1
|
Gupta AK, Zarkadoula E, Ziatdinov M, Kalinin SV, Paduri VR, Hachtel JA, Zhang Y, Trautmann C, Weber WJ, Sachan R. Nanoscale core-shell structure and recrystallization of swift heavy ion tracks in SrTiO 3. NANOSCALE 2024; 16:14366-14377. [PMID: 38984462 DOI: 10.1039/d4nr01974a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
It is widely accepted that the interaction of swift heavy ions with many complex oxides is predominantly governed by the electronic energy loss that gives rise to nanoscale amorphous ion tracks along the penetration direction. The question of how electronic excitation and electron-phonon coupling affect the atomic system through defect production, recrystallization, and strain effects has not yet been fully clarified. To advance the knowledge of the atomic structure of ion tracks, we irradiated single crystalline SrTiO3 with 629 MeV Xe ions and performed comprehensive electron microscopy investigations complemented by molecular dynamics simulations. This study shows discontinuous ion-track formation along the ion penetration path, comprising an amorphous core and a surrounding few monolayer thick shell of strained/defective crystalline SrTiO3. Using machine-learning-aided analysis of atomic-scale images, we demonstrate the presence of 4-8% strain in the disordered region interfacing with the amorphous core in the initially formed ion tracks. Under constant exposure of the electron beam during imaging, the amorphous part of the ion tracks readily recrystallizes radially inwards from the crystalline-amorphous interface under the constant electron-beam irradiation during the imaging. Cation strain in the amorphous region is observed to be significantly recovered, while the oxygen sublattice remains strained even under the electron irradiation due to the present oxygen vacancies. The molecular dynamics simulations support this observation and suggest that local transient heating and annealing facilitate recrystallization process of the amorphous phase and drive Sr and Ti sublattices to rearrange. In contrast, the annealing of O atoms is difficult, thus leaving a remnant of oxygen vacancies and strain even after recrystallization. This work provides insights for creating and transforming novel interfaces and nanostructures for future functional applications.
Collapse
Affiliation(s)
- Ashish Kumar Gupta
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Eva Zarkadoula
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Maxim Ziatdinov
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Sergei V Kalinin
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA.
| | - Vikas Reddy Paduri
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Jordan A Hachtel
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yanwen Zhang
- Energy and Environment Science & Technology, Idaho National Laboratory, Idaho Falls, ID 83415, USA
| | - Christina Trautmann
- GSI Helmholtzzentrum, Darmstadt, 64291, Germany
- Technische Universität Darmstadt, 64287 Darmstadt, Germany
- University of Petroleum and Energy Studies, Dehradun 248007, India
| | - William J Weber
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA.
| | - Ritesh Sachan
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
2
|
Ding C, Dong W, Jiao X, Zhang Z, Gong G, Wei Z, Wang L, Jia JF, Xue QK. Unidirectional Charge Orders Induced by Oxygen Vacancies on SrTiO 3(001). ACS NANO 2024; 18:17786-17793. [PMID: 38935417 DOI: 10.1021/acsnano.4c03317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The discovery of high-mobility two-dimensional electron gas and low carrier density superconductivity in multiple SrTiO3-based heterostructures has stimulated intense interest in the surface properties of SrTiO3. The recent discovery of high-Tc superconductivity in the monolayer FeSe/SrTiO3 led to the upsurge and underscored the atomic precision probe of the surface structure. By performing atomically resolved cryogenic scanning tunneling microscopy/spectroscopy characterization on dual-TiO2-δ-terminated SrTiO3(001) surfaces with (√13 × √13), c(4 × 2), mixed (2 × 1), and (2 × 2) reconstructions, we disclosed universally broken rotational symmetry and contrasting bias- and temperature-dependent electronic states for apical and equatorial oxygen sites. With the sequentially evolved surface reconstructions and simultaneously increasing equatorial oxygen vacancies, the surface anisotropy reduces and the work function lowers. Intriguingly, unidirectional stripe orders appear on the c(4 × 2) surface, whereas local (4 × 4) order emerges and eventually forms long-range unidirectional c(4 × 4) charge order on the (2 × 2) surface. This work reveals robust unidirectional charge orders induced by oxygen vacancies due to strong and delicate electronic-lattice interaction under broken rotational symmetry, providing insights into understanding the complex behaviors in perovskite oxide-based heterostructures.
Collapse
Affiliation(s)
- Cui Ding
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Quantum Science Center of Guangdong-HongKong-Macao Greater Bay Area, Shenzhen 518045, China
| | - Wenfeng Dong
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Xiaotong Jiao
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Zhiyu Zhang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Guanming Gong
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Zhongxu Wei
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lili Wang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| | - Jin-Feng Jia
- Quantum Science Center of Guangdong-HongKong-Macao Greater Bay Area, Shenzhen 518045, China
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi-Kun Xue
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Quantum Science Center of Guangdong-HongKong-Macao Greater Bay Area, Shenzhen 518045, China
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| |
Collapse
|
3
|
Siebenhofer M, Viernstein A, Morgenbesser M, Fleig J, Kubicek M. Photoinduced electronic and ionic effects in strontium titanate. MATERIALS ADVANCES 2021; 2:7583-7619. [PMID: 34913036 PMCID: PMC8628302 DOI: 10.1039/d1ma00906k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/17/2021] [Indexed: 06/14/2023]
Abstract
The interaction of light with solids has been of ever-growing interest for centuries, even more so since the quest for sustainable utilization and storage of solar energy became a major task for industry and research. With SrTiO3 being a model material for an extensive exploration of the defect chemistry of mixed conducting perovskite oxides, it has also been a vanguard in advancing the understanding of the interaction between light and the electronic and ionic structure of solids. In the course of these efforts, many phenomena occurring during or subsequent to the illumination of SrTiO3 have been investigated. Here, we give an overview of the numerous photoinduced effects in SrTiO3 and their inherent connection to electronic structure and defect chemistry. In more detail, advances in the fields of photoconductivity, photoluminescence, photovoltages, photochromism and photocatalysis are summarized and their underlying elemental processes are discussed. In light of recent research, this review also emphasizes the fundamental differences between illuminating SrTiO3 either at low temperatures (<RT) or at high temperatures (>200 °C), where in addition to electronic processes, also photoionic interactions become relevant. A survey of the multitude of different processes shows that a profound and comprehensive understanding of the defect chemistry and its alteration under illumination is both vital to optimizing devices and to pushing the boundaries of research and advancing the fundamental understanding of solids.
