1
|
Ma K, Huang S, Ng KK, Lake NJ, Joseph S, Xu J, Lek A, Ge L, Woodman KG, Koczwara KE, Cohen J, Ho V, O'Connor CL, Brindley MA, Campbell KP, Lek M. Saturation mutagenesis-reinforced functional assays for disease-related genes. Cell 2024; 187:6707-6724.e22. [PMID: 39326416 PMCID: PMC11568926 DOI: 10.1016/j.cell.2024.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024]
Abstract
Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods are obstacles for achieving genome-wide resolution of variants in disease-related genes. Our framework, saturation mutagenesis-reinforced functional assays (SMuRF), offers simple and cost-effective saturation mutagenesis paired with streamlined functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single-nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Overall, our approach enables variant-to-function insights for disease genes in a cost-effective manner that can be broadly implemented by standard research laboratories.
Collapse
Affiliation(s)
- Kaiyue Ma
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Kenneth K Ng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Nicole J Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Soumya Joseph
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Jenny Xu
- Yale University, New Haven, CT, USA
| | - Angela Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Muscular Dystrophy Association, Chicago, IL, USA
| | - Lin Ