1
|
Ji L, Fu G, Huang M, Kao X, Zhu J, Dai Z, Chen Y, Li H, Zhou J, Chu X, Lei Z. scRNA-seq of colorectal cancer shows regional immune atlas with the function of CD20 + B cells. Cancer Lett 2024; 584:216664. [PMID: 38253219 DOI: 10.1016/j.canlet.2024.216664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/25/2023] [Accepted: 01/18/2024] [Indexed: 01/24/2024]
Abstract
Colorectal cancer (CRC) from different regions exhibits different histological, genetic characteristics, and molecular subtypes, even in response to conventional chemotherapies and immunotherapies. To characterize the immune landscape in different regions of CRC and search for potential therapeutic targets, we analyzed 39,484 single-cell transcription data from 19 samples of CRC and paired normal tissues from four regions to identify the immune characteristics of CRC among anatomic locations, especially in B cells. We discovered that immune cell infiltration in tumors significantly varied among different regions of CRC. B cells from right- and left-sided CRC had different development trajectories, but both had extensive interactions with myeloid cells and T cells. Survival analysis suggested that CD20+ B cells correlated with good prognosis in CRC patients, especially on the right side. Furthermore, the depletion of CD20+ B cells demonstrated that anti-CD20 promoted tumor growth progression and reversed the tumor-killing activity of anti-PD-1 treatment in vivo and in vitro. Our results highlight the characterization of the immune landscape of CRC in different regions. CD20+ B-cell infiltration has been associated with CRC patient prognosis and may promote the tumor-killing role of PD-1 antibodies.
Collapse
Affiliation(s)
- Linlin Ji
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| | - Gongbo Fu
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China; Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210000, China; Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, 210000, China; Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| | - Mengxi Huang
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| | - Xiaoming Kao
- Department of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China
| | - Jialong Zhu
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210000, China
| | - Zhe Dai
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| | - Yitian Chen
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| | - Huiyu Li
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| | - Jie Zhou
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Xiaoyuan Chu
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China; Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210000, China; Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, 210000, China; Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| | - Zengjie Lei
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China; Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210000, China; Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, 210000, China; Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| |
Collapse
|
2
|
Hu Y, Dong Z, Liu K. Unraveling the complexity of STAT3 in cancer: molecular understanding and drug discovery. J Exp Clin Cancer Res 2024; 43:23. [PMID: 38245798 PMCID: PMC10799433 DOI: 10.1186/s13046-024-02949-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcriptional factor involved in almost all cancer hallmark features including tumor proliferation, metastasis, angiogenesis, immunosuppression, tumor inflammation, metabolism reprogramming, drug resistance, cancer stemness. Therefore, STAT3 has become a promising therapeutic target in a wide range of cancers. This review focuses on the up-to-date knowledge of STAT3 signaling in cancer. We summarize both the positive and negative modulators of STAT3 together with the cancer hallmarks involving activities regulated by STAT3 and highlight its extremely sophisticated regulation on immunosuppression in tumor microenvironment and metabolic reprogramming. Direct and indirect inhibitors of STAT3 in preclinical and clinical studies also have been summarized and discussed. Additionally, we highlight and propose new strategies of targeting STAT3 and STAT3-based combinations with established chemotherapy, targeted therapy, immunotherapy and combination therapy. These efforts may provide new perspectives for STAT3-based target therapy in cancer.
Collapse
Affiliation(s)
- Yamei Hu
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zigang Dong
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| | - Kangdong Liu
- Tianjian Laboratory for Advanced Biomedical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Yi C, Wei W, Wan M, Chen Y, Zhang B, Wu W. Expression Patterns of HOX Gene Family Defines Tumor Microenvironment and Immunotherapy in Hepatocellular Carcinoma. Appl Biochem Biotechnol 2023; 195:5072-5093. [PMID: 36976502 DOI: 10.1007/s12010-023-04443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Hepatocellular carcinoma (HCC) pathophysiology is prevalently related with HOX genes. However, the study on associations of extensive HOX genes with tumor microenvironment and drug sensitivity of HCC remains scarce. The data sets of HCC were downloaded from TCGA, ICGC, and GEO by bioinformatics method and analyzed. Based on a computational frame, HCC samples were divided into a high and a low HOXscore group, and significantly shorter survival time in the high HOXscore was observed relative to low HOXscore group using survival analysis. Gene set enrichment analysis (GSEA) revealed that the high HOXscore group was more likely to be enriched in cancer-specific pathways. Furthermore, the high HOXscore group was involved in the infiltration of inhibitory immune cells. In response to anti-cancer drugs, the high HOXscore group was more sensitive to mitomycin and cisplatin. Importantly, the HOXscore was associated with the therapeutic efficacy of PD-L1 blockade, suggesting that the development of potential drugs targeting these HOX genes to aid the clinical benefits of immunotherapy is needed. In addition, RT-qPCR and immunohistochemistry showed 10 HOX genes mRNA expression was higher in HCC compared to the normal tissues. This study provides a comprehensive analysis of HOX genes family in HCC and revealed the potential function of these HOX genes family in tumor microenvironment (TME) and identified their therapeutic liability in targeted therapy and immunotherapy. Eventually, this work highlights the cross-talk and potential clinical utility of HOX genes family in HCC therapy.
Collapse
Affiliation(s)
- Changhong Yi
- Department of Interventional Radiology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Wei Wei
- Department of Interventional, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Maolin Wan
- Department of Interventional, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Ya Chen
- Department of Interventional, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Bo Zhang
- Department of Interventional, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Wenze Wu
- Department of Interventional, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China.
| |
Collapse
|
4
|
Lv J, Wei Y, Yin JH, Chen YP, Zhou GQ, Wei C, Liang XY, Zhang Y, Zhang CJ, He SW, He QM, Huang ZL, Guan JL, Shen JY, Li XM, Li JY, Li WF, Tang LL, Mao YP, Guo R, Sun R, Zheng YH, Zhou WW, Xiong KX, Wang SQ, Jin X, Liu N, Li GB, Kuang DM, Sun Y, Ma J. The tumor immune microenvironment of nasopharyngeal carcinoma after gemcitabine plus cisplatin treatment. Nat Med 2023; 29:1424-1436. [PMID: 37280275 DOI: 10.1038/s41591-023-02369-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 04/25/2023] [Indexed: 06/08/2023]
Abstract
Gemcitabine plus cisplatin (GP) chemotherapy is the standard of care for nasopharyngeal carcinoma (NPC). However, the mechanisms underpinning its clinical activity are unclear. Here, using single-cell RNA sequencing and T cell and B cell receptor sequencing of matched, treatment-naive and post-GP chemotherapy NPC samples (n = 15 pairs), we show that GP chemotherapy activated an innate-like B cell (ILB)-dominant antitumor immune response. DNA fragments induced by chemotherapy activated the STING type-I-interferon-dependent pathway to increase major histocompatibility complex class I expression in cancer cells, and simultaneously induced ILB via Toll-like receptor 9 signaling. ILB further expanded follicular helper and helper type 1 T cells via the ICOSL-ICOS axis and subsequently enhanced cytotoxic T cells in tertiary lymphoid organ-like structures after chemotherapy that were deficient for germinal centers. ILB frequency was positively associated with overall and disease-free survival in a phase 3 trial of patients with NPC receiving GP chemotherapy ( NCT01872962 , n = 139). It also served as a predictor for favorable outcomes in patients with NPC treated with GP and immunotherapy combined treatment (n = 380). Collectively, our study provides a high-resolution map of the tumor immune microenvironment after GP chemotherapy and uncovers a role for B cell-centered antitumor immunity. We also identify and validate ILB as a potential biomarker for GP-based treatment in NPC, which could improve patient management.
Collapse
Affiliation(s)
- Jiawei Lv
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuan Wei
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | - Yu-Pei Chen
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guan-Qun Zhou
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chen Wei
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yu Liang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuan Zhang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | | | - Shi-Wei He
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qing-Mei He
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhuo-Li Huang
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Li Guan
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jia-Yi Shen
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Min Li
- Department of Respiratory Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Jun-Yan Li
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen-Fei Li
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ling-Long Tang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan-Ping Mao
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rui Guo
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rui Sun
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu-Hui Zheng
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | - Xin Jin
- BGI-Shenzhen, Shenzhen, China
| | - Na Liu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Gui-Bo Li
- BGI-Shenzhen, Shenzhen, China.
- BGI-Henan, Xinxiang, China.
| | - Dong-Ming Kuang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Ying Sun
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Jun Ma
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
5
|
Peyton SR, Platt MO, Cukierman E. Challenges and Opportunities Modeling the Dynamic Tumor Matrisome. BME FRONTIERS 2023; 4:0006. [PMID: 37849664 PMCID: PMC10521682 DOI: 10.34133/bmef.0006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/28/2022] [Indexed: 10/19/2023] Open
Abstract
We need novel strategies to target the complexity of cancer and, particularly, of metastatic disease. As an example of this complexity, certain tissues are particularly hospitable environments for metastases, whereas others do not contain fertile microenvironments to support cancer cell growth. Continuing evidence that the extracellular matrix (ECM) of tissues is one of a host of factors necessary to support cancer cell growth at both primary and secondary tissue sites is emerging. Research on cancer metastasis has largely been focused on the molecular adaptations of tumor cells in various cytokine and growth factor environments on 2-dimensional tissue culture polystyrene plates. Intravital imaging, conversely, has transformed our ability to watch, in real time, tumor cell invasion, intravasation, extravasation, and growth. Because the interstitial ECM that supports all cells in the tumor microenvironment changes over time scales outside the possible window of typical intravital imaging, bioengineers are continuously developing both simple and sophisticated in vitro controlled environments to study tumor (and other) cell interactions with this matrix. In this perspective, we focus on the cellular unit responsible for upholding the pathologic homeostasis of tumor-bearing organs, cancer-associated fibroblasts (CAFs), and their self-generated ECM. The latter, together with tumoral and other cell secreted factors, constitute the "tumor matrisome". We share the challenges and opportunities for modeling this dynamic CAF/ECM unit, the tools and techniques available, and how the tumor matrisome is remodeled (e.g., via ECM proteases). We posit that increasing information on tumor matrisome dynamics may lead the field to alternative strategies for personalized medicine outside genomics.