Collapse
Affiliation(s)
- Matthäus Siebenhofer
- Institute of Chemical Technologies and Analytics, Vienna University of Technology Austria
- CEST Centre of Electrochemistry and Surface Technology, Wr. Neustadt Austria
| | - Alexander Viernstein
- Institute of Chemical Technologies and Analytics, Vienna University of Technology Austria
| | | | - Jürgen Fleig
- Institute of Chemical Technologies and Analytics, Vienna University of Technology Austria
| | - Markus Kubicek
- Institute of Chemical Technologies and Analytics, Vienna University of Technology Austria
| |
Collapse
|
4
|
Ivanov SA, Stash AI. Influence of Neutron Irradiation on the Characteristics of Phase Transitions in Multifunctional Materials with a Perovskite Structure (A Review). RUSS J INORG CHEM+ 2020. [DOI: 10.1134/s0036023620120049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Fan S, Das H, Rébola A, Smith KA, Mundy J, Brooks C, Holtz ME, Muller DA, Fennie CJ, Ramesh R, Schlom DG, McGill S, Musfeldt JL. Site-specific spectroscopic measurement of spin and charge in (LuFeO 3) m/(LuFe 2O 4) 1 multiferroic superlattices. Nat Commun 2020; 11:5582. [PMID: 33149138 PMCID: PMC7642375 DOI: 10.1038/s41467-020-19285-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/07/2020] [Indexed: 11/09/2022] Open
Abstract
Interface materials offer a means to achieve electrical control of ferrimagnetism at room temperature as was recently demonstrated in (LuFeO3)m/(LuFe2O4)1 superlattices. A challenge to understanding the inner workings of these complex magnetoelectric multiferroics is the multitude of distinct Fe centres and their associated environments. This is because macroscopic techniques characterize average responses rather than the role of individual iron centres. Here, we combine optical absorption, magnetic circular dichroism and first-principles calculations to uncover the origin of high-temperature magnetism in these superlattices and the charge-ordering pattern in the m = 3 member. In a significant conceptual advance, interface spectra establish how Lu-layer distortion selectively enhances the Fe2+ → Fe3+ charge-transfer contribution in the spin-up channel, strengthens the exchange interactions and increases the Curie temperature. Comparison of predicted and measured spectra also identifies a non-polar charge ordering arrangement in the LuFe2O4 layer. This site-specific spectroscopic approach opens the door to understanding engineered materials with multiple metal centres and strong entanglement.
Collapse
Affiliation(s)
- Shiyu Fan
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA
| | - Hena Das
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
- Laboratory for Materials and Structures, Tokyo Institute of Technology, Midori-ku, 4259 Nagatesuta, Yokohama, Kanagawa, 226-8503, Japan
- Tokyo Tech World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Alejandro Rébola
- Instituto de Física Rosario-CONICET, Boulevard 27 de Febrero 210 bis, 2000, Rosario, Argentina
| | - Kevin A Smith
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Julia Mundy
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Charles Brooks
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Megan E Holtz
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, 14853, USA
| | - Craig J Fennie
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Ramamoorthy Ramesh
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Department of Physics, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Darrell G Schlom
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, 14853, USA
| | - Stephen McGill
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | - Janice L Musfeldt
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA.
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
6
|
Abdullah M, Nelson RJ, Kittilstved KR. On the formation of superoxide radicals on colloidal ATiO 3 (A = Sr and Ba) nanocrystal surfaces. NANOSCALE ADVANCES 2020; 2:1949-1955. [PMID: 36132499 PMCID: PMC9417813 DOI: 10.1039/d0na00106f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/15/2020] [Indexed: 06/15/2023]
Abstract
Controlling the surface chemistry of colloidal semiconductor nanocrystals is critical to exploiting their rich electronic structures for various technologies. We recently demonstrated that the hydrothermal synthesis of colloidal nanocrystals of SrTiO3, a technologically-relevant electronic material, provided a strong negative correlation between the presence of an O2-related surface defect and hydrazine hydrate [W. L. Harrigan, S. E. Michaud, K. A. Lehuta, and K. R. Kittilstved, Chem. Mater., 2016, 28(2), 430]. When hydrazine hydrate is omitted during the aerobic hydrothermal synthesis, the surface defect is observed. However, it can be removed by either the addition of hydrazine hydrate or by purging the reaction solution with argon gas before the hydrothermal synthesis. We also propose that the formation of the O2-related defect is mediated by the reduction of dissolved O2 by lactate anions that are present from the titanium precursor. This work helps elucidate the nature of the O2-related defect as a superoxide anion and presents a mechanism to explain its formation during the hydrothermal synthesis of SrTiO3 and related BaTiO3 nanocrystals.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Department of Chemistry, University of Massachusetts Amherst 710 N Pleasant St, Amherst MA 01003 USA
| | - Ruby J Nelson
- Department of Chemistry, University of Massachusetts Amherst 710 N Pleasant St, Amherst MA 01003 USA
| | - Kevin R Kittilstved
- Department of Chemistry, University of Massachusetts Amherst 710 N Pleasant St, Amherst MA 01003 USA
| |
Collapse
|
7
|
Li W, Zhu B, He Q, Borisevich AY, Yun C, Wu R, Lu P, Qi Z, Wang Q, Chen A, Wang H, Cavill SA, Zhang KHL, MacManus‐Driscoll JL. Interface Engineered Room-Temperature Ferromagnetic Insulating State in Ultrathin Manganite Films. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901606. [PMID: 31921553 PMCID: PMC6947487 DOI: 10.1002/advs.201901606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Ultrathin epitaxial films of ferromagnetic insulators (FMIs) with Curie temperatures near room temperature are critically needed for use in dissipationless quantum computation and spintronic devices. However, such materials are extremely rare. Here, a room-temperature FMI is achieved in ultrathin La0.9Ba0.1MnO3 films grown on SrTiO3 substrates via an interface proximity effect. Detailed scanning transmission electron microscopy images clearly demonstrate that MnO6 octahedral rotations in La0.9Ba0.1MnO3 close to the interface are strongly suppressed. As determined from in situ X-ray photoemission spectroscopy, O K-edge X-ray absorption spectroscopy, and density functional theory, the realization of the FMI state arises from a reduction of Mn eg bandwidth caused by the quenched MnO6 octahedral rotations. The emerging FMI state in La0.9Ba0.1MnO3 together with necessary coherent interface achieved with the perovskite substrate gives very high potential for future high performance electronic devices.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
| | - Bonan Zhu
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
| | - Qian He
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Albina Y. Borisevich
- Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Chao Yun
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
| | - Rui Wu
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
| | - Ping Lu
- Sandia National LaboratoryAlbuquerqueNM87185USA
| | - Zhimin Qi
- School of Materials EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Qiang Wang
- Department of Physics and AstronomyWest Virginia UniversityMorgantownWV26506USA
| | - Aiping Chen
- Center for Integrated NanotechnologiesLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Haiyan Wang
- School of Materials EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Stuart A. Cavill
- Department of PhysicsUniversity of YorkYorkYO10 5DDUK
- Diamond Light SourceDidcotOX11 0DEUK
| | - Kelvin H. L. Zhang
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Judith L. MacManus‐Driscoll
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
| |
Collapse
|
8
|
Universal superconducting precursor in three classes of unconventional superconductors. Nat Commun 2019; 10:2729. [PMID: 31227719 PMCID: PMC6588566 DOI: 10.1038/s41467-019-10635-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/20/2019] [Indexed: 11/09/2022] Open
Abstract
A pivotal challenge posed by unconventional superconductors is to unravel how superconductivity emerges upon cooling from the generally complex normal state. Here, we use nonlinear magnetic response, a probe that is uniquely sensitive to the superconducting precursor, to uncover remarkable universal behaviour in three distinct classes of oxide superconductors: strontium titanate, strontium ruthenate, and the cuprate high-Tc materials. We find unusual exponential temperature dependence of the diamagnetic response above the transition temperature Tc, with a characteristic temperature scale that strongly varies with Tc. We correlate this scale with the sensitivity of Tc to local stress and show that it is influenced by intentionally-induced structural disorder. The universal behaviour is therefore caused by intrinsic, self-organized structural inhomogeneity, inherent to the oxides' perovskite-based structure. The prevalence of such inhomogeneity has far-reaching implications for the interpretation of electronic properties of perovskite-related oxides in general.
