1
|
Blanc-Sylvestre N, Bouchard P, Chaussain C, Bardet C. Pre-Clinical Models in Implant Dentistry: Past, Present, Future. Biomedicines 2021; 9:1538. [PMID: 34829765 PMCID: PMC8615291 DOI: 10.3390/biomedicines9111538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
Biomedical research seeks to generate experimental results for translation to clinical settings. In order to improve the transition from bench to bedside, researchers must draw justifiable conclusions based on data from an appropriate model. Animal testing, as a prerequisite to human clinical exposure, is performed in a range of species, from laboratory mice to larger animals (such as dogs or non-human primates). Minipigs appear to be the animal of choice for studying bone surgery around intraoral dental implants. Dog models, well-known in the field of dental implant research, tend now to be used for studies conducted under compromised oral conditions (biofilm). Regarding small animal models, research studies mostly use rodents, with interest in rabbit models declining. Mouse models remain a reference for genetic studies. On the other hand, over the last decade, scientific advances and government guidelines have led to the replacement, reduction, and refinement of the use of all animal models in dental implant research. In new development strategies, some in vivo experiments are being progressively replaced by in vitro or biomaterial approaches. In this review, we summarize the key information on the animal models currently available for dental implant research and highlight (i) the pros and cons of each type, (ii) new levels of decisional procedures regarding study objectives, and (iii) the outlook for animal research, discussing possible non-animal options.
Collapse
Affiliation(s)
- Nicolas Blanc-Sylvestre
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
- AP-HP, Department of Periodontology, Rothschild Hospital, European Postgraduate in Periodontology and Implantology, Université de Paris, 75012 Paris, France
| | - Philippe Bouchard
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
- AP-HP, Department of Periodontology, Rothschild Hospital, European Postgraduate in Periodontology and Implantology, Université de Paris, 75012 Paris, France
| | - Catherine Chaussain
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
- AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Dental Medicine Department, Bretonneau Hospital, GHN-Université de Paris, 75018 Paris, France
| | - Claire Bardet
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
| |
Collapse
|
2
|
Fukuda J, Okamura K, Ishihara K, Mizumoto H, Nakazawa K, Ijima H, Kajiwara T, Funatsu K. Differentiation Effects by the Combination of Spheroid Formation and Sodium Butyrate Treatment in Human Hepatoblastoma Cell Line (Hep G2): A Possible Cell Source for Hybrid Artificial Liver. Cell Transplant 2017; 14:819-27. [PMID: 16454356 DOI: 10.3727/000000005783982503] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The aim of this study was to investigate the feasibility of human hepatoblastoma cell line (Hep G2), which differentiates by spheroid formation, and treatment with sodium butyrate (SB) as a cell source for hybrid artificial liver (HAL). Hep G2 spontaneously formed spheroids in polyurethane foam (PUF) within 3 days of culture and restored weak ammonia removal activity. Treatment with SB, which is a histone deacetylase inhibitor, further increased the ammonia removal activity of Hep G2 spheroids in a concentration-dependent manner. The activation of ornithine transcarbamylase—a urea cycle enzyme—was significantly related to the upregulation of ammonia removal by spheroid formation, but scarcely contributed to the further upregulation following SB treatment. In contrast with ammonia removal, treatment with SB reduced the albumin secretion of Hep G2 spheroids in a concentration-dependent manner. In the PUF-HAL module in a circulation culture, the ammonia removal rate and albumin secretion rate (per unit volume of the module) of Hep G2 spheroids treated with 5 mM SB were almost the same as those of primary porcine hepatocyte spheroids. These results suggest that simultaneous use of spheroid formation and SB treatment in Hep G2 is beneficial in enhancing the functions of human hepatocytes with potential applications in regenerative medicine and drug screening.