Collapse
Affiliation(s)
- Shelly R. Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Manu O. Platt
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Edna Cukierman
- Cancer Signaling & Microenvironment Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA
| |
Collapse
|
6
|
Li K, Romero M, Cañardo M, Garcia D, Diaz A, Blomberg BB, Frasca D. B cells from old mice induce the generation of inflammatory T cells through metabolic pathways. Mech Ageing Dev 2023; 209:111742. [PMID: 36309082 DOI: 10.1016/j.mad.2022.111742] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022]
Abstract
We have measured the capacity of B cells from young and old mice to induce the differentiation of naïve CD4 + T cells from young mice into pro-inflammatory subsets. We found that only B cells from old mice are inflammatory and induce in vitro secretion of the pro-inflammatory cytokines IL-17A and IFN-γ by T cells. In co-culture experiments, B cells from old mice showed a strong helper function on T cells from young mice, making them pro-inflammatory, and this effect is regulated by metabolic pathways, mainly anaerobic glycolysis, leading to increased RNA expression of the enzyme lactate dehydrogenase (LDHA) and increased secretion of lactate. These results have indicated that lactate is a crucial player of the B cell-induced polarization of T cells. When we measured the effects of lactate on isolated CD4 + T cells from young mice, we found that lactate increases RNA expression of LDHA, secretion of pro-inflammatory cytokines and NF-kB activation. Moreover, lactate effects in culture can be abrogated in the presence of the specific inhibitor of LDHA, FX11. These results altogether may have relevant clinical implications and suggest novel targets for therapeutic interventions in patients with inflammatory conditions and diseases.
Collapse
Affiliation(s)
- Kevin Li
- Department of Microbiology and Immunology and University of Miami Miller School of Medicine, Miami, FL USA
| | - Maria Romero
- Department of Microbiology and Immunology and University of Miami Miller School of Medicine, Miami, FL USA
| | - Macarena Cañardo
- Department of Microbiology and Immunology and University of Miami Miller School of Medicine, Miami, FL USA
| | - Denisse Garcia
- Department of Microbiology and Immunology and University of Miami Miller School of Medicine, Miami, FL USA
| | - Alain Diaz
- Department of Microbiology and Immunology and University of Miami Miller School of Medicine, Miami, FL USA
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology and University of Miami Miller School of Medicine, Miami, FL USA; Sylvester Comprehensive Cancer Center University of Miami Miller School of Medicine, Miami, FL USA
| | - Daniela Frasca
- Department of Microbiology and Immunology and University of Miami Miller School of Medicine, Miami, FL USA; Sylvester Comprehensive Cancer Center University of Miami Miller School of Medicine, Miami, FL USA.
| |
Collapse
|
7
|
González-Moles MÁ, Warnakulasuriya S, López-Ansio M, Ramos-García P. Hallmarks of Cancer Applied to Oral and Oropharyngeal Carcinogenesis: A Scoping Review of the Evidence Gaps Found in Published Systematic Reviews. Cancers (Basel) 2022; 14:3834. [PMID: 35954497 PMCID: PMC9367256 DOI: 10.3390/cancers14153834] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 02/07/2023] Open
Abstract
In 2000 and 2011, Hanahan and Weinberg published two papers in which they defined the characteristics that cells must fulfil in order to be considered neoplastic cells in all types of tumours that affect humans, which the authors called "hallmarks of cancer". These papers have represented a milestone in our understanding of the biology of many types of cancers and have made it possible to reach high levels of scientific evidence in relation to the prognostic impact that these hallmarks have on different tumour types. However, to date, there is no study that globally analyses evidence-based knowledge on the importance of these hallmarks in oral and oropharyngeal squamous cell carcinomas. For this reason, we set out to conduct this scoping review of systematic reviews with the aim of detecting evidence gaps in relation to the relevance of the cancer hallmarks proposed by Hanahan and Weinberg in oral and oropharyngeal cancer, and oral potentially malignant disorders, and to point out future lines of research in this field.
Collapse
Affiliation(s)
- Miguel Ángel González-Moles
- School of Dentistry, University of Granada, 18011 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Saman Warnakulasuriya
- Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK
- WHO Collaborating for Oral Cancer, King’s College London, London SE1 9RT, UK
| | - María López-Ansio
- School of Dentistry, University of Granada, 18011 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Pablo Ramos-García
- School of Dentistry, University of Granada, 18011 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
8
|
Șerbănescu MS, Bungărdean RM, Georgiu C, Crișan M. Nodular and Micronodular Basal Cell Carcinoma Subtypes Are Different Tumors Based on Their Morphological Architecture and Their Interaction with the Surrounding Stroma. Diagnostics (Basel) 2022; 12:diagnostics12071636. [PMID: 35885545 PMCID: PMC9323345 DOI: 10.3390/diagnostics12071636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 11/16/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most frequent cancer of the skin and comprises low-risk and high-risk subtypes. We selected a low-risk subtype, namely, nodular (N), and a high-risk subtype, namely, micronodular (MN), with the aim to identify differences between them using a classical morphometric approach through a gray-level co-occurrence matrix and histogram analysis, as well as an approach based on deep learning semantic segmentation. From whole-slide images, pathologists selected 216 N and 201 MN BCC images. The two groups were then manually segmented and compared based on four morphological areas: center of the BCC islands (tumor, T), peripheral palisading of the BCC islands (touching tumor, TT), peritumoral cleft (PC) and surrounding stroma (S). We found that the TT pattern varied the least, while the PC pattern varied the most between the two subtypes. The combination of two distinct analysis approaches yielded fresh insights into the characterization of BCC, and thus, we were able to describe two different morphological patterns for the T component of the two subtypes.
Collapse
Affiliation(s)
- Mircea-Sebastian Șerbănescu
- Department of Medical Informatics and Biostatistics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Raluca Maria Bungărdean
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Correspondence:
| | - Carmen Georgiu
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Maria Crișan
- Department of Histology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
9
|
Hecht JL, Janikova M, Choudhury R, Liu F, Canesin G, Janovicova L, Csizmadia E, Jorgensen EM, Esselen KM, Celec P, Swanson KD, Wegiel B. Labile Heme and Heme Oxygenase-1 Maintain Tumor-Permissive Niche for Endometriosis-Associated Ovarian Cancer. Cancers (Basel) 2022; 14:2242. [PMID: 35565370 PMCID: PMC9105072 DOI: 10.3390/cancers14092242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 01/12/2023] Open
Abstract
Endometriosis, a painful gynecological condition accompanied by inflammation in women of reproductive age, is associated with an increased risk of ovarian cancer. We evaluated the role of peritoneal heme accumulated during menstrual cycling, as well as peritoneal and lesional macrophage phenotype, in promoting an oncogenic microenvironment. We quantified the heme-degrading enzyme, heme oxygenase-1 (HO-1, encoded by Hmox1) in normal peritoneum, endometriotic lesions and endometriosis-associated ovarian cancer (EAOC) of clear cell type (OCCC). HO-1 was expressed primarily in macrophages and increased in endometrioma and OCCC tissues relative to endometriosis and controls. Further, we compared cytokine expression profiles in peritoneal macrophages (PM) and peripheral blood mononuclear cells (PBMC) in women with endometriosis versus controls as a measure of a tumor-promoting environment in the peritoneum. We found elevated levels of HO-1 along with IL-10 and the pro-inflammatory cytokines (IL-1β, IL-16, IFNγ) in PM but not in PBMC from endometriosis patients. Using LysM-Cre:Hmox1flfl conditional knockout mice, we show that a deficiency of HO-1 in macrophages led to the suppression of growth of ID8 ovarian tumors implanted into the peritoneum. The restriction of ID8 ovarian tumor growth was associated with an increased number of Mac3+ macrophage and B cells in LysM-Cre:Hmox1flfl mice compared to controls. Functional experiments in ovarian cancer cell lines show that HO-1 is induced by heme. Low levels of exogenous heme promoted ovarian cancer colony growth in soft agar. Higher doses of heme led to slower cancer cell colony growth in soft agar and the induction of HO-1. These data suggest that perturbation of heme metabolism within the endometriotic niche and in cancer cells themselves may be an important factor that influences tumor initiation and growth.
Collapse
Affiliation(s)
- Jonathan L. Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA;
| | - Monika Janikova
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (M.J.); (R.C.); (G.C.); (L.J.); (E.C.)
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University in Bratislava, 814 99 Bratislava, Slovakia;
| | - Reeham Choudhury
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (M.J.); (R.C.); (G.C.); (L.J.); (E.C.)
| | - Fong Liu
- Department of OB/GYN, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (F.L.); (E.M.J.); (K.M.E.)
- Greater Baltimore Medical Center, 6569 Charles Street, Towson, MD 21204, USA
| | - Giacomo Canesin
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (M.J.); (R.C.); (G.C.); (L.J.); (E.C.)
