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Ying Li
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No.18 Daoshan Road, Fuzhou, Fujian, 350001, China
- Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, No.18 Daoshan Road, Fuzhou, 350001, Fujian, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No.18 Daoshan Road, Fuzhou, Fujian, 350001, China.
- Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, No.18 Daoshan Road, Fuzhou, 350001, Fujian, China.
| | - Liang-Pu Xu
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No.18 Daoshan Road, Fuzhou, Fujian, 350001, China.
- Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, No.18 Daoshan Road, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
25
|
De Martin H, Bonetti TCS, Nissel CAZ, Gomes AP, Fujii MG, Monteleone PAA. Association of early cleavage, morula compaction and blastocysts ploidy of IVF embryos cultured in a time-lapse system and biopsied for genetic test for aneuploidy. Sci Rep 2024; 14:739. [PMID: 38185698 PMCID: PMC10772106 DOI: 10.1038/s41598-023-51087-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024] Open
Abstract
IVF embryos have historically been evaluated by morphological characteristics. The time-lapse system (TLS) has become a promising tool, providing an uninterrupted evaluation of morphological and dynamic parameters of embryo development. Furthermore, TLS sheds light on unknown phenomena such as direct cleavage and incomplete morula compaction. We retrospectively analyzed the morphology (Gardner Score) and morphokinetics (KIDScore) of 835 blastocysts grown in a TLS incubator (Embryoscope+), which were biopsied for preimplantation genetic testing for aneuploidy (PGT-A). Only the embryos that reached the blastocyst stage were included in this study and time-lapse videos were retrospectively reanalysed. According to the pattern of initial cleavages and morula compaction, the embryos were classified as: normal (NC) or abnormal (AC) cleavage, and fully (FCM) or partially compacted (PCM) morulae. No difference was found in early cleavage types or morula compaction patterns between female age groups (< 38, 38-40 and > 40 yo). Most of NC embryos resulted in FCM (≅ 60%), while no embryos with AC resulted in FCM. Aneuploidy rate of AC-PCM group did not differ from that of NC-FCM group in women < 38 yo, but aneuploidy was significantly higher in AC-PCM compared to NC-FCM of women > 40 yo. However, the quality of embryos was lower in AC-PCM blastocysts in women of all age ranges. Morphological and morphokinetic scores declined with increasing age, in the NC-PCM and AC-PCM groups, compared to the NC-FCM. Similar aneuploidy rates among NC-FCM and AC-PCM groups support the hypothesis that PCM in anomalous-cleaved embryos can represent a potential correction mechanism, even though lower morphological/morphokinetic scores are seen on AC-PCM. Therefore, both morphological and morphokinetic assessment should consider these embryonic development phenomena.
Collapse
Affiliation(s)
- H De Martin
- Centro de Reprodução Humana Monteleone, Rua Lima Barros, 61 Jardim Paulista, São Paulo, SP, CEP 04503-030, Brazil.
- Disciplina de Ginecologia-Departamento de Obstetrícia e Ginecologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 255-10 Andar-Cerqueira César, São Paulo, SP, CEP 05403-000, Brazil.
| | - T C S Bonetti
- Centro de Reprodução Humana Monteleone, Rua Lima Barros, 61 Jardim Paulista, São Paulo, SP, CEP 04503-030, Brazil
- Departamento de Ginecologia, Escola Paulista de Medicina - Universidade Federal de São Paulo, Rua Pedro de Toledo, 781. 4º andar. Vila Clementino, São Paulo, SP, 04039030, Brazil
| | - C A Z Nissel
- Centro de Reprodução Humana Monteleone, Rua Lima Barros, 61 Jardim Paulista, São Paulo, SP, CEP 04503-030, Brazil
- Disciplina de Ginecologia-Departamento de Obstetrícia e Ginecologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 255-10 Andar-Cerqueira César, São Paulo, SP, CEP 05403-000, Brazil
| | - A P Gomes
- Centro de Reprodução Humana Monteleone, Rua Lima Barros, 61 Jardim Paulista, São Paulo, SP, CEP 04503-030, Brazil
| | - M G Fujii
- Centro de Reprodução Humana Monteleone, Rua Lima Barros, 61 Jardim Paulista, São Paulo, SP, CEP 04503-030, Brazil
| | - P A A Monteleone
- Centro de Reprodução Humana Monteleone, Rua Lima Barros, 61 Jardim Paulista, São Paulo, SP, CEP 04503-030, Brazil
- Disciplina de Ginecologia-Departamento de Obstetrícia e Ginecologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 255-10 Andar-Cerqueira César, São Paulo, SP, CEP 05403-000, Brazil
| |
Collapse
|
26
|
Poot M. Methods of Detection and Mechanisms of Origin of Complex Structural Genome Variations. Methods Mol Biol 2024; 2825:39-65. [PMID: 38913302 DOI: 10.1007/978-1-0716-3946-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Based on classical karyotyping, structural genome variations (SVs) have generally been considered to be either "simple" (with one or two breakpoints) or "complex" (with more than two breakpoints). Studying the breakpoints of SVs at nucleotide resolution revealed additional, subtle structural variations, such that even "simple" SVs turned out to be "complex." Genome-wide sequencing methods, such as fosmid and paired-end mapping, short-read and long-read whole genome sequencing, and single-molecule optical mapping, also indicated that the number of SVs per individual was considerably larger than expected from karyotyping and high-resolution chromosomal array-based studies. Interestingly, SVs were detected in studies of cohorts of individuals without clinical phenotypes. The common denominator of all SVs appears to be a failure to accurately repair DNA double-strand breaks (DSBs) or to halt cell cycle progression if DSBs persist. This review discusses the various DSB response mechanisms during the mitotic cell cycle and during meiosis and their regulation. Emphasis is given to the molecular mechanisms involved in the formation of translocations, deletions, duplications, and inversions during or shortly after meiosis I. Recently, CRISPR-Cas9 studies have provided unexpected insights into the formation of translocations and chromothripsis by both breakage-fusion-bridge and micronucleus-dependent mechanisms.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
27
|
Campos G, Sciorio R, Fleming S. Healthy Live Births after the Transfer of Mosaic Embryos: Self-Correction or PGT-A Overestimation? Genes (Basel) 2023; 15:18. [PMID: 38275600 PMCID: PMC10815078 DOI: 10.3390/genes15010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
The implementation of next generation sequencing (NGS) in preimplantation genetic testing for aneuploidy (PGT-A) has led to a higher prevalence of mosaic diagnosis within the trophectoderm (TE) sample. Regardless, mosaicism could potentially increase the rate of live-born children with chromosomic syndromes, though available data from the transfer of embryos with putative PGT-A mosaicism are scarce but reassuring. Even with lower implantation and higher miscarriage rates, mosaic embryos can develop into healthy live births. Therefore, this urges an explanation for the disappearance of aneuploid cells throughout development, to provide guidance in the management of mosaicism in clinical practice. Technical overestimation of mosaicism, together with some sort of "self-correction" mechanisms during the early post-implantation stages, emerged as potential explanations. Unlike the animal model, in which the elimination of genetically abnormal cells from the future fetal lineage has been demonstrated, in human embryos this capability remains unverified even though the germ layer displays an aneuploidy-induced cell death lineage preference with higher rates of apoptosis in the inner cell mass (ICM) than in the TE cells. Moreover, the reported differential dynamics of cell proliferation and apoptosis between euploid, mosaic, and aneuploid embryos, together with pro-apoptosis gene products (cfDNA and mRNA) and extracellular vesicles identified in the blastocoel fluid, may support the hypothesis of apoptosis as a mechanism to purge the preimplantation embryo of aneuploid cells. Alternative hypotheses, like correction of aneuploidy by extrusion of a trisomy chromosome or by monosomic chromosome duplication, are even, though they represent an extremely rare phenomenon. On the other hand, the technical limitations of PGT-A analysis may lead to inaccuracy in embryo diagnoses, identifying as "mosaic" those embryos that are uniformly euploid or aneuploid. NGS assumption of "intermediate copy number profiles" as evidence of a mixture of euploid and aneuploid cells in a single biopsy has been reported to be poorly predictive in cases of mosaicism diagnosis. Additionally, the concordance found between the TE and the ICM in cases of TE biopsies displaying mosaicism is lower than expected, and it correlates differently depending on the type (whole chromosome versus segmental) and the level of mosaicism reported. Thus, in cases of low-/medium-level mosaicism (<50%), aneuploid cells would rarely involve the ICM and other regions. However, in high-level mosaics (≥50%), abnormal cells in the ICM should display higher prevalence, revealing more uniform aneuploidy in most embryos, representing a technical variation in the uniform aneuploidy range, and therefore might impair the live birth rate.
