1
|
Kurita R, Tamura Y, Tani M. Formations of force network and softening of amorphous elastic materials from a coarsen-grained particle model. Sci Rep 2024; 14:8888. [PMID: 38632271 PMCID: PMC11024121 DOI: 10.1038/s41598-024-59498-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
Amorphous materials, such as granular substances, glasses, emulsions, foams, and cells, play significant roles in various aspects of daily life, serving as building materials, plastics, food products, and agricultural items. Understanding the mechanical response of these materials to external forces is crucial for comprehending their deformation, toughness, and stiffness. Despite the recognition of the formation of force networks within amorphous materials, the mechanisms behind their formation and their impact on macroscopic physical properties remain elusive. In this study, we employ a coarse-grained particle model to investigate the mechanical response, wherein local physical properties are integrated into the softness of the particles. Our findings reveal the emergence of a chain-like force distribution, which correlates with the planar distribution of softness and heterogeneous density variations. Additionally, we observe that the amorphous material undergoes softening due to the heterogeneous distribution of softness, a phenomenon explicable through a simple theoretical framework. Moreover, we demonstrate that the ambiguity regarding the size ratio of the blob to the force network can be adjusted by the amplitude of planar fluctuations in softness, underscoring the robustness of the coarse-grained particle model.
Collapse
Affiliation(s)
- Rei Kurita
- Department of Physics, Tokyo Metropolitan University, 1-1 Minamioosawa, Hachiouji-shi, Tokyo, 192-0397, Japan.
| | - Yuto Tamura
- Department of Physics, Tokyo Metropolitan University, 1-1 Minamioosawa, Hachiouji-shi, Tokyo, 192-0397, Japan
| | - Marie Tani
- Department of Physics, Tokyo Metropolitan University, 1-1 Minamioosawa, Hachiouji-shi, Tokyo, 192-0397, Japan
- Department of Physics, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
2
|
Yuan J, Tateno M, Tanaka H. Mechanical Slowing Down of Network-Forming Phase Separation of Polymer Solutions. ACS NANO 2023; 17:18025-18036. [PMID: 37675940 DOI: 10.1021/acsnano.3c04657] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Phase separation is a fundamental phenomenon leading to spatially heterogeneous material distribution, which is critical in nature, biology, material science, and industry. In ordinary phase separation, the minority phase always forms droplets. Contrary to this common belief, even the minority phase can form a network structure in viscoelastic phase separation (VPS). VPS can occur in any mixture with significant mobility differences between their components and is highly relevant to soft matter and biomatter. In contrast to classical phase separation, experiments have shown that VPS in polymer solutions lacks self-similar coarsening, resulting in the absence of a domain-coarsening scaling law. However, the underlying microscopic mechanism of this behavior remains unknown. To this end, we perform fluid particle dynamics simulations of bead-spring polymers, incorporating many-body hydrodynamic interactions between polymers through a solvent. We discover that polymers in the dense-network-forming phase are stretched and store elastic energy when the deformation speed exceeds the polymer dynamics. This self-generated viscoelastic stress mechanically interferes with phase separation and slows its dynamics, disrupting self-similar growth. We also highlight the essential role of many-body hydrodynamic interactions in VPS. The implications of our findings may hold importance in areas such as biological phase separation, porous material formation, and other fields where network structures play a pivotal role.
Collapse
Affiliation(s)
- Jiaxing Yuan
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Michio Tateno
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hajime Tanaka
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
3
|
Huang B, Li G, Xiao C, Duan B, Li W, Zhai P, Goddard WA. Compression Induced Deformation Twinning Evolution in Liquid-Like Cu 2Se. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18671-18681. [PMID: 35416027 DOI: 10.1021/acsami.2c00437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
For practical applications of copper selenide (Cu2Se) thermoelectric (TE) materials with liquid-like behavior, it is essential to determine the structure-property relations as a function of temperature. Here, we investigate β-Cu2Se structure evolution during uniaxial compression over the temperature range of 400-1000 K using molecular dynamics simulations. We find that at temperatures above 800 K, Cu2Se exhibits poor stability with breaking order that is described as a liquid-like or hybrid structure comprising a rigid Se sublattice and mobile Cu ions. A uniaxial load causes accumulated structural heterogeneity that is alleviated by diffusion-induced accommodation of local deformations. With increasing strain, the deformation mode changes into a combination of compression and shear, accompanied by restructuring in terms of twinning. Interestingly, in addition to a plastic behavior rarely found in inorganic semiconductors, we find that higher temperature promotes deformation twinning in liquid-like Cu2Se, showing the role of thermal instability, including Cu diffusion, in structural adaptation and mechanical modulation. These findings reveal the micromechanism of hybrid structural evolution as well as performance tuning through twinning, which provides a theoretical guide toward advanced Cu2Se TE materials design.