Collapse
Affiliation(s)
- J Fukuda
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Betsem E, Rua R, Tortevoye P, Froment A, Gessain A. Frequent and recent human acquisition of simian foamy viruses through apes' bites in central Africa. PLoS Pathog 2011; 7:e1002306. [PMID: 22046126 PMCID: PMC3203161 DOI: 10.1371/journal.ppat.1002306] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 08/24/2011] [Indexed: 02/05/2023] Open
Abstract
Human infection by simian foamy viruses (SFV) can be acquired by persons occupationally exposed to non-human primates (NHP) or in natural settings. This study aimed at getting better knowledge on SFV transmission dynamics, risk factors for such a zoonotic infection and, searching for intra-familial dissemination and the level of peripheral blood (pro)viral loads in infected individuals. We studied 1,321 people from the general adult population (mean age 49 yrs, 640 women and 681 men) and 198 individuals, mostly men, all of whom had encountered a NHP with a resulting bite or scratch. All of these, either Pygmies (436) or Bantus (1085) live in villages in South Cameroon. A specific SFV Western blot was used and two nested PCRs (polymerase, and LTR) were done on all the positive/borderline samples by serology. In the general population, 2/1,321 (0.2%) persons were found to be infected. In the second group, 37/198 (18.6%) persons were SFV positive. They were mostly infected by apes (37/39) FV (mainly gorilla). Infection by monkey FV was less frequent (2/39). The viral origin of the amplified sequences matched with the history reported by the hunters, most of which (83%) are aged 20 to 40 years and acquired the infection during the last twenty years. The (pro)viral load in 33 individuals infected by a gorilla FV was quite low (<1 to 145 copies per 105 cells) in the peripheral blood leucocytes. Of the 30 wives and 12 children from families of FV infected persons, only one woman was seropositive in WB without subsequent viral DNA amplification. We demonstrate a high level of recent transmission of SFVs to humans in natural settings specifically following severe gorilla bites during hunting activities. The virus was found to persist over several years, with low SFV loads in infected persons. Secondary transmission remains an open question. Most of the viral pathogens that have emerged in humans during the last decades have a zoonotic origin. After the initial interspecies transmission, these viruses have followed different evolutionary routes and have spread among humans through distinct mechanisms. The understanding of the initial steps of the emergence of several viruses and associated diseases often remains quite poor. Human infection by simian foamy viruses (SFV) can be acquired by persons occupationally exposed to non-human primates (NHP) or in natural settings. Epidemiological and microbiological studies in specific high-risk populations are necessary to gain new insights into the early events of the emergence process, and the potential to spread or cause disease among humans. The present study found that hunting is still a very common and risky activity for SFV infection in forest areas of South Cameroon. Indeed, recent interspecies transmission of SFVs to young adults is still very frequent, as 1 person out of 5 among the hunters who have reported a bite or scratch by a non-human primate and 2 persons out of a thousand in the general population are persistently infected by a SFV, mostly from an ape. Secondary transmission to other family members and presence of a disease in infected persons are still open questions that are being investigated.
Collapse
Affiliation(s)
- Edouard Betsem
- Unit of Epidemiology and Pathophysiology of Oncogenic Viruses, Department of Virology, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique (CNRS), URA 3015, Paris, France
- Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaounde, Cameroun
- * E-mail: (AG); (EB)
| | - Réjane Rua
- Unit of Epidemiology and Pathophysiology of Oncogenic Viruses, Department of Virology, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique (CNRS), URA 3015, Paris, France
| | - Patricia Tortevoye
- Unit of Epidemiology and Pathophysiology of Oncogenic Viruses, Department of Virology, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique (CNRS), URA 3015, Paris, France
| | - Alain Froment
- Institute of Research for Development, Musée de l'Homme, Paris, France
| | - Antoine Gessain
- Unit of Epidemiology and Pathophysiology of Oncogenic Viruses, Department of Virology, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique (CNRS), URA 3015, Paris, France
- * E-mail: (AG); (EB)
| |
Collapse
|
4
|
Tassone A, Sciamanna G, Bonsi P, Martella G, Pisani A. Experimental Models of Dystonia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 98:551-72. [DOI: 10.1016/b978-0-12-381328-2.00020-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Zhang P, Yu P, Wang W, Zhang L, Li S, Bu H. An effective method for the quantitative detection of porcine endogenous retrovirus in pig tissues. In Vitro Cell Dev Biol Anim 2010; 46:408-10. [DOI: 10.1007/s11626-009-9264-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 10/31/2009] [Indexed: 10/19/2022]
|
6
|
Khan AS. Simian foamy virus infection in humans: prevalence and management. Expert Rev Anti Infect Ther 2009; 7:569-80. [PMID: 19485797 DOI: 10.1586/eri.09.39] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Simian foamy viruses (SFVs) are highly prevalent in all nonhuman primate species and can infect humans following occupational and non-occupational exposure to infected animals and their tissues, blood or body fluids. Virus transmission results in a stable, persistent infection that seems to be latent. SFV infections are thus far nonpathogenic, with no evidence of adverse clinical outcome in their natural nonhuman primate hosts or by experimental injection in animals and upon cross-species transmission in humans. Since the emergence of pathogenic viruses from nonpathogenic viruses upon cross-species infection is well-documented for several retroviruses, it is prudent to take necessary precautions to deter SFV infections in humans. These steps will help prevent the emergence of a novel pathogen and reduce the risk of transmission of another potential pathogenic human retrovirus.
