1
|
Ahn S, Datta S. Differential network connectivity analysis for microbiome data adjusted for clinical covariates using jackknife pseudo-values. BMC Bioinformatics 2024; 25:117. [PMID: 38500042 PMCID: PMC10946111 DOI: 10.1186/s12859-024-05689-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 02/02/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND A recent breakthrough in differential network (DN) analysis of microbiome data has been realized with the advent of next-generation sequencing technologies. The DN analysis disentangles the microbial co-abundance among taxa by comparing the network properties between two or more graphs under different biological conditions. However, the existing methods to the DN analysis for microbiome data do not adjust for other clinical differences between subjects. RESULTS We propose a Statistical Approach via Pseudo-value Information and Estimation for Differential Network Analysis (SOHPIE-DNA) that incorporates additional covariates such as continuous age and categorical BMI. SOHPIE-DNA is a regression technique adopting jackknife pseudo-values that can be implemented readily for the analysis. We demonstrate through simulations that SOHPIE-DNA consistently reaches higher recall and F1-score, while maintaining similar precision and accuracy to existing methods (NetCoMi and MDiNE). Lastly, we apply SOHPIE-DNA on two real datasets from the American Gut Project and the Diet Exchange Study to showcase the utility. The analysis of the Diet Exchange Study is to showcase that SOHPIE-DNA can also be used to incorporate the temporal change of connectivity of taxa with the inclusion of additional covariates. As a result, our method has found taxa that are related to the prevention of intestinal inflammation and severity of fatigue in advanced metastatic cancer patients. CONCLUSION SOHPIE-DNA is the first attempt of introducing the regression framework for the DN analysis in microbiome data. This enables the prediction of characteristics of a connectivity of a network with the presence of additional covariate information in the regression. The R package with a vignette of our methodology is available through the CRAN repository ( https://CRAN.R-project.org/package=SOHPIE ), named SOHPIE (pronounced as Sofie). The source code and user manual can be found at https://github.com/sjahnn/SOHPIE-DNA .
Collapse
Affiliation(s)
- Seungjun Ahn
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Somnath Datta
- Department of Biostatistics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Yang H, Wu C, Chen L, Chang X, Luo G, Wu K, Tian W. A. macrocephala polysaccharide induces alterations to gut microbiome and serum metabolome in constipated mice. Microb Pathog 2023; 178:106084. [PMID: 36990166 DOI: 10.1016/j.micpath.2023.106084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Atractylodes macrocephala polysaccharide (AC1) is extracted from the root of the Chinese herb Atractylodes Macrocephala and is used in the treatment of constipation due to its effects on strengthening cellular immunity and regulating intestinal function. In this study, Metagenomics and Metabolomic are used to analyze the effects of AC1 on the gut microbiota and host metabolites in mice models of constipation. The results show that the abundance of Lachnospiraceae_bacterium_A4, Bact-oides_vulgatus and Prevotella_sp_CAG:891 increased significantly, indicating that AC1-targeted strain modulation effectively alleviated the dysbiosis of the gut microbiota. Besides, the microbial alterations also influenced the metabolic pathways of the mice, including tryptophan metabolism, unsaturated fatty acid synthesis and bile acid metabolism. The physiological parameters of the mice treated with AC1 are improved, such as tryptophan in the colon, 5-hydroxytryptamine (5-HT) and short-chain fatty acids (SCFAs). In conclusion, AC1 as a probiotic can regulate intestinal flora to normal levels and achieve the effect of treating constipation.
Collapse
|
3
|
Fernandes MR, Aggarwal P, Costa RGF, Cole AM, Trinchieri G. Targeting the gut microbiota for cancer therapy. Nat Rev Cancer 2022; 22:703-722. [PMID: 36253536 DOI: 10.1038/s41568-022-00513-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 02/06/2023]
Abstract
Growing evidence suggests that the gut microbiota modulates the efficacy and toxicity of cancer therapy, most notably immunotherapy and its immune-related adverse effects. The poor response to immunotherapy in patients treated with antibiotics supports this influential role of the microbiota. Until recently, results pertaining to the identification of the microbial species responsible for these effects were incongruent, and relatively few studies analysed the underlying mechanisms. A better understanding of the taxonomy of the species involved and of the mechanisms of action has since been achieved. Defined bacterial species have been shown to promote an improved response to immune-checkpoint inhibitors by producing different products or metabolites. However, a suppressive effect of Gram-negative bacteria may be dominant in some unresponsive patients. Machine learning approaches trained on the microbiota composition of patients can predict the ability of patients to respond to immunotherapy with some accuracy. Thus, interest in modulating the microbiota composition to improve patient responsiveness to therapy has been mounting. Clinical proof-of-concept studies have demonstrated that faecal microbiota transplantation or dietary interventions might be utilized clinically to improve the success rate of immunotherapy in patients with cancer. Here, we review recent advances and discuss emerging strategies for microbiota-based cancer therapies.
Collapse
Affiliation(s)
- Miriam R Fernandes
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Poonam Aggarwal
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Raquel G F Costa
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Alicia M Cole
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
4
|
Wang Q, Shen F, Zhang J, Cai H, Pan Y, Sun T, Gong Y, Du J, Zhong H, Feng F. Consumption of Wheat Peptides Improves Functional Constipation: A Translational Study in Humans and Mice. Mol Nutr Food Res 2022; 66:e2200313. [PMID: 35920293 DOI: 10.1002/mnfr.202200313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/04/2022] [Indexed: 11/07/2022]
Abstract
SCOPE Wheat peptides (WP) are rich in glutamic acid, glutamine, and other bioactive compounds that may benefit gut function and health. This study aims to evaluate the effects of regular consumption of WP on constipation-induced complications and gut microbiota in humans and mice. METHODS AND RESULTS A randomized trial of 49 functional constipation participants was conducted. The weekly amount of spontaneous bowel movements (SBM) increased by 2.09 per week after WP treatment, and by 0.40 per week among the placebo group (PL). Concomitantly, the secondary outcomes showed significant improvements in the quality of life-related to constipation, constipation severity, and satisfaction with the intervention. In the animal study, WP effectively alleviated constipation symptoms and affected the secretion of intestinal mobility-related neurotransmitters and gastrointestinal hormones in loperamide-induced constipation mice. Additionally, WP regulated the gene and protein expression levels of water-electrolyte metabolism and intestinal mobility. Furthermore, WP treatment decreased the abundance of several gut microbiota positively correlated to constipation (Turicibacter, Bacteroides_f_Bacteroidaceae, and Streptococcus) in mice. CONCLUSION WP ameliorated constipation in humans and mice, which could be partly explained by improving water-electrolyte metabolism, boosting intestinal motility, and reshaping gut microbiota. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qianqian Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Fei Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Junhui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Haiying Cai
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, China
| | - Ya Pan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Tengjia Sun
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yihang Gong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Juan Du
- Hangzhou Kangyuan Food Science & Technology Co., Ltd, Hangzhou, 310012, China
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
5
|
Functional and Metagenomic Evaluation of Ibezapolstat for Early Evaluation of Anti-Recurrence Effects in Clostridioides difficile Infection. Antimicrob Agents Chemother 2022; 66:e0224421. [PMID: 35862742 PMCID: PMC9380534 DOI: 10.1128/aac.02244-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reduction of Clostridioides difficile infection (CDI) recurrence is an essential endpoint for CDI-directed antibiotic development that is often not evaluated until Phase III trials. The purpose of this project was to use a functional and metagenomic approach to predict the potential anti-CDI recurrence effect of ibezapolstat, a DNA polymerase IIIC inhibitor, in clinical development for CDI. As part of the Phase I ibezapolstat clinical study, stool samples were collected from 22 healthy volunteers, who were given either ibezapolstat or vancomycin. Stool samples were evaluated for microbiome changes and bile acid concentrations. Ibezapolstat 450 mg and vancomycin, but not ibezapolstat 300 mg, showed statistically significant changes in alpha diversity over time compared to that of a placebo. Beta diversity changes confirmed that microbiota were significantly different between study groups. Vancomycin had a more wide-ranging effect on the microbiome, characterized by an increased proportion of Gammaproteobacteria. Ibezapolstat demonstrated an increased proportion of Actinobacteria, including the Bifidobacteriaceae family. Using a linear regression analysis, vancomycin was associated with significant increases in primary bile acids as well as primary:secondary bile acid ratios. An overabundance of Enterobacteriaceae was most highly correlated with primary bile acid concentrations (r = 0.63; P < 0.0001). Using Phase I healthy volunteer samples, beneficial changes suggestive of a lower risk of CDI recurrence were associated with ibezapolstat compared to vancomycin. This novel omics approach may allow for better and earlier prediction of anti-CDI recurrence effects for antibiotics in the clinical development pipeline.