- Vor Biopharma, 100 Cambridgepark Dr, Suite 400, Cambridge, MA 02140, USA
| | - Lubica Janovicova
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (M.J.); (R.C.); (G.C.); (L.J.); (E.C.)
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University in Bratislava, 814 99 Bratislava, Slovakia;
| | - Eva Csizmadia
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (M.J.); (R.C.); (G.C.); (L.J.); (E.C.)
| | - Elisa M. Jorgensen
- Department of OB/GYN, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (F.L.); (E.M.J.); (K.M.E.)
| | - Katharine M. Esselen
- Department of OB/GYN, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (F.L.); (E.M.J.); (K.M.E.)
| | - Peter Celec
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University in Bratislava, 814 99 Bratislava, Slovakia;
| | - Kenneth D. Swanson
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Barbara Wegiel
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (M.J.); (R.C.); (G.C.); (L.J.); (E.C.)
| |
Collapse
|
10
|
Chenard S, Jackson C, Vidotto T, Chen L, Hardy C, Jamaspishvilli T, Berman D, Siemens DR, Koti M. Sexual Dimorphism in Outcomes of Non-muscle-invasive Bladder Cancer: A Role of CD163+ Macrophages, B cells, and PD-L1 Immune Checkpoint. EUR UROL SUPPL 2021; 29:50-58. [PMID: 34337534 PMCID: PMC8317911 DOI: 10.1016/j.euros.2021.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Non-muscle-invasive bladder cancer (NMIBC) is over three times as common in men as it is in women; however, female patients do not respond as well to immunotherapeutic treatments and experience worse clinical outcomes than their male counterparts. Based on the established sexual dimorphism in mucosal immune responses, we hypothesized that the tumor immune microenvironment of bladder cancer differs between the sexes, and this may contribute to discrepancies in clinical outcomes. OBJECTIVE To determine biological sex-associated differences in the expression of immune regulatory genes and spatial organization of immune cells in tumors from NMIBC patients. DESIGN SETTING AND PARTICIPANTS Immune regulatory gene expression levels in tumors from male (n = 357) and female (n = 103) patients were measured using whole transcriptome profiles of tumors from the UROMOL cohort. Multiplexe immunofluorescence was performed to evaluate the density and spatial distribution of immune cells and immune checkpoints in tumors from an independent cohort of patients with NMIBC (n = 259 males and n = 73 females). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Transcriptome sequencing data were analyzed using DESeq2 in R v4.0.1, followed by application of the Kruskal-Wallis test to determine gene expression differences between tumors from males and females. Immunofluorescence data analyses were conducted using R version 3.5.3. Survival analysis was performed using survminer packages. RESULTS AND LIMITATIONS High-grade tumors from female patients exhibited significantly increased expression of B-cell recruitment (CXCL13) and function (CD40)-associated genes and the immune checkpoint genes CTLA4, PDCD1, LAG3, and ICOS. Tumors from female patients showed significantly higher infiltration of PD-L1+ cells and CD163+ M2-like macrophages than tumors from male patients. Increased abundance of CD163+ macrophages and CD79a+ B cells were associated with decreased recurrence-free survival. CONCLUSIONS These novel findings highlight the necessity of considering sexual dimorphism in the design of future immunotherapy trials in NMIBC. PATIENT SUMMARY In this study, we measured the abundance of various immune cell types between tumors from male and female patients with non-muscle-invasive bladder cancer. We demonstrate that tumors from female patients have a significantly higher abundance of immunosuppressive macrophages that express CD163. Higher abundance of tumor-associated CD163-expressing macrophages and B cells is associated with shorter recurrence-free survival in both male and female patients.
Collapse
Affiliation(s)
- Stephen Chenard
- Queen’s Cancer Research Institute, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Chelsea Jackson
- Queen’s Cancer Research Institute, Kingston, ON, Canada
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - Thiago Vidotto
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Lina Chen
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - Céline Hardy
- Queen’s Cancer Research Institute, Kingston, ON, Canada
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - Tamara Jamaspishvilli
- Queen’s Cancer Research Institute, Kingston, ON, Canada
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - David Berman
- Queen’s Cancer Research Institute, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - D. Robert Siemens
- Queen’s Cancer Research Institute, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
- Department of Urology, Queen’s University, Kingston, ON, Canada
| | - Madhuri Koti
- Queen’s Cancer Research Institute, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
- Department of Urology, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
11
|
Zeng QH, Wei Y, Lao XM, Chen DP, Huang CX, Lin QY, He M, Liao Y, Zheng L, Li B, Zhang GB, Chen Y, Kuang DM. B cells polarize pathogenic inflammatory T helper subsets through ICOSL-dependent glycolysis. SCIENCE ADVANCES 2020; 6:eabb6296. [PMID: 32917682 PMCID: PMC11206526 DOI: 10.1126/sciadv.abb6296] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
B cells constitute abundant cellular components in inflamed human tissues, but their role in pathogenesis of inflammatory T helper (TH) subsets is still unclear. Here, we demonstrate that B cells, particularly resting naïve B cells, have a previously unrecognized helper function that is involved in shaping the metabolic process and subsequent inflammatory differentiation of T-cell receptor-primed TH cells. ICOS/ICOSL axis-mediated glucose incorporation and utilization were crucial for inflammatory TH subset induction by B cells, and activation of mTOR was critical for T cell glycolysis in this process. Consistently, upon encountering ICOSL+ B cells, activated effector memory TH cells from patients with rheumatoid arthritis or systemic lupus erythematosus spontaneously differentiated into inflammatory TH subsets. Immunotherapy using rituximab that specifically depleted B cells in patients with rheumatoid arthritis efficiently abrogated the capabilities of memory TH cells to incorporate and use glucose, thereby impairing the pathogenic differentiation of inflammatory TH subsets.
Collapse
Affiliation(s)
- Qiu-Hui Zeng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Yuan Wei
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Xiang-Ming Lao
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Dong-Ping Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Chun-Xiang Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Qian-Yi Lin
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Min He
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, P.R. China
| | - Yuan Liao
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China
| | - Limin Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Bo Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Guang-Bo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Yun Chen
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Nanjing Medical University, Nanjing 211166, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Dong-Ming Kuang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China.
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, P.R. China
| |
Collapse
|
12
|
In silico analyses of the tumor microenvironment highlight tumoral inflammation, a Th2 cytokine shift and a mesenchymal stem cell-like phenotype in advanced in basal cell carcinomas. J Cell Commun Signal 2020; 14:245-254. [PMID: 32198729 DOI: 10.1007/s12079-020-00563-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Basal Cell Carcinoma (BCC) represents the most common form of all cancers. BCC is characteristically surrounded by a fibromyxoid stroma. Previous studies have suggested a shift towards a Th2 response, an increase in T regulatory lymphocytes and the presence of cancer-associated fibroblasts in the BCC tumor microenvironment. In this study, we aimed to further characterize the BCC tumor microenvironment in detail by analyzing BCC RNA-Sequencing data and correlating it with clinically-relevant features via in silico RNA deconvolution. Using immune cell type deconvolution by CIBERSORT, we have identified a brisk lymphocytic infiltration, and more abundant macrophages in BCC tumors compared to normal skin. Using cell type enrichment by xCell, we confirmed the observed immune infiltration in BCC tumors and compared them to normal skin. We observed a shift towards Th2 immunity in advanced and vismodegib-resistant tumors. Tumoral inflammation induced by macrophage activity was associated with advanced BCCs, while lymphocytic infiltration was most significant in non-advanced tumors, likely related to an adaptive anti-tumoral response. In advanced and vismodegib-resistant BCCs, mesenchymal stem cell-like properties were observed. Particularly in vismodegib-resistant BCCs, fibroblasts and adipocytes were found at high number, which ultimately may contribute to the decreased drug delivery to the tumor. In conclusion, this study has revealed notable BCC tumor microenvironment findings associated with important clinical features. Microenvironment-altering agents may be used locally for "routine" BCCs and systematically for advanced or resistant BCCs.
Collapse
|
13
|
Gomez-Cambronero J. Lack of effective translational regulation of PLD expression and exosome biogenesis in triple-negative breast cancer cells. Cancer Metastasis Rev 2019; 37:491-507. [PMID: 30091053 DOI: 10.1007/s10555-018-9753-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that is difficult to treat since cells lack the three receptors (ES, PR, or HER) that the most effective treatments target. We have used a well-established TNBC cell line (MDA-MB-231) from which we found evidence in support for a phospholipase D (PLD)-mediated tumor growth and metastasis: high levels of expression of PLD, as well as the absence of inhibitory miRs (such as miR-203) and 3'-mRNA PARN deadenylase activity in these cells. Such findings are not present in a luminal B cell line, MCF-7, and we propose a new miR•PARN•PLD node that is not uniform across breast cancer molecular subtypes and as such TNBC could be pharmacologically targeted differentially. We review the participation of PLD and phosphatidic acid (PA), its enzymatic product, as new "players" in breast cancer biology, with the aspects of regulation of the tumor microenvironment, macrophage polarization, regulation of PLD transcripts by specific miRs and deadenylases, and PLD-regulated exosome biogenesis. A new signaling miR•PARN•PLD node could serve as new biomarkers for TNBC abnormal signaling and metastatic disease staging, potentially before metastases are able to be visualized using conventional imaging.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.