Collapse
Affiliation(s)
- Arifa S Khan
- Laboratory of Retrovirus Research, Division of Viral Products, Center for Biologics Evaluation & Research, US Food & Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Staheli JP, Ryan JT, Bruce AG, Boyce R, Rose TM. Consensus-degenerate hybrid oligonucleotide primers (CODEHOPs) for the detection of novel viruses in non-human primates. Methods 2009; 49:32-41. [PMID: 19477279 DOI: 10.1016/j.ymeth.2009.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 05/20/2009] [Accepted: 05/20/2009] [Indexed: 11/19/2022] Open
Abstract
Consensus-degenerate hybrid oligonucleotide primers (CODEHOPs) have proven to be a powerful tool for the identification of novel genes. CODEHOPs are designed from highly-conserved regions of multiply-aligned protein sequences from members of a gene family and are used in PCR amplification to identify distantly-related genes. The CODEHOP approach has been used to identify novel pathogens by targeting amino acid motifs conserved in specific pathogen families. We initiated a program utilizing the CODEHOP approach to develop PCR-based assays targeting a variety of viral families that are pathogens in non-human primates. We have also developed and further improved a computer program and website to facilitate the design of CODEHOP PCR primers. Here, we detail the method for the development of pathogen-specific CODEHOP PCR assays using the papillomavirus family as a target. Papillomaviruses constitute a diverse virus family infecting a wide variety of mammalian species, including humans and non-human primates. We demonstrate that our pan-papillomavirus CODEHOP assay is broadly reactive with all major branches of the virus family and show its utility in identifying a novel non-human primate papillomavirus in cynomolgus macaques.
Collapse
Affiliation(s)
- Jeannette P Staheli
- Center for Childhood Infections and Prematurity Research, Seattle Children's Research Institute, 1900 Ninth Ave., 8th Floor, Seattle, WA 98101-1304, USA
| | | | | | | | | |
Collapse
|
8
|
Gessain A, Calattini S. Emergence of simian foamy viruses in humans: facts and unanswered questions. Future Virol 2008. [DOI: 10.2217/17460794.3.1.71] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A large proportion of viral pathogens that have emerged in humans are considered to have originated in animals. Simian viral infections of humans represent an increasing public health concern. This is well illustrated by retroviruses such as HIV-1/2 and human T-cell lymphotropic virus (HTLV)-1, which have a unique ability to cross species, adapt to a new host and spread. In this short review, we will present the currently available data on the transmission of the simian foamy retroviruses (SFVs) to humans. Indeed, recent data indicate the presence of these exogenous retroviruses, of the Spumaretrovirinae subfamily and of the Spumavirus genus, in individuals occupationally exposed to nonhuman primates (animal caretaker, veterinarian, zoo worker) and in individuals having contact with apes and monkeys, such as hunters in Central Africa. The main unanswered questions concerning the natural history of such SFVs in humans, for instance, their magnitude and geographical distribution, their interhuman transmissibility and their disease association and pathogenicity are discussed in this review.