Collapse
|
9
|
Huang Z, Renshaw Wang X, Rusydi A, Chen J, Yang H, Venkatesan T. Interface Engineering and Emergent Phenomena in Oxide Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802439. [PMID: 30133012 DOI: 10.1002/adma.201802439] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/06/2018] [Indexed: 06/08/2023]
Abstract
Complex oxide interfaces have mesmerized the scientific community in the last decade due to the possibility of creating tunable novel multifunctionalities, which are possible owing to the strong interaction among charge, spin, orbital, and structural degrees of freedom. Artificial interfacial modifications, which include defects, formal polarization, structural symmetry breaking, and interlayer interaction, have led to novel properties in various complex oxide heterostructures. These emergent phenomena not only serve as a platform for investigating strong electronic correlations in low-dimensional systems but also provide potentials for exploring next-generation electronic devices with high functionality. Herein, some recently developed strategies in engineering functional oxide interfaces and their emergent properties are reviewed.
Collapse
Affiliation(s)
- Zhen Huang
- NUSNNI-NanoCore, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Xiao Renshaw Wang
- NUSNNI-NanoCore, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Andrivo Rusydi
- NUSNNI-NanoCore, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Jingsheng Chen
- NUSNNI-NanoCore, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Hyunsoo Yang
- NUSNNI-NanoCore, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Thirumalai Venkatesan
- NUSNNI-NanoCore, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| |
Collapse
|
10
|
Mechanical dissipation from charge and spin transitions in oxygen-deficient SrTiO 3 surfaces. Nat Commun 2018; 9:2946. [PMID: 30054477 PMCID: PMC6063934 DOI: 10.1038/s41467-018-05392-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/26/2018] [Indexed: 11/15/2022] Open
Abstract
Bodies in relative motion separated by a gap of a few nanometers can experience a tiny friction force. This non-contact dissipation can have various origins and can be successfully measured by a sensitive pendulum atomic force microscope tip oscillating laterally above the surface. Here, we report on the observation of dissipation peaks at selected voltage-dependent tip-surface distances for oxygen-deficient strontium titanate (SrTiO3) surface at low temperatures (T = 5 K). The observed dissipation peaks are attributed to tip-induced charge and spin state transitions in quantum-dot-like entities formed by single oxygen vacancies (and clusters thereof, possibly through a collective mechanism) at the SrTiO3 surface, which in view of technological and fundamental research relevance of the material opens important avenues for further studies and applications. Non-contact atomic force microscope (AFM) dissipation contains rich information on the electron, phonon and spin states, but has been poorly understood. Here the authors demonstrated that tip-induced charge and spin state transitions in oxygen vacancies at SrTiO3 surface are revealed by AFM dissipation measurements.
Collapse
|
11
|
Yan H, Zhang Z, Wang S, Wei X, Chen C, Jin K. Magnetism Control by Doping in LaAlO 3/SrTiO 3 Heterointerfaces. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14209-14213. [PMID: 29619833 DOI: 10.1021/acsami.8b03275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Magnetic two-dimensional electron gases at the oxide interfaces are always one of the key issues in spintronics, giving rise to intriguing magnetotransport properties. However, reports about magnetic two-dimensional electron gases remain elusive. Here, we obtain the magnetic order of LaAlO3/SrTiO3 systems by introducing magnetic dopants at the La site. The transport properties with a characteristic of metallic behavior at the interfaces are investigated. More significantly, magnetic-doped samples exhibit obvious magnetic hysteresis loops and the mobility is enhanced. Meanwhile, the photoresponsive experiments are realized by irradiating all samples with a 360 nm light. Compared to magnetism, the effects of dopants on photoresponsive and relaxation properties are negligible because the behavior originates from SrTiO3 substrates. This work paves a way for revealing and better controlling the magnetic properties of oxide heterointerfaces.
Collapse
Affiliation(s)
- Hong Yan
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties, School of Science , Northwestern Polytechnical University , Xi'an 710072 , China
| | - Zhaoting Zhang
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties, School of Science , Northwestern Polytechnical University , Xi'an 710072 , China
| | - Shuanhu Wang
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties, School of Science , Northwestern Polytechnical University , Xi'an 710072 , China
| | - Xiangyang Wei
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties, School of Science , Northwestern Polytechnical University , Xi'an 710072 , China
| | - Changle Chen
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties, School of Science , Northwestern Polytechnical University , Xi'an 710072 , China
| | - Kexin Jin
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties, School of Science , Northwestern Polytechnical University , Xi'an 710072 , China
| |
Collapse
|
12
|
Pai YY, Tylan-Tyler A, Irvin P, Levy J. Physics of SrTiO 3-based heterostructures and nanostructures: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:036503. [PMID: 29424362 DOI: 10.1088/1361-6633/aa892d] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This review provides a summary of the rich physics expressed within SrTiO3-based heterostructures and nanostructures. The intended audience is researchers who are working in the field of oxides, but also those with different backgrounds (e.g., semiconductor nanostructures). After reviewing the relevant properties of SrTiO3 itself, we will then discuss the basics of SrTiO3-based heterostructures, how they can be grown, and how devices are typically fabricated. Next, we will cover the physics of these heterostructures, including their phase diagram and coupling between the various degrees of freedom. Finally, we will review the rich landscape of quantum transport phenomena, as well as the devices that elicit them.