| |
Collapse
|
14
|
Wu XZ, Shi XY, Zhai K, Yi FS, Wang Z, Wang W, Pei XB, Xu LL, Wang Z, Shi HZ. Activated naïve B cells promote development of malignant pleural effusion by differential regulation of T H1 and T H17 response. Am J Physiol Lung Cell Mol Physiol 2018; 315:L443-L455. [PMID: 29847991 DOI: 10.1152/ajplung.00120.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inflammatory signaling networks between tumor cells and immune cells contribute to the development of malignant pleural effusion (MPE). B cells have been found in MPE; however, little is known about their roles there. In the present study, by using mouse MPE models, we noted that although the total B cells in MPE were decreased as compared with the corresponding blood and spleen, the percentage of activated naïve B cells expressing higher levels of CD80, CD86, myosin heavy chain-II, CD44, CD69, and programmed cell death-ligand 1 (PD-L1) molecules were increased in wild-type mouse MPE. Compared with wild-type mice, decreased T helper (TH)1 cells and increased TH17 cells were present in B cell-deficient mouse MPE, which paralleled to the reduced MPE volume and longer survival time. Adoptive transfer of activated naïve B cells into B cell-deficient mice was able to increase TH1 cells and decrease TH17 cells in MPE and shorten the survival of mice bearing MPE. Furthermore, we demonstrated that activated naïve B cells inhibited TH17-cell expansion via the PD-1/PD-L1 pathway and promoted naïve CD4+ T-cell differentiation into TH1/TH17 cells through secreting IL-27/IL-6 independent of the PD-1/PD-L1 pathway. Collectively, our data uncovered a mechanism by which naïve B cells promote MPE formation by regulating TH1/TH17 cell responses, making these B cells an attractive target for therapeutic intervention in the fight against cancer.
Collapse
Affiliation(s)
- Xiu-Zhi Wu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| | - Xin-Yu Shi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| | - Kan Zhai
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| | - Feng-Shuang Yi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| | - Zhen Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| | - Wen Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| | - Xue-Bin Pei
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| | - Li-Li Xu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| | - Zheng Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| | - Huan-Zhong Shi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| |
Collapse
|
15
|
Sakuyama N, Kojima M, Kawano S, Matsuda Y, Mino-Kenudson M, Ochiai A, Ito M. Area of residual tumor is a robust prognostic marker for patients with rectal cancer undergoing preoperative therapy. Cancer Sci 2018; 109:871-878. [PMID: 29388280 PMCID: PMC5834774 DOI: 10.1111/cas.13521] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/11/2018] [Accepted: 01/13/2018] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to elucidate differences in the histological features of rectal cancer between patients treated with preoperative chemoradiotherapy and those treated with preoperative chemotherapy. Area of residual tumor (ART) was also evaluated for its utility as a potential prognostic marker between them. Sixty‐eight patients with rectal cancer who underwent sphincter‐saving surgery were enrolled in this study. Of these, 39 patients received preoperative chemoradiotherapy (CRT group) and 29 patients received preoperative (neoadjuvant) chemotherapy (NAC group). Area of residual tumor was determined by using morphometric software. Tumors in the two groups were compared for differences in their histological features and clinical outcomes. Tumors in the CRT and NAC groups varied greatly with regard to their histological features after preoperative therapy. Tumors in the CRT group showed more marked fibrosis than those in the NAC group. The total ART were significantly smaller in tumors in the CRT group than those in the NAC group. However, in circumferential resection margin‐negative pathologic stage 0‐III cases, clinical outcomes were not statistically different between the CRT and NAC groups. Both ART and pathologic TNM classification were associated with clinical outcome in preoperative CRT and NAC groups, but Dworak regression grade and fibrotic change were not. Tumors in those undergoing preoperative CRT and NAC were shown to differ significantly in their histological features. Area of residual tumor‐based assessment may provide useful prognostic information, regardless of preoperative therapy.
Collapse
Affiliation(s)
- Naoki Sakuyama
- Department of Colorectal and Pelvic Surgery, National Cancer Center Hospital East, Chiba, Japan
| | - Motohiro Kojima
- Division of Pathology, Research Center for Innovative Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Shingo Kawano
- Department of Colorectal and Pelvic Surgery, National Cancer Center Hospital East, Chiba, Japan
| | - Yoko Matsuda
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Atsushi Ochiai
- Division of Pathology, Research Center for Innovative Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Masaaki Ito
- Department of Colorectal and Pelvic Surgery, National Cancer Center Hospital East, Chiba, Japan
| |
Collapse
|
16
|
Wei S. Yin-yang regulating effects of cancer-associated genes, proteins, and cells: An ancient Chinese concept in vogue in modern cancer research. Biosci Trends 2017; 11:612-618. [PMID: 29238002 DOI: 10.5582/bst.2017.01259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Great achievements have been made in human cancer research, but most of this research is focused on conditions at the microscopic rather than the systemic level. Recent studies have increasingly cited the ancient Chinese theory of yin-yang in an effort to expand beyond the microscopic level. Various cancer-associated genes and proteins such as mitogen-activated protein kinase (MAPK), p38, p53, c-Myc, tumor necrosis factor (TNF)-α, NF-κB, Cyclin D1, and cyclin-dependent kinase (CDK) and cells such as T cells, B cells, macrophages, neutrophils, and fibroblasts have been reported to regulate various types of cancers in a yin-yang manner. These studies have brought the theory of yin-yang into vogue in cancer research worldwide.
Collapse
Affiliation(s)
- Shuyong Wei
- College of Animal Science, Southwest University
| |
Collapse
|
17
|
Schupp J, Krebs FK, Zimmer N, Trzeciak E, Schuppan D, Tuettenberg A. Targeting myeloid cells in the tumor sustaining microenvironment. Cell Immunol 2017; 343:103713. [PMID: 29129292 DOI: 10.1016/j.cellimm.2017.10.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 12/24/2022]
Abstract
Myeloid cells are the most abundant cells in the tumor microenvironment (TME). The tumor recruits and modulates endogenous myeloid cells to tumor-associated macrophages (TAM), dendritic cells (DC), myeloid-derived suppressor cells (MDSC) and neutrophils (TAN), to sustain an immunosuppressive environment. Pathologically overexpressed mediators produced by cancer cells like granulocyte-macrophage colony-stimulating- and vascular endothelial growth factor induce myelopoiesis in the bone marrow. Excess of myeloid cells in the blood, periphery and tumor has been associated with tumor burden. In cancer, myeloid cells are kept at an immature state of differentiation to be diverted to an immunosuppressive phenotype. Here, we review human myeloid cells in the TME and the mechanisms for sustaining the hallmarks of cancer. Simultaneously, we provide an introduction into current and novel therapeutic approaches to redirect myeloid cells from a cancer promoting to a rather inflammatory, cancer inhibiting phenotype. In addition, the role of platelets for tumor promotion is discussed.
Collapse
Affiliation(s)
- Jonathan Schupp
- Department of Dermatology, University Medical Center, Mainz, Germany
| | - Franziska K Krebs
- Department of Dermatology, University Medical Center, Mainz, Germany; German Cancer Consortium (DKTK), partner site Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Niklas Zimmer
- Department of Dermatology, University Medical Center, Mainz, Germany
| | - Emily Trzeciak
- The Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
18
|
Herrmann A, Lahtz C, Nagao T, Song JY, Chan WC, Lee H, Yue C, Look T, Mülfarth R, Li W, Jenkins K, Williams J, Budde LE, Forman S, Kwak L, Blankenstein T, Yu H. CTLA4 Promotes Tyk2-STAT3-Dependent B-cell Oncogenicity. Cancer Res 2017; 77:5118-5128. [PMID: 28716895 DOI: 10.1158/0008-5472.can-16-0342] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/04/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022]
Abstract
CTL-associated antigen 4 (CTLA4) is a well-established immune checkpoint for antitumor immune responses. The protumorigenic function of CTLA4 is believed to be limited to T-cell inhibition by countering the activity of the T-cell costimulating receptor CD28. However, as we demonstrate here, there are two additional roles for CTLA4 in cancer, including via CTLA4 overexpression in diverse B-cell lymphomas and in melanoma-associated B cells. CTLA4-CD86 ligation recruited and activated the JAK family member Tyk2, resulting in STAT3 activation and expression of genes critical for cancer immunosuppression and tumor growth and survival. CTLA4 activation resulted in lymphoma cell proliferation and tumor growth, whereas silencing or antibody-blockade of CTLA4 in B-cell lymphoma tumor cells in the absence of T cells inhibits tumor growth. This inhibition was accompanied by reduction of Tyk2/STAT3 activity, tumor cell proliferation, and induction of tumor cell apoptosis. The CTLA4-Tyk2-STAT3 signal pathway was also active in tumor-associated nonmalignant B cells in mouse models of melanoma and lymphoma. Overall, our results show how CTLA4-induced immune suppression occurs primarily via an intrinsic STAT3 pathway and that CTLA4 is critical for B-cell lymphoma proliferation and survival. Cancer Res; 77(18); 5118-28. ©2017 AACR.