Collapse
Affiliation(s)
- Antoine Gessain
- Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, CNRS URA 3015, Département de Virologie. Bâtiment Lwoff. Institut Pasteur, 25–28 rue du Dr. Roux, 75724, Paris, Cedex 15, France
| | - Sara Calattini
- Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, CNRS URA 3015, Département de Virologie. Bâtiment Lwoff. Institut Pasteur, 25–28 rue du Dr. Roux, 75724, Paris, Cedex 15, France. Laboratory of Clinical Infectious Diseases, Medical Virology Section, 10, Center Dr, Bethesda, MD, USA
| |
Collapse
|
9
|
Li Z, Ping Y, Shengfu L, Youping L, Jingqiu C, Hong B. In vivo screening of porcine endogenous retrovirus in Chinese Banna minipig inbred. Transplant Proc 2006; 38:2261-3. [PMID: 16980059 DOI: 10.1016/j.transproceed.2006.06.098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The risk of porcine endogenous retrovirus (PERV) infection is one of the major barriers in clinical trials of pig-to-human xenotransplantation. Previous experiments showed that PERV could infect many types of human and nonhuman primate cells, but there is no reported evidence of in vivo infection. In this study, extracted genomic DNA from tissues of seventeen pigs was analyzed using specific sequence primers for gag, pol, and env. The results suggested that PERV exist in the genomes of all tissues. A subtype analysis indicated that PERV-A and PERV-B were in the tissue genome with no positive PERV-C. A greater understanding of the properties of PERV in different pig tissues is necessary to evaluate the risk posed by PERV.
Collapse
Affiliation(s)
- Z Li
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu 610041, P.R. China
| | | | | | | | | | | |
Collapse
|
10
|
Travis DA, Hungerford L, Engel GA, Jones-Engel L. Disease risk analysis: a tool for primate conservation planning and decision making. Am J Primatol 2006; 68:855-67. [PMID: 16900501 DOI: 10.1002/ajp.20293] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Concern about emerging and re-emerging diseases plays an increasing role in conservation and management of both captive and free-ranging nonhuman primates (NHPs). Managers and policy makers must formulate conservation plans in an arena plagued by uncertainty, complexity, emotion, and politics. The risk analysis paradigm provides a framework that brings together scientists and policy experts to make better decisions for both people and animals. Risk analysis is a multidisciplinary, science-based process that provides an organized and logical approach for incorporating scientific information into policy development in the real world. By blending four specific goal-oriented stages-hazard identification, risk assessment, risk management, and risk communication-one can logically assess the probability that an adverse event, such as the introduction of an emerging disease into a naïve population, will occur. The following is a review of this process as it pertains to NHP conservation and risks associated with infectious diseases.
Collapse
Affiliation(s)
- D A Travis
- Davee Center for Epidemiology and Endocrinology, Department of Conservation and Science, Lincoln Park Zoo, Chicago, Illinois 60614, USA.
| | | | | | | |
Collapse
|
11
|
Yu P, Zhang L, Li SF, Li YP, Cheng JQ, Lu YR, Bu H. Long-term effects on HEK-293 cell line after co-culture with porcine endogenous retrovirus. Transplant Proc 2005; 37:496-9. [PMID: 15808688 DOI: 10.1016/j.transproceed.2004.12.296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Xenotransplantation of pig organs, tissues, and cells bears the risk of interspecies transmission of porcine endogenous retrovirus (PERV). To evaluate the long-term effect of PERV infection on human cells, human embryonic kidney cell line HEK-293 cells were co-cultured with PERV produced by the porcine kidney PK15 cell line for 24 hours and the infected HEK-293 cells were continually cultured for 6 months. PERV-gag, pol gene and gag protein were detected in infected HEK-293 cells by PCR and immunofluorescent staining. PERV from the supernatant of infected HEK-293 cells was same as that from PK15 in morphology. The concentration of reverse transcriptase in the supernatant of infected HEK-293 cells was almost 200 times lower than that of PK15 cells. Except that infected HEK-293 cells doubled a little earlier than the control and infected cells grew in serum-free medium poorly, further study for cell morphology and growth showed no significant difference between infected HEK-293 cells and uninfected control. These results suggested although PERV from PK15 could infect human cells in vitro, there was no significant acute effect attributable to PERV infection on the growth of HEK-293 cells by 6 months culture.