Collapse
Affiliation(s)
- Ben Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Guodong Li
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan, 430070, China
- Department of Engineering Structure and Mechanics, Wuhan University of Technology, Wuhan, 430070, China
| | - Chenyang Xiao
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan, 430070, China
- Department of Engineering Structure and Mechanics, Wuhan University of Technology, Wuhan, 430070, China
| | - Bo Duan
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan, 430070, China
- Department of Engineering Structure and Mechanics, Wuhan University of Technology, Wuhan, 430070, China
| | - Wenjuan Li
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan, 430070, China
- Department of Engineering Structure and Mechanics, Wuhan University of Technology, Wuhan, 430070, China
| | - Pengcheng Zhai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- Department of Engineering Structure and Mechanics, Wuhan University of Technology, Wuhan, 430070, China
| | - William A Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Wang XJ, Lu YZ, Lu X, Huo JT, Wang YJ, Wang WH, Dai LH, Jiang MQ. Elastic criterion for shear-banding instability in amorphous solids. Phys Rev E 2022; 105:045003. [PMID: 35590559 DOI: 10.1103/physreve.105.045003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
In amorphous solids, plastic flow is prone to localization into shear bands via an avalanche of shear-transformation (ST) rearrangements of constituent atoms or particles. However, such banding instability still remains a lack of direct experimental evidence. Using a real 3D colloidal glass under shear as proof of principle, we study STs' avalanches into shear banding that is controlled by strain rates. We demonstrate that, accompanying the emergent shear banding, the elastic response fields of the system, typical of a quadrupole for shear and a centrosymmetry for dilatation, lose the Eshelby-type spatial symmetry; instead, a strong correlation appears preferentially along the banding direction. By quantifying the fields' spatial decay, we identify an elastic criterion for the shear-banding instability, that is, the strongly correlated length of dilatation is smaller than the full length of shear correlation. Specifically, ST-induced free volume has to be confined within the elastic shear domain of ST so that those STs can self-organize to trigger shear banding. This physical picture is directly visualized by tracing the real-space evolution of local dilatation and ST particles. The present work unites the two classical mechanisms: free volume and STs, for the fundamental understanding of shear banding in amorphous solids.
Collapse
Affiliation(s)
- X J Wang
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, People's Republic of China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Y Z Lu
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, People's Republic of China
| | - X Lu
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, People's Republic of China
| | - J T Huo
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Y J Wang
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - W H Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - L H Dai
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - M Q Jiang
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
5
|
Jiang M, Dai L. 非晶态固体力学. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Arakawa M, Kishimoto M, Nakanishi Y, Mita K, Takenaka M. Spatial inhomogeneity of chain orientation associated with strain-induced density fluctuations in polyethylene. Polym J 2022. [DOI: 10.1038/s41428-021-00601-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Lemaître A. Stress hyperuniformity and transient oscillatory-exponential correlation decay as signatures of strength vs fragility in glasses. J Chem Phys 2021; 155:194501. [PMID: 34800950 DOI: 10.1063/5.0065613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We examine and compare the local stress autocorrelation in the inherent states of a fragile and a strong glass: the Kob-Andersen (KA) binary mixture and the Beest-Kramer-Santen model of silica. For both systems, local (domain-averaged) stress fluctuations asymptotically reach the normal inverse-volume decay in the large domain limit; accordingly, the real-space stress autocorrelation presents long-range power law tails. However, in the case of silica, local stress fluctuations display a high degree of hyperuniformity, i.e., their asymptotic (normal) decay is disproportionately smaller than their bond level amplitude. This property causes the asymptotic power law tails of the real-space stress autocorrelation to be swamped, up to very large distances (several nanometers), by an intermediate oscillatory-exponential decay regime. Similar contributions exist in the KA stress autocorrelation, but they never can be considered as dominating the power law decay and fully disappear when stress is coarse-grained beyond one interatomic distance. Our observations document that the relevance of power-law stress correlation may constitute a key discriminating feature between strong and fragile glasses. Meanwhile, they highlight that the notion of local stress in atomistic systems involves by necessity a choice of observation (coarse-graining) scale, the relevant value of which depends, in principle, on both the model and the phenomenon studied.
Collapse
Affiliation(s)
- Anaël Lemaître
- Navier, Ecole des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France
| |
Collapse
|
8
|
Gunti A, Jana PP, Lee MH, Das J. Effect of Cold Rolling on the Evolution of Shear Bands and Nanoindentation Hardness in Zr 41.2Ti 13.8Cu 12.5Ni 10Be 22.5 Bulk Metallic Glass. NANOMATERIALS 2021; 11:nano11071670. [PMID: 34201987 PMCID: PMC8307797 DOI: 10.3390/nano11071670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/03/2022]
Abstract
The effect of cold rolling on the evolution of hardness (H) and Young’s modulus (E) on the rolling-width (RW), normal-rolling (NR), and normal-width (NW) planes in Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vitreloy 1) bulk metallic glass (BMG) was investigated systematically using nanoindentation at peak loads in the range of 50 mN–500 mN. The hardness at specimen surface varied with cold rolling percentage (%) and the variation is similar on RW and NR planes at all the different peak loads, whereas the same is insignificant for the core region of the specimen on the NW plane. Three-dimensional (3D) optical surface profilometry studies on the NR plane suggest that the shear band spacing decreases and shear band offset height increases with the increase of cold rolling extent. Meanwhile, the number of the pop-in events during loading for all the planes reduces with the increase of cold rolling extent pointing to more homogeneous deformation upon rolling. Calorimetric studies were performed to correlate the net free volume content and hardness in the differently cold rolled specimens.