Collapse
|
6
|
Tang T, Wang J, Jiang Y, Zhu X, Zhang Z, Wang Y, Shu X, Deng Y, Zhang F. Bifidobacterium lactis TY-S01 Prevents Loperamide-Induced Constipation by Modulating Gut Microbiota and Its Metabolites in Mice. Front Nutr 2022; 9:890314. [PMID: 35845767 PMCID: PMC9277448 DOI: 10.3389/fnut.2022.890314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotics have received widespread attention as a healthy ingredient. The preventive effect of Bifidobacterium lactis TY-S01 on loperamide-induced constipation in mice was investigated in this study. TY-S01 accelerated the peristalsis of intestine, maintained the humidity of faeces, and prevented the destruction of gut barrier. TY-S01 also maintained the 5-HT, MTL and SP at normal levels in constipated mice. Simultaneously, TY-S01 up-regulated the mRNA expressions of 5-HT4R, SERT, and MUC-2, while down-regulated the mRNA expressions of pro-inflammatory genes remarkably. The levels of short-chain fatty acids in the feces of constipated mice were also increased because of the intervention with TY-S01. Moreover, TY-S01 prevented gut microbiological dysbiosis in constipated mice. Spearman’s correlation analysis revealed that there was an obvious association between metabolic biomarkers and gut microbiota. In summary, TY-S01 regulated gut microbiota and the production of intestinal metabolites to prevent loperamide-induced constipation.
Collapse
|
7
|
Trunfio M, Scabini S, Rugge W, Bonora S, Di Perri G, Calcagno A. Concurrent and Subsequent Co-Infections of Clostridioides difficile Colitis in the Era of Gut Microbiota and Expanding Treatment Options. Microorganisms 2022; 10:microorganisms10071275. [PMID: 35888994 PMCID: PMC9317215 DOI: 10.3390/microorganisms10071275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
We narratively reviewed the physiopathology, epidemiology, and management of co-infections in Clostridioides difficile colitis (CDI) by searching the following keywords in Embase, MedLine, and PubMed: “Clostridium/Clostridioides difficile”, “co-infection”, “blood-stream infection” (BSI), “fungemia”, “Candida”, “Cytomegalovirus”, “probiotics”, “microbial translocation” (MT). Bacterial BSIs (mainly by Enterobacteriaceae and Enterococcus) and fungemia (mainly by Candida albicans) may occur in up to 20% and 9% of CDI, increasing mortality and length of hospitalization. Up to 68% of the isolates are multi-drug-resistant bacteria. A pivotal role is played by gut dysbiosis, intestinal barrier leakage, and MT. Specific risk factors are represented by CDI-inducing broad-spectrum antibiotics, oral vancomycin use, and CDI severity. Probiotics administration (mainly Saccharomyces and Lactobacillus) during moderate/severe CDI may favor probiotics superinfection. Other co-infections (such as Cytomegalovirus or protozoa) can complicate limited and specific cases. There is mounting evidence that fidaxomicin, bezlotoxumab, and fecal microbiota transplantation can significantly reduce the rate of co-infections compared to historical therapies by interrupting the vicious circle between CDI, treatments, and MT. Bacterial BSIs and candidemia represent the most common co-infections in CDI. Physicians should be aware of this complication to promptly diagnose and treat it and enforce preventive strategies that include a more comprehensive consideration of newer treatment options.
Collapse
Affiliation(s)
- Mattia Trunfio
- Unit of Infectious Diseases, Amedeo di Savoia Hospital, Department of Medical Sciences, University of Turin, 10149 Torino, Italy; (W.R.); (S.B.); (G.D.P.); (A.C.)
- Correspondence: ; Tel.: +39-0114393884
| | - Silvia Scabini
- Unit of Infectious Diseases, AOU “Città della Salute e della Scienza”, Department of Medical Sciences, University of Turin, 10149 Torino, Italy;
| | - Walter Rugge
- Unit of Infectious Diseases, Amedeo di Savoia Hospital, Department of Medical Sciences, University of Turin, 10149 Torino, Italy; (W.R.); (S.B.); (G.D.P.); (A.C.)
| | - Stefano Bonora
- Unit of Infectious Diseases, Amedeo di Savoia Hospital, Department of Medical Sciences, University of Turin, 10149 Torino, Italy; (W.R.); (S.B.); (G.D.P.); (A.C.)
| | - Giovanni Di Perri
- Unit of Infectious Diseases, Amedeo di Savoia Hospital, Department of Medical Sciences, University of Turin, 10149 Torino, Italy; (W.R.); (S.B.); (G.D.P.); (A.C.)
| | - Andrea Calcagno
- Unit of Infectious Diseases, Amedeo di Savoia Hospital, Department of Medical Sciences, University of Turin, 10149 Torino, Italy; (W.R.); (S.B.); (G.D.P.); (A.C.)
| |
Collapse
|
8
|
Hoozemans J, de Brauw M, Nieuwdorp M, Gerdes V. Gut Microbiome and Metabolites in Patients with NAFLD and after Bariatric Surgery: A Comprehensive Review. Metabolites 2021; 11:353. [PMID: 34072995 PMCID: PMC8227414 DOI: 10.3390/metabo11060353] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing, as are other manifestations of metabolic syndrome such as obesity and type 2 diabetes. NAFLD is currently the number one cause of chronic liver disease worldwide. The pathophysiology of NAFLD and disease progression is poorly understood. A potential contributing role for gut microbiome and metabolites in NAFLD is proposed. Currently, bariatric surgery is an effective therapy to prevent the progression of NAFLD and other manifestations of metabolic syndrome such as obesity and type 2 diabetes. This review provides an overview of gut microbiome composition and related metabolites in individuals with NAFLD and after bariatric surgery. Causality remains to be proven. Furthermore, the clinical effects of bariatric surgery on NAFLD are illustrated. Whether the gut microbiome and metabolites contribute to the metabolic improvement and improvement of NAFLD seen after bariatric surgery has not yet been proven. Future microbiome and metabolome research is necessary for elucidating the pathophysiology and underlying metabolic pathways and phenotypes and providing better methods for diagnostics, prognostics and surveillance to optimize clinical care.