Collapse
Affiliation(s)
- Gerard Campos
- Geisinger Medical Center, Women’s Health Fertility Clinic, Danville, PA 17821, USA;
- GIREXX Fertility Clinics, C. de Cartagena, 258, 08025 Girona, Spain
| | - Romualdo Sciorio
- Fertility Medicine and Gynaecological Endocrinology Unit, Department Woman-Mother-Child, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Steven Fleming
- Discipline of Anatomy & Histology, School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia;
| |
Collapse
|
28
|
Ge W, Zhao X, Gou S, Jin Q, Chen F, Ouyang Z, Lai C, Cui T, Mai B, Lu S, Zhong K, Liang Y, Chen T, Wu H, Li N, Ye Y, Lai L, Wang K. Evaluation of guide-free Cas9-induced genomic damage and transcriptome changes in pig embryos. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102035. [PMID: 37808924 PMCID: PMC10551558 DOI: 10.1016/j.omtn.2023.102035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023]
Abstract
Cas9 protein without sgRNAs can induce genomic damage at the cellular level in vitro. However, whether the detrimental effects occur in embryos after Cas9 treatment remains unknown. Here, using pig embryos as subjects, we observed that Cas9 protein transcribed from injected Cas9 mRNA can persist until at least the blastocyst stage. Cas9 protein alone can induce genome damage in preimplantation embryos, represented by the increased number of phosphorylated histone H2AX foci on the chromatin fiber, which led to apoptosis and decreased cell number of blastocysts. In addition, single-blastocyst RNA sequencing confirmed that Cas9 protein without sgRNAs can cause changes in the blastocyst transcriptome, depressing embryo development signal pathways, such as cell cycle, metabolism, and cellular communication-related signal pathways, while activating apoptosis and necroptosis signal pathways, which together resulted in impaired preimplantation embryonic development. These results indicated that attention should be given to the detrimental effects caused by the Cas9 protein when using CRISPR-Cas9 for germline genome editing, especially for the targeted correction of human pathological mutations using germline gene therapy.
Collapse
Affiliation(s)
- Weikai Ge
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Xiaozhu Zhao
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shixue Gou
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
| | - Qin Jin
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
| | - Fangbing Chen
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Zhen Ouyang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Chengdan Lai
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Tao Cui
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Baoyi Mai
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
| | - Sijia Lu
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
| | - Kexin Zhong
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
| | - Yanhui Liang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
| | - Tao Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Han Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
| | - Nan Li
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
| | - Yinghua Ye
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
| | - Liangxue Lai
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Kepin Wang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
29
|
Essers R, Lebedev IN, Kurg A, Fonova EA, Stevens SJC, Koeck RM, von Rango U, Brandts L, Deligiannis SP, Nikitina TV, Sazhenova EA, Tolmacheva EN, Kashevarova AA, Fedotov DA, Demeneva VV, Zhigalina DI, Drozdov GV, Al-Nasiry S, Macville MVE, van den Wijngaard A, Dreesen J, Paulussen A, Hoischen A, Brunner HG, Salumets A, Zamani Esteki M. Prevalence of chromosomal alterations in first-trimester spontaneous pregnancy loss. Nat Med 2023; 29:3233-3242. [PMID: 37996709 PMCID: PMC10719097 DOI: 10.1038/s41591-023-02645-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/11/2023] [Indexed: 11/25/2023]
Abstract
Pregnancy loss is often caused by chromosomal abnormalities of the conceptus. The prevalence of these abnormalities and the allocation of (ab)normal cells in embryonic and placental lineages during intrauterine development remain elusive. In this study, we analyzed 1,745 spontaneous pregnancy losses and found that roughly half (50.4%) of the products of conception (POCs) were karyotypically abnormal, with maternal and paternal age independently contributing to the increased genomic aberration rate. We applied genome haplarithmisis to a subset of 94 pregnancy losses with normal parental and POC karyotypes. Genotyping of parental DNA as well as POC extra-embryonic mesoderm and chorionic villi DNA, representing embryonic and trophoblastic tissues, enabled characterization of the genomic landscape of both lineages. Of these pregnancy losses, 35.1% had chromosomal aberrations not previously detected by karyotyping, increasing the rate of aberrations of pregnancy losses to 67.8% by extrapolation. In contrast to viable pregnancies where mosaic chromosomal abnormalities are often restricted to chorionic villi, such as confined placental mosaicism, we found a higher degree of mosaic chromosomal imbalances in extra-embryonic mesoderm rather than chorionic villi. Our results stress the importance of scrutinizing the full allelic architecture of genomic abnormalities in pregnancy loss to improve clinical management and basic research of this devastating condition.
Collapse
Affiliation(s)
- Rick Essers
- Department of Clinical Genetics, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW-Research Institute for Oncology and Reproduction, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands
| | - Igor N Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Ants Kurg
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Elizaveta A Fonova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Servi J C Stevens
- Department of Clinical Genetics, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW-Research Institute for Oncology and Reproduction, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands
| | - Rebekka M Koeck
- Department of Clinical Genetics, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW-Research Institute for Oncology and Reproduction, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands
| | - Ulrike von Rango
- Department of Anatomy & Embryology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands
| | - Lloyd Brandts
- Department of Clinical Epidemiology and Medical Technology Assessment (KEMTA), Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Spyridon Panagiotis Deligiannis
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki, Finland
| | - Tatyana V Nikitina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Elena A Sazhenova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Ekaterina N Tolmacheva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Anna A Kashevarova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Dmitry A Fedotov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Viktoria V Demeneva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Daria I Zhigalina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Gleb V Drozdov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Salwan Al-Nasiry
- Department of Genetics and Cell Biology, GROW-Research Institute for Oncology and Reproduction, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Merryn V E Macville
- Department of Clinical Genetics, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW-Research Institute for Oncology and Reproduction, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands
| | - Arthur van den Wijngaard
- Department of Clinical Genetics, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW-Research Institute for Oncology and Reproduction, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands
| | - Jos Dreesen
- Department of Clinical Genetics, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Aimee Paulussen
- Department of Clinical Genetics, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW-Research Institute for Oncology and Reproduction, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Internal Medicine, Center for Infectious Disease (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Expertise Center for Immunodeficiency and Autoinflammation and Radboud Center for Infectious Disease (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Han G Brunner
- Department of Clinical Genetics, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
- Department of Genetics and Cell Biology, GROW-Research Institute for Oncology and Reproduction, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andres Salumets
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.