Collapse
Affiliation(s)
- Abhilash Gunti
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; (A.G.); (P.P.J.)
| | - Parijat Pallab Jana
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; (A.G.); (P.P.J.)
| | - Min-Ha Lee
- KITECH North America, Korea Institute of Industrial Technology, San Jose, CA 95134, USA;
| | - Jayanta Das
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; (A.G.); (P.P.J.)
- Correspondence: ; Tel.: +91-3222-283284; Fax: +91-3222-282280
| |
Collapse
|
9
|
Shen LQ, Yu JH, Tang XC, Sun BA, Liu YH, Bai HY, Wang WH. Observation of cavitation governing fracture in glasses. SCIENCE ADVANCES 2021; 7:7/14/eabf7293. [PMID: 33789905 PMCID: PMC8011974 DOI: 10.1126/sciadv.abf7293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Crack propagation is the major vehicle for material failure, but the mechanisms by which cracks propagate remain longstanding riddles, especially for glassy materials with a long-range disordered atomic structure. Recently, cavitation was proposed as an underlying mechanism governing the fracture of glasses, but experimental determination of the cavitation behavior of fracture is still lacking. Here, we present unambiguous experimental evidence to firmly establish the cavitation mechanism in the fracture of glasses. We show that crack propagation in various glasses is dominated by the self-organized nucleation, growth, and coalescence of nanocavities, eventually resulting in the nanopatterns on the fracture surfaces. The revealed cavitation-induced nanostructured fracture morphologies thus confirm the presence of nanoscale ductility in the fracture of nominally brittle glasses, which has been debated for decades. Our observations would aid a fundamental understanding of the failure of disordered systems and have implications for designing tougher glasses with excellent ductility.
Collapse
Affiliation(s)
- Lai-Quan Shen
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji-Hao Yu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Chang Tang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao-An Sun
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yan-Hui Liu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Yang Bai
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Hua Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Kishimoto M, Mita K, Ogawa H, Takenaka M. Effect of Submicron Structures on the Mechanical Behavior of Polyethylene. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mizuki Kishimoto
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Mitsui Chemicals Inc., 580-32 Nagaura, Sodegaura, Chiba 299-0265, Japan
| | - Kazuki Mita
- Mitsui Chemicals Inc., 580-32 Nagaura, Sodegaura, Chiba 299-0265, Japan
| | - Hiroki Ogawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Mikihito Takenaka
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
11
|
Kurotani Y, Tanaka H. A novel physical mechanism of liquid flow slippage on a solid surface. SCIENCE ADVANCES 2020; 6:eaaz0504. [PMID: 32258405 PMCID: PMC7101223 DOI: 10.1126/sciadv.aaz0504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/31/2019] [Indexed: 05/28/2023]
Abstract
Viscous liquids often exhibit flow slippage on solid walls. The occurrence of flow slippage has a large impact on the liquid transport and the resulting energy dissipation, which are crucial for many applications. It is natural to expect that slippage takes place to reduce the dissipation. However, (i) how the density fluctuation is affected by the presence of the wall and (ii) how slippage takes place through forming a gas layer remained elusive. Here, we report possible answers to these fundamental questions: (i) Density fluctuation is intrinsically enhanced near the wall even in a quiescent state irrespective of the property of wall, and (ii) it is the density dependence of the viscosity that destabilizes the system toward gas-layer formation under shear flow. Our scenario of shear-induced gas-phase formation provides a natural physical explanation for wall slippage of liquid flow, covering the slip length ranging from a microscopic (nanometers) to macroscopic (micrometers) scale.
Collapse
|
12
|
Shear bands and the evolving microstructure in a drying colloidal film studied with scanning µ-SAXS. Sci Rep 2018; 8:12979. [PMID: 30154430 PMCID: PMC6113273 DOI: 10.1038/s41598-018-31405-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/14/2018] [Indexed: 11/09/2022] Open
Abstract
Shear localisation in thin bands is an important process involved in the plastic deformation of materials subject to stress. This process is often sensitive to the sample microstructure (amorphous/crystalline). Here we show using the scanning µ-SAXS technique, how these different microstructures influence the plastic deformations in a drying colloidal film. In crystalline samples, the presence of an ordering transition at the compaction front was directly identified through the development of a six-fold symmetry in the scattering pattern in 20 wt% samples. It is shown that plastic deformations in individual groups of particles during the compaction process can be tracked and measured in real time. Higher concentration suspensions were found to result in amorphous structures. The transition between crystalline and amorphous microstructures with initial particle concentration was also found to correlate with the appearance of shear bands. Through 2D spatial mapping of the local film structure, the presence of shear bands in the films was directly related to the microscale spatial variations in strain magnitude and compression direction. Our measurements also showed that shear bands lead to a reduction in the local particle volume fraction ~1–2%, indicating significant dilatancy.