Collapse
Affiliation(s)
- Andreas Herrmann
- Department of Onco-Immunology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California.
| | - Christoph Lahtz
- Department of Onco-Immunology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Toshikage Nagao
- Department of Onco-Immunology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California.,Department of Hematology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Joo Y Song
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Wing C Chan
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Heehyoung Lee
- Department of Onco-Immunology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Chanyu Yue
- Department of Onco-Immunology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Thomas Look
- Department of Onco-Immunology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Ronja Mülfarth
- Department of Onco-Immunology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Wenzhao Li
- Department of Onco-Immunology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Kurt Jenkins
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California
| | - John Williams
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Lihua E Budde
- Hematology Institute, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Stephen Forman
- Hematology Institute, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Larry Kwak
- Hematology Institute, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Thomas Blankenstein
- Max-Delbrück-Center for Molecular Medicine, and the Institute of Immunology, Charité Campus Buch, Berlin, Germany
| | - Hua Yu
- Department of Onco-Immunology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California.
| |
Collapse
|
19
|
Sakuyama N, Kojima M, Kawano S, Akimoto T, Saito N, Ito M, Ochiai A. Histological differences between preoperative chemoradiotherapy and chemotherapy for rectal cancer: a clinicopathological study. Pathol Int 2017; 66:273-80. [PMID: 27112135 DOI: 10.1111/pin.12409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/18/2016] [Accepted: 03/03/2016] [Indexed: 12/13/2022]
Abstract
Pathological studies on the different histological effects between neoadjuvant chemotherapy (NAC) and preoperative chemoradiation therapy (preoperative CRT) have not been performed. The purpose of this study is to elucidate the histological differences in tissue received from NAC and preoperative CRT for rectal cancer to evaluate whether a pathological assessment method used after CRT can be applied for NAC. One hundred and thirty-eight patients were enrolled in this study; 88 patients underwent their operations after preoperative CRT or NAC, and 50 patients underwent surgery only. Residual tumor area was measured using morphometry software and we compared the stromal component of myofibroblasts, immune cells, and vasculature to elucidate the difference of therapeutic effect between them. The grade of reduction after preoperative CRT was more prominent than that seen in NAC. Also, ypT downstaging was more prominent in preoperative CRT than in NAC, and ypN downstaging was more frequent in NAC than in preoperative CRT. Preoperative CRT showed more marked myofibroblasts and fewer immune cells than did NAC, which indicates different effects on the cancer microenvironment. Our histological results suggest different effects between NAC and preoperative CRT on tumor tissue. The best assessment method available for a variable therapeutic protocol should be further investigated.
Collapse
Affiliation(s)
- Naoki Sakuyama
- Division of Colorectal Surgery, National Cancer Center Hospital East, Chiba, Japan.,Juntendo University Graduate School of Medicine, Advanced Clinical Research of Cancer, Tokyo, Japan
| | - Motohiro Kojima
- Division of Pathology, National Cancer Center Hospital East, Chiba, Japan
| | - Shingo Kawano
- Division of Colorectal Surgery, National Cancer Center Hospital East, Chiba, Japan.,Juntendo University Graduate School of Medicine, Advanced Clinical Research of Cancer, Tokyo, Japan
| | - Tetsuo Akimoto
- Juntendo University Graduate School of Medicine, Advanced Clinical Research of Cancer, Tokyo, Japan
| | - Norio Saito
- Division of Colorectal Surgery, National Cancer Center Hospital East, Chiba, Japan
| | - Masaaki Ito
- Division of Colorectal Surgery, National Cancer Center Hospital East, Chiba, Japan
| | - Atsushi Ochiai
- Division of Pathology, National Cancer Center Hospital East, Chiba, Japan
| |
Collapse
|
20
|
Asai A, Tsuchimoto Y, Ohama H, Fukunishi S, Tsuda Y, Kobayashi M, Higuchi K, Suzuki F. Host antitumor resistance improved by the macrophage polarization in a chimera model of patients with HCC. Oncoimmunology 2017; 6:e1299301. [PMID: 28507807 DOI: 10.1080/2162402x.2017.1299301] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 12/13/2022] Open
Abstract
Despite major advances in curative and palliative approaches, hepatocellular carcinoma (HCC) is still the third leading cause of cancer-related death worldwide. M1 macrophages (Mϕ) play a key role in host antitumor defenses in HCC. In our study, CD14+ cells were isolated from the peripheral blood of four groups of HCC patients (group-1, patients with stage 0 HCC; group-2, patients with stage A HCC; group-3, patients with stage B HCC; and group-4, patients with stage C HCC) and characterized phenotypically. Then, CD14+ cells from group-2 and group-3 HCC patients were induced to polarize and tested for their antitumor abilities in a chimera model of HCC patients. Human HCCs (HepG2 solid tumors) grew in a chimera model of group-3 patients (group-3 HCC chimeras) but not in a chimera model of group-2 patients (group-2 HCC chimeras). In response to HCC antigens, the majority of CD14+ cells from group-2 patients (group-2 CD14+ cells) switched to the M1 phenotype (IL-12+IL-10-iNOS+cells), whereas the majority of CD14+ cells from group-3 patients (group-3 CD14+ cells) did not switch to the M1 phenotype and continued to express M2b phenotypic properties (IL-12-IL-10+CCL1+iNOS-cells). Group-3 CD14+ cells showed M1Mϕ polarization after treatment with CCL1 antisense oligodeoxynucleotide (ODN). Therefore, our study indicates that anti-HCC defenses of group-3 HCC chimeras are improved after CCL1 antisense ODN treatment.
Collapse
Affiliation(s)
- Akira Asai
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Japan.,Medical Laboratory, Osaka Medical College, Takatsuki, Japan
| | - Yusuke Tsuchimoto
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Japan
| | - Hideko Ohama
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Japan
| | - Shinya Fukunishi
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Japan
| | - Yasuhiro Tsuda
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Japan
| | - Makiko Kobayashi
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA
| | - Kazuhide Higuchi
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Japan
| | - Fujio Suzuki
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
21
|
Henkels KM, Muppani NR, Gomez-Cambronero J. PLD-Specific Small-Molecule Inhibitors Decrease Tumor-Associated Macrophages and Neutrophils Infiltration in Breast Tumors and Lung and Liver Metastases. PLoS One 2016; 11:e0166553. [PMID: 27851813 PMCID: PMC5112812 DOI: 10.1371/journal.pone.0166553] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 10/31/2016] [Indexed: 11/19/2022] Open
Abstract
Phospholipase D-2 (PLD2) has a key role in breast cancer formation and metastasis formation with PLD small inhibitors reducing primary tumor growth. This study aimed to evaluate the importance of targeting PLD on the tumor microenvironment. We provide evidence about the beneficial effect of PLD inhibitors [FIPI (dual PLD1/PLD2) or VU0155072-2 (PLD2 inhibitor)] on avoiding infiltration of tumor-helping macrophages and neutrophils. Tumor growth and metastasis within the primary tumors had low (<20% over controls) PLD enzyme activity. Unexpectedly, we found that the inhibitors also affected PLD2 gene expression and protein albeit at a lesser extent. The later could indicate that targeting both the actual PLD enzyme and its activity could be beneficial for potential cancer treatments in vivo. F4/80 and Ly6G staining of macrophages and neutrophils, respectively, and Arg1 staining data were consistent with M2 and N2 polarization. NOS2 staining increased in xenotransplants upon treatment with PLD2 inhibitors suggesting the novel observation that an increased recruitment of M1 macrophages occurred in primary tumors. PLD inhibitor-treated primary tumors had large, fragile, necrotic areas that were Arg1+ for M2 macrophages. The xenotransplants also caused the formation of large F4/80+ and Ly6G+ (>100 μm) clusters in lungs. However, PLD inhibitors, particularly FIPI, were able to diminish leukocyte presence. Ex vivo chemotaxis and PLD activity of peripheral blood neutrophils (PMN) and peritoneal macrophages was also determined. Whereas PMN had impaired functionality, macrophages did not. This significantly increased ("emboldened") macrophage function was due to PLD inhibition. Since tumor-associated leukocytes in primary tumors and metastases were targeted via PLD inhibition, we posit that these inhibitors have a key role in cancer regression, while still affording an appropriate inflammatory response at least from off-site innate immunity macrophages.
Collapse
Affiliation(s)
- Karen M. Henkels
- Wright State University Boonshoft School of Medicine, Department of Biochemistry and Molecular Biology, Dayton, Ohio 45435, United States of America
| | - Naveen Reddy Muppani
- Wright State University Boonshoft School of Medicine, Department of Biochemistry and Molecular Biology, Dayton, Ohio 45435, United States of America
| | - Julian Gomez-Cambronero
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States of America
- Wright State University Boonshoft School of Medicine, Department of Biochemistry and Molecular Biology, Dayton, Ohio 45435, United States of America
- * E-mail:
| |
Collapse
|
22
|
Zhang C, Xin H, Zhang W, Yazaki PJ, Zhang Z, Le K, Li W, Lee H, Kwak L, Forman S, Jove R, Yu H. CD5 Binds to Interleukin-6 and Induces a Feed-Forward Loop with the Transcription Factor STAT3 in B Cells to Promote Cancer. Immunity 2016; 44:913-923. [PMID: 27096320 DOI: 10.1016/j.immuni.2016.04.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 11/16/2015] [Accepted: 12/29/2015] [Indexed: 12/18/2022]
Abstract
The participation of a specific subset of B cells and how they are regulated in cancer is unclear. Here, we demonstrate that the proportion of CD5(+) relative to interleukin-6 receptor α (IL-6Rα)-expressing B cells was greatly increased in tumors. CD5(+) B cells responded to IL-6 in the absence of IL-6Rα. IL-6 directly bound to CD5, leading to activation of the transcription factor STAT3 via gp130 and its downstream kinase JAK2. STAT3 upregulated CD5 expression, thereby forming a feed-forward loop in the B cells. In mouse tumor models, CD5(+) but not CD5(-) B cells promoted tumor growth. CD5(+) B cells also showed activation of STAT3 in multiple types of human tumor tissues. Thus, our findings demonstrate a critical role of CD5(+) B cells in promoting cancer.
