1
|
Zhao L, Chen J, Bai B, Song G, Zhang J, Yu H, Huang S, Wang Z, Lu G. Topical drug delivery strategies for enhancing drug effectiveness by skin barriers, drug delivery systems and individualized dosing. Front Pharmacol 2024; 14:1333986. [PMID: 38293666 PMCID: PMC10825035 DOI: 10.3389/fphar.2023.1333986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Topical drug delivery is widely used in various diseases because of the advantages of not passing through the gastrointestinal tract, avoiding gastrointestinal irritation and hepatic first-pass effect, and reaching the lesion directly to reduce unnecessary adverse reactions. The skin helps the organism to defend itself against a huge majority of external aggressions and is one of the most important lines of defense of the body. However, the skin's strong barrier ability is also a huge obstacle to the effectiveness of topical medications. Allowing the bioactive, composition in a drug to pass through the stratum corneum barrier as needed to reach the target site is the most essential need for the bioactive, composition to exert its therapeutic effect. The state of the skin barrier, the choice of delivery system for the bioactive, composition, and individualized disease detection and dosing planning influence the effectiveness of topical medications. Nowadays, enhancing transdermal absorption of topically applied drugs is the hottest research area. However, enhancing transdermal absorption of drugs is not the first choice to improve the effectiveness of all drugs. Excessive transdermal absorption enhances topical drug accumulation at non-target sites and the occurrence of adverse reactions. This paper introduces topical drug delivery strategies to improve drug effectiveness from three perspectives: skin barrier, drug delivery system and individualized drug delivery, describes the current status and shortcomings of topical drug research, and provides new directions and ideas for topical drug research.
Collapse
Affiliation(s)
- Lin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiamei Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bai Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guili Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Han Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiwei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guanghua Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Karmakar S, Poddar S, Khanam J. Understanding the Effects of Associated Factors in the Development of Microsponge-Based Drug Delivery: a Statistical Quality by Design (QbD) Approach Towards Optimization. AAPS PharmSciTech 2022; 23:256. [DOI: 10.1208/s12249-022-02409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
|
3
|
Zheng Y, He S, Jin P, Gao Y, Di Y, Gao L, Wang J. Construction of multifunctional carboxymethyl cellulose nanohydrogel carriers based on near-infrared DNA-templated quantum dots for tumor theranostics. RSC Adv 2022; 12:31869-31877. [PMID: 36380926 PMCID: PMC9639241 DOI: 10.1039/d2ra05424h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Multifunctional therapeutic platforms with targeted delivery, fast diagnosis, and efficient therapy could effectively reduce side effects and improve treatment in the clinical therapy of tumors. Near-infrared DNA-templated CdTeSe quantum dots (DNA-CdTeSe QDs) were developed as building blocks to construct a multifunctional carboxymethyl cellulose (CMC)-based nanohydrogel as a nanocarrier to address the challenges of serious side effects and precise treatment in cancer theranostics, including active tumor targeting, fluorescence tracking, controlled drug release, chemotherapy and gene regulation. Single-stranded DNA containing the complementarity sequence of miRNA and cystine, as co-crosslinkers, initiated hybridization between the DNA-CdTeSe QD-modified CMC chain with the anti-nucleolin aptamer DNA (AS1411)-modified CMC chain to form the hydrogels. DOX, as a model drug, was successfully incorporated into the hydrogels. The synthesized multifunctional hydrogel nanocarriers with an average diameter of 150 nm could be taken up through targeting and achieved the controlled release of DOX by triggering both glutathione (GSH) and miRNA in the tumor microenvironment. The CdTeSe QDs trapped in nanohydrogels acted as fluorophores for bioimaging in the diagnosis and treatment process. The proposed multifunctional delivery system provided a potential platform for tumor imaging and precise therapy. Multifunctional carboxymethyl cellulose nanohydrogel carriers for tumor theranostics.![]()