Collapse
|
13
|
Song HB, Baranek A, Worrell BT, Bowman CN, Cook WD. Photopolymerized Triazole-Based Glassy Polymer Networks with Superior Tensile Toughness. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1801095. [PMID: 31105506 PMCID: PMC6519945 DOI: 10.1002/adfm.201801095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Indexed: 05/28/2023]
Abstract
Photopolymerization is a ubiquitous, indispensable technique widely applied in applications from coatings, inks, and adhesives to thermosetting restorative materials for medical implants, and the fabrication of complex macro-scale, microscale, and nanoscale 3D architectures via additive manufacturing. However, due to the brittleness inherent in the dominant acrylate-based photopolymerized networks, a significant need exists for higher performance resin/oligomer formulations to create tough, defect-free, mechanically ductile, thermally and chemically resistant, high modulus network polymers with rapid photocuring kinetics. This study presents densely cross-linked triazole-based glassy photopolymers capable of achieving preeminent toughness of ≈70 MJ m-3 and 200% strain at ambient temperature, comparable to conventional tough thermoplastics. Formed either via photoinitiated copper(I)-catalyzed cycloaddition of monomers containing azide and alkyne groups (CuAAC) or via photoinitiated thiol-ene reactions from monomers containing triazole rings, these triazole-containing thermosets completely recover their original dimensions and mechanical behavior after repeated deformations of 50% strain in the glassy state over multiple thermal recovery-strain cycles.
Collapse
Affiliation(s)
- Han Byul Song
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA
| | - Austin Baranek
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA
| | - Brady T Worrell
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA
| | - Wayne D Cook
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
14
|
Furukawa A. Onset of shear thinning in glassy liquids: Shear-induced small reduction of effective density. Phys Rev E 2017; 95:012613. [PMID: 28208503 DOI: 10.1103/physreve.95.012613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Indexed: 11/06/2022]
Abstract
We propose a simple mechanism for describing the onset of shear thinning in a high-density glassy liquid. In a shear flow, along the compression axis, the overlap between neighboring particles is more enhanced than that at equilibrium, meaning that the "effective" size is reduced along this axis. On the other hand, along the extension axis perpendicular to the compression axis, the average structural configurations are stretched, but it does not indicate the expansion of the "effective" size itself. This asymmetric shear flow effect for particles results in a small reduction of the "effective" density. Because, in glass-forming liquids, the structural relaxation time τ_{α} strongly depends on the density ρ, even a very small reduction of the effective density should lead to a significant decrease of the relaxation time under shear flow. We predict that the crossover shear rate from Newtonian to non-Newtonian flow behaviors is given by γ[over ̇]_{c}=[ρ(∂τ_{α}/∂ρ)]^{-1}, which can be much smaller than 1/τ_{α} near the glass transition point. It is shown that this prediction is consistent with the results of molecular dynamics simulations.
Collapse
Affiliation(s)
- Akira Furukawa
- Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
15
|
Sun BA, Chen SH, Lu YM, Zhu ZG, Zhao YL, Yang Y, Chan KC, Liu CT. Origin of Shear Stability and Compressive Ductility Enhancement of Metallic Glasses by Metal Coating. Sci Rep 2016; 6:27852. [PMID: 27271435 PMCID: PMC4897694 DOI: 10.1038/srep27852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/24/2016] [Indexed: 11/09/2022] Open
Abstract
Metallic glasses (MGs) are notorious for the poor macroscopic ductility and to overcome the weakness various intrinsic and extrinsic strategies have been proposed in past decades. Among them, the metal coating is regarded as a flexible and facile approach, yet the physical origin is poorly understood due to the complex nature of shear banding process. Here, we studied the origin of ductile enhancement in the Cu-coating both experimentally and theoretically. By examining serrated shear events and their stability of MGs, we revealed that the thin coating layer plays a key role in stopping the final catastrophic failure of MGs by slowing down shear band dynamics and thus retarding its attainment to a critical instable state. The mechanical analysis on interplay between the coating layer and shear banding process showed the enhanced shear stability mainly comes from the lateral tension of coating layer induced by the surface shear step and the bonding between the coating layer and MGs rather than the layer thickness is found to play a key role in contributing to the shear stability.
Collapse
Affiliation(s)
- B A Sun
- Centre For Advanced Structural Materials, Department of Mechanical Biomedical Engineering, City University of Hong Kong, Hong Kong
| | - S H Chen
- Advanced Manufacturing Technology Research Centre, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Y M Lu
- Centre For Advanced Structural Materials, Department of Mechanical Biomedical Engineering, City University of Hong Kong, Hong Kong
| | - Z G Zhu
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
| | - Y L Zhao
- Centre For Advanced Structural Materials, Department of Mechanical Biomedical Engineering, City University of Hong Kong, Hong Kong
| | - Y Yang
- Centre For Advanced Structural Materials, Department of Mechanical Biomedical Engineering, City University of Hong Kong, Hong Kong
| | - K C Chan
- Advanced Manufacturing Technology Research Centre, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - C T Liu
- Centre For Advanced Structural Materials, Department of Mechanical Biomedical Engineering, City University of Hong Kong, Hong Kong
| |
Collapse
|
16
|
The Critical Criterion on Runaway Shear Banding in Metallic Glasses. Sci Rep 2016; 6:21388. [PMID: 26893196 PMCID: PMC4759565 DOI: 10.1038/srep21388] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/22/2016] [Indexed: 11/08/2022] Open
Abstract
The plastic flow of metallic glasses (MGs) in bulk is mediated by nanoscale shear bands, which is known to proceed in a stick-slip manner until reaching a transition state causing catastrophic failures. Such a slip-to-failure transition controls the plasticity of MGs and resembles many important phenomena in natural science and engineering, such as friction, lubrication and earthquake, therefore has attracted tremendous research interest over past decades. However, despite the fundamental and practical importance, the physical origin of this slip-to-failure transition is still poorly understood. By tracking the behavior of a single shear band, here we discover that the final fracture of various MGs during compression is triggered as the velocity of the dominant shear band rises to a critical value, the magnitude of which is independent of alloy composition, sample size, strain rate and testing frame stiffness. The critical shear band velocity is rationalized with the continuum theory of liquid instability, physically originating from a shear-induced cavitation process inside the shear band. Our current finding sheds a quantitative insight into deformation and fracture in disordered solids and, more importantly, is useful to the design of plastic/tough MG-based materials and structures.