Collapse
Affiliation(s)
- Jacqueline Hoozemans
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, AMC, 1105 AZ Amsterdam, The Netherlands; (M.N.); (V.G.)
- Department of Bariatric and General Surgery, Spaarne Hospital, 2134 TM Hoofddorp, The Netherlands;
| | - Maurits de Brauw
- Department of Bariatric and General Surgery, Spaarne Hospital, 2134 TM Hoofddorp, The Netherlands;
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, AMC, 1105 AZ Amsterdam, The Netherlands; (M.N.); (V.G.)
| | - Victor Gerdes
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, AMC, 1105 AZ Amsterdam, The Netherlands; (M.N.); (V.G.)
- Department of Internal Medicine, Spaarne Hospital, 2134 TM Hoofddorp, The Netherlands
| |
Collapse
|
9
|
Zhang X, Zheng J, Jiang N, Sun G, Bao X, Kong M, Cheng X, Lin A, Liu H. Modulation of gut microbiota and intestinal metabolites by lactulose improves loperamide-induced constipation in mice. Eur J Pharm Sci 2021; 158:105676. [PMID: 33310029 DOI: 10.1016/j.ejps.2020.105676] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
Lactulose is a common laxative and has been widely applied to clinical treatment for constipation. This study aimed to explore the improving effect of lactulose on constipation through the mediation of gut microbiota and intestinal metabolites. BALB/c mice with constipation induced by loperamide were orally treated with lactulose for four weeks. After the treatment, the constipation-related factors were determined. The effect of lactulose on the composition of gut microbiota was assessed by 16S rDNA gene sequencing. Gas chromatography or liquid chromatography-mass spectrometer (GC/LC-MS) analysis was used for the quantification of intestinal metabolites. The treatment of constipated mice with lactulose accelerated intestinal motility, suppressed inflammatory responses, protected gut barrier, and improved metabolisms of water and salt in the intestinal tract. These therapeutic effects were attributed to the reversed gut microbiota dysfunction, which conferred the benefit to the production of intestinal metabolites including bile acids, short-chain fatty acids, and tryptophan catabolites. Further, the depletion of intestinal flora from loperamide- or (loperamide + lactulose)-treated mice confirmed the significance of gut microbiota in the mediation of constipation. In summary, this study leads us to propose that lactulose may improve constipation through a prebiotic effect on gut microbiota and intestinal metabolites.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Clinical college of traditional Chinese medicine, Hubei University of Chinese Medicine, Wuhan 430060, PR China
| | - Junping Zheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Nan Jiang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, PR China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, PR China
| | - Guangjun Sun
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, PR China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, PR China
| | - Xinkun Bao
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, PR China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, PR China
| | - Mingwang Kong
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Xue Cheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Aizhen Lin
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, PR China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, PR China.
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| |
Collapse
|
10
|
Kurkjian HM, Akbari MJ, Momeni B. The impact of interactions on invasion and colonization resistance in microbial communities. PLoS Comput Biol 2021; 17:e1008643. [PMID: 33481772 PMCID: PMC7857599 DOI: 10.1371/journal.pcbi.1008643] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 02/03/2021] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
In human microbiota, the prevention or promotion of invasions can be crucial to human health. Invasion outcomes, in turn, are impacted by the composition of resident communities and interactions of resident members with the invader. Here we study how interactions influence invasion outcomes in microbial communities, when interactions are primarily mediated by chemicals that are released into or consumed from the environment. We use a previously developed dynamic model which explicitly includes species abundances and the concentrations of chemicals that mediate species interaction. Using this model, we assessed how species interactions impact invasion by simulating a new species being introduced into an existing resident community. We classified invasion outcomes as resistance, augmentation, displacement, or disruption depending on whether the richness of the resident community was maintained or decreased and whether the invader was maintained in the community or went extinct. We found that as the number of invaders introduced into the resident community increased, disruption rather than augmentation became more prevalent. With more facilitation of the invader by the resident community, resistance outcomes were replaced by displacement and augmentation. By contrast, with more facilitation among residents, displacement outcomes shifted to resistance. When facilitation of the resident community by the invader was eliminated, the majority of augmentation outcomes turned into displacement, while when inhibition of residents by invaders was eliminated, invasion outcomes were largely unaffected. Our results suggest that a better understanding of interactions within resident communities and between residents and invaders is crucial to predicting the success of invasions into microbial communities. Our resident microbiota can prevent diseases by making it harder for pathogens to grow and establish, a phenomenon called “colonization resistance.” Colonization resistance is one of the major benefits provided by human-associated microbiota and a viable alternative to the use of antibiotics for preventing or treating infections. Here we use a model of microbial interactions through production and consumption of metabolic compounds to assay invasion and colonization resistance. We systematically examine in simulations how interactions among resident members and those between residents and an invader impact colonization resistance and invasion outcomes. In our simulations, the common strategy of increasing the dosage of probiotics is often unsuccessful for augmenting a new species into a resident microbiota. Instead, we find that the net facilitation or inhibition between the resident members and the invader explains whether the community remains intact and whether the invader can establish. Our results suggest that a better understanding of microbial interactions can inform successful microbiota interventions.
Collapse
Affiliation(s)
- Helen M. Kurkjian
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - M. Javad Akbari
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Babak Momeni
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
11
|
Rogers SW, Myers EJ, Gahring LC. Age-Associated Tooth Loss and Oral Microbial Dysbiosis in a Mouse Genetic Model of Chronic Nicotine Exposure. Front Immunol 2020; 11:575200. [PMID: 33117372 PMCID: PMC7575759 DOI: 10.3389/fimmu.2020.575200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/08/2020] [Indexed: 11/13/2022] Open
Abstract
Nicotine acts as a potent modulator of normal cellular responses through the nicotinic acetylcholine receptor subtype alpha7. In a mouse genetic model of alpha7 receptor dysfunction, alpha7E260A:G, 85 percent of 18 month-old mice exhibit an age-associated spontaneous loosening or complete loss of 3rd molars that was not present in the control mice. The adjacent soft tissues appeared largely unaffected. Further analysis including micro-CT revealed evidence of bone loss surrounding the 3rd molars with areas of cavitation and/or sponge-like (cancellous) bone remodeling in the mandible. The mandible microbiome was examined using 16S-rRNA sequencing. The results show the alpha7E260A:G oral microbiome included increased landscape complexity indicative of dysbiosis, and a significant increase of some bacteria, particularly Staphylococcus. These results suggest that normal alpha7 function plays a relevant role in maintaining normal gene expression and oral microbiome stasis. Consequently, this mouse model suggests there are consequences to ongoing alpha7 receptor dysfunction and oral health, as can occur from chronic exposure to nicotine as expected from electronic nicotine delivery systems (ENDS or "vaping"), that may not be seen until older age.