Collapse
Affiliation(s)
- P Yu
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, PR China
| | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Fukuda J, Okamura K, Nakazawa K, Ijima H, Yamashita Y, Shimada M, Shirabe K, Tsujita E, Sugimachi K, Funatsu K. Efficacy of a polyurethane foam/spheroid artificial liver by using human hepatoblastoma cell line (Hep G2). Cell Transplant 2003; 12:51-8. [PMID: 12693664 DOI: 10.3727/000000003783985151] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We invesigated the availability of human hepatoblastoma cell line (Hep G2), compared with human primary hepatocytes (HH) and porcine primary hepatocytes (PH), as a cell source for the hybrid artificial liver support system (HALSS) by using polyurethane foam (PUF). All three kinds of hepatocytes spontaneously formed spherical multicellular aggregates (spheroids) of 100-200 microm diameter in the pores of PUF within 3 days of culture. In a PUF stationary culture, Hep G2 spheroids recovered the ammonia removal activity that was lost in monolayer culture, although the removal for each unit cell number was about one tenth that of HH spheroids and about one eighth of PH spheroids. The synthesis activities of albumin and fibrinogen of each unit cell number of Hep G2 were also upregulated by PUF spheroid culture, and were about twice as high as in monolayer culture. The albumin secretion activity of Hep G2 spheroids was almost the same as that of PH spheroids. HH scarcely secreted these proteins in this experiment, probably because they were cultured in a serum-free medium. In the PUF module in a circulation culture, HH had high ammonia removal and low synthesis activities similar to stationary culture. Hep G2 proliferated to a high cell density, such as about 4.8 x 10(7) cells/cm3-module at 10 days of culture. Although Hep G2 spheroids had low ammonia removal activity in each cell, the removal rate in the PUF module was almost the same as for PH at 7 days of culture because of the high cell density culture by cell proliferation. The albumin secretion rate by Hep G2 in the PUF module also increased with cell proliferation and was about 10 times higher than the initial for the rate for PH at 7 days of culture. These results suggest that Hep G2 is a potential cell source PUF-HALSS.
Collapse
Affiliation(s)
- J Fukuda
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Campbell C, Hultman S, Cairns B, DeSerres S, Meyer A. Green fluorescent protein-adenoviral construct as a model for transient gene therapy for human cultured keratinocytes in an athymic mouse model. THE JOURNAL OF TRAUMA 2003; 54:72-9; discussion 79-80. [PMID: 12544902 DOI: 10.1097/00005373-200301000-00010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The goal of gene therapy for cultured keratinocyte grafts is to accelerate growth and wound healing following engraftment without producing long-term complications from the delivered gene. We studied a Green Fluorescent Protein-Adenoviral construct (GFP-ADV) to determine the characteristics of gene expression in human cultured keratinocyte grafts. METHODS Twelve GFP-ADV grafts and twelve control grafts were transplanted to the flanks of 24 athymic mice. Mouse flanks were monitored with fluorescence-filtered microscopy and, on Day 21, were sectioned and stained with anti-human MHC Class I with H&E counterstaining. Real-time PCR was performed on graft biopsies for adenoviral DNA. RESULTS Fluorescence decreased from Days 3 to 5 resulting in no difference between GFP-ADV and control grafts from days 5 to 10. All grafts were positive for human MHC Class I with an epithelial architecture by H&E. Day 21 GFP-ADV grafts were negative for adenoviral DNA. CONCLUSION The delivered gene was transiently expressed without the persistence of viral DNA, demonstrating the potential of adenoviral gene delivery for the improvement of wound healing without long-term adverse effects to the graft.
Collapse
Affiliation(s)
- Chris Campbell
- Department of Surgery, University of North Carolina School of Medicine, 136 Burnett-Womack Building, Chapel Hill, NC 27599-7050, USA
| | | | | | | | | |
Collapse
|
15
|
Abstract
Recent developments in gene therapy have shown promise in the treatment of soft-tissue repair, bone formation, nerve regeneration, and cranial suture development. This special topic article reviews commonly used methods of gene therapy and discusses their various advantages and disadvantages. In addition, an overview of new developments in gene therapy as they relate to plastic surgery is provided.