Collapse
|
17
|
Abstract
Concentrated colloidal suspensions display dramatic rises in viscosity, leading to jamming and granulation, with increasing shear rate. It has been proposed that these effects result from inter particle friction, as lubrication forces are overcome. This suggests the jamming of concentrated colloidal suspensions should exhibit some shared phenomenology with macroscopic granular systems where friction leads to two different types of jammed state. Here we show that transient rheological measurements can be used to probe the processes of granulation in concentrated colloidal suspensions. Our results support the idea that frictional contacts are created between jammed particles. The jamming behaviour displays two qualitatively different regimes separated by a critical strain rate with qualitatively different types of fracture/break up behaviour. In the lower strain rate regime, it is found that vibrations can be used to control jamming and granulation, resulting in a flowable fluid.
Collapse
|
18
|
Xavier P, Bose S. Mapping the intriguing transient morphologies and the demixing behavior in PS/PVME blends in the presence of rod-like nanoparticles. Phys Chem Chem Phys 2015; 17:14972-85. [PMID: 25982342 DOI: 10.1039/c5cp01865j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The demixing behavior, transient morphologies and mechanism of phase separation in PS/PVME blends were greatly altered in the presence of a very low concentration of rod-like particles (multiwall carbon nanotubes, MWNTs). This phenomenon is due to the specific interaction of one of the phases (PVME) with the anisotropic MWNTs, which creates a heterogeneous environment in the blend. This specific interaction alters the chain dynamics in the interfacial region as against the bulk. A comprehensive analysis using isochronal temperature sweep was performed to understand the demixing temperature in the blends. The evolution of phase morphology as a function of time and temperature was assessed by polarizing optical microscopy (POM), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The addition of MWNTs increased the rheological demixing temperature and the spinodal temperature in almost all the compositions. The intriguing transient morphologies were mapped, which varied from nucleation and growth to coalescence-induced viscoelastic phase separation (C-VPS) in PVME-rich blends, to spinodal decomposition in the near-critical compositions, to transient gel-induced VPS (T-VPS) in the PS-rich compositions. Mapping of the morphology development displayed two types of fracture mechanisms: ductile fracture for near-critical compositions and brittle fracture for off-critical composition. The change in the phase separation mechanism in the presence of MWNTs was due to the variation in dynamic asymmetry brought about by these anisotropic particles. All these observations were correlated by POM, SEM and AFM studies. The length of the cooperatively rearranging region (CRR), as evaluated using modulated differential scanning calorimetry (MDSC) measurements, was found to be composition-independent. The observed variation of effective glass transition of PVME (low Tg component) on blending with PS (high Tg component) and by the addition of MWNTs accounts for the dynamic heterogeneity introduced by MWNTs in the system.
Collapse
Affiliation(s)
- Priti Xavier
- Department of Materials Engineering, Indian Institute of Science, Bangalore-560012, India.
| | | |
Collapse
|
19
|
Elimination of strength degrading effects caused by surface microdefect: A prevention achieved by silicon nanotexturing to avoid catastrophic brittle fracture. Sci Rep 2015; 5:10869. [PMID: 26040924 PMCID: PMC4455193 DOI: 10.1038/srep10869] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/30/2015] [Indexed: 11/28/2022] Open
Abstract
The unavoidable occurrence of microdefects in silicon wafers increase the probability of catastrophic fracture of silicon-based devices, thus highlighting the need for a strengthening mechanism to minimize fractures resulting from defects. In this study, a novel mechanism for manufacturing silicon wafers was engineered based on nanoscale reinforcement through surface nanotexturing. Because of nanotexturing, different defect depths synthetically emulated as V-notches, demonstrated a bending strength enhancement by factors of 2.5, 3.2, and 6 for 2-, 7-, and 14-μm-deep V-notches, respectively. A very large increase in the number of fragments observed during silicon fracturing was also indicative of the strengthening effect. Nanotextures surrounding the V-notch reduced the stress concentration factor at the notch tip and saturated as the nanotexture depth approached 1.5 times the V-notch depth. The stress reduction at the V-notch tip measured by micro-Raman spectroscopy revealed that nanotextures reduced the effective depth of the defect. Therefore, the nanotextured samples were able to sustain a larger fracture force. The enhancement in Weibull modulus, along with an increase in bending strength in the nanotextured samples compared to polished single-crystal silicon samples, demonstrated the reliability of the strengthening method. These results suggest that this method may be suitable for industrial implementation.