- Competence Center on Health Technologies, Tartu, Estonia.
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention & Technology (CLINTEC), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| | - Masoud Zamani Esteki
- Department of Clinical Genetics, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands.
- Department of Genetics and Cell Biology, GROW-Research Institute for Oncology and Reproduction, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands.
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention & Technology (CLINTEC), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
30
|
Cascante SD, Besser A, Lee HL, Wang F, McCaffrey C, Grifo JA. Blinded rebiopsy and analysis of noneuploid embryos with 2 distinct preimplantation genetic testing platforms for aneuploidy. Fertil Steril 2023; 120:1161-1169. [PMID: 37574001 DOI: 10.1016/j.fertnstert.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023]
Abstract
OBJECTIVE To determine how often a noneuploid result from a single trophectoderm (TE) biopsy tested with the next-generation sequencing (NGS)-based preimplantation genetic testing for aneuploidy (PGT-A) is concordant with rebiopsies tested with a single-nucleotide polymorphism (SNP) array-based PGT-A platform. DESIGN Blinded prospective cohort study. SETTING University-affiliated fertility center. PATIENT(S) One hundred blastocysts were chosen from donated samples; on TE biopsy with NGS-based PGT-A, 40 had at least one whole chromosome full copy number aneuploidy alone, 20 had a single whole chromosome intermediate copy number ("whole chromosome mosaic"), 20 had a single full segmental aneuploidy (segA), and 20 had a single segmental intermediate copy number ("segmental mosaic"). INTERVENTIONS Four rebiopsies were collected from each embryo: 3 TE biopsies and the remaining embryo. Each rebiopsy was randomized, blinded, and assessed with an SNP array-based PGT-A platform that combines copy number and allele ratio analyses, without mosaicism reporting. MAIN OUTCOME MEASURE(S) Concordance between the NGS result and rebiopsy results and within each embryo's blinded rebiopsy results. RESULT(S) Next-generation sequencing-diagnosed whole chromosome aneuploidy (WCA) was reconfirmed in 95% (95% confidence interval [CI], 83%-99%) of embryos; 2 embryos with NGS-diagnosed WCA were called euploid on all conclusive rebiopsies. Among embryos with NGS-diagnosed whole chromosome mosaicism, 35% (95% CI, 15%-59%) were called euploid and 15% (95% CI, 3%-38%) were called whole chromosome aneuploid on all conclusive rebiopsies. A total of 30% (95% CI, 12%-54%) of embryos with NGS-diagnosed segA and 65% (95% CI, 41%-85%) of embryos with NGS-diagnosed segmental mosaicism were called euploid on all conclusive rebiopsies. In total, 13% (95% CI, 6%-25%) of embryos with NGS-diagnosed full copy number aneuploidy and 50% (95% CI, 34%-66%) of embryos with NGS-diagnosed mosaicism had uniformly euploid SNP results. Conversely, all embryos with at least one noneuploid SNP result (n = 72) either had SNP-diagnosed aneuploidy on another rebiopsy from the same embryo or NGS-diagnosed aneuploidy/mosaicism involving the same chromosome. CONCLUSION(S) Next-generation sequencing-diagnosed WCA is highly concordant with rebiopsies tested with an SNP array-based PGT-A; however, whole chromosome mosaicism, segA, and segmental mosaicism are less concordant, reinforcing that embryos with these results may have reproductive potential and be suitable for transfer.
Collapse
Affiliation(s)
- Sarah Druckenmiller Cascante
- Department of Obstetrics & Gynaecology, New York University Langone Prelude Fertility Center, New York, New York.
| | - Andria Besser
- Department of Obstetrics & Gynaecology, New York University Langone Prelude Fertility Center, New York, New York
| | - Hsiao-Ling Lee
- Department of Obstetrics & Gynaecology, New York University Langone Prelude Fertility Center, New York, New York
| | - Fang Wang
- Department of Obstetrics & Gynaecology, New York University Langone Prelude Fertility Center, New York, New York
| | - Caroline McCaffrey
- Department of Obstetrics & Gynaecology, New York University Langone Prelude Fertility Center, New York, New York
| | - James A Grifo
- Department of Obstetrics & Gynaecology, New York University Langone Prelude Fertility Center, New York, New York
| |
Collapse
|
31
|
The effect of embryonic genome imbalances on pregnancy. Nat Med 2023; 29:3014-3015. [PMID: 38012316 DOI: 10.1038/s41591-023-02687-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
|
32
|
Li X, Zeng Y, He J, Luo B, Lu X, Zhu L, Yang Z, Cai F, Chen SA, Luo Y. The optimal frozen embryo transfer strategy for the recurrent implantation failure patient without blastocyst freezing: thawing day 3 embryos and culturing to day 5 blastocysts. ZYGOTE 2023; 31:596-604. [PMID: 37969109 DOI: 10.1017/s0967199423000503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
This study aimed to investigate the optimal frozen embryo transfer (FET) strategy for recurrent implantation failure (RIF) patients with three consecutive failed cleaved embryo implantations and no blastocyst preservation. This retrospective analysis was divided into three groups based on the FET strategy: thawed day 3 embryo transfer (D3 FET group); and extended culture of frozen-thawed day 3 embryos to day 5 blastocysts transfer (D3-D5 FET group); thawed blastocyst transfer (D5 FET group). Transplant cycle data were compared between the three groups. In total, 43.8% of vitrified-thawed cleavage embryos developed into blastocysts. Analysis of the three transplantation strategies showed that, compared with the D3 FET group, D3-D5 had a significantly better hCG-positivity rate and live-birth rate (P < 0.05). Pregnancy outcomes in the D3-D5 FET group and D5 FET group were similar regarding hCG-positivity rate, implantation rate, clinical pregnancy rate, and live-birth rate. Our findings propose two potentially valuable transfer strategies for patients experiencing repeated implantation failures. The D3-D5 FET approach presents a greater potential for selecting promising embryos in cases without blastocyst preservation; however, this strategy does entail the risk of cycle cancellation. Conversely, in instances where blastocyst preservation is an option, prioritizing consideration of the D5 FET strategy is recommended.