Collapse
Affiliation(s)
- Scott W Rogers
- Salt Lake City Veterans Affairs Medical Center: Geriatrics, Research, Education and Clinical Center, Salt Lake City, UT, United States.,Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Elizabeth J Myers
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Lorise C Gahring
- Salt Lake City Veterans Affairs Medical Center: Geriatrics, Research, Education and Clinical Center, Salt Lake City, UT, United States.,Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
12
|
Shang Z, Chan SY, Song Q, Li P, Huang W. The Strategies of Pathogen-Oriented Therapy on Circumventing Antimicrobial Resistance. RESEARCH (WASHINGTON, D.C.) 2020; 2020:2016201. [PMID: 33083786 PMCID: PMC7539235 DOI: 10.34133/2020/2016201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/02/2020] [Indexed: 12/23/2022]
Abstract
The emerging antimicrobial resistance (AMR) poses serious threats to the global public health. Conventional antibiotics have been eclipsed in combating with drug-resistant bacteria. Moreover, the developing and deploying of novel antimicrobial drugs have trudged, as few new antibiotics are being developed over time and even fewer of them can hit the market. Alternative therapeutic strategies to resolve the AMR crisis are urgently required. Pathogen-oriented therapy (POT) springs up as a promising approach in circumventing antibiotic resistance. The tactic underling POT is applying antibacterial compounds or materials directly to infected regions to treat specific bacteria species or strains with goals of improving the drug efficacy and reducing nontargeting and the development of drug resistance. This review exemplifies recent trends in the development of POTs for circumventing AMR, including the adoption of antibiotic-antibiotic conjugates, antimicrobial peptides, therapeutic monoclonal antibodies, nanotechnologies, CRISPR-Cas systems, and microbiota modulations. Employing these alternative approaches alone or in combination shows promising advantages for addressing the growing clinical embarrassment of antibiotics in fighting drug-resistant bacteria.
Collapse
Affiliation(s)
- Zifang Shang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Siew Yin Chan
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Qing Song
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
13
|
Pal R, Seleem MN. Screening of Natural Products and Approved Oncology Drug Libraries for Activity against Clostridioides difficile. Sci Rep 2020; 10:5966. [PMID: 32249833 PMCID: PMC7136261 DOI: 10.1038/s41598-020-63029-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/24/2020] [Indexed: 12/17/2022] Open
Abstract
Clostridioides difficile is the most common cause of healthcare-associated diarrhea. Infection of the gastrointestinal tract with this Gram-positive, obligate anaerobe can lead to potentially life-threatening conditions in the antibiotic-treated populace. New therapeutics are urgently needed to treat this infection and prevent its recurrence. Here, we screened two libraries from the National Cancer Institute, namely, the natural product set III library (117 compounds) and the approved oncology drugs set V library (114 compounds), against C. difficile. In the two libraries screened, 17 compounds from the natural product set III library and 7 compounds from the approved oncology drugs set V library were found to exhibit anticlostridial activity. The most potent FDA-approved drugs (mitomycin C and mithramycin A) and a promising natural product (aureomycin) were further screened against 20 clinical isolates of C. difficile. The anticancer drugs, mitomycin C (MIC50 = 0.25 μg/ml) and mithramycin A (MIC50 = 0.015 μg/ml), and the naturally derived tetracycline derivative, aureomycin (MIC50 = 0.06 μg/ml), exhibited potent activity against C. difficile strains. Mithramycin A and aureomycin were further found to inhibit toxin production by this pathogen. Given their efficacy, these compounds can provide a quick supplement to current treatment to address the unmet needs in treating C. difficile infection and preventing its recurrence.
Collapse
Affiliation(s)
- Rusha Pal
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA. .,Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN, 47907, USA.
| |
Collapse
|
14
|
|
15
|
Morar N, Bohannan BJM. The Conceptual Ecology of the Human Microbiome. QUARTERLY REVIEW OF BIOLOGY 2019. [DOI: 10.1086/703582] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Guzman L, Qiu F, Kalil AC, Mercer DF, Langnas A, Florescu DF. Risk factors for Clostridium difficile infection in intestinal transplant recipients during the first year post-transplant. Transpl Infect Dis 2018; 20:e12858. [PMID: 29427406 DOI: 10.1111/tid.12858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/14/2017] [Accepted: 10/07/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Clostridium difficile is the most common cause of healthcare-associated infectious diarrhea. Risk factors for C. difficile infections (CDI) in intestinal transplant recipients (ITR) are not well-defined. The aim of our study was to assess specific risk factors for CDI in ITR. METHODS This is a 1:3 case-control study that included 29 ITR who developed CDI (cases) and 87 ITR without CDI (controls) observed during the first year post-transplantation. Wilcoxon rank sum and Fisher's exact tests were used to compare variables. Univariate and multivariable conditional logistic regressions analysis were performed to identify risk factors for CDI. RESULTS The multivariable conditional logistic regression analysis showed that proton pump inhibitors (PPI) administration (odds ratio [OR] = 0.06; 95% confidence interval [CI]: 0.007-0.52; P = .01) was the only factor associated with lower rates of CDI. Outcomes for cases vs controls: rejection episodes 24.14% vs 20.69% (P = .7), graft loss 0% vs 2.3% (P = .99), and survival rate 1 year post-transplantation 79.3% (59.6-90.1%) vs 87.2% (78.1-92.7%) (P = .38). CONCLUSIONS Proton pump inhibitor administration might be protective for CDI in ITR. Risks factors for CDI might be different in ITR compared to other populations; anatomical differences and medications administered in the post-transplantation period may affect intestinal microbiota.