Collapse
Affiliation(s)
- Chunyan Zhang
- Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Hong Xin
- Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Wang Zhang
- Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Paul J Yazaki
- Department of Immunology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Zhifang Zhang
- Department of Immunology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Keith Le
- Department of Immunology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Wenzhao Li
- Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Heehyoung Lee
- Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Larry Kwak
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Stephen Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Richard Jove
- Cell Therapy Institute, Nova Southeastern University, Ft Lauderdale, FL. 33314, USA
| | - Hua Yu
- Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.,Center for Translational Medicine, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| |
Collapse
|
23
|
Abstract
IL-6-STAT3 axis is known as a key factor of tumor progression. In this issue of Immunity, Yu and colleagues (2016) show that IL-6-binding CD5, rather than IL-6 receptor-α in B cells, amplifies STAT3 activation via JAK-STAT signaling to promote cancer.
Collapse
Affiliation(s)
- Kazuya Masuda
- Laboratory of Immune Regulation, World Premier International (WPI) Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Tadamitsu Kishimoto
- Laboratory of Immune Regulation, World Premier International (WPI) Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
24
|
Hepatic B cell leukemia-3 suppresses chemically-induced hepatocarcinogenesis in mice through altered MAPK and NF-κB activation. Oncotarget 2016; 8:56095-56109. [PMID: 28915576 PMCID: PMC5593547 DOI: 10.18632/oncotarget.10893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 07/18/2016] [Indexed: 02/07/2023] Open
Abstract
The transcriptional nuclear factor kappa B (NF-κB)-coactivator B cell leukemia-3 (Bcl-3) is a molecular regulator of cell death and proliferation. Bcl-3 has been shown to be widely expressed in different cancer types including hepatocellular carcinoma (HCC). Its influence on hepatocarcinogenesis is still undetermined. To examine the role of Bcl-3 in hepatocarcinogenesis mice with hepatocyte-specific overexpression of Bcl-3 (Bcl-3Hep) were exposed to diethylnitrosamine (DEN) and phenobarbital (PB). Hepatic Bcl-3 overexpression attenuated DEN/PB-induced hepatocarcinogenesis. Bcl-3Hep mice exhibited a lower number and smaller tumor nodules in response to DEN/PB at 40 weeks of age. Reduced HCC formation was accompanied by a lower rate of cell proliferation and a distinct expression pattern of growth and differentiation-related genes. Activation of c-Jun N-terminal kinase (JNK) and especially extracellular-signal regulated kinase (ERK) was reduced in tumor and tumor-surrounding liver tissue of Bcl-3Hep mice, while p38 and NF-κB p65 were phosphorylated to a higher extent compared to the wild type. In parallel, the absolute number of intrahepatic macrophages, CD8+ T cells and activated B cells was reduced in DEN/PB-treated Bcl-3Hep mice mirroring a reduction of tumor-associated inflammation. Interestingly, at the early time point of 7 weeks following tumor initiation, a higher rate of apoptotic cell death was observed in Bcl-3Hep mice. In summary, hepatocyte-restricted Bcl-3 overexpression reduced hepatocarcinogenesis related to prolonged liver injury early after tumor initiation likely due to decreased survival of DEN/PB-damaged, premalignant cells. Therefore, Bcl-3 could become a novel player in the development of therapeutic and diagnostic tools for HCC.
Collapse
|
25
|
Martinez-Useros J, Garcia-Foncillas J. Obesity and colorectal cancer: molecular features of adipose tissue. J Transl Med 2016; 14:21. [PMID: 26801617 PMCID: PMC4722674 DOI: 10.1186/s12967-016-0772-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/05/2016] [Indexed: 02/06/2023] Open
Abstract
The huge part of population in developed countries is overweight or obese. Obesity is often determined by body mass index (BMI) but new accurate methods and ratios have recently appeared to measure body fat or fat located in the intestines. Early diagnosis of obesity is crucial since it is considered an increasing colorectal cancer risk factor. On the one hand, colorectal cancer has been strongly associated with lifestyle factors. A diet rich in red and processed meats may increase colorectal cancer risk; however, high-fiber diets (grains, cereals and fruits) have been associated with a decreased risk of colorectal cancer. Other life-style factors associated with obesity that also increase colorectal cancer risk are physical inactivity, smoking and high alcohol intake. Cutting-edge studies reported that high-risk transformation ability of adipose tissue is due to production of different pro-inflammatory cytokines like IL-8, IL-6 or IL-2 and other enzymes like lactate dehydrogenase (LDH) and tumour necrosis factor alpha (TNFα). Furthermore, oxidative stress produces fatty-acid peroxidation whose metabolites possess very high toxicities and mutagenic properties. 4-hydroxy-2-nonenal (4-HNE) is an active compounds that upregulates prostaglandin E2 which is directly associated with high proliferative colorectal cancer. Moreover, 4-HNE deregulates cell proliferation, cell survival, differentiation, autophagy, senescence, apoptosis and necrosis via mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PIK3CA)—AKT and protein kinase C pathways. Other product of lipid peroxidation is malondialdehyde (MDA) being able to regulate insulin through WNT-pathway as well as having demonstrated its mutagenic capability. Accumulation of point mutation enables genomic evolution of colorectal cancer described in the model of Fearon and Vogelstein. In this review, we will summarize different determination methods and techniques to assess a truthfully diagnosis and we will explain some of the capabilities that performs adipocytes as the largest endocrine organ.
Collapse
Affiliation(s)
- Javier Martinez-Useros
- Translational Oncology Division, Oncohealth Institute, FIIS-Fundacion Jimenez Diaz, Av. Reyes Catolicos 2, 28040, Madrid, Spain.
| | - Jesus Garcia-Foncillas
- Translational Oncology Division, Oncohealth Institute, FIIS-Fundacion Jimenez Diaz, Av. Reyes Catolicos 2, 28040, Madrid, Spain.
| |
Collapse
|
26
|
Monocyte-derived macrophage assisted breast cancer cell invasion as a personalized, predictive metric to score metastatic risk. Sci Rep 2015; 5:13855. [PMID: 26349896 PMCID: PMC4563359 DOI: 10.1038/srep13855] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/06/2015] [Indexed: 01/06/2023] Open
Abstract
Patient-to-patient variability in breast cancer progression complicates clinical treatment decisions. Of women undergoing prophylactic mastectomies, many may not have progressed to indolent forms of disease and could have benefited from milder, localized therapy. Tumor associated macrophages contribute significantly to tumor invasion and metastasis, with cysteine cathepsin proteases as important contributors. Here, a method is demonstrated by which variability in macrophage expression of cysteine cathepsins, their inhibitor cystatin C, and kinase activation can be used to train a multivariate model and score patients for invasion risk. These enzymatic profiles were used to predict macrophage-assisted MCF-7 breast cancer cell invasion in the trained computational model. To test these predictions, a priori, signals from monocytes isolated from women undergoing mastectomies were input to score their cancer invasion potential in a patient-specific manner, and successfully predicted that patient monocytes with highest predicted invasion indices matched those with more invasive initial diagnoses of the nine patients tested. Together this establishes proof-of-principle that personalized information acquired from minimally invasive blood draws may provide useful information to inform oncologists and patients of invasive/metastatic risk, helping to make decisions regarding radical mastectomy or milder, conservative treatments to save patients from hardship and surgical recovery.
Collapse
|
27
|
An immature B cell population from peripheral blood serves as surrogate marker for monitoring tumor angiogenesis and anti-angiogenic therapy in mouse models. Angiogenesis 2015; 18:327-45. [PMID: 26021306 DOI: 10.1007/s10456-015-9470-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 05/18/2015] [Indexed: 12/18/2022]
Abstract
Tumor growth depends on the formation of new blood vessels (tumor angiogenesis) either from preexisting vessels or by the recruitment of bone marrow-derived cells. Despite encouraging results obtained with preclinical cancer models, the therapeutic targeting of tumor angiogenesis has thus far failed to deliver an enduring clinical response in cancer patients. One major obstacle for improving anti-angiogenic therapy is the lack of validated biomarkers, which allow patient stratification for suitable treatment and a rapid assessment of therapy response. Toward these goals, we have employed several mouse models of tumor angiogenesis to identify cell populations circulating in their blood that correlated with the extent of tumor angiogenesis and therapy response. Flow cytometry analyses of different combinations of cell surface markers that define subsets of bone marrow-derived cells were performed on peripheral blood mononuclear cells from tumor-bearing and healthy mice. We identified one cell population, CD45(dim)VEGFR1(-)CD31(low), that was increased in levels during active tumor angiogenesis in a variety of transgenic and syngeneic transplantation mouse models of cancer. Treatment with various anti-angiogenic drugs did not affect CD45(dim)VEGFR1(-)CD31(low) cells in healthy mice, whereas in tumor-bearing mice, a consistent reduction in their levels was observed. Gene expression profiling of CD45(dim)VEGFR1(-)CD31(low) cells characterized these cells as an immature B cell population. These immature B cells were then directly validated as surrogate marker for tumor angiogenesis and of pharmacologic responses to anti-angiogenic therapies in various mouse models of cancer.
Collapse
|
28
|
Fremd C, Schuetz F, Sohn C, Beckhove P, Domschke C. B cell-regulated immune responses in tumor models and cancer patients. Oncoimmunology 2014; 2:e25443. [PMID: 24073382 PMCID: PMC3782133 DOI: 10.4161/onci.25443] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/14/2013] [Accepted: 06/18/2013] [Indexed: 12/20/2022] Open
Abstract
The essential role played by T cells in anticancer immunity is widely accepted. The immunosuppressive functions of regulatory T cells are central for tumor progression and have been endowed with a robust predictive value. Increasing evidence indicates that also B cells have a crucial part in the regulation of T-cell responses against tumors. Although experiments reporting the production of natural antitumor antibodies and the induction of cytotoxic immune responses have revealed a tumor-protective function for B cells, other findings suggest that B cells may also exert tumor-promoting functions, resulting in a controversial picture. Here, we review recent evidence on the interactions between B and T cells in murine models and cancer patients and their implications for cancer immunology.