Collapse
Affiliation(s)
- Xiang Li
- Reproductive Medicine Center, Yulin Maternal and Child Health Care Hospital, Yulin Guangxi537000, China
| | - Youman Zeng
- Reproductive Medicine Center, Yulin Maternal and Child Health Care Hospital, Yulin Guangxi537000, China
| | - Juan He
- Reproductive Medicine Center, Yulin Maternal and Child Health Care Hospital, Yulin Guangxi537000, China
| | - Bowen Luo
- Reproductive Medicine Center, Yulin Maternal and Child Health Care Hospital, Yulin Guangxi537000, China
| | - Xiongcai Lu
- Reproductive Medicine Center, Yulin Maternal and Child Health Care Hospital, Yulin Guangxi537000, China
| | - Lingling Zhu
- Reproductive Medicine Center, Yulin Maternal and Child Health Care Hospital, Yulin Guangxi537000, China
| | - Zengyu Yang
- Reproductive Medicine Center, Yulin Maternal and Child Health Care Hospital, Yulin Guangxi537000, China
| | - Fuman Cai
- Reproductive Medicine Center, Yulin Maternal and Child Health Care Hospital, Yulin Guangxi537000, China
| | - Sheng-Ao Chen
- College of Animal Sciences, Tarim University, Alar, Xinjiang Uygur Autonomous Region 843300, China
| | - Yudi Luo
- Reproductive Medicine Center, Yulin Maternal and Child Health Care Hospital, Yulin Guangxi537000, China
| |
Collapse
|
33
|
Wang N, Xu S, Egli D. Replication stress in mammalian embryo development, differentiation, and reprogramming. Trends Cell Biol 2023; 33:872-886. [PMID: 37202286 PMCID: PMC11214770 DOI: 10.1016/j.tcb.2023.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 05/20/2023]
Abstract
Duplicating a genome of 3 billion nucleotides is challenged by a variety of obstacles that can cause replication stress and affect the integrity of the genome. Recent studies show that replication fork slowing and stalling is prevalent in early mammalian development, resulting in genome instability and aneuploidy, and constituting a barrier to development in human reproduction. Genome instability resulting from DNA replication stress is a barrier to the cloning of animals and to the reprogramming of differentiated cells to induced pluripotent stem cells, as well as a barrier to cell transformation. Remarkably, the regions most impacted by replication stress are shared in these different cellular contexts, affecting long genes and flanking intergenic areas. In this review we integrate our knowledge of DNA replication stress in mammalian embryos, in programming, and in reprogramming, and we discuss a potential role for fragile sites in sensing replication stress and restricting cell cycle progression in health and disease.
Collapse
Affiliation(s)
- Ning Wang
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shuangyi Xu
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Dieter Egli
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
34
|
Zhu S, Jia C, Hao S, Zhang Q, He J, Wang X, Lin P, Guo Y, Li Y, Feng X. Evaluation of the clinical effects of non-invasive prenatal screening for diseases associated with aneuploidy and copy number variation. Mol Genet Genomic Med 2023; 11:e2200. [PMID: 37354111 PMCID: PMC10496052 DOI: 10.1002/mgg3.2200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/09/2022] [Accepted: 05/04/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND To explore and compare the clinical effects of high-resolution non-invasive prenatal screening (NIPS-Plus) for common/uncommon chromosomal aneuploidy and microdeletion/microduplication syndromes (MMS). METHODS The current prospective study included a total of 25,380 pregnant women who performed NIPS-Plus, and amniocentesis was performed on women with MMS with the screening results to diagnose patients with suspected MMS. RESULTS There were 415 samples with positive results for NIPS-Plus, included 275 with aneuploidy and 140 with MMS. After diagnosis by amniocentesis, 188 cases were confirmed as true positive, included46 cases of T21, 9 cases of T18, 1 case of T13, 34 cases of SCA, 41 cases of other chromosomal euploidy and 57 cases of MMS. In addition, no false negative cases were found, MMS was classified with 5 Mb with the cutoff value, and the PPV of different fragment size was counted, respectively. CONCLUSION We found that the corresponding PPV was 44.66% with the fragment of copy number variation (CNV) being less than or equal to 5 Mb, and when it was greater than 5 Mb, the PPV was 29.73%, which suggested that NIPS-Plus was more suitable for screening the PPV of small fragment abnormalities. NIPS-Plus has a good application effect in routine aneuploidy screening and had the best detection effect for T21; moreover, it performed well in screening of MMS and had better detection effect on MMS with CNV fragment length less than 5 Mb. Based on the current results, we suggested that NIPS-Plus should be used as a comprehensive elementary prenatal screening method for all pregnant women, but for MMS caused by abnormal large fragment CNV, the detection method and efficiency still need to be improved.
Collapse
Affiliation(s)
- Shaohua Zhu
- Medical Genetic Centre, Gansu Maternity and Child‐Care HospitalLanzhouChina
- Gansu Provincial Clinical Research Center for Birth Defects and Rare DiseasesLanzhouChina
| | - Chunyang Jia
- Medical Genetic Centre, Gansu Maternity and Child‐Care HospitalLanzhouChina
| | - Shengju Hao
- Medical Genetic Centre, Gansu Maternity and Child‐Care HospitalLanzhouChina
- Gansu Provincial Clinical Research Center for Birth Defects and Rare DiseasesLanzhouChina
| | - Qinghua Zhang
- Medical Genetic Centre, Gansu Maternity and Child‐Care HospitalLanzhouChina
- Gansu Provincial Clinical Research Center for Birth Defects and Rare DiseasesLanzhouChina
| | - Jing He
- Medical Genetic Centre, Gansu Maternity and Child‐Care HospitalLanzhouChina
| | - Xing Wang
- Gansu Provincial Clinical Research Center for Birth Defects and Rare DiseasesLanzhouChina
| | - Pengwu Lin
- Gansu Provincial Clinical Research Center for Birth Defects and Rare DiseasesLanzhouChina
| | - Yuanyuan Guo
- Gansu Provincial Clinical Research Center for Birth Defects and Rare DiseasesLanzhouChina
| | - Yigang Li
- Gansu Provincial Clinical Research Center for Birth Defects and Rare DiseasesLanzhouChina
| | - Xuan Feng
- Medical Genetic Centre, Gansu Maternity and Child‐Care HospitalLanzhouChina
| |
Collapse
|
35
|
Chen L, Wang L, Zeng Y, Yin D, Tang F, Xie D, Zhu H, Liu H, Wang J. Defining the scope of extended NIPS in Western China: evidence from a large cohort of fetuses with normal ultrasound scans. BMC Pregnancy Childbirth 2023; 23:593. [PMID: 37598172 PMCID: PMC10439619 DOI: 10.1186/s12884-023-05921-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Standard noninvasive prenatal screening(NIPS) is an accurate and reliable method to screen for common chromosome aneuploidies, such as trisomy 21, 18 and 13. Extended NIPS has been used in clinic for not only aneuploidies but also copy number variants(CNVs). Here we aim to define the range of chromosomal abnormalities that should be able to identify by NIPS in order to be an efficient extended screening test for chromosomal abnormalities. METHODS A prospective study was conducted, involving pregnant women without fetal sonographic structural abnormalities who underwent amniocentesis. Prenatal samples were analyzed using copy number variation sequencing(CNV-seq) to identify fetal chromosomal abnormalities. RESULTS Of 28,469 pregnancies included 1,022 (3.59%) were identified with clinically significant fetal chromosome abnormalities, including 587 aneuploidies (2.06%) and 435 (1.53%) pathogenic (P) / likely pathogenic (LP) CNVs. P/LP CNVs were found in all chromosomes, but the distribution was not uniform. Among them, P/LP CNVs in chromosomes 16, 22, and X exhibited the highest frequencies. In addition, P/LP CNVs were most common on distal ends of the chromosomes and in low copy repeat regions. Recurrent microdeletion/microduplication syndromes (MMS) accounted for 40.69% of total P/LP CNVs. The size of most P/LP CNVs (77.47%) was < 3 Mb. CONCLUSIONS In addition to aneuploidies, the scope of extended NIPS should include the currently known P/LP CNVs, especially the regions with recurrent MMS loci, distal ends of the chromosomes, and low copy repeat regions. To be effective detection should include CNVs of < 3 Mb. Meanwhile, sufficient preclinical validation is still needed to ensure the clinical effect of extended NIPS.