Collapse
Affiliation(s)
- L Guzman
- Infectious Diseases Division, University of Nebraska Medical Center, Omaha, NE, USA
| | - F Qiu
- College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - A C Kalil
- Infectious Diseases Division, University of Nebraska Medical Center, Omaha, NE, USA
| | - D F Mercer
- Transplant Surgery Division, University of Nebraska Medical Center, Omaha, NE, USA
| | - A Langnas
- Transplant Surgery Division, University of Nebraska Medical Center, Omaha, NE, USA
| | - D F Florescu
- Infectious Diseases Division, University of Nebraska Medical Center, Omaha, NE, USA.,Transplant Surgery Division, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
17
|
Nolte FS. Molecular Microbiology. PRINCIPLES AND APPLICATIONS OF MOLECULAR DIAGNOSTICS 2018. [PMCID: PMC7150357 DOI: 10.1016/b978-0-12-816061-9.00005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background Nucleic acid (NA) amplification techniques are now commonly used to diagnose and manage patients with infectious diseases. The growth in the number of Food and Drug Administration–approved test kits and analyte-specific reagents has facilitated the use of this technology in clinical laboratories. Technological advances in NA amplification techniques, automation, NA sequencing, and multiplex analysis have reinvigorated the field and created new opportunities for growth. Simple, sample-in, answer-out molecular test systems are now widely available that can be deployed in a variety of laboratory and clinical settings. Molecular microbiology remains the leading area in molecular pathology in terms of both the numbers of tests performed and clinical relevance. NA-based tests have reduced the dependency of the clinical microbiology laboratory on more traditional antigen detection and culture methods and created new opportunities for the laboratory to impact patient care. Content This chapter reviews NA testing as it applies to specific pathogens or infectious disease syndromes, with a focus on those diseases for which NA testing is now considered the standard of care and highlights the unique challenges and opportunities that these tests present for clinical laboratories.
Collapse
|
18
|
Cataldo MA, Granata G, Petrosillo N. Clostridium difficile infection: new approaches to prevention, non-antimicrobial treatment, and stewardship. Expert Rev Anti Infect Ther 2017; 15:1027-1040. [PMID: 28980505 DOI: 10.1080/14787210.2017.1387535] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Despite the large amount of scientific publications exploring the epidemiology and the clinical management of Clostridium difficile (CD) infection, some issues remain unsolved or need further studies. The aim of this review is to give an update on the hot topics on CD prevention, including stewardship programs, and on the non-microbiological treatment of CD infection. Areas covered: This article will review the importance of minimizing the CD spore shedding in the healthcare environment for potentially reducing CD transmission. Moreover, antimicrobial stewardship programs aimed to reduce CD incidence will be reviewed. Finally, new strategies for reducing CD infection recurrence will be described. Expert commentary: Besides the basic infection control and prevention practices, including hand hygiene, contact isolation and environmental cleaning, in the prevention of CD infection other issues should be addressed including minimizing the spread of CD in the healthcare setting, and implementing the best strategy for reducing CD infection occurrence, including tailored antimicrobial stewardship programs. Regarding new advancements in treatment and management of CDI episodes, non-antimicrobial approaches seem to be promising in reducing and managing recurrent CD infection.
Collapse
Affiliation(s)
- Maria Adriana Cataldo
- a Clinical and Research Department , National Institute for Infectious Diseases 'L. Spallanzani' , Rome , Italy
| | - Guido Granata
- a Clinical and Research Department , National Institute for Infectious Diseases 'L. Spallanzani' , Rome , Italy
| | - Nicola Petrosillo
- a Clinical and Research Department , National Institute for Infectious Diseases 'L. Spallanzani' , Rome , Italy
| |
Collapse
|
19
|
Wipperman MF, Fitzgerald DW, Juste MAJ, Taur Y, Namasivayam S, Sher A, Bean JM, Bucci V, Glickman MS. Antibiotic treatment for Tuberculosis induces a profound dysbiosis of the microbiome that persists long after therapy is completed. Sci Rep 2017; 7:10767. [PMID: 28883399 PMCID: PMC5589918 DOI: 10.1038/s41598-017-10346-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/08/2017] [Indexed: 02/08/2023] Open
Abstract
Mycobacterium tuberculosis, the cause of Tuberculosis (TB), infects one third of the world’s population and causes substantial mortality worldwide. In its shortest format, treatment of TB requires six months of multidrug therapy with a mixture of broad spectrum and mycobacterial specific antibiotics, and treatment of multidrug resistant TB is longer. The widespread use of this regimen makes this one of the largest exposures of humans to antimicrobials, yet the effects of TB treatment on intestinal microbiome composition and long-term stability are unknown. We compared the microbiome composition, assessed by both 16S rDNA and metagenomic DNA sequencing, of TB cases during antimycobacterial treatment and following cure by 6 months of antibiotics. TB treatment does not perturb overall diversity, but nonetheless dramatically depletes multiple immunologically significant commensal bacteria. The microbiomic perturbation of TB therapy can persist for at least 1.2 years, indicating that the effects of TB treatment are long lasting. These results demonstrate that TB treatment has dramatic effects on the intestinal microbiome and highlight unexpected durable consequences of treatment for the world’s most common infection on human ecology.
Collapse
Affiliation(s)
- Matthew F Wipperman
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Clinical and Translational Science Center, Weill Cornell Medical College, New York, New York, USA
| | - Daniel W Fitzgerald
- Weill Cornell Medical College, New York, New York, USA.,GHESKIO Centers, Port-au-Prince, Haiti
| | | | - Ying Taur
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sivaranjani Namasivayam
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - James M Bean
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Weill Cornell Medical College, New York, New York, USA
| | - Vanni Bucci
- Department of Biology, Program in Biotechnology and Biomedical Engineering, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, USA.
| | - Michael S Glickman
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA. .,Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA. .,Weill Cornell Medical College, New York, New York, USA.
| |
Collapse
|
20
|
Ma B, Pan Q, Peppelenbosch MP. Genetically Engineered Bacteria for Treating Human Disease. Trends Pharmacol Sci 2017; 38:763-764. [PMID: 28760488 DOI: 10.1016/j.tips.2017.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 06/28/2017] [Accepted: 07/06/2017] [Indexed: 01/09/2023]
Abstract
Bacteria have now been harnessed to combat human diseases, especially to meet the challenge of antimicrobial resistance. Modulating the microbiome, particularly by genetically engineering the bacteria, has provided proof-of-concept as potential pharmacotherapy, but those involved in this field should engage in discussion as how to move forward.
Collapse
Affiliation(s)
- Buyun Ma
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
21
|
Neemann K, Freifeld A. Clostridium difficile–Associated Diarrhea in the Oncology Patient. J Oncol Pract 2017; 13:25-30. [DOI: 10.1200/jop.2016.018614] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is the most common cause of nosocomial diarrhea, resulting in significant morbidity and mortality in hospitalized patients. Oncology patients are particularly at risk of this infection secondary to frequent exposure to known risk factors. In a population in which diarrhea is a common adverse effect of chemotherapeutic regimens, diagnosis can be challenging secondary to current limitations in testing to differentiate between colonization and active infection. Although several currently available antimicrobial therapies achieve resolution of symptoms in this population, further research is needed to determine which agent least affects the host intestinal microbiota, especially in times of neutropenia and mucosal barrier injury. The purpose of this article is to review the current literature on the epidemiology, pathogenesis, and management of C difficile–associated diarrhea in the oncology population.