Collapse
Affiliation(s)
- Yun-Yi Pai
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, United States of America. Pittsburgh Quantum Institute, Pittsburgh, PA 15260, United States of America
| | | | | | | |
Collapse
|
13
|
Plumb NC, Radović M. Angle-resolved photoemission spectroscopy studies of metallic surface and interface states of oxide insulators. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:433005. [PMID: 28961143 DOI: 10.1088/1361-648x/aa833f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Over the last decade, conducting states embedded in insulating transition metal oxides (TMOs) have served as gateways to discovering and probing surprising phenomena that can emerge in complex oxides, while also opening opportunities for engineering advanced devices. These states are commonly realized at thin film interfaces, such as the well-known case of LaAlO3 (LAO) grown on SrTiO3 (STO). In recent years, the use of angle-resolved photoemission spectroscopy (ARPES) to investigate the k-space electronic structure of such materials led to the discovery that metallic states can also be formed on the bare surfaces of certain TMOs. In this topical review, we report on recent studies of low-dimensional metallic states confined at insulating oxide surfaces and interfaces as seen from the perspective of ARPES, which provides a direct view of the occupied band structure. While offering a fairly broad survey of progress in the field, we draw particular attention to STO, whose surface is so far the best-studied, and whose electronic structure is probably of the most immediate interest, given the ubiquitous use of STO substrates as the basis for conducting oxide interfaces. The ARPES studies provide crucial insights into the electronic band structure, orbital character, dimensionality/confinement, spin structure, and collective excitations in STO surfaces and related oxide surface/interface systems. The obtained knowledge increases our understanding of these complex materials and gives new perspectives on how to manipulate their properties.
Collapse
Affiliation(s)
- Nicholas C Plumb
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | | |
Collapse
|
14
|
Yeats AL, Mintun PJ, Pan Y, Richardella A, Buckley BB, Samarth N, Awschalom DD. Local optical control of ferromagnetism and chemical potential in a topological insulator. Proc Natl Acad Sci U S A 2017; 114:10379-10383. [PMID: 28900003 PMCID: PMC5625936 DOI: 10.1073/pnas.1713458114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many proposed experiments involving topological insulators (TIs) require spatial control over time-reversal symmetry and chemical potential. We demonstrate reconfigurable micron-scale optical control of both magnetization (which breaks time-reversal symmetry) and chemical potential in ferromagnetic thin films of Cr-(Bi,Sb)2Te3 grown on SrTiO3 By optically modulating the coercivity of the films, we write and erase arbitrary patterns in their remanent magnetization, which we then image with Kerr microscopy. Additionally, by optically manipulating a space charge layer in the underlying SrTiO3 substrates, we control the local chemical potential of the films. This optical gating effect allows us to write and erase p-n junctions in the films, which we study with photocurrent microscopy. Both effects are persistent and may be patterned and imaged independently on a few-micron scale. Dynamic optical control over both magnetization and chemical potential of a TI may be useful in efforts to understand and control the edge states predicted at magnetic domain walls in quantum anomalous Hall insulators.
Collapse
Affiliation(s)
- Andrew L Yeats
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
| | - Peter J Mintun
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637
| | - Yu Pan
- Materials Research Institute, The Pennsylvania State University, University Park PA 16802
- Department of Physics, The Pennsylvania State University, University Park PA 16802
| | - Anthony Richardella
- Materials Research Institute, The Pennsylvania State University, University Park PA 16802
- Department of Physics, The Pennsylvania State University, University Park PA 16802
| | - Bob B Buckley
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637
| | - Nitin Samarth
- Materials Research Institute, The Pennsylvania State University, University Park PA 16802
- Department of Physics, The Pennsylvania State University, University Park PA 16802
| | - David D Awschalom
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637;
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
| |
Collapse
|
15
|
Controlled manipulation of oxygen vacancies using nanoscale flexoelectricity. Nat Commun 2017; 8:615. [PMID: 28931810 PMCID: PMC5607007 DOI: 10.1038/s41467-017-00710-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 07/18/2017] [Indexed: 11/09/2022] Open
Abstract
Oxygen vacancies, especially their distribution, are directly coupled to the electromagnetic properties of oxides and related emergent functionalities that have implications for device applications. Here using a homoepitaxial strontium titanate thin film, we demonstrate a controlled manipulation of the oxygen vacancy distribution using the mechanical force from a scanning probe microscope tip. By combining Kelvin probe force microscopy imaging and phase-field simulations, we show that oxygen vacancies can move under a stress-gradient-induced depolarisation field. When tailored, this nanoscale flexoelectric effect enables a controlled spatial modulation. In motion, the scanning probe tip thereby deterministically reconfigures the spatial distribution of vacancies. The ability to locally manipulate oxygen vacancies on-demand provides a tool for the exploration of mesoscale quantum phenomena and engineering multifunctional oxide devices.The properties of complex oxides such as strontium titanate are strongly affected by the presence and distribution of oxygen vacancies. Here, the authors demonstrate that a scanning probe microscope tip can be used to manipulate vacancies by the flexoelectric effect.
Collapse
|
16
|
Formation of ferromagnetic Co-H-Co complex and spin-polarized conduction band in Co-doped ZnO. Sci Rep 2017; 7:11101. [PMID: 28894141 PMCID: PMC5593988 DOI: 10.1038/s41598-017-11078-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/15/2017] [Indexed: 12/02/2022] Open
Abstract
Magnetic oxide semiconductors with wide band gaps have promising spintronic applications, especially in the case of magneto-optic devices. Co-doped ZnO (ZnCoO) has been considered for these applications, but the origin of its ferromagnetism has been controversial for several decades and no substantial progress for a practical application has been made to date. In this paper, we present direct evidence of hydrogen-mediated ferromagnetism and spin polarization in the conduction band of ZnCoO. Electron density mapping reveals the formation of Co–H–Co, in agreement with theoretical predictions. Electron spin resonance measurement elucidates the ferromagnetic nature of ZnCoO by the formation of Co–H–Co. We provide evidence from magnetic circular dichroism measurements supporting the hypothesis that Co–H–Co contributes to the spin polarization of the conduction band of hydrogen-doped ZnCoO.