Collapse
Affiliation(s)
- Lin Chen
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Li Wang
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Yang Zeng
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Daishu Yin
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Feng Tang
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Dan Xie
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Hongmei Zhu
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Hongqian Liu
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Block 3 No. 20, Ren Min Nan Road, Wuhou district, 610041, Chengdu, China
| | - Jing Wang
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China.
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Block 3 No. 20, Ren Min Nan Road, Wuhou district, 610041, Chengdu, China.
| |
Collapse
|
36
|
He E, Shi B, Liu Z, Chang K, Zhao H, Zhao W, Cui H. Identification of the molecular subtypes and construction of risk models in neuroblastoma. Sci Rep 2023; 13:11790. [PMID: 37479876 PMCID: PMC10362029 DOI: 10.1038/s41598-023-35401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/17/2023] [Indexed: 07/23/2023] Open
Abstract
The heterogeneity of neuroblastoma directly affects the prognosis of patients. Individualization of patient treatment to improve prognosis is a clinical challenge at this stage and the aim of this study is to characterize different patient populations. To achieve this, immune-related cell cycle genes, identified in the GSE45547 dataset using WGCNA, were used to classify cases from multiple datasets (GSE45547, GSE49710, GSE73517, GES120559, E-MTAB-8248, and TARGET) into subgroups by consensus clustering. ESTIMATES, CIBERSORT and ssGSEA were used to assess the immune status of the patients. And a 7-gene risk model was constructed based on differentially expressed genes between subtypes using randomForestSRC and LASSO. Enrichment analysis was used to demonstrate the biological characteristics between different groups. Key genes were screened using randomForest to construct neural network and validated. Finally, drug sensitivity was assessed in the GSCA and CellMiner databases. We classified the 1811 patients into two subtypes based on immune-related cell cycle genes. The two subtypes (Cluster1 and Cluster2) exhibited distinct clinical features, immune levels, chromosomal instability and prognosis. The same significant differences were demonstrated between the high-risk and low-risk groups. Through our analysis, we identified neuroblastoma subtypes with unique characteristics and established risk models which will improve our understanding of neuroblastoma heterogeneity.
Collapse
Affiliation(s)
- Enyang He
- Tianjin Medical University, Tianjin, China
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Bowen Shi
- Tianjin Medical University, Tianjin, China
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Ziyu Liu
- Tianjin Medical University, Tianjin, China
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Kaili Chang
- Tianjin Medical University, Tianjin, China
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Hailan Zhao
- Tianjin Medical University, Tianjin, China
- Basic Medical Sciences School of Tianjin Medical University, Tianjin, China
| | - Wei Zhao
- Tianjin Medical University, Tianjin, China
- Basic Medical Sciences School of Tianjin Medical University, Tianjin, China
| | - Hualei Cui
- Tianjin Medical University, Tianjin, China.
- Tianjin Children's Hospital, Tianjin, China.
| |
Collapse
|
37
|
Wang X, Zhao J, Yao Z, Xia Q, Chang T, Zeng J, Liu J, Li Y, Zhu H. Arrested Cells/Cellular Debris Expelled from Blastocysts Is Self-Correction Phenomenon During Early Embryonic Development. Reprod Sci 2023; 30:2177-2187. [PMID: 36627481 PMCID: PMC10310642 DOI: 10.1007/s43032-022-01159-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023]
Abstract
Arrested cells/ cellular debris is component left in the zona pellucida after blastocyst hatching. To identify whether expelling arrested cells/cellular debris from blastocysts is a process of human embryo self-correction by eliminating abnormal cells, 21 pairs of trophectoderm (TE) biopsies and the corresponding arrested cells/cellular debris expelled from the blastocysts from July to December 2020 were collected and analyzed using next-generation sequencing (NGS). Then, the NGS results of TE biopsies and the corresponding arrested cells/cellular debris were compared. We identified that 47.6% of blastocysts (10/21) were aneuploidies and mosaicism. A total of 18 groups of arrested cells/cellular debris (85.7%) expelled from blastocysts were abnormal, including nine aneuploid embryos and nine euploid embryos. In the arrested cells/cellular debris, all the chromosomes were affected. In conclusion, mosaicism and aneuploidies are common features of early embryonic development, and the arrested cells/cellular debris expelled from blastocysts provides evidence of early embryonic self-correction.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Department of Reproductive Center, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
| | - Jing Zhao
- Department of Reproductive Center, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
- Clinical Research Center for Women's Reproductive Health in Hunan Province, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
| | - Zhongyuan Yao
- Department of Reproductive Center, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
- Clinical Research Center for Women's Reproductive Health in Hunan Province, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410000, Hunan, China
| | - Qiuping Xia
- Department of Reproductive Center, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
- Clinical Research Center for Women's Reproductive Health in Hunan Province, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
| | - Tianli Chang
- Department of Reproductive Center, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
- Clinical Research Center for Women's Reproductive Health in Hunan Province, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
| | - Jun Zeng
- Department of Reproductive Center, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
| | - Jiaqi Liu
- Yikon Genomics Company, Ltd, No.218, Xinghu Street, Suzhou, 215000, China
| | - Yanping Li
- Department of Reproductive Center, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
- Clinical Research Center for Women's Reproductive Health in Hunan Province, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
| | - Huimin Zhu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410000, Hunan, China.
| |
Collapse
|
38
|
Vijg J, Schumacher B, Abakir A, Antonov M, Bradley C, Cagan A, Church G, Gladyshev VN, Gorbunova V, Maslov AY, Reik W, Sharifi S, Suh Y, Walsh K. Mitigating age-related somatic mutation burden. Trends Mol Med 2023; 29:530-540. [PMID: 37121869 DOI: 10.1016/j.molmed.2023.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023]
Abstract
Genomes are inherently unstable and require constant DNA repair to maintain their genetic information. However, selective pressure has optimized repair mechanisms in somatic cells only to allow transmitting genetic information to the next generation, not to maximize sequence integrity long beyond the reproductive age. Recent studies have confirmed that somatic mutations, due to errors during genome repair and replication, accumulate in tissues and organs of humans and model organisms. Here, we describe recent advances in the quantitative analysis of somatic mutations in vivo. We also review evidence for or against a possible causal role of somatic mutations in aging. Finally, we discuss options to prevent, delay or eliminate de novo, random somatic mutations as a cause of aging.