Collapse
|
20
|
Mansard V, Bocquet L, Colin A. Boundary conditions for soft glassy flows: slippage and surface fluidization. SOFT MATTER 2014; 10:6984-6989. [PMID: 24854663 DOI: 10.1039/c4sm00230j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We explore the question of surface boundary conditions for the flow of a dense emulsion. We make use of microlithographic tools to create surfaces with well controlled roughness patterns and measure using dynamic confocal microscopy both the slip velocity and the shear rate close to the wall, which we relate to the notion of surface fluidization. Both slippage and wall fluidization depend non-monotonously on the roughness. We interpret this behavior within a simple model in terms of the building of a stratified layer and the activation of plastic events by the surface roughness.
Collapse
Affiliation(s)
- Vincent Mansard
- Rhodia Laboratoire du Futur, Unité mixte Rhodia-CNRS, Université Bordeaux I, UMR 5258, Bordeaux, France.
| | | | | |
Collapse
|
21
|
Nicolas A, Rottler J, Barrat JL. Spatiotemporal correlations between plastic events in the shear flow of athermal amorphous solids. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2014; 37:9. [PMID: 24965153 DOI: 10.1140/epje/i2014-14050-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/12/2014] [Accepted: 06/05/2014] [Indexed: 06/03/2023]
Abstract
The slow flow of amorphous solids exhibits striking heterogeneities: swift localised particle rearrangements take place in the midst of a more or less homogeneously deforming medium. Recently, experimental as well as numerical work has revealed spatial correlations between these flow heterogeneities. Here, we use molecular dynamics (MD) simulations to characterise the rearrangements and systematically probe their correlations both in time and in space. In particular, these correlations display a four-fold azimuthal symmetry characteristic of shear stress redistribution in an elastic medium and we unambiguously detect their increase in range with time. With increasing shear rate, correlations become shorter-ranged. In addition, we study a coarse-grained model motivated by the observed flow characteristics and challenge its predictions directly with the MD simulations. While the model captures both macroscopic and local properties rather satisfactorily, the agreement with respect to the spatiotemporal correlations is at most qualitative. The discrepancies provide important insight into relevant physics that is missing in all related coarse-grained models that have been developed for the flow of amorphous materials so far, namely the finite shear wave velocity and the impact of elastic heterogeneities on stress redistribution.
Collapse
|
22
|
Huang EW, Qiao J, Winiarski B, Lee WJ, Scheel M, Chuang CP, Liaw PK, Lo YC, Zhang Y, Di Michiel M. Microyielding of core-shell crystal dendrites in a bulk-metallic-glass matrix composite. Sci Rep 2014; 4:4394. [PMID: 24637714 PMCID: PMC3957129 DOI: 10.1038/srep04394] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/20/2014] [Indexed: 11/30/2022] Open
Abstract
In-situ synchrotron x-ray experiments have been used to follow the evolution of the diffraction peaks for crystalline dendrites embedded in a bulk metallic glass matrix subjected to a compressive loading-unloading cycle. We observe irreversible diffraction-peak splitting even though the load does not go beyond half of the bulk yield strength. The chemical analysis coupled with the transmission electron microscopy mapping suggests that the observed peak splitting originates from the chemical heterogeneity between the core (major peak) and the stiffer shell (minor peak) of the dendrites. A molecular dynamics model has been developed to compare the hkl-dependent microyielding of the bulk metallic-glass matrix composite. The complementary diffraction measurements and the simulation results suggest that the interface, as Maxwell damper, between the amorphous matrix and the (211) crystalline planes relax under prolonged load that causes a delay in the reload curve which ultimately catches up with the original path.
Collapse
Affiliation(s)
- E-Wen Huang
- Department of Chemical and Materials Engineering and Center for Neutron Beam Applications, National Central University, Jhongli, 32001, Taiwan (R.O.C.)
| | - Junwei Qiao
- Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Bartlomiej Winiarski
- 1] Manchester X-ray Imaging Facility, School of Materials, University of Manchester, Manchester, M13 9PL, United Kingdom [2] National Physical Laboratory, Materials Division, London, M1 7HS, United Kingdom
| | - Wen-Jay Lee
- National Center for High-Performance Computing, No. 22, Keyuan Rd., Central Taiwan Science Park, Taichung 40763, Taiwan (R.O.C.)