Collapse
|
17
|
Eom K, Choi E, Choi M, Han S, Zhou H, Lee J. Oxygen Vacancy Linear Clustering in a Perovskite Oxide. J Phys Chem Lett 2017; 8:3500-3505. [PMID: 28707469 DOI: 10.1021/acs.jpclett.7b01348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Oxygen vacancies have been implicitly assumed isolated ones, and understanding oxide materials possibly containing oxygen vacancies remains elusive within the scheme of the isolated vacancies, although the oxygen vacancies have been playing a decisive role in oxide materials. Here, we report the presence of oxygen vacancy linear clusters and their orientation along a specific crystallographic direction in SrTiO3, a representative of a perovskite oxide. The presence of the linear clusters and associated electron localization was revealed by an electronic structure represented in the increase in the Ti2+ valence state or corresponding Ti 3d2 electronic configuration along with divacancy cluster model analysis and transport measurement. The orientation of the linear clusters along the [001] direction in perovskite SrTiO3 was verified by further X-ray diffuse scattering analysis. Because SrTiO3 is an archetypical perovskite oxide, the vacancy linear clustering with the specific aligned direction and electron localization can be extended to a wide variety of the perovskite oxides.
Collapse
Affiliation(s)
- Kitae Eom
- School of Advanced Materials Science and Engineering, Sungkyunkwan University , Suwon 16419, Korea
| | - Euiyoung Choi
- School of Advanced Materials Science and Engineering, Sungkyunkwan University , Suwon 16419, Korea
| | - Minsu Choi
- School of Advanced Materials Science and Engineering, Sungkyunkwan University , Suwon 16419, Korea
| | - Seungwu Han
- Department of Materials Science and Engineering, Seoul National University , Seoul 08826, Korea
| | - Hua Zhou
- Advanced Photon Source, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Jaichan Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University , Suwon 16419, Korea
| |
Collapse
|
18
|
Hellman F, Hoffmann A, Tserkovnyak Y, Beach GSD, Fullerton EE, Leighton C, MacDonald AH, Ralph DC, Arena DA, Dürr HA, Fischer P, Grollier J, Heremans JP, Jungwirth T, Kimel AV, Koopmans B, Krivorotov IN, May SJ, Petford-Long AK, Rondinelli JM, Samarth N, Schuller IK, Slavin AN, Stiles MD, Tchernyshyov O, Thiaville A, Zink BL. Interface-Induced Phenomena in Magnetism. REVIEWS OF MODERN PHYSICS 2017; 89:025006. [PMID: 28890576 PMCID: PMC5587142 DOI: 10.1103/revmodphys.89.025006] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on recent progress, identifying the most exciting new scientific results and pointing to promising future research directions. It starts with an introduction and overview of how basic magnetic properties are affected by interfaces, then turns to a discussion of charge and spin transport through and near interfaces and how these can be used to control the properties of the magnetic layer. Important concepts include spin accumulation, spin currents, spin transfer torque, and spin pumping. An overview is provided to the current state of knowledge and existing review literature on interfacial effects such as exchange bias, exchange spring magnets, spin Hall effect, oxide heterostructures, and topological insulators. The article highlights recent discoveries of interface-induced magnetism and non-collinear spin textures, non-linear dynamics including spin torque transfer and magnetization reversal induced by interfaces, and interfacial effects in ultrafast magnetization processes.
Collapse
Affiliation(s)
- Frances Hellman
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Axel Hoffmann
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Yaroslav Tserkovnyak
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - Geoffrey S D Beach
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Eric E Fullerton
- Center for Memory and Recording Research, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0401, USA
| | - Chris Leighton
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Allan H MacDonald
- Department of Physics, University of Texas at Austin, Austin, Texas 78712-0264, USA
| | - Daniel C Ralph
- Physics Department, Cornell University, Ithaca, New York 14853, USA; Kavli Institute at Cornell, Cornell University, Ithaca, New York 14853, USA
| | - Dario A Arena
- Department of Physics, University of South Florida, Tampa, Florida 33620-7100, USA
| | - Hermann A Dürr
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Peter Fischer
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; Physics Department, University of California, 1156 High Street, Santa Cruz, California 94056, USA
| | - Julie Grollier
- Unité Mixte de Physique CNRS/Thales and Université Paris Sud 11, 1 Avenue Fresnel, 91767 Palaiseau, France
| | - Joseph P Heremans
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, USA; Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Tomas Jungwirth
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 162 53 Praha 6, Czech Republic; School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Alexey V Kimel
- Radboud University, Institute for Molecules and Materials, Nijmegen 6525 AJ, The Netherlands
| | - Bert Koopmans
- Department of Applied Physics, Center for NanoMaterials, COBRA Research Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ilya N Krivorotov
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - Steven J May
- Department of Materials Science & Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Amanda K Petford-Long
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA; Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA
| | - James M Rondinelli
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Nitin Samarth
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ivan K Schuller
- Department of Physics and Center for Advanced Nanoscience, University of California, San Diego, La Jolla, California 92093, USA; Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, USA
| | - Andrei N Slavin
- Department of Physics, Oakland University, Rochester, Michigan 48309, USA
| | - Mark D Stiles
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6202, USA
| | - Oleg Tchernyshyov
- Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - André Thiaville
- Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris-Sud, 91405 Orsay, France
| | - Barry L Zink
- Department of Physics and Astronomy, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
19
|
Wang F, Ren Z, Tian H, Yang SA, Xie Y, Lu Y, Jiang J, Han G, Yang K. Interfacial Multiferroics of TiO 2/PbTiO 3 Heterostructure Driven by Ferroelectric Polarization Discontinuity. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1899-1906. [PMID: 27990804 DOI: 10.1021/acsami.6b13183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Novel phenomena appear when two different oxide materials are combined together to form an interface. For example, at the interface of LaAlO3/SrTiO3, two-dimensional conductive states form to avoid the polar discontinuity, and magnetic properties are found at such an interface. In this work, we propose a new type of interface between two nonmagnetic and nonpolar oxides that could host a magnetic state, where it is the ferroelectric polarization discontinuity instead of the polar discontinuity that leads to the charge transfer, forming the interfacial magnetic state. As a concrete example, we investigate by first-principles calculations the heterostructures made of ferroelectric perovskite oxide PbTiO3 and nonferroelectric polarized oxide TiO2. We show that charge is transferred to the interfacial layer forming an interfacial ferromagnetic ordering that may persist up to room temperature. Especially, the strong coupling between bulk ferroelectric polarization and interface ferromagnetism represents a new type of magnetoelectric effect, which provides an ideal platform for exploring the intriguing interfacial multiferroics. The findings here are important not only for fundamental science but also for promising applications in nanoscale electronics and spintronics.