Collapse
Affiliation(s)
- Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Center for Single-Cell Omics, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, University and University Hospital of Cologne, Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Abdulkadir Abakir
- Altos Labs Cambridge Institute of Science, Granta Park, Cambridge, UK
| | | | | | - Alex Cagan
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - George Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Alexander Y Maslov
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wolf Reik
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK; Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK; Altos Labs Cambridge Institute of Science, Granta Park, Cambridge, UK; Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | | | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
39
|
Hori K, Hori K, Kosasa T, Walker B, Ohta A, Ahn HJ, Huang TTF. Comparison of euploid blastocyst expansion with subgroups of single chromosome, multiple chromosome, and segmental aneuploids using an AI platform from donor egg embryos. J Assist Reprod Genet 2023; 40:1407-1416. [PMID: 37071320 PMCID: PMC10310614 DOI: 10.1007/s10815-023-02797-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
PURPOSE This retrospective observational study compares how different classes of blastocyst genotypes from egg donor cycles differentially blastulate and expand using a standard assay. METHODS Quantitative measurements of expansion utilized a customized neural network that segments all sequential time-lapse images during the first 10 h of expansion. RESULTS Analyses were performed using two developmental time perspectives using time-lapse imaging. The first was the time to blastocyst formation (tB), which broadly reflects variations in developmental rate. Euploidy peaked at 100-115 h from fertilization. In contrast, aneuploidy peaks flanked this interval bi-modally. These distributions limit ploidy discrimination based upon traditional standard grading features when assessed in real time. In contrast, from the second perspective of progressive blastocyst expansion that is normalized to each individual blastocyst's tB time, euploidy was significantly increased at expansion values > 20,000µ2 across all tB intervals studied. A Cartesian coordinate plot graphically summarizes information useful to rank order blastocysts within cohorts for transfer. Defined aneuploidy subgroups, distinguished by the number and complexity of chromosomes involved, also showed distributive differences from both euploids and from each other. A small subset of clinically significant trisomies did not show discriminating features separating them from other euploids. CONCLUSION A standard assay of blastocyst expansion normalized to each individual blastocyst's time of blastocyst formation more usefully discriminates euploidy from aneuploidy than real-time expansion comparisons using absolute developmental time from fertilization.
Collapse
Affiliation(s)
- Kristen Hori
- Department of Obstetrics and Gynecology and Women's Health, John A Burns School of Medicine, Honolulu, HI, USA
| | - Kaitlin Hori
- Department of Obstetrics and Gynecology and Women's Health, John A Burns School of Medicine, Honolulu, HI, USA
| | - Thomas Kosasa
- Department of Obstetrics and Gynecology and Women's Health, John A Burns School of Medicine, Honolulu, HI, USA
- Pacific In Vitro Fertilization Institute, Honolulu, HI, USA
| | - Brienne Walker
- Pacific In Vitro Fertilization Institute, Honolulu, HI, USA
| | - Aaron Ohta
- Department of Electrical Engineering, University of Hawaii, Honolulu, HI, USA
| | - Hyeong J Ahn
- Department of Quantitative Health Science, University of Hawaii John A Burns School of Medicine, Honolulu, HI, USA
| | - Thomas T F Huang
- Department of Obstetrics and Gynecology and Women's Health, John A Burns School of Medicine, Honolulu, HI, USA.
- Pacific In Vitro Fertilization Institute, Honolulu, HI, USA.
| |
Collapse
|
40
|
Sperling K, Scherb H, Neitzel H. Population monitoring of trisomy 21: problems and approaches. Mol Cytogenet 2023; 16:6. [PMID: 37183244 PMCID: PMC10183086 DOI: 10.1186/s13039-023-00637-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/02/2023] [Indexed: 05/16/2023] Open
Abstract
Trisomy 21 (Down syndrome) is the most common autosomal aneuploidy among newborns. About 90% result from meiotic nondisjunction during oogenesis, which occurs around conception, when also the most profound epigenetic modifications take place. Thus, maternal meiosis is an error prone process with an extreme sensitivity to endogenous factors, as exemplified by maternal age. This contrasts with the missing acceptance of causal exogenous factors. The proof of an environmental agent is a great challenge, both with respect to ascertainment bias, determination of time and dosage of exposure, as well as registration of the relevant individual health data affecting the birth prevalence. Based on a few exemplary epidemiological studies the feasibility of trisomy 21 monitoring is illustrated. In the nearer future the methodical premises will be clearly improved, both due to the establishment of electronic health registers and to the introduction of non-invasive prenatal tests. Down syndrome is a sentinel phenotype, presumably also with regard to other congenital anomalies. Thus, monitoring of trisomy 21 offers new chances for risk avoidance and preventive measures, but also for basic research concerning identification of relevant genomic variants involved in chromosomal nondisjunction.
Collapse
Affiliation(s)
- Karl Sperling
- Institute of Medical and Human Genetics, Charité-Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Hagen Scherb
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Heidemarie Neitzel
- Institute of Medical and Human Genetics, Charité-Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
41
|
Comaills V, Castellano-Pozo M. Chromosomal Instability in Genome Evolution: From Cancer to Macroevolution. BIOLOGY 2023; 12:671. [PMID: 37237485 PMCID: PMC10215859 DOI: 10.3390/biology12050671] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
The integrity of the genome is crucial for the survival of all living organisms. However, genomes need to adapt to survive certain pressures, and for this purpose use several mechanisms to diversify. Chromosomal instability (CIN) is one of the main mechanisms leading to the creation of genomic heterogeneity by altering the number of chromosomes and changing their structures. In this review, we will discuss the different chromosomal patterns and changes observed in speciation, in evolutional biology as well as during tumor progression. By nature, the human genome shows an induction of diversity during gametogenesis but as well during tumorigenesis that can conclude in drastic changes such as the whole genome doubling to more discrete changes as the complex chromosomal rearrangement chromothripsis. More importantly, changes observed during speciation are strikingly similar to the genomic evolution observed during tumor progression and resistance to therapy. The different origins of CIN will be treated as the importance of double-strand breaks (DSBs) or the consequences of micronuclei. We will also explain the mechanisms behind the controlled DSBs, and recombination of homologous chromosomes observed during meiosis, to explain how errors lead to similar patterns observed during tumorigenesis. Then, we will also list several diseases associated with CIN, resulting in fertility issues, miscarriage, rare genetic diseases, and cancer. Understanding better chromosomal instability as a whole is primordial for the understanding of mechanisms leading to tumor progression.
Collapse
Affiliation(s)
- Valentine Comaills
- Andalusian Center for Molecular Biology and Regenerative Medicine—CABIMER, University of Pablo de Olavide—University of Seville—CSIC, Junta de Andalucía, 41092 Seville, Spain
| | - Maikel Castellano-Pozo
- Andalusian Center for Molecular Biology and Regenerative Medicine—CABIMER, University of Pablo de Olavide—University of Seville—CSIC, Junta de Andalucía, 41092 Seville, Spain
- Genetic Department, Faculty of Biology, University of Seville, 41080 Seville, Spain
| |
Collapse
|
42
|
Herbert M, Choudhary M, Zander-Fox D. Assisted reproductive technologies at the nexus of fertility treatment and disease prevention. Science 2023; 380:164-167. [PMID: 37053308 DOI: 10.1126/science.adh0073] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Assisted reproductive technology (ART) refers to processing gametes in vitro and usually involves in vitro fertilization. Originally developed for the treatment of infertility, culture of human embryos in vitro also provides an opportunity to screen embryos for inherited genetic disorders of the nuclear and mitochondrial genomes. Progress in identifying causative genetic variants has massively increased the scope of preimplantation genetic testing in preventing genetic disorders. However, because ART procedures are not without risk of adverse maternal and child outcomes, careful consideration of the balance of risks and benefits is warranted. Further research on early human development will help to minimize risks while maximizing the benefits of ART.