Collapse
Affiliation(s)
- Kari Neemann
- University of Nebraska Medical Center, Omaha, NE
| | | |
Collapse
|
22
|
Krezalek MA, Skowron KB, Guyton KL, Shakhsheer B, Hyoju S, Alverdy JC. The intestinal microbiome and surgical disease. Curr Probl Surg 2016; 53:257-93. [PMID: 27497246 DOI: 10.1067/j.cpsurg.2016.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/07/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Monika A Krezalek
- Department of Surgery, Center for Surgical Infection Research and Therapeutics, Pritzker School of Medicine, University of Chicago, Chicago, IL
| | - Kinga B Skowron
- Department of Surgery, Center for Surgical Infection Research and Therapeutics, Pritzker School of Medicine, University of Chicago, Chicago, IL
| | - Kristina L Guyton
- Department of Surgery, Center for Surgical Infection Research and Therapeutics, Pritzker School of Medicine, University of Chicago, Chicago, IL
| | - Baddr Shakhsheer
- Department of Surgery, Center for Surgical Infection Research and Therapeutics, Pritzker School of Medicine, University of Chicago, Chicago, IL
| | - Sanjiv Hyoju
- Department of Surgery, Center for Surgical Infection Research and Therapeutics, Pritzker School of Medicine, University of Chicago, Chicago, IL
| | - John C Alverdy
- Department of Surgery, Center for Surgical Infection Research and Therapeutics, Pritzker School of Medicine, University of Chicago, Chicago, IL.
| |
Collapse
|
23
|
Clostridium difficile Infections in Children: Impact of the Diagnostic Method on Infection Rates. Infect Control Hosp Epidemiol 2016; 37:1087-93. [DOI: 10.1017/ice.2016.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUNDPolymerase chain reaction (PCR) assays based on the detection of the toxin B gene are replacing enzyme-linked immunosorbent assay (ELISA)–based toxin production detection or cell cytotoxicity assay in most laboratories.OBJECTIVETo determine the proportion of pediatric patients diagnosed withClostridium difficile infection by PCR who would have also been diagnosed by ELISA and to compare the clinical characteristics of PCR+/ELISA+ vs PCR+/ELISA− patients.METHODSUsing the microbiology laboratory information system, stool samples positive for C. difficile by PCR between October 2010 and July 2014 were identified. Using frozen stool specimens, an ELISA for toxin A and B was performed. A retrospective medical chart review was conducted to obtain demographic and clinical data. Duplicate samples were excluded.RESULTSA total of 136 PCR-positive samples underwent ELISA testing: 54 (40%) were positive for toxin A or B. The mean (SD) age of the entire cohort was 8.5 (6.2) years. There was no difference in age, gender, clinical manifestation, previous medical problems, and management between patients positive or negative by ELISA. However, patients positive by ELISA were more likely to have had a recent exposure to antibiotics (67.9% vs 50%; crude odds ratio, 2.1 [95% CI, 1.03–4.28]).CONCLUSIONIn our pediatric population, 60% of patients with C. difficile diagnosed by PCR had no toxin detectable by ELISA. ELISA-negative patients were less likely to have received an antibiotic recently compared with ELISA-positive patients. These results highlight the need to standardize laboratory criteria for the diagnosis of C. difficile infections in children.Infect Control Hosp Epidemiol 2016;37:1087–1093
Collapse
|
24
|
Yuhashi K, Yagihara Y, Misawa Y, Sato T, Saito R, Okugawa S, Moriya K. Diagnosing Clostridium difficile-associated diarrhea using enzyme immunoassay: the clinical significance of toxin negativity in glutamate dehydrogenase-positive patients. Infect Drug Resist 2016; 9:93-9. [PMID: 27313472 PMCID: PMC4890683 DOI: 10.2147/idr.s105429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose The enzyme immunoassay (EIA) has lower sensitivity for Clostridium difficile toxins A and B than the polymerase chain reaction in the diagnosis of C. difficile-associated diarrhea (CDAD). Furthermore, toxin positivity with EIA performed on C. difficile isolates from stool cultures may be observed even in patients with EIA glutamate dehydrogenase (GDH)-positive and toxin-negative stool specimens. It is unclear whether such patients should be treated as having CDAD. Methods The present study retrospectively compared patient characteristics, treatment, and diarrhea duration among three groups of patients who underwent stool EIA testing for CDAD diagnosis: a toxin-positive stool group (positive stool group; n=39); a toxin-negative stool/toxin-positive isolate group (discrepant negative/positive group, n=14); and a dual toxin-negative stool and isolate group (dual negative group, n=15). All cases included were confirmed to be GDH positive on EIA test. Results Patients’ backgrounds and comorbidities were not significantly different among three groups. No difference was observed among the three groups with regard to antimicrobial drug use before diarrhea onset. Treatment was received by 82.1% of the positive stool group compared to 7.1% of the discrepant positive/negative group and 0% of the dual negative group, while mean diarrhea duration was 10.6 days compared to 7.9 days (P=0.6006) and 3.4 days (P=0.0312), respectively. Conclusion Even without treatment, patients with toxin-negative stool specimens had shorter diarrhea duration than those with toxin-positive stool specimens even with toxin-positive isolates. These findings may suggest a limited need for CDAD treatment for GDH-positive patients and toxin-negative stool specimens.
Collapse
Affiliation(s)
- Kazuhito Yuhashi
- Department of Infection Control and Prevention, Faculty of Medicine, The University of Tokyo
| | - Yuka Yagihara
- Department of Infection Control and Prevention, Faculty of Medicine, The University of Tokyo
| | - Yoshiki Misawa
- Department of Infection Control and Prevention, Faculty of Medicine, The University of Tokyo
| | - Tomoaki Sato
- Department of Infection Control and Prevention, Faculty of Medicine, The University of Tokyo
| | - Ryoichi Saito
- Department of Microbiology and Immunity, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Shu Okugawa
- Department of Infection Control and Prevention, Faculty of Medicine, The University of Tokyo
| | - Kyoji Moriya
- Department of Infection Control and Prevention, Faculty of Medicine, The University of Tokyo
| |
Collapse
|
25
|
Wei Z, Yang T, Friman VP, Xu Y, Shen Q, Jousset A. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat Commun 2015; 6:8413. [PMID: 26400552 PMCID: PMC4598729 DOI: 10.1038/ncomms9413] [Citation(s) in RCA: 272] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 08/19/2015] [Indexed: 02/06/2023] Open
Abstract
Host-associated bacterial communities can function as an important line of defence against pathogens in animals and plants. Empirical evidence and theoretical predictions suggest that species-rich communities are more resistant to pathogen invasions. Yet, the underlying mechanisms are unclear. Here, we experimentally test how the underlying resource competition networks of resident bacterial communities affect invasion resistance to the plant pathogen Ralstonia solanacearum in microcosms and in tomato plant rhizosphere. We find that bipartite resource competition networks are better predictors of invasion resistance compared with resident community diversity. Specifically, communities with a combination of stabilizing configurations (low nestedness and high connectance), and a clear niche overlap with the pathogen, reduce pathogen invasion success, constrain pathogen growth within invaded communities and have lower levels of diseased plants in greenhouse experiments. Bacterial resource competition network characteristics can thus be important in explaining positive diversity-invasion resistance relationships in bacterial rhizosphere communities.