Collapse
Affiliation(s)
| | | | | | - Shengyuan A Yang
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design , Singapore 487372, Singapore
| | | | | | | | | | - Kesong Yang
- Department of NanoEngineering, University of California , San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States
| |
Collapse
|
20
|
Coey JMD, Venkatesan M, Stamenov P. Surface magnetism of strontium titanate. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:485001. [PMID: 27666311 DOI: 10.1088/0953-8984/28/48/485001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
SrTiO3 plays a central role in oxide electronics. It is the substrate of choice for functional oxide heterostructures based on perovskite-structure thin-film stacks, and its surface or interface with a polar oxide such as LaAlO3 can become a 2D conductor because of electronic reconstruction or the presence of oxygen defects. Inconsistent reports of magnetic order in SrTiO3 abound in the literature. Here, we report a systematic experimental study aimed at establishing how and when SrTiO3 can develop a magnetic moment at room temperature. Polished (1 0 0), (1 1 0) or (1 1 1) crystal slices from four different suppliers are characterized before and after vacuum annealing at 750 °C, both in single-crystal and powdered form. Impurity content is analysed at the surface and in the bulk. Besides the underlying intrinsic diamagnetism of SrTiO3, magnetic signals are of three types-a Curie law susceptibility due to dilute magnetic impurities at the ppm level, a hysteretic temperature-dependent ferromagnetic impurity contribution, and a practically anhysteretic defect-related temperature-independent component that saturates in about 200 mT. The latter component is intrinsic. It is often the largest, reaching 10 μ B nm-2 of the surface area or more and dominating the magnetic response in low fields at room temperature. It is associated with defects near the surface, and can be destroyed by treatment with Tiron (C6H4Na2O8S2), an electron donor molecule that forms a strong complex with titanium at the surface. The origin of this unusual high-temperature ferromagnetic-like response is discussed.
Collapse
Affiliation(s)
- J M D Coey
- School of Physics, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
21
|
Bhattacharya A, Skinner B, Khalsa G, Suslov AV. Spatially inhomogeneous electron state deep in the extreme quantum limit of strontium titanate. Nat Commun 2016; 7:12974. [PMID: 27680386 PMCID: PMC5056415 DOI: 10.1038/ncomms12974] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/23/2016] [Indexed: 11/09/2022] Open
Abstract
When an electronic system is subjected to a sufficiently strong magnetic field that the cyclotron energy is much larger than the Fermi energy, the system enters the extreme quantum limit (EQL) and becomes susceptible to a number of instabilities. Bringing a three-dimensional electronic system deeply into the EQL can be difficult however, since it requires a small Fermi energy, large magnetic field, and low disorder. Here we present an experimental study of the EQL in lightly-doped single crystals of strontium titanate. Our experiments probe deeply into the regime where theory has long predicted an interaction-driven charge density wave or Wigner crystal state. A number of interesting features arise in the transport in this regime, including a striking re-entrant nonlinearity in the current–voltage characteristics. We discuss these features in the context of possible correlated electron states, and present an alternative picture based on magnetic-field induced puddling of electrons. At sufficiently strong magnetic fields and low temperatures, electrons assume a quasi-one-dimensional quantum state that is challenging to observe. Here, Bhattacharya et al. report on electron transport in lightly-doped single crystals of SrTiO3 deep in this extreme quantum limit.
Collapse
Affiliation(s)
- Anand Bhattacharya
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Brian Skinner
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.,Massachusetts Institute of Technology, 77 Mass Ave, Cambridge, Massachusetts 02139, USA
| | - Guru Khalsa
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Alexey V Suslov
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr, Tallahassee, Florida 32310, USA
| |
Collapse
|
22
|
Liu F, Zhu C, You L, Liang SJ, Zheng S, Zhou J, Fu Q, He Y, Zeng Q, Fan HJ, Ang LK, Wang J, Liu Z. 2D Black Phosphorus/SrTiO3 -Based Programmable Photoconductive Switch. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:7768-73. [PMID: 27375185 DOI: 10.1002/adma.201602280] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/23/2016] [Indexed: 05/22/2023]
Abstract
A novel heterostructure is designed by stacking 2D black phosphorus (BP) on a SrTiO3 substrate. The device demonstrates programmable photoconductive switching under illumination of UV and red light. The light-tunable persistent photoconductivity exhibits a large on/off ratio exceeding 10(5) . The persistent state shows almost no relaxation or decay at low temperature. These features are suitable for a new generation of optoelectronic devices for memory application.
Collapse
Affiliation(s)
- Fucai Liu
- Centre for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Chao Zhu
- Centre for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lu You
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shi-Jun Liang
- Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Shoujun Zheng
- Centre for Disruptive Photonic Technologies, School of Physics and Mathematics Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jiadong Zhou
- Centre for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qundong Fu
- Centre for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yongmin He
- Centre for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qingsheng Zeng
- Centre for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hong Jin Fan
- Centre for Disruptive Photonic Technologies, School of Physics and Mathematics Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Lay Kee Ang
- Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Junling Wang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zheng Liu
- Centre for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
- Centre for Micro/Nano-electronics (NOVITAS), School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
- CINTRA CNRS/NUT/THALES, UMI 3288, Research Techno Plaze, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore.
| |
Collapse
|
23
|
Snijders PC, Şen C, McConnell MP, Ma YZ, May AF, Herklotz A, Wong AT, Ward TZ. Dynamic defect correlations dominate activated electronic transport in SrTiO3. Sci Rep 2016; 6:30141. [PMID: 27443503 PMCID: PMC4957113 DOI: 10.1038/srep30141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/24/2016] [Indexed: 12/02/2022] Open
Abstract
Strontium titanate (SrTiO3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. We present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. The results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. These results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides.