Collapse
Affiliation(s)
- Carlo Fremd
- Department of Gynecology and Obstetrics; University Hospital of Heidelberg; Heidelberg, Germany
| | | | | | | | | |
Collapse
|
29
|
Giakoustidis A, Mudan S, Hagemann T. Tumour Microenvironment: Overview with an Emphasis on the Colorectal Liver Metastasis Pathway. CANCER MICROENVIRONMENT 2014; 8:177-86. [PMID: 25277516 DOI: 10.1007/s12307-014-0155-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 09/21/2014] [Indexed: 12/31/2022]
Abstract
The tumour microenvironment (TME) represents a dynamic network that plays an important role in tumour initiation, proliferation, growth, and metastasis. Cell behaviour may be regulated by interplay of molecular interactions involving positive and negative reinforcement as well as a high level of cross-talk, which determines this system. Additionally, cancer involves cell proliferation, its malignancy defined by the tumour's ability to break down normal tissue architecture and by a dynamic process of invasion and metastasis. The metastatic cascade is regulated by a chain of molecular steps which triggers the progression of the developing cancer cell in the primary tumour into a number of transformations, leading to invasion and proceeding to metastases. Tumour-associated macrophages (TAMs) play a key-role in the progression from inflammatory conditions to cancer; TAMs are also capable of infiltrating the tumour microenvironment. Furthermore, myeloid-derived suppressor cells (MDSCs), a population of inhibitory immune cells, have been reported to increase in various cancer types, although characterising human MDSCs remains difficult, as their phenotype is quite variable. The future of cancer treatment is likely to involve creating more drugs that target these elements as well as others. An overview of the tumour's microenvironment is, therefore, presented in this paper, focusing on the metastatic pathways of primary colorectal cancer to the liver.
Collapse
Affiliation(s)
- Alexandros Giakoustidis
- Barts Cancer Institute, Queen Mary School of Medicine and Dentistry, University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK. .,The London Clinic, 116 Harley Street, London, W1G 7JL, UK.
| | - Satvinder Mudan
- Academic Department of Surgery, The Royal Marsden NHS Trust, Fulham Road, London, SW3 6JJ, UK.,Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W2 1PG, UK
| | - Thorsten Hagemann
- Barts Cancer Institute, Queen Mary School of Medicine and Dentistry, University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| |
Collapse
|
30
|
Shimakage M. Significant role of macrophages in human cancers associated with Epstein-Barr virus (Review). Oncol Rep 2014; 32:1763-71. [PMID: 25224510 DOI: 10.3892/or.2014.3475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/21/2014] [Indexed: 11/05/2022] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous pathogen that was first identified as a human cancer virus. Many human cancers are associated with EBV, and we demonstrated that EBV infects macrophages. Macrophages infected with EBV show a close correlation with many human cancers, and thus more attention must be given to the role of macrophages infiltrating into cancer tissues associated with EBV. In this review, I discuss the role of macrophages in the process of EBV-associated oncogenesis with regard to interleukin-10.
Collapse
Affiliation(s)
- Misuzu Shimakage
- Department of Pediatrics, National Hospital Organization, Wakayama National Hospital, Wakayama 644-0044, Japan
| |
Collapse
|
31
|
Stockmann C, Schadendorf D, Klose R, Helfrich I. The impact of the immune system on tumor: angiogenesis and vascular remodeling. Front Oncol 2014; 4:69. [PMID: 24782982 PMCID: PMC3986554 DOI: 10.3389/fonc.2014.00069] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/20/2014] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels, as well as inflammation with massive infiltration of leukocytes are hallmarks of various tumor entities. Various epidemiological, clinical, and experimental studies have not only demonstrated a link between chronic inflammation and cancer onset but also shown that immune cells from the bone marrow such as tumor-infiltrating macrophages significantly influence tumor progression. Tumor angiogenesis is critical for tumor development as tumors have to establish a blood supply in order to progress. Although tumor cells were first believed to fuel tumor angiogenesis, numerous studies have shown that the tumor microenvironment and infiltrating immune cell subsets are important for regulating the process of tumor angiogenesis. These infiltrates involve the adaptive immune system including several types of lymphocytes as well as cells of the innate immunity such as macrophages, neutrophils, eosinophils, mast cells, dendritic cells, and natural killer cells. Besides their known immune function, these cells are now recognized for their crucial role in regulating the formation and the remodeling of blood vessels in the tumor. In this review, we will discuss for each cell type the mechanisms that regulate the vascular phenotype and its impact on tumor growth and metastasis.
Collapse
Affiliation(s)
- Christian Stockmann
- UMR 970, Paris Cardiovascular Research Center, Institut National de la Santé et de la Recherche Médicale (INSERM) , Paris , France
| | - Dirk Schadendorf
- Skin Cancer Unit, Dermatology Department, Medical Faculty, University Duisburg-Essen , Essen , Germany
| | - Ralph Klose
- UMR 970, Paris Cardiovascular Research Center, Institut National de la Santé et de la Recherche Médicale (INSERM) , Paris , France
| | - Iris Helfrich
- Skin Cancer Unit, Dermatology Department, Medical Faculty, University Duisburg-Essen , Essen , Germany
| |
Collapse
|
32
|
Glauser TA, Nevins PH, Williamson JC, Tomlinson B. Assessing the effectiveness of a Grand Rounds CME activity for health-care professionals. JOURNAL OF CANCER EDUCATION : THE OFFICIAL JOURNAL OF THE AMERICAN ASSOCIATION FOR CANCER EDUCATION 2013; 28:591-596. [PMID: 23801053 DOI: 10.1007/s13187-013-0507-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The Lymphoma Research Foundation offers Grand Rounds continuing medical education (CME) activities on specific issues related to advances in the management of patients with lymphoma. The 2012 activity comprised interactive case studies presented by local lymphoma experts. A case-based survey was designed to assess whether the management choices of program participants are consistent with the evidence-based content of the CME activity. This survey was administered to participants 1 month after completion of the CME activity and also to a control group who did not participate in the educational program. Participants were more aware of the epidemiology of CD20-positive tumors than were controls and were more likely to appropriately diagnose primary mediastinal large B cell lymphoma (PMBCL), use evidence-based second-line therapy for PMBCL, and properly manage a patient with classic Hodgkin lymphoma that did not respond to standard therapy. Participants were also more confident than controls in their ability to interpret histology and cytogenetic testing for selecting an optimal treatment.
Collapse
|
33
|
Affiliation(s)
- Frances R Balkwill
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | | | | |
Collapse
|
34
|
Yang C, Lee H, Pal S, Jove V, Deng J, Zhang W, Hoon DSB, Wakabayashi M, Forman S, Yu H. B cells promote tumor progression via STAT3 regulated-angiogenesis. PLoS One 2013; 8:e64159. [PMID: 23734190 PMCID: PMC3667024 DOI: 10.1371/journal.pone.0064159] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 04/09/2013] [Indexed: 12/26/2022] Open
Abstract
The role of B cells in cancer and the underlying mechanisms remain to be further explored. Here, we show that tumor-associated B cells with activated STAT3 contribute to tumor development by promoting tumor angiogenesis. B cells with or without Stat3 have opposite effects on tumor growth and tumor angiogenesis in both B16 melanoma and Lewis Lung Cancer mouse models. Ex vivo angiogenesis assays show that B cell-mediated tumor angiogenesis is mainly dependent on the induction of pro-angiogenic gene expression, which requires Stat3 signaling in B cells. Furthermore, B cells with activated STAT3 are mainly found in or near tumor vasculature and correlate significantly with overall STAT3 activity in human tumors. Moreover, the density of B cells in human tumor tissues correlates significantly with expression levels of several STAT3-downstream pro-angiogenic genes, as well as the degree of tumor angiogenesis. Together, these findings define a novel role of B cells in promoting tumor progression through angiogenesis and identify STAT3 in B cells as potential therapeutic target for anti-angiogenesis therapy.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Blotting, Western
- Cell Line, Tumor
- Disease Progression
- Endothelial Cells/immunology
- Endothelial Cells/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Confocal
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/immunology
- STAT3 Transcription Factor/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Tumor Burden/genetics
- Tumor Burden/immunology
Collapse
Affiliation(s)
- Chunmei Yang
- Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California, United States of America
| | - Heehyoung Lee
- Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California, United States of America
- * E-mail: (HL); (HY)
| | - Sumanta Pal
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California, United States of America
| | - Veronica Jove
- Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California, United States of America
| | - Jiehui Deng
- Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California, United States of America
| | - Wang Zhang
- Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California, United States of America
| | - Dave S. B. Hoon
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, California, United States of America
| | - Mark Wakabayashi
- Department of Surgery, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California, United States of America
| | - Stephen Forman
- Department of Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California, United States of America
| | - Hua Yu
- Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California, United States of America
- Center for Translational Medicine, Shanghai Zhangjiang High-Tech Park, Shanghai, China
- * E-mail: (HL); (HY)
| |
Collapse
|
35
|
Suyanı E, Sucak GT, Akyürek N, Sahin S, Baysal NA, Yağcı M, Haznedar R. Tumor-associated macrophages as a prognostic parameter in multiple myeloma. Ann Hematol 2013; 92:669-77. [PMID: 23334187 DOI: 10.1007/s00277-012-1652-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/04/2012] [Indexed: 12/11/2022]
Abstract
The interaction between multiple myeloma (MM) cells and the bone marrow stroma constitutes the basis of myeloma pathogenesis and has led the way for the corresponding therapeutic strategies. The aim of this study is to evaluate tumor-associated macrophages (TAMs) which is an important element of bone marrow stroma and its prognostic relevance in newly diagnosed MM patients. We also wanted to determine the association between TAMs and microvessel density (MVD). Sixty-eight patients, who were diagnosed with MM at the Department of Hematology, Gazi University Hospital, between January 2000 and January 2011, were reviewed retrospectively. Tumor-associated macrophages were evaluated by staining with anti-CD68 and anti-CD163 monoclonal antibodies, and MVD was evaluated by factor VIII staining. Median age was 60 (range, 40-84) years with 36 males and 32 females. The number of both CD 68+ and CD 163+ cells had a negative impact on OS at 6 years (p = 0.013 vs. 0.036; p = 0.015 vs. 0.039) in univariate and multivariate analysis in which age, sex, ISS, the induction treatment, and response to induction treatment are included as variables. High-grade MVD was found to be associated with increased CD163+ cell count. In conclusion, TAMs seems to be a promising prognostic histopathological marker in newly diagnosed MM patients.