Collapse
Affiliation(s)
- Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Tianjie Yang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Ville-Petri Friman
- Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Yangchun Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Alexandre Jousset
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
- Institute for Environmental Biology, Ecology & Biodiversity, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| |
Collapse
|
26
|
Bender KO, Garland M, Ferreyra JA, Hryckowian AJ, Child MA, Puri AW, Solow-Cordero DE, Higginbottom SK, Segal E, Banaei N, Shen A, Sonnenburg JL, Bogyo M. A small-molecule antivirulence agent for treating Clostridium difficile infection. Sci Transl Med 2015; 7:306ra148. [PMID: 26400909 DOI: 10.1126/scitranslmed.aac9103] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/04/2015] [Indexed: 12/22/2022]
Abstract
Clostridium difficile infection (CDI) is a worldwide health threat that is typically triggered by the use of broad-spectrum antibiotics, which disrupt the natural gut microbiota and allow this Gram-positive anaerobic pathogen to thrive. The increased incidence and severity of disease coupled with decreased response, high recurrence rates, and emergence of multiple antibiotic-resistant strains have created an urgent need for new therapies. We describe pharmacological targeting of the cysteine protease domain (CPD) within the C. difficile major virulence factor toxin B (TcdB). Through a targeted screen with an activity-based probe for this protease domain, we identified a number of potent CPD inhibitors, including one bioactive compound, ebselen, which is currently in human clinical trials for a clinically unrelated indication. This drug showed activity against both major virulence factors, TcdA and TcdB, in biochemical and cell-based studies. Treatment in a mouse model of CDI that closely resembles the human infection confirmed a therapeutic benefit in the form of reduced disease pathology in host tissues that correlated with inhibition of the release of the toxic glucosyltransferase domain (GTD). Our results show that this non-antibiotic drug can modulate the pathology of disease and therefore could potentially be developed as a therapeutic for the treatment of CDI.
Collapse
Affiliation(s)
- Kristina Oresic Bender
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA
| | - Megan Garland
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA
| | - Jessica A Ferreyra
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | - Andrew J Hryckowian
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | - Matthew A Child
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA
| | - Aaron W Puri
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA
| | - David E Solow-Cordero
- Stanford University High-Throughput Bioscience Center, 1291 Welch Road, Stanford, CA 94305-5174, USA
| | - Steven K Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | - Ehud Segal
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA
| | - Niaz Banaei
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA. Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305-5107, USA
| | - Aimee Shen
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA. Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA.
| |
Collapse
|
27
|
Camilleri M, Gores GJ. Therapeutic targeting of bile acids. Am J Physiol Gastrointest Liver Physiol 2015; 309:G209-15. [PMID: 26138466 PMCID: PMC4537926 DOI: 10.1152/ajpgi.00121.2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/30/2015] [Indexed: 01/31/2023]
Abstract
The first objectives of this article are to review the structure, chemistry, and physiology of bile acids and the types of bile acid malabsorption observed in clinical practice. The second major theme addresses the classical or known properties of bile acids, such as the role of bile acid sequestration in the treatment of hyperlipidemia; the use of ursodeoxycholic acid in therapeutics, from traditional oriental medicine to being, until recently, the drug of choice in cholestatic liver diseases; and the potential for normalizing diverse bowel dysfunctions in irritable bowel syndrome, either by sequestering intraluminal bile acids for diarrhea or by delivering more bile acids to the colon to relieve constipation. The final objective addresses novel concepts and therapeutic opportunities such as the interaction of bile acids and the microbiome to control colonic infections, as in Clostridium difficile-associated colitis, and bile acid targeting of the farnesoid X receptor and G protein-coupled bile acid receptor 1 with consequent effects on energy expenditure, fat metabolism, and glycemic control.
Collapse
Affiliation(s)
- Michael Camilleri
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
28
|
Pérez-Cobas AE, Moya A, Gosalbes MJ, Latorre A. Colonization Resistance of the Gut Microbiota against Clostridium difficile. Antibiotics (Basel) 2015; 4:337-57. [PMID: 27025628 PMCID: PMC4790290 DOI: 10.3390/antibiotics4030337] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/03/2015] [Indexed: 02/06/2023] Open
Abstract
Antibiotics strongly disrupt the human gut microbiota, which in consequence loses its colonization resistance capacity, allowing infection by opportunistic pathogens such as Clostridium difficile. This bacterium is the main cause of antibiotic-associated diarrhea and a current problem in developed countries, since its incidence and severity have increased during the last years. Furthermore, the emergence of antibiotic resistance strains has reduced the efficiency of the standard treatment with antibiotics, leading to a higher rate of relapses. Here, we review recent efforts focused on the impact of antibiotics in the gut microbiome and their relationship with C. difficile colonization, as well as, in the identification of bacteria and mechanisms involved in the protection against C. difficile infection. Since a healthy gut microbiota is able to avoid pathogen colonization, restoration of the gut microbiota seems to be the most promising approach to face C. difficile infection, especially for recurrent cases. Therefore, it would be possible to design probiotics for patients undergoing antimicrobial therapies in order to prevent or fight the expansion of the pathogen in the gut ecosystem.
Collapse
Affiliation(s)
- Ana Elena Pérez-Cobas
- Joint Research Unit of Foundation for the Promotion of Health and Biomedical Research of Valencian Region (FISABIO) and the Cavanilles Institute of Biodiversity and Evolutionary Biology (ICBiBE) of the University of Valencia, Valencia 46020, Spain.
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid 28029, Spain.
| | - Andrés Moya
- Joint Research Unit of Foundation for the Promotion of Health and Biomedical Research of Valencian Region (FISABIO) and the Cavanilles Institute of Biodiversity and Evolutionary Biology (ICBiBE) of the University of Valencia, Valencia 46020, Spain.
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid 28029, Spain.
| | - María José Gosalbes
- Joint Research Unit of Foundation for the Promotion of Health and Biomedical Research of Valencian Region (FISABIO) and the Cavanilles Institute of Biodiversity and Evolutionary Biology (ICBiBE) of the University of Valencia, Valencia 46020, Spain.
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid 28029, Spain.
| | - Amparo Latorre
- Joint Research Unit of Foundation for the Promotion of Health and Biomedical Research of Valencian Region (FISABIO) and the Cavanilles Institute of Biodiversity and Evolutionary Biology (ICBiBE) of the University of Valencia, Valencia 46020, Spain.
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid 28029, Spain.
| |
Collapse
|
29
|
Abstract
Colonization with toxigenic Clostridium difficile may be associated with a wide spectrum of clinical presentation ranging from asymptomatic carriage to mild diarrhea to life-threatening colitis. Over the last 15 years, there has been a marked increase in the incidence of C. difficile infection, which predominantly affects elderly patients on antibiotics. More recently, there has been significant interest in the association between inflammatory bowel disease (IBD) and C. difficile infection. This review article discusses in some detail current knowledge of the mechanisms by which C. difficile toxins may mediate mucosal inflammation, together with the role of cell wall components of the microorganism in disease pathogenesis. Innate and adaptive host responses to C. difficile toxins and other components are described and include consideration of the potential role of known mucosal changes in IBD that may lead to an enhanced inflammatory response in the presence of C. difficile infection. Recent studies, which have characterized resident microbiota that may mediate protection against colonization by C. difficile, including their mechanisms of action, are also discussed. This includes the role of bile acids and 7α-dehydroxylase-expressing bacteria, such as Clostridium scindens. Recent studies suggest a higher carriage rate of C. difficile in patients with IBD. It is anticipated that future studies will determine the role of dysbiosis in IBD in predisposing to colonization with C. difficile.