Collapse
Affiliation(s)
- Paul C. Snijders
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee Knoxville, Tennessee 37996, USA
| | - Cengiz Şen
- Department of Physics, Lamar University, Beaumont, Texas 77710, USA
| | - Michael P. McConnell
- Department of Physics and Astronomy, University of Tennessee Knoxville, Tennessee 37996, USA
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Andrew F. May
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Andreas Herklotz
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Anthony T. Wong
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - T. Zac Ward
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
24
|
Chung SB, Chan C, Yao H. Dislocation Majorana zero modes in perovskite oxide 2DEG. Sci Rep 2016; 6:25184. [PMID: 27139319 PMCID: PMC4853714 DOI: 10.1038/srep25184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 04/12/2016] [Indexed: 11/28/2022] Open
Abstract
Much of the current experimental efforts for detecting Majorana zero modes have been centered on probing the boundary of quantum wires with strong spin-orbit coupling. The same type of Majorana zero mode can also be realized at crystalline dislocations in 2D superconductors with the nontrivial weak topological indices. Unlike at an Abrikosov vortex, at such a dislocation, there is no other low-lying midgap state than the Majorana zero mode so that it avoids usual complications encountered in experimental detections such as scanning tunneling microscope (STM) measurements. We will show that, using the anisotropic dispersion of the t2g orbitals of Ti or Ta atoms, such a weak topological superconductivity can be realized when the surface two-dimensional electronic gas (2DEG) of SrTiO3 or KTaO3 becomes superconducting, which can occur through either intrinsic pairing or proximity to existing s-wave superconductors.
Collapse
Affiliation(s)
- Suk Bum Chung
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 151-742, Republic of Korea.,Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea
| | - Cheung Chan
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
| | - Hong Yao
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Truccato M, Agostino A, Borfecchia E, Mino L, Cara E, Pagliero A, Adhlakha N, Pascale L, Operti L, Enrico E, De Leo N, Fretto M, Martinez-Criado G, Lamberti C. Direct-Write X-ray Nanopatterning: A Proof of Concept Josephson Device on Bi2Sr2CaCu2O8+δ Superconducting Oxide. NANO LETTERS 2016; 16:1669-1674. [PMID: 26814601 DOI: 10.1021/acs.nanolett.5b04568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We describe the first use of a novel photoresist-free X-ray nanopatterning technique to fabricate an electronic device. We have produced a proof-of-concept device consisting of a few Josephson junctions by irradiating microcrystals of the Bi2Sr2CaCu2O8+δ (Bi-2212) superconducting oxide with a 17.6 keV synchrotron nanobeam. Fully functional devices have been obtained by locally turning the material into a nonsuperconducting state by means of hard X-ray exposure. Nano-XRD patterns reveal that the crystallinity is substantially preserved in the irradiated areas that there is no evidence of macroscopic crystal disruption. Indications are that O ions have been removed from the crystals, which could make this technique interesting also for other oxide materials. Direct-write X-ray nanopatterning represents a promising fabrication method exploiting material/material rather than vacuum/material interfaces, with the potential for nanometric resolution, improved mechanical stability, enhanced depth of patterning, and absence of chemical contamination with respect to traditional lithographic techniques.
Collapse
Affiliation(s)
- Marco Truccato
- Department of Physics, Interdepartmental Centre NIS, University of Torino , via Giuria 1, I-10125 Torino, Italy
| | - Angelo Agostino
- Department of Chemistry, Interdepartmental Centre NIS and INSTM Centro di Riferimento, University of Torino , via Giuria 7, I-10125 Torino, Italy
| | - Elisa Borfecchia
- Department of Chemistry, Interdepartmental Centre NIS and INSTM Centro di Riferimento, University of Torino , via Giuria 7, I-10125 Torino, Italy
| | - Lorenzo Mino
- INRIM, National Institute for Metrological Research , Strada delle Cacce 91, I-10135 Torino, Italy
| | - Eleonora Cara
- Department of Physics, Interdepartmental Centre NIS, University of Torino , via Giuria 1, I-10125 Torino, Italy
| | - Alessandro Pagliero
- Department of Physics, Interdepartmental Centre NIS, University of Torino , via Giuria 1, I-10125 Torino, Italy
| | - Nidhi Adhlakha
- Department of Physics, Interdepartmental Centre NIS, University of Torino , via Giuria 1, I-10125 Torino, Italy
| | - Lise Pascale
- Department of Chemistry, Interdepartmental Centre NIS and INSTM Centro di Riferimento, University of Torino , via Giuria 7, I-10125 Torino, Italy
| | - Lorenza Operti
- Department of Chemistry, Interdepartmental Centre NIS and INSTM Centro di Riferimento, University of Torino , via Giuria 7, I-10125 Torino, Italy
| | - Emanuele Enrico
- INRIM, National Institute for Metrological Research , Strada delle Cacce 91, I-10135 Torino, Italy
| | - Natascia De Leo
- INRIM, National Institute for Metrological Research , Strada delle Cacce 91, I-10135 Torino, Italy
| | - Matteo Fretto
- INRIM, National Institute for Metrological Research , Strada delle Cacce 91, I-10135 Torino, Italy
| | - Gema Martinez-Criado
- Experiments Division, European Synchrotron Radiation Facility , 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Carlo Lamberti
- Department of Chemistry, Interdepartmental Centre NIS and INSTM Centro di Riferimento, University of Torino , via Giuria 7, I-10125 Torino, Italy
- Southern Federal University , Zorge Street 5, 344090 Rostov-on-Don, Russia
| |
Collapse
|
26
|
Lehuta KA, Kittilstved KR. Reversible control of the chromium valence in chemically reduced Cr-doped SrTiO3 bulk powders. Dalton Trans 2016; 45:10034-41. [DOI: 10.1039/c6dt00706f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The defect chemistry of Cr-doped SrTiO3 is modified through a simple chemical reduction route to increase the Cr3+ dopants in the lattice.
Collapse
Affiliation(s)
- Keith A. Lehuta
- Department of Chemistry
- University of Massachusetts
- Amherst
- USA
| | | |
Collapse
|
27
|
Zarkadoula E, Pakarinen OH, Xue H, Zhang Y, Weber WJ. Predictive modeling of synergistic effects in nanoscale ion track formation. Phys Chem Chem Phys 2015; 17:22538-42. [PMID: 26267679 DOI: 10.1039/c5cp02382c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular dynamics techniques in combination with the inelastic thermal spike model are used to study the coupled effects of the inelastic energy loss due to 21 MeV Ni ion irradiation with pre-existing defects in SrTiO3. We determine the dependence on pre-existing defect concentration of nanoscale track formation occurring from the synergy between the inelastic energy loss and the pre-existing atomic defects. We show that the size of nanoscale ion tracks can be controlled by the concentration of pre-existing disorder. This work identifies a major gap in fundamental understanding on the role of defects in electronic energy dissipation and electron-lattice coupling.