Collapse
Affiliation(s)
- Oren M Tepper
- Institute of Reconstructive Plastic Surgery and the Department of Surgery, New York University Medical Center, NY 10016, USA
| | | |
Collapse
|
16
|
Quinn G, Langford G. The porcine endogenous retrovirus long terminal repeat contains a single nucleotide polymorphism that confers distinct differences in estrogen receptor binding affinity between PERV A and PERV B/C subtypes. Virology 2001; 286:83-90. [PMID: 11448161 DOI: 10.1006/viro.2001.0996] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Porcine endogenous retroviruses (PERV) have been shown to have zoonotic potential, both in vitro and in vivo. Once integrated into the host cell genome activation of the proviral genes is ultimately dependent upon transactivation of the long terminal repeat (LTR). Currently there is no direct evidence of host cell transcription factors interacting with PERV LTRs. Using comparative genomics we discovered a potentially functional single nucleotide polymorphism (SNP) within the U5 region downstream of the TATA box in the PERV LTR that distinguishes PERV A from PERV B and PERV C subtypes. We demonstrated that the SNP occurs within a potential hormone-responsive region where it has a profound effect, not only upon estrogen receptor binding but also upon the binding of other transcription factors at this site. These results suggest that differences in transcriptional regulation between PERV subtypes are subtle and, as for other retroviruses, transcription can be mediated by steroid hormone receptors.
Collapse
Affiliation(s)
- G Quinn
- Imutran Limited (A Novartis Pharma AG Company), Cambridge, CB2 2YP, United Kingdom.
| | | |
Collapse
|
17
|
Lerche NW, Switzer WM, Yee JL, Shanmugam V, Rosenthal AN, Chapman LE, Folks TM, Heneine W. Evidence of infection with simian type D retrovirus in persons occupationally exposed to nonhuman primates. J Virol 2001; 75:1783-9. [PMID: 11160676 PMCID: PMC114087 DOI: 10.1128/jvi.75.4.1783-1789.2001] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian type D retrovirus (SRV) is enzootic in many populations of Asian monkeys of the genus Macaca and is associated with immunodeficiency diseases. However, the zoonotic potential of this agent has not been well defined. Screening for antibodies to SRV was performed as part of an ongoing study looking for evidence of infection with simian retroviruses among persons occupationally exposed to nonhuman primates (NHPs). Of 231 persons tested, 2 (0.9%) were found to be strongly seropositive, showing reactivity against multiple SRV antigens representing gag, pol, and env gene products by Western immunoblotting. Persistent long-standing seropositivity, as well as neutralizing antibody specific to SRV type 2, was documented in one individual (subject 1), while waning antibody with eventual seroreversion was observed in a second (subject 2). Repeated attempts to detect SRV by isolation in tissue culture and by using sensitive PCR assays for amplification of two SRV gene regions (gag and pol) were negative. Both individuals remain apparently healthy. We were also unable to transmit this seropositivity to an SRV-negative macaque by using inoculation of whole blood from subject 1. The results of this study provide evidence that occupational exposure to NHPs may increase the risk of infection with SRV and underscore the importance of both occupational safety practices and efforts to eliminate this virus from established macaque colonies.