Collapse
|
30
|
Effectiveness of fecal-derived microbiota transfer using orally administered capsules for recurrent Clostridium difficile infection. BMC Infect Dis 2015; 15:191. [PMID: 25885020 PMCID: PMC4506624 DOI: 10.1186/s12879-015-0930-z] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/10/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Clostridium difficile infection (CDI), a complication of antibiotic-induced injury to the gut microbiome, is a prevalent and dangerous cause of infectious diarrhea. Antimicrobial therapy for CDI is typically effective for acute symptoms, but up to one third of patients later experience recurrent CDI. Fecal-derived microbiota transplantation (FMT) can ameliorate the underlying dysbiosis and is highly effective for recurrent CDI. Traditional methods of FMT are limited by patient discomfort, risk and inefficient procedures. Many individuals with recurrent CDI have extensive comorbidities and advanced age. Widespread use of FMT requires strategies that are non-invasive, scalable and applicable across healthcare settings. METHODS A method to facilitate microbiota transfer was developed. Fecal samples were collected and screened for potential pathogens. Bacteria were purified, concentrated, cryopreserved and formulated into multi-layered capsules. Capsules were administered to patients with recurrent CDI, who were then monitored for 90 days. RESULTS Thirteen women and six men with recurrent CDI were provided with microbiota transfer with orally administered capsules. The procedure was well tolerated. Thirteen individuals responded to a single course. Four patients were cured after a second course. There were 2 failures. The cumulative clinical cure rate of 89% is similar to the rates achieved with reported fecal-derived transplantation procedures. CONCLUSIONS Recurrent CDI represents a profound dysbiosis and a debilitating chronic disease. Stable cure can be achieved by restoring the gut microbiome with an effective, well-tolerated oral capsule treatment. This strategy of microbiota transfer can be widely applied and is particularly appropriate for frail patients.
Collapse
|
31
|
Abstract
Diarrheal disease, which is most often caused by infectious pathogens, is a significant cause of morbidity and mortality worldwide, especially in children. This is particularly true in developing countries. Recent outbreaks of infectious diarrhea in developed countries, including the USA, are often attributed to food handling and distribution practices and highlight the need for continued vigilance in this area. Another common cause of infectious diarrhea, Clostridium difficile infection (CDI), has historically been associated with the use of antibiotics and exposure to a health-care setting but is now increasingly common in the community in persons who lack the typical risk factors. Recent scientific advances have also led to new and proposed new therapies for infectious diarrhea, including fecal microbiota transplant (FMT) for recurrent C. difficile infection (RCDI), probiotics for prevention of antibiotic-associated diarrhea (AAD) and CDI, and the use of zinc supplementation in the treatment of acute diarrhea in children. Other therapies that have been in use for decades, such as the oral rehydration solution (ORS), continue to be the targets of scientific advancement in an effort to improve delivery and efficacy. Finally, post-infectious irritable bowel syndrome (PI-IBS) is an increasingly recognized occurrence. Attempts to understand the mechanism behind this phenomenon are underway and may provide insight into potential treatment options.
Collapse
Affiliation(s)
- Brandon Dickinson
- Department of Medicine, University of Washington School of Medicine, Seattle, USA
| | | |
Collapse
|
32
|
Abstract
The best laboratory diagnostic approach to detect Clostridium difficile infection (CDI) is the subject of ongoing debate. In the United States, nucleic acid amplification tests (NAAT) have become the most widely used tests for making this diagnosis. Detection of toxin in stool may be a better predictor of CDI disease and severity. Laboratories that have switched from toxin-based to NAAT-based methods have significantly higher CDI detection rates. The important issue is whether all NAAT-positive patients have CDI or at least some of those patients are excretors of the organism and do not have clinical disease.
Collapse
Affiliation(s)
- Peter H Gilligan
- Clinical Microbiology-Immunology Laboratories, Microbiology-Immunology, UNC Health Care, UNC School of Medicine, CB 7600, Chapel Hill, NC 27516, USA; Pathology-Laboratory Medicine, UNC School of Medicine, CB 7600, Chapel Hill, NC 27516, USA.
| |
Collapse
|
33
|
McCoy RM, Klick A, Hill S, Dull RB. Luminal Toxin-Binding Agents for Clostridium difficile Infection. J Pharm Pract 2015; 29:361-7. [PMID: 25613056 DOI: 10.1177/0897190014566315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To systematically search the literature for trials evaluating luminal toxin-binding agents (LTBAs) for Clostridium difficile infection (CDI). METHODS A systematic search was conducted utilizing PubMed and International Pharmaceutical Abstracts with the following terms: anion-exchange resins, C difficile, cholestyramine, tolevamer, and colestipol. Articles were included if published in the English language and reported clinical outcomes of more than 5 adult humans with CDI treated with LTBAs. RESULTS Nearly all clinical trials evaluated LTBA as monotherapy for CDI and LTBAs are inferior to standard therapy. In contemporary practice, LTBAs are employed as adjunctive or sequential therapy for which there is a paucity of data. Some data suggest potential efficacy for recurrent CDI. Current guidelines for CDI assert LTBAs are contraindicated due to drug-drug interactions with vancomycin. However, the impact of this interaction on clinical outcomes has not been evaluated, and it is unknown whether higher doses of vancomycin or separating the administration of LTBAs from vancomycin would mitigate this interaction. CONCLUSION LTBA monotherapy is inferior to vancomycin and metronidazole for CDI. Some data indicate possible benefit in reducing recurrent CDI, but outcomes with adjunctive and/or sequential LTBAs are unavailable. Further studies are needed to investigate the role of LTBAs for CDI.
Collapse
Affiliation(s)
- Ryan M McCoy
- Creighton University School of Pharmacy and Health Professions, Omaha, NE, USA
| | - Andrew Klick
- Creighton University School of Pharmacy and Health Professions, Omaha, NE, USA
| | - Steven Hill
- Ross University School of Medicine and School of Veterinary Medicine, Roseau, Commonwealth of Dominica, West Indies
| | - Ryan B Dull
- Creighton University School of Pharmacy and Health Professions, Omaha, NE, USA
| |
Collapse
|
34
|
Lively CM, de Roode JC, Duffy MA, Graham AL, Koskella B. Interesting open questions in disease ecology and evolution. Am Nat 2014; 184 Suppl 1:S1-8. [PMID: 25061674 DOI: 10.1086/677032] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Curtis M Lively
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | | | | | | | | |
Collapse
|