| | - Mario Scheel
- European Synchrotron Radiation Facility Beamline ID15A, Grenoble, France
| | - Chih-Pin Chuang
- Department of Materials Science and Engineering, University of Tennessee, Knoxville TN 37996-2200, USA
| | - Peter K Liaw
- Department of Materials Science and Engineering, University of Tennessee, Knoxville TN 37996-2200, USA
| | - Yu-Chieh Lo
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 24-107Cambridge, MA 02139
| | - Yong Zhang
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology, Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Marco Di Michiel
- European Synchrotron Radiation Facility Beamline ID15A, Grenoble, France
| |
Collapse
|
23
|
Wang ZT, Pan J, Li Y, Schuh CA. Densification and strain hardening of a metallic glass under tension at room temperature. PHYSICAL REVIEW LETTERS 2013; 111:135504. [PMID: 24116793 DOI: 10.1103/physrevlett.111.135504] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Indexed: 06/02/2023]
Abstract
The deformation of metallic glasses involves two competing processes: a disordering process involving dilatation, free volume accumulation, and softening, and a relaxation process involving diffusional ordering and densification. For metallic glasses at room temperature and under uniaxial loading, disordering usually dominates, and the glass can fail catastrophically as the softening process runs away in a localized mode. Here we demonstrate conditions where the opposite, unexpected, situation occurs: the densifying process dominates, resulting in stable plastic deformation and work hardening at room temperature. We report densification and hardening during deformation in a Zr-based glass under multiaxial loading, in a notched tensile geometry. The effect is driven by stress-enhanced diffusional relaxation, and is attended by a reduction in exothermic heat and hardening signatures similar to those observed in the classical thermal relaxation of glasses. The result is significant, stable, plastic, extensional flow in metallic glasses, which suggest a possibility of designing tough glasses based on their flow properties.
Collapse
Affiliation(s)
- Z T Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117576
| | | | | | | |
Collapse
|
24
|
Kim SY, Kim SJ, Jee SS, Park JM, Park KH, Park SC, Cho EA, Lee JH, Song IY, Lee SM, Han IT, Lim KR, Kim WT, Park JC, Eckert J, Kim DH, Lee ES. Capillary flow of amorphous metal for high performance electrode. Sci Rep 2013; 3:2185. [PMID: 23851671 PMCID: PMC3711046 DOI: 10.1038/srep02185] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/18/2013] [Indexed: 11/22/2022] Open
Abstract
Metallic glass (MG) assists electrical contact of screen-printed silver electrodes and leads to comparable electrode performance to that of electroplated electrodes. For high electrode performance, MG needs to be infiltrated into nanometer-scale cavities between Ag particles and reacts with them. Here, we show that the MG in the supercooled state can fill the gap between Ag particles within a remarkably short time due to capillary effect. The flow behavior of the MG is revealed by computational fluid dynamics and density funtional theory simulation. Also, we suggest the formation mechanism of the Ag electrodes, and demonstrate the criteria of MG for higher electrode performance. Consequently, when Al85Ni5Y8Co2 MG is added in the Ag electrodes, cell efficiency is enhanced up to 20.30% which is the highest efficiency reported so far for screen-printed interdigitated back contact solar cells. These results show the possibility for the replacement of electroplating process to screen-printing process.
Collapse
Affiliation(s)
- Se Yun Kim
- Materials R&D Center, Samsung Advanced Institute of Technology (SAIT), San #14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-712, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Agimelen OS, Olmsted PD. Apparent fracture in polymeric fluids under step shear. PHYSICAL REVIEW LETTERS 2013; 110:204503. [PMID: 25167419 DOI: 10.1103/physrevlett.110.204503] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Indexed: 06/03/2023]
Abstract
Recent step strain experiments in well-entangled polymeric liquids demonstrated a bulk fracturelike phenomenon. We study this instability by using a modern version of the Doi-Edwards theory for entangled polymers, and we find close quantitative agreement with the experiments. The phenomenon occurs because the viscoelastic liquid is sheared into a rubbery state that possesses an elastic constitutive instability [G. Marrucci and N. Grizzuti, J. Rheol. 27, 433 (1983)]. The fracture is a transient manifestation of this instability, which relies on the amplification of spatially inhomogeneous fluctuations. This mechanism differs from the fracture in glassy materials and dense suspensions.
Collapse
Affiliation(s)
- Okpeafoh S Agimelen
- Soft Matter Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Peter D Olmsted
- Soft Matter Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
26
|
Jop P, Mansard V, Chaudhuri P, Bocquet L, Colin A. Microscale rheology of a soft glassy material close to yielding. PHYSICAL REVIEW LETTERS 2012; 108:148301. [PMID: 22540825 DOI: 10.1103/physrevlett.108.148301] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 02/17/2012] [Indexed: 05/31/2023]
Abstract
Using confocal microscopy, we study the flow of a model soft glassy material: a concentrated emulsion. We demonstrate the micro-macro link between in situ measured movements of droplets during the flow and the macroscopic rheological response of a concentrated emulsion, in the form of scaling relationships connecting the rheological "fluidity" with local standard deviation of the strain-rate tensor. Furthermore, we measure correlations between these local fluctuations, thereby extracting a correlation length which increases while approaching the yielding transition, in accordance with recent theoretical predictions.
Collapse
Affiliation(s)
- Pierre Jop
- Université Bordeaux 1, Rhodia Laboratoire du Futur, Unité mixte Rhodia-CNRS, Université Bordeaux I, UMR 5258, Bordeaux, France
| | | | | | | | | |
Collapse
|
27
|
Mandal S, Gross M, Raabe D, Varnik F. Heterogeneous shear in hard sphere glasses. PHYSICAL REVIEW LETTERS 2012; 108:098301. [PMID: 22463672 DOI: 10.1103/physrevlett.108.098301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Indexed: 05/31/2023]
Abstract
There is growing evidence that the flow of driven amorphous solids is not homogeneous, even if the macroscopic stress is constant across the system. Via event-driven molecular dynamics simulations of a hard sphere glass, we provide the first direct evidence for a correlation between the fluctuations of the local volume fraction and the fluctuations of the local shear rate. Higher shear rates do preferentially occur at regions of lower density and vice versa. The temporal behavior of fluctuations is governed by a characteristic time scale, which, when measured in units of strain, is independent of shear rate in the investigated range. Interestingly, the correlation volume is also roughly constant for the same range of shear rates. A possible connection between these two observations is discussed.