Collapse
Affiliation(s)
- Elif Suyanı
- Department of Hematology, Gazi University Faculty of Medicine, Beşevler, Ankara, Turkey.
| | | | | | | | | | | | | |
Collapse
|
36
|
Spence S, Fitzsimons A, Boyd C, Kessler J, Fitzgerald D, Elliott J, Gabhann J, Smith S, Sica A, Hams E, Saunders S, Jefferies C, Fallon P, McAuley D, Kissenpfennig A, Johnston J. RETRACTED: Suppressors of Cytokine Signaling 2 and 3 Diametrically Control Macrophage Polarization. Immunity 2013. [DOI: 10.1016/j.immuni.2012.09.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Morisaki T, Umebayashi M, Kiyota A, Koya N, Tanaka H, Onishi H, Katano M. Combining cetuximab with killer lymphocytes synergistically inhibits human cholangiocarcinoma cells in vitro. Anticancer Res 2012; 22:261-71. [PMID: 22641659 DOI: 10.1016/j.semcancer.2012.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/14/2012] [Accepted: 03/21/2012] [Indexed: 12/31/2022]
Abstract
AIM We explored the possibility of combining adoptive immunotherapy with cytokine-activated killer (CAK) cells and the epidermal growth factor receptor monoclonal antibody, cetuximab, as a treatment for cholangiocarcinoma. MATERIALS AND METHODS CAK cells were cultured with a high-dose of interleukin-2 and anti-CD3 monoclonal antibodies. This cell population contained both activated CD16+/CD56+ (NK) cells and CD3+/NKG2D(high+) T-cells. The effect of CAK cells and cetuximab, alone and in combination, on the viability of human cholangiocarcinoma cells was evaluated. RESULTS Culture of CAK cells alone, but not cetuximab alone, exhibited modest cytotoxicity toward cholangiocarcinoma cells. However, combining CAK cells with cetuximab significantly enhanced cytotoxicity. This enhancement was inhibited by the addition of excess human immunoglobulins, suggesting that antibody-dependent cytotoxicity, mediated by activated NK cells in the CAK cell culture was involved in this mechanism. CONCLUSION Cetuximab may be used to enhance CAK cell therapeutic activity in patients with cholangiocarcinoma, by potentiating antibody-dependent cellular cytotoxicity.
Collapse
Affiliation(s)
- Takashi Morisaki
- Fukuoka General Cancer Clinic, 3-1-1 Sumiyoshi, Hakata-ku, Fukuoka 812-0018, Japan.
| | | | | | | | | | | | | |
Collapse
|
38
|
Peng CW, Tian Q, Yang GF, Fang M, Zhang ZL, Peng J, Li Y, Pang DW. Quantum-dots based simultaneous detection of multiple biomarkers of tumor stromal features to predict clinical outcomes in gastric cancer. Biomaterials 2012; 33:5742-52. [DOI: 10.1016/j.biomaterials.2012.04.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 04/12/2012] [Indexed: 12/18/2022]
|
39
|
Abstract
Over the last decade, the Tec family of nonreceptor tyrosine kinases (Btk, Tec, Bmx, Itk, and Rlk) have been shown to play a key role in inflammation and bone destruction. Bruton's tyrosine kinase (Btk) has been the most widely studied due to the critical role of this kinase in B-cell development and recent evidence showing that blocking Btk signaling is effective in ameliorating lymphoma progression and experimental arthritis. This review will examine the role of TFK in myeloid cell function and the potential of targeting these kinases as a therapeutic intervention in autoimmune disorders such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Nicole J Horwood
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, London, UK.
| | | | | |
Collapse
|
40
|
The role of the lateral dimension of graphene oxide in the regulation of cellular responses. Biomaterials 2012; 33:4013-21. [DOI: 10.1016/j.biomaterials.2012.02.021] [Citation(s) in RCA: 305] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/07/2012] [Indexed: 11/24/2022]
|
41
|
Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 2012; 12:298-306. [PMID: 22419253 DOI: 10.1038/nrc3245] [Citation(s) in RCA: 3481] [Impact Index Per Article: 267.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumours grow within an intricate network of epithelial cells, vascular and lymphatic vessels, cytokines and chemokines, and infiltrating immune cells. Different types of infiltrating immune cells have different effects on tumour progression, which can vary according to cancer type. In this Opinion article we discuss how the context-specific nature of infiltrating immune cells can affect the prognosis of patients.
Collapse
Affiliation(s)
- Wolf Herman Fridman
- INSERM UMRS872, Laboratory of Immune microenvironment and tumours, Paris F75006, France
| | | | | | | |
Collapse
|
42
|
Seeger RC. Immunology and immunotherapy of neuroblastoma. Semin Cancer Biol 2011; 21:229-37. [PMID: 21971567 DOI: 10.1016/j.semcancer.2011.09.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 09/21/2011] [Indexed: 12/31/2022]
Abstract
PURPOSE This review demonstrates the importance of immunobiology and immunotherapy research for understanding and treating neuroblastoma. PRINCIPAL RESULTS The first suggestions of immune system-neuroblastoma interactions came from in vitro experiments showing that lymphocytes from patients were cytotoxic for their own tumor cells and from evaluations of tumors from patients that showed infiltrations of immune system cells. With the development of monoclonal antibody (mAb) technology, a number of mAbs were generated against neuroblastoma cells lines and were used to define tumor associated antigens. Disialoganglioside (GD2) is one such antigen that is highly expressed by virtually all neuroblastoma cells and so is a useful target for both identification and treatment of tumor cells with mAbs. Preclinical research using in vitro and transplantable tumor models of neuroblastoma has demonstrated that cytotoxic T lymphocytes (CTLs) can specifically recognize and kill tumor cells as a result of vaccination or of genetic engineering that endows them with chimeric antigen receptors. However, CTL based clinical trials have not progressed beyond pilot and phase I studies. In contrast, anti-GD2 mAbs have been extensively studied and modified in pre-clinical experiments and have progressed from phase I through phase III clinical trials. Thus, the one proven beneficial immunotherapy for patients with high-risk neuroblastoma uses a chimeric anti-GD2 mAb combined with IL-2 and GM-CSF to treat patients after they have received intensive cyto-reductive chemotherapy, irradiation, and surgery. Ongoing pre-clinical and clinical research emphasizes vaccine, adoptive cell therapy, and mAb strategies. Recently it was shown that the neuroblastoma microenvironment is immunosuppressive and tumor growth promoting, and strategies to overcome this are being developed to enhance anti-tumor immunotherapy. CONCLUSIONS Our understanding of the immunobiology of neuroblastoma has increased immensely over the past 40 years, and clinical translation has shown that mAb based immunotherapy can contribute to improving treatment for high-risk patients. Continued immunobiology and pre-clinical therapeutic research will be translated into even more effective immunotherapeutic strategies that will be integrated with new cytotoxic drug and irradiation therapies to improve survival and quality of life for patients with high-risk neuroblastoma.
Collapse
Affiliation(s)
- Robert C Seeger
- Division of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, CA 90027, United States.
| |
Collapse
|
43
|
Extracellular NM23 Protein as a Therapeutic Target for Hematologic Malignancies. Adv Hematol 2011; 2012:879368. [PMID: 21941554 PMCID: PMC3175692 DOI: 10.1155/2012/879368] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 06/29/2011] [Indexed: 01/19/2023] Open
Abstract
An elevated serum level of NM23-H1 protein is a poor prognostic factor in patients with various hematologic malignancies. The extracellular NM23-H1 protein promotes the in vitro growth and survival of acute myelogenous leukemia (AML) cells and inversely inhibits the in vitro survival of normal peripheral blood monocytes in primary culture at concentrations equivalent to the levels found in the serum of AML patients. The growth and survival promoting activity to AML cells is associated with cytokine production and activation of mitogen-activated protein kinases (MAPKs) and signal transducers and activators of transcription (STAT) signaling pathways. Inhibitors specific for MAPK signaling pathways inhibit the growth/survival-promoting activity of NM23-H1. These findings indicate a novel biological action of extracellular NM23-H1 and its association with poor prognosis. These results suggest an important role of extracellular NM23-H1 in the malignant progression of leukemia and a potential therapeutic target for these malignancies.
Collapse
|