Collapse
Affiliation(s)
- Mary Herbert
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 4EP, UK
- Newcastle Fertility Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4EP, UK
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Meenakshi Choudhary
- Newcastle Fertility Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4EP, UK
| | - Deidre Zander-Fox
- Monash IVF, Melbourne, VIC 3800, Australia
- Department of Obstetrics and Gynaecology, School of Clinical Science, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
43
|
Yang X, Du L, Li Y, Liang L, Ma L, Wang S. Trophoblast retrieval from the cervical canal to predict abnormal pregnancy early in gestation: a pilot study. BMC Pregnancy Childbirth 2023; 23:193. [PMID: 36934233 PMCID: PMC10024359 DOI: 10.1186/s12884-023-05499-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND The current detection of fetal chromosomal abnormalities by non-invasive prenatal testing (NIPT) mainly relies on the cell free DNA(cfDNA) in the maternal blood. However, a gestational age of less than 12 weeks or a high maternal BMI affects cfDNA fetal fraction and further the detection by NIPT negatively. In this study, we aim to retrieve the trophoblast cells from the maternal cervix to develop a new sampling method for NIPT enabling an earlier use of NIPT. METHODS We enrolled three patients who wanted to undergo induced abortion at Beijing Hospital between January 2022 and March 2022. Peripheral blood, cervix specimen, and the abortion tissue were collected and processed for each patient. Allele frequencies of the mutated gene loci of the maternal blood and the cervix sample were compared and the Sex Determining Region Y (SRY) gene was tested. RESULTS The allele frequencies of the mutated gene loci showed no significant difference between the maternal blood and the cervix sample. But we successfully detected signal of the SRY gene in the cervix sample of the only patient carrying a male fetus. CONCLUSIONS The detection of the SRY gene in a cervix sample indicated a successful retrieval of trophoblast cells from the cervix canal. Further study needs to be conducted to verify our finding before its application to the clinical settings.
Collapse
Affiliation(s)
- Xiaoke Yang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
- Graduate School of Peking Union Medical College, Beijing, P.R. China
| | - Liuyezi Du
- Beijing USCI Medical Laboratory, Beijing, P.R. China
| | - Yue Li
- Beijing USCI Medical Laboratory, Beijing, P.R. China
| | - Lin Liang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Linlin Ma
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Shaowei Wang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China.
- Graduate School of Peking Union Medical College, Beijing, P.R. China.
| |
Collapse
|
44
|
Combining Machine Learning with Metabolomic and Embryologic Data Improves Embryo Implantation Prediction. Reprod Sci 2023; 30:984-994. [PMID: 36097248 PMCID: PMC10014658 DOI: 10.1007/s43032-022-01071-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/23/2022] [Indexed: 10/14/2022]
Abstract
This study investigated whether combining metabolomic and embryologic data with machine learning (ML) models improve the prediction of embryo implantation potential. In this prospective cohort study, infertile couples (n=56) undergoing day-5 single blastocyst transfer between February 2019 and August 2021 were included. After day-5 single blastocyst transfer, spent culture medium (SCM) was subjected to metabolite analysis using nuclear magnetic resonance (NMR) spectroscopy. Derived metabolite levels and embryologic parameters between successfully implanted and failed groups were incorporated into ML models to explore their predictive potential regarding embryo implantation. The SCM of blastocysts that resulted in successful embryo implantation had significantly lower pyruvate (p<0.05) and threonine (p<0.05) levels compared to medium control but not compared to SCM related to embryos that failed to implant. Notably, the prediction accuracy increased when classical ML algorithms were combined with metabolomic and embryologic data. Specifically, the custom artificial neural network (ANN) model with regularized parameters for metabolomic data provided 100% accuracy, indicating the efficiency in predicting implantation potential. Hence, combining ML models (specifically, custom ANN) with metabolomic and embryologic data improves the prediction of embryo implantation potential. The approach could potentially be used to derive clinical benefits for patients in real-time.
Collapse
|
45
|
Sanders KD, Griffin DK, Martell HJ, Blazek J, Large M, Gordon T. What proportion of embryos should be considered for transfer following a mosaic diagnosis? A study of 115 clinics from a central diagnostic laboratory. J Assist Reprod Genet 2023; 40:653-664. [PMID: 36708429 PMCID: PMC10033805 DOI: 10.1007/s10815-022-02678-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/02/2022] [Indexed: 01/29/2023] Open
Abstract
PURPOSE The aim of this study is to identify what proportion of mosaic embryo diagnoses should be considered for transfer, and thereby assess the impact on patient cases. METHODS We categorised mosaic embryos into 3 groups; high, medium and low priority for transfer based on the percentage of biopsy sample being aneuploid and the chromosomes involved. The categories were applied to those patients that had no euploid embryo diagnoses but 1 or more mosaic embryos identified as mosaic available after PGT-A. RESULTS In total, 6614 PGT-A cases from 115 clinics and a single diagnostic laboratory were reviewed. Further, 1384 [20.9%] cases only had aneuploid embryos, 4538 [68.6%] cases had one or more euploid embryos and 692 [10.5%] cases had no euploid and one or more mosaic embryo. The mosaic embryos in the no euploid, one or more mosaic group, when reviewed using priorities, resulted in: 111 [1.7%] of cases having at least one high priority mosaic available. 184 [2.8%] of cases having no high priority but at least one medium priority mosaic available. 397 [6.0%] of cases only having low priority mosaic embryos available. CONCLUSION Based on this data, embryos identified as mosaic will only be considered for transfer in the first instance for around 4.5% (when taking high and medium priority and excluding low priority cases) of all PGT-A cases.
Collapse
Affiliation(s)
| | - Darren K Griffin
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Henry J Martell
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | | | | | | |
Collapse
|
46
|
Yao Z, Wang X, Zeng J, Zhao J, Xia Q, Zhang L, Wu L, Li Y. Chromosomal concordance between babies produced by the preimplantation genetic testing for aneuploidies and trophectoderm biopsies: A prospective observational study. Eur J Obstet Gynecol Reprod Biol 2023; 282:7-11. [PMID: 36603314 DOI: 10.1016/j.ejogrb.2022.12.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/14/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Contributed to the development of next-generation sequencing (NGS) technology, more and more chromosomally mosaic and aneuploid embryos are discovered during the preimplantation genetic testing for aneuploidy (PGT-A) cycles. Because mosaicism and aneuploidy are routine phenomena throughout human pre- and post-implantation development. The benefit of implanting such mosaicism or aneuploidies detected by precise NGS remains controversial. This study aimed to investigate chromosomal concordance between babies produced by PGT-A and trophectoderm (TE) biopsies, and whether precise NGS resolution would reduce the development of an abnormal embryo in PGT cycles. STUDY DESIGN Peripheral blood samples from 17 PGT-A babies were collected to compare with TE biopsy results at different NGS resolutions. RESULTS 16 euploid embryos diagnosed by 10 Mb resolution developed into 16 healthy babies with normal copy number variations (CNVs). One mosaic embryo diagnosed by both 10 Mb and 4 Mb resolution also produced a euploid baby finally. Among them, four euploid embryos diagnosed by 10 Mb NGS, showed segmental aneuploidy at 4 Mb NGS resolution. Four of them developed into euploid babies with normal CNVs finally. CONCLUSIONS NGS at 10 Mb resolution is accurate enough to diagnose viable embryos. A more precise NGS resolution (e.g., 4 Mb resolution) results in discard of some potentially viable embryos. It is suggested to analyze the TE biopsy at both 10 Mb and 4 Mb resolutions to identify embryos with adverse chromosomal aberrations, but using 10 Mb resolution for guide transfer to increase a development chance of an embryo. TRIAL REGISTRATION www. CLINICALTRIALS gov, identifier ChiCTR2100042522.