Collapse
Affiliation(s)
- Suvendu Mandal
- Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, Stiepeler Strasse 129, 44801 Bochum, Germany
| | | | | | | |
Collapse
|
28
|
Tanaka H. Viscoelastic phase separation in soft matter and foods. Faraday Discuss 2012; 158:371-406; discussion 493-522. [DOI: 10.1039/c2fd20028g] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
29
|
Wondraczek L, Mauro JC, Eckert J, Kühn U, Horbach J, Deubener J, Rouxel T. Towards ultrastrong glasses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:4578-4586. [PMID: 22103001 DOI: 10.1002/adma.201102795] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The development of new glassy materials is key for addressing major global challenges in energy, medicine, and advanced communications systems. For example, thin, flexible, and large-area glass substrates will play an enabling role in the development of flexible displays, roll-to-roll processing of solar cells, next-generation touch-screen devices, and encapsulation of organic semiconductors. The main drawback of glass and its limitation for these applications is its brittle fracture behavior, especially in the presence of surface flaws, which can significantly reduce the practical strength of a glass product. Hence, the design of new ultrastrong glassy materials and strengthening techniques is of crucial importance. The main issues regarding glass strength are discussed, with an emphasis on the underlying microscopic mechanisms that are responsible for mechanical properties. The relationship among elastic properties and fracture behavior is also addressed, focusing on both oxide and metallic glasses. From a theoretical perspective, atomistic modeling of mechanical properties of glassy materials is considered. The topological origin of these properties is also discussed, including its relation to structural and chemical heterogeneities. Finally, comments are given on several toughening strategies for increasing the damage resistance of glass products.
Collapse
Affiliation(s)
- Lothar Wondraczek
- Department of Materials Science, University of Erlangen-Nuremberg, Erlangen 91058, Germany.
| | | | | | | | | | | | | |
Collapse
|
30
|
Kurita R, Weeks ER. Incompressibility of polydisperse random-close-packed colloidal particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:030401. [PMID: 22060321 DOI: 10.1103/physreve.84.030401] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 08/04/2011] [Indexed: 05/31/2023]
Abstract
We use confocal microscopy to study the compressibility of a random-close-packed sample of colloidal particles. To do this, we introduce an algorithm to estimate the size of each particle. Taking into account their sizes, we compute the compressibility of the sample as a function of wave vector q, and find that this compressibility vanishes linearly as q→0, showing that the packing structure is incompressible. The particle sizes must be considered to calculate the compressibility properly. These results also suggest that the experimental packing is hyperuniform.
Collapse
Affiliation(s)
- Rei Kurita
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | | |
Collapse
|
31
|
Besseling R, Isa L, Ballesta P, Petekidis G, Cates ME, Poon WCK. Shear banding and flow-concentration coupling in colloidal glasses. PHYSICAL REVIEW LETTERS 2010; 105:268301. [PMID: 21231717 DOI: 10.1103/physrevlett.105.268301] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Indexed: 05/30/2023]
Abstract
We report experiments on hard-sphere colloidal glasses that show a type of shear banding hitherto unobserved in soft glasses. We present a scenario that relates this to an instability due to shear-concentration coupling, a mechanism previously thought unimportant in these materials. Below a characteristic shear rate γ(c) we observe increasingly nonlinear and localized velocity profiles. We attribute this to very slight concentration gradients in the unstable flow regime. A simple model accounts for both the observed increase of γ(c) with concentration, and the fluctuations in the flow.
Collapse
Affiliation(s)
- R Besseling
- SUPA, School of Physics & Astronomy, The University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | |
Collapse
|
32
|
Kurita R, Weeks ER. Experimental study of random-close-packed colloidal particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:011403. [PMID: 20866616 DOI: 10.1103/physreve.82.011403] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Indexed: 05/29/2023]
Abstract
A collection of spherical particles can be packed tightly together into an amorphous packing known as "random close packing" (RCP). This structure is of interest as a model for the arrangement of molecules in simple liquids and glasses, as well as the arrangement of particles in sand piles. We use confocal microscopy to study the arrangement of colloidal particles in an experimentally realized RCP state. We image a large volume containing more than 450,000 particles with a resolution of each particle position to better than 0.02 particle diameters. While the arrangement of the particles satisfies multiple criteria for being random, we also observe a small fraction (less than 3%) of tiny crystallites (4 particles or fewer). These regions pack slightly better and are thus associated with locally higher densities. The structure factor of our sample at long length scales is nonzero, S(0)=0.049±0.008, suggesting that there are long wavelength density fluctuations in our sample. These may be due to polydispersity or tiny crystallites. Our results suggest that experimentally realizable RCP systems may be different from simulated RCP systems, in particular, with the presence of these long wavelength density fluctuations.
Collapse
Affiliation(s)
- Rei Kurita
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|