Collapse
Affiliation(s)
- Eva Zarkadoula
- Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | | | | | | | |
Collapse
|
28
|
Lorite I, Kumar Y, Esquinazi P, Zandalazini C, de Heluani SP. Detection of Defect-Induced Magnetism in Low-Dimensional ZnO Structures by Magnetophotocurrent. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:4403-4407. [PMID: 26121417 DOI: 10.1002/smll.201500681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/11/2015] [Indexed: 06/04/2023]
Abstract
The detection of defect-induced magnetic order in single low-dimensional oxide structures is in general difficult because of the relatively small yield of magnetically ordered regions. In this work, the effect of an external magnetic field on the transient photocurrent measured after light irradiation on different ZnO samples at room temperature is studied. It has been found that a magnetic field produces a change in the relaxation rate of the transient photocurrent only in magnetically ordered ZnO samples. This rate can decrease or increase with field, depending on whether the magnetically ordered region is in the bulk or only at the surface of the ZnO sample. The phenomenon reported here is of importance for the development of magneto-optical low-dimensional oxides devices and provides a new guideline for the detection of magnetic order in low-dimensional magnetic semiconductors.
Collapse
Affiliation(s)
- Israel Lorite
- Division of Superconductivity and Magnetism, Institut für Experimentelle Physik II, Fakultät für Physik und Geowissenschaften, Universität Leipzig, Linnéstrasse 5, 04103, Leipzig, Germany
| | - Yogesh Kumar
- Division of Superconductivity and Magnetism, Institut für Experimentelle Physik II, Fakultät für Physik und Geowissenschaften, Universität Leipzig, Linnéstrasse 5, 04103, Leipzig, Germany
| | - Pablo Esquinazi
- Division of Superconductivity and Magnetism, Institut für Experimentelle Physik II, Fakultät für Physik und Geowissenschaften, Universität Leipzig, Linnéstrasse 5, 04103, Leipzig, Germany
| | - Carlos Zandalazini
- Laboratorio de Física del Sólido, Departamento de Física, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, Avda. Independencia 1800, 4000, Tucumán, Argentina
| | - Silvia Perez de Heluani
- Laboratorio de Física del Sólido, Departamento de Física, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, Avda. Independencia 1800, 4000, Tucumán, Argentina
| |
Collapse
|
29
|
Choi H, Song JD, Lee KR, Kim S. Correlated Visible-Light Absorption and Intrinsic Magnetism of SrTiO3 Due to Oxygen Deficiency: Bulk or Surface Effect? Inorg Chem 2015; 54:3759-65. [DOI: 10.1021/ic502905m] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Heechae Choi
- Center
for Computational Science and ‡Center for Optoelectronics Convergence
System, Korea Institute of Science and Technology, Hwarangro 14 Gil 5, 136-791, Seoul, Korea
| | - Jin Dong Song
- Center
for Computational Science and ‡Center for Optoelectronics Convergence
System, Korea Institute of Science and Technology, Hwarangro 14 Gil 5, 136-791, Seoul, Korea
| | - Kwang-Ryeol Lee
- Center
for Computational Science and ‡Center for Optoelectronics Convergence
System, Korea Institute of Science and Technology, Hwarangro 14 Gil 5, 136-791, Seoul, Korea
| | - Seungchul Kim
- Center
for Computational Science and ‡Center for Optoelectronics Convergence
System, Korea Institute of Science and Technology, Hwarangro 14 Gil 5, 136-791, Seoul, Korea
| |
Collapse
|
30
|
Synergy of elastic and inelastic energy loss on ion track formation in SrTiO₃. Sci Rep 2015; 5:7726. [PMID: 25578009 PMCID: PMC4289895 DOI: 10.1038/srep07726] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/09/2014] [Indexed: 11/29/2022] Open
Abstract
While the interaction of energetic ions with solids is well known to result in inelastic energy loss to electrons and elastic energy loss to atomic nuclei in the solid, the coupled effects of these energy losses on defect production, nanostructure evolution and phase transformations in ionic and covalently bonded materials are complex and not well understood due to dependencies on electron-electron scattering processes, electron-phonon coupling, localized electronic excitations, diffusivity of charged defects, and solid-state radiolysis. Here we show that a colossal synergy occurs between inelastic energy loss and pre-existing atomic defects created by elastic energy loss in single crystal strontium titanate (SrTiO3), resulting in the formation of nanometer-sized amorphous tracks, but only in the narrow region with pre-existing defects. These defects locally decrease the electronic and atomic thermal conductivities and increase electron-phonon coupling, which locally increase the intensity of the thermal spike for each ion. This work identifies a major gap in understanding on the role of defects in electronic energy dissipation and electron-phonon coupling; it also provides insights for creating novel interfaces and nanostructures to functionalize thin film structures, including tunable electronic, ionic, magnetic and optical properties.
Collapse
|
31
|
Lin C, Demkov AA. Consequences of oxygen-vacancy correlations at the SrTiO3 interface. PHYSICAL REVIEW LETTERS 2014; 113:157602. [PMID: 25375742 DOI: 10.1103/physrevlett.113.157602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Indexed: 06/04/2023]
Abstract
The Kondo effect and ferromagnetism are the two many-body phenomena that emerge at the SrTiO(3) interfaces with polar materials, but do not occur in bulk SrTiO(3). By regarding the oxygen vacancy (OV) in SrTiO(3) as a magnetic impurity, we show that these two interface-specific phenomena can be attributed to the vacancies residing in the top TiO(2) plane of SrTiO(3). We identify three crucial ingredients: the local orbital mixing caused by an OV, reduced symmetry at the interface, and a strong in-plane stray electric field of the polar material. All three factors combine to result in the coupling between the impurity and conduction band at the interface, and can lead to both emergent phenomena. An OV-based Anderson impurity model is derived and solved using the numerical renormalization group method. The Kondo and Curie temperatures are estimated. Several experiments are discussed based on this interpretation.
Collapse
Affiliation(s)
- Chungwei Lin
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - Alexander A Demkov
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
32
|
Yang L, Xie K, Xu S, Wu T, Zhou Q, Xie T, Wu Y. Redox-reversible niobium-doped strontium titanate decorated with in situ grown nickel nanocatalyst for high-temperature direct steam electrolysis. Dalton Trans 2014; 43:14147-57. [DOI: 10.1039/c4dt01430h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|