Collapse
Affiliation(s)
- Zhongyuan Yao
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410000, China; Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China; Clinical Research Center for Women's Reproductive Health in Hunan Province, Hunan 410087, China
| | - Xiaoxia Wang
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Jun Zeng
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Jing Zhao
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China; Clinical Research Center for Women's Reproductive Health in Hunan Province, Hunan 410087, China
| | - Qiuping Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410000, China; Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Lei Zhang
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Lingqian Wu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410000, China.
| | - Yanping Li
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China; Clinical Research Center for Women's Reproductive Health in Hunan Province, Hunan 410087, China.
| |
Collapse
|
47
|
Deng C, Ya A, Compton DA, Godek KM. A pluripotent developmental state confers a low fidelity of chromosome segregation. Stem Cell Reports 2023; 18:475-488. [PMID: 36638786 PMCID: PMC9968987 DOI: 10.1016/j.stemcr.2022.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023] Open
Abstract
During in vitro propagation, human pluripotent stem cells (hPSCs) frequently become aneuploid with incorrect chromosome numbers due to mitotic chromosome segregation errors. Yet, it is not understood why hPSCs exhibit a low mitotic fidelity. Here, we investigate the mechanisms responsible for mitotic errors in hPSCs and show that the primary cause is lagging chromosomes in anaphase with improper merotelic microtubule attachments. Accordingly, short-term treatment (<24 h) with small molecules that prolong mitotic duration or destabilize chromosome microtubule attachments reduces merotelic errors and lagging chromosome rates, although hPSCs adapt and lagging chromosome rates rebound upon long-term (>24 h) microtubule destabilization. Strikingly, we also demonstrate that mitotic error rates correlate with developmental potential decreasing or increasing upon loss or gain of pluripotency, respectively. Thus, a low mitotic fidelity is an inherent and conserved phenotype of hPSCs. Moreover, chromosome segregation fidelity depends on developmental state in normal human cells.
Collapse
Affiliation(s)
- Chenhui Deng
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Amanda Ya
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Duane A Compton
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Kristina M Godek
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
48
|
Ren M, Sun G, Kong X, Zhang L, Ji Y, Rao H, Du L, Zhang X, Wu Q. A new and improved method of library preparation for non-invasive prenatal testing: plasma to library express technology. Clin Chem Lab Med 2023; 61:999-1004. [PMID: 36709503 DOI: 10.1515/cclm-2022-0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/12/2022] [Indexed: 01/30/2023]
Abstract
OBJECTIVES This study aims to develop a novel library preparation method, plasma to library express technology (PLET), to construct next-generation sequencing (NGS) libraries directly from plasma without cell-free DNA (cfDNA) isolation. METHODS Peripheral blood samples (600) were obtained from a retrospective cohort of 300 pregnant women prior to invasive diagnostic testing. The samples were subsequently distributed between library preparation methodologies, with 300 samples prepared by PLET and 300 by conventional methods for non-invasive prenatal testing (NIPT) to screen for common trisomies using low-pass whole genome next generation sequencing. RESULTS NIPT conducted on PLET libraries demonstrated comparable metrics to libraries prepared using conventional methods, including 100% sensitivity and specificity. CONCLUSIONS Our study demonstrates the potential utility of PLET in the clinical setting and highlights its significant advantages, including dramatically reduced process complexity and markedly decreased turnaround time.
Collapse
Affiliation(s)
- Meihong Ren
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, P.R. China
| | - Guangxin Sun
- Beijing USCI Medical Laboratory Co Ltd, Beijing, P.R. China
| | - Xiangsha Kong
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing, P.R. China
| | - Lin Zhang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, P.R. China
| | - Ying Ji
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing, P.R. China
| | - Huiying Rao
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing, P.R. China
| | - Liuyezi Du
- Beijing USCI Medical Laboratory Co Ltd, Beijing, P.R. China
| | - Xiaohong Zhang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, P.R. China
| | - Qixi Wu
- Beijing USCI Medical Laboratory Co Ltd, Beijing, P.R. China
| |
Collapse
|
49
|
Assisted Reproductive Technology without Embryo Discarding or Freezing in Women ≥40 Years: A 5-Year Retrospective Study at a Single Center in Italy. J Clin Med 2023; 12:jcm12020504. [PMID: 36675433 PMCID: PMC9862537 DOI: 10.3390/jcm12020504] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The protocols commonly used in assisted reproductive technology (ART) consist of long-term embryo culture up to the blastocyst stage after the insemination of all mature oocytes, the freezing of all the embryos produced, and their subsequent transfer one by one. These practices, along with preimplantation genetic testing, although developed to improve the live birth rate (LBR) and reduce the risk of multiple pregnancies, are drawing attention to the possible increase in obstetric and perinatal risks, and adverse epigenetic consequences in offspring. Furthermore, ethical-legal concerns are growing regarding the increase in cryopreservation and storage of frozen embryos. In an attempt to reduce the risk associated with prolonged embryo culture and avoid embryo storage, we have chosen to inseminate a limited number of oocytes not exceeding the number of embryos to be transferred, after two days or less of culture. We retrospectively analyzed 245 ICSI cycles performed in 184 infertile couples with a female partner aged ≥40 from January 2016 to July 2021. The results showed a fertilization rate of 95.7%, a miscarriage rate of 48.9%, and a LBR of 10% with twin pregnancies of 16.7%. The cumulative LBR in our group of couples was 13%. No embryos were frozen. In conclusion, these results suggest that oocyte selection and embryo transfer at the cleaving stage constitute a practice that has a LBR comparable to that of the more commonly used protocols in older women who have reduced ovarian reserve.
Collapse
|
50
|
Grave-to-cradle: human embryonic lineage tracing from the postmortem body. Exp Mol Med 2023; 55:13-21. [PMID: 36599930 PMCID: PMC9898511 DOI: 10.1038/s12276-022-00912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/02/2022] [Accepted: 10/13/2022] [Indexed: 01/06/2023] Open
Abstract
Curiosity concerning the process of human creation has been around for a long time. Relevant questions seemed to be resolved with the knowledge of how cells divide after fertilization obtained through in vitro fertilization experiments. However, we still do not know how human life is created at the cellular level. Recently, the value of cadavers as a resource from which to obtain "normal" cells and tissues has been established, and human research using postmortem bodies has attracted growing scientific attention. As the human genome can be analyzed at the level of nucleotides through whole-genome sequencing, individual cells in a postmortem body can be traced back to determine what developmental processes have transpired from fertilization. These retrospective lineage tracing studies have answered several unsolved questions on how humans are created. This review covers the methodologies utilized in lineage tracing research in a historical context and the conceptual basis for reconstructing the division history of cells in a retrospective manner using postzygotic somatic variants in postmortem tissue. We further highlight answers that postmortem research could potentially address and discuss issues that wait to be solved in the future.
Collapse
|