Collapse
Affiliation(s)
- N W Lerche
- Simian Retrovirus Laboratory, California Regional Primate Research Center, University of California, Davis, Davis, California 95616-8542, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Romano G, Michell P, Pacilio C, Giordano A. Latest developments in gene transfer technology: achievements, perspectives, and controversies over therapeutic applications. Stem Cells 2000; 18:19-39. [PMID: 10661569 DOI: 10.1634/stemcells.18-1-19] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over the last decade, more than 300 phase I and phase II gene-based clinical trials have been conducted worldwide for the treatment of cancer and monogenic disorders. Lately, these trials have been extended to the treatment of AIDS and, to a lesser extent, cardiovascular diseases. There are 27 currently active gene therapy protocols for the treatment of HIV-1 infection in the USA. Preclinical studies are currently in progress to evaluate the possibility of increasing the number of gene therapy clinical trials for cardiopathies, and of beginning new gene therapy programs for neurologic illnesses, autoimmuno diseases, allergies, regeneration of tissues, and to implement procedures of allogeneic tissues or cell transplantation. In addition, gene transfer technology has allowed for the development of innovative vaccine design, known as genetic immunization. This technique has already been applied in the AIDS vaccine programs in the USA. These programs aim to confer protective immunity against HIV-1 transmission to individuals who are at risk of infection. Research programs have also been considered to develop therapeutic vaccines for patients with AIDS and generate either preventive or therapeutic vaccines against malaria, tuberculosis, hepatitis A, B and C viruses, influenza virus, La Crosse virus, and Ebola virus. The potential therapeutic applications of gene transfer technology are enormous. However, the effectiveness of gene therapy programs is still questioned. Furthermore, there is growing concern over the matter of safety of gene delivery and controversy has arisen over the proposal to begin in utero gene therapy clinical trials for the treatment of inherited genetic disorders. From this standpoint, despite the latest significant achievements reported in vector design, it is not possible to predict to what extent gene therapeutic interventions will be effective in patients, and in what time frame.
Collapse
Affiliation(s)
- G Romano
- Kimmel Cancer Institute, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | |
Collapse
|
19
|
Abstract
Human endogenous retroviruses (HERVs), probably representing footprints of ancient germ-cell retroviral infections, occupy about 1% of the human genome. HERVs can influence genome regulation through expression of retroviral genes, either via genomic rearrangements following HERV integrations or through the involvement of HERV LTRs in the regulation of gene expression. Some HERVs emerged in the genome over 30 MYr ago, while others have appeared rather recently, at about the time of hominid and ape lineages divergence. HERVs might have conferred antiviral resistance on early human ancestors, thus helping them to survive. Furthermore, newly integrated HERVs could have changed the pattern of gene expression and therefore played a significant role in the evolution and divergence of Hominoidea superfamily. Comparative analysis of HERVs, HERV LTRs, neighboring genes, and their regulatory interplay in the human and ape genomes will help us to understand the possible impact of HERVs on evolution and genome regulation in the primates. BioEssays 22:161-171, 2000.
Collapse
Affiliation(s)
- E D Sverdlov
- Institute of Molecular Genetics RAS, Kurchatov Sq., 123182 Moscow, Russia.
| |
Collapse
|
20
|
Nyberg SL, Hibbs JR, Hardin JA, Germer JJ, Persing DH. Transfer of porcine endogenous retrovirus across hollow fiber membranes: significance to a bioartificial liver. Transplantation 1999; 67:1251-5. [PMID: 10342317 DOI: 10.1097/00007890-199905150-00009] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND A porcine endogenous retrovirus (PERV) capable of infecting human cells has been identified. This study was designed to determine whether hollow fiber membranes, such as those used in a bioartificial liver, block the transfer of PERV. METHODS Three hollow fiber cartridges (HFCs) were studied in duplicate: cellulose fibers with 70 kD nominal molecular weight cut-off (MWCO), polysulfone fibers with 400 kD MWCO, and mixed cellulose fibers with 200 nm porosity. PK15 cells (porcine kidney cell line), known to produce PERV, were grown in the intraluminal compartment of HFCs fiber cartridges. Samples of medium were collected from both intraluminal and extraluminal compartments of the HFCs fiber cartridge during 14 days of culture. Samples were screened for PERV using reverse transcription polymerase chain reaction. All positive samples were tested for PERV infectivity in human 293 cells. RESULTS PERV was detected in all samples from the intraluminal space and all intraluminal samples seemed to infect 293 cells. All extraluminal samples from the fibers of 200 nm porosity tested positive for PERV. Detection of PERV in the extraluminal space was delayed by fibers of 400 kD MWCO and 70 kD MWCO until at least day 3 and day 7, respectively, after inoculation of PK15 cells. Positive extraluminal samples from fibers of 400 kD MWCO and 70 kD MWCO did not infect 293 cells. CONCLUSION Pore size, membrane composition, and duration of exposure influenced the transfer of PERV across HFCs. Some HFCs decrease the risk of viral exposure to patients during bioartificial liver therapy.
Collapse
Affiliation(s)
- S L Nyberg
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | |
Collapse
|
21
|
|