Collapse
Affiliation(s)
- Yue Zheng
- The First Hospital in Qinhuangdao Affiliated to Hebei Medical University, Qinhuangdao, China
| | - Shengquan He
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| | - Penghui Jin
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| | - Yabiao Gao
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| | - Ya Di
- The First Hospital in Qinhuangdao Affiliated to Hebei Medical University, Qinhuangdao, China
| | - Liming Gao
- The First Hospital in Qinhuangdao Affiliated to Hebei Medical University, Qinhuangdao, China
| | - Jidong Wang
- Hebei Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| |
Collapse
|
4
|
Zhang J, Wang Z, Gao Y, Wu ZS. Simple Self-Assembled Targeting DNA Nano Sea Urchin as a Multivalent Drug Carrier. ACS APPLIED BIO MATERIALS 2020; 3:4514-4521. [PMID: 35025450 DOI: 10.1021/acsabm.0c00462] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An ideal drug delivery platform with high cell selectivity, drug payload capacity, and cellular internalization capability is usually of the essence for targeted cancer chemotherapy. Herein, by combining palindromic DNA strands with a targeting aptamer probe, we demonstrated a self-assembled nanoscale sea urchin-shaped structure (called aptamer-NSU) as a multivalent carrier capable of executing targeted cancer cell imaging and drug delivery. The DNA nanostructure is composed of a spherical trunk and surface-confined spines: the former is assembled from only one biotinylated DNA containing four different palindrome domains, and the latter is a biotinylated aptamer (Sgc8) conjugated to the trunk surface via streptavidin-biotin affinity interaction. The spherical trunk can densely load doxorubicin (Dox), and the surface-confined Sgc8 probes can function as targeting moieties to specifically bind to target cells in a polyvalent-binding fashion. Atomic force microscopy (AFM) and gel electrophoresis show the assembly of Sgc8-NSU. The confocal fluorescence imaging demonstrates that fluorescently labeled Sgc8-NSU can specifically image CEM cells. Flow cytometric analyses indicate that Sgc8-NSU exhibits the multivalent binding effect, achieving the significant improvement in binding affinity and selectivity compared with free Sgc8. Moreover, the CCK-8 assay confirmed that Dox-loaded Sgc8-NSU induces an enhanced cellular cytotoxicity to target cancer cells but not to negative nontarget cells. The developed DNA nanoplatform is expected to provide a valuable insight into constructing structural DNA nanotechnology-based drug delivery nanovehicles suitable for targeted cancer therapy.
Collapse
Affiliation(s)
- Jingjing Zhang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| | - Zhenmeng Wang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| | - Yansha Gao
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| |
Collapse
|
5
|
Cheng H, Hong S, Wang Z, Sun N, Wang T, Zhang Y, Chen H, Pei R. Self-assembled RNAi nanoflowers via rolling circle transcription for aptamer-targeted siRNA delivery. J Mater Chem B 2018; 6:4638-4644. [PMID: 32254408 DOI: 10.1039/c8tb00758f] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To deliver siRNA efficiently, prevailing conventional lipid or polymer encapsulation often needs multi-step compounding methods, which may inevitably introduce cationic or other components and may lead to cytotoxicity or an immune response. Herein, we present a novel enzymatic synthetic approach to produce tumor-targetable RNAi nanoflowers. The RNAi nanoflowers are mainly composed of multiple tandem copies of siRNA precursors by rolling circle transcription (RCT), and produce large amounts of siRNA to silence Bcl-2 gene expression after cellular uptake, which can overcome the problem of low loading capacity. In particular, the RNAi microspheres (RNAi-MS) were condensed into nanosized complexes (RNAi nanospheres, RNAi-NS) by cholesterol-modified DNA strands without the assistance of polycationic agents. RNAi-NS are entirely composed of nucleic acid, giving them lower cytotoxicity and immunogenicity, which can be caused by synthetic polycationic reagents. In addition, the RNAi nanoflowers can also integrate DNA aptamers that bind specifically to target membrane proteins for cell-targeting. Therefore, thousands of copies of siRNA will be delivered to cells specifically, and this RNAi nanoflower system will have great potential for siRNA delivery and biomedical applications.
Collapse
Affiliation(s)
- Hui Cheng
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
A controllable aptamer-based self-assembled DNA dendrimer for high affinity targeting, bioimaging and drug delivery. Sci Rep 2015; 5:10099. [PMID: 25959874 PMCID: PMC4431499 DOI: 10.1038/srep10099] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/30/2015] [Indexed: 02/08/2023] Open
Abstract
Targeted drug delivery is important in cancer therapy to decrease the systemic
toxicity resulting from nonspecific drug distribution and to enhance drug delivery
efficiency. We have developed an aptamer-based DNA dendritic nanostructure as a
multifunctional vehicle for targeted cancer cell imaging and drug delivery. The
multifunctional DNA dendrimer is constructed from functional Y-shaped building
blocks with predesigned base-pairing hybridization including fluorophores, targeting
DNA aptamers and intercalated anticancer drugs. With controllable step-by-step
self-assembly, the programmable DNA dendrimer has several appealing features,
including facile modular design, excellent biostability and biocompatibility, high
selectivity, strong binding affinity, good cell internalization efficiency, and high
drug loading capacity. Due to the unique structural features of DNA dendrimers,
multiple copies of aptamers can be incorporated into each dendrimer, generating a
multivalent aptamer-tethered nanostructure with enhanced binding affinity. A model
chemotherapeutic anticancer drug, doxorubicin, was delivered via these aptamer-based
DNA dendrimers and exerted a potent toxicity for target cancer cells (human T cell
acute lymphoblastic leukemia cell line) with low side effects for the non-target
cells (human Burkitt’s lymphoma cell line). This controllable aptamer-based
DNA dendrimer is a promising candidate for biomedical applications.
Collapse
|
7
|
Wu C, Han D, Chen T, Peng L, Zhu G, You M, Qiu L, Sefah K, Zhang X, Tan W. Building a multifunctional aptamer-based DNA nanoassembly for targeted cancer therapy. J Am Chem Soc 2013; 135:18644-50. [PMID: 24245521 DOI: 10.1021/ja4094617] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The ability to self-assemble one-dimensional DNA building blocks into two- and three-dimensional nanostructures via DNA/RNA nanotechnology has led to broad applications in bioimaging, basic biological mechanism studies, disease diagnosis, and drug delivery. However, the cellular uptake of most nucleic acid nanostructures is dependent on passive delivery or the enhanced permeability and retention effect, which may not be suitable for certain types of cancers, especially for treatment in vivo. To meet this need, we have constructed a multifunctional aptamer-based DNA nanoassembly (AptNA) for targeted cancer therapy. In particular, we first designed various Y-shaped functional DNA domains through predesigned base pair hybridization, including targeting aptamers, intercalated anticancer drugs, and therapeutic antisense oligonucleotides. Then these functional DNA domains were linked to an X-shaped DNA core connector, termed a building unit, through the complementary sequences in the arms of functional domains and connector. Finally, hundreds (~100-200) of these basic building units with 5'-modification of acrydite groups were further photo-cross-linked into a multifunctional and programmable aptamer-based nanoassembly structure able to take advantage of facile modular design and assembly, high programmability, excellent biostability and biocompatibility, as well as selective recognition and transportation. With these properties, AptNAs were demonstrated to have specific cytotoxic effect against leukemia cells. Moreover, the incorporation of therapeutic antisense oligonucleotides resulted in the inhibition of P-gp expression (a drug efflux pump to increase excretion of anticancer drugs) as well as a decrease in drug resistance. Therefore, these multifunctional and programmable aptamer-based DNA nanoassemblies show promise as candidates for targeted drug delivery and cancer therapy.
Collapse
Affiliation(s)
- Cuichen Wu
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida , Gainesville, Florida 32611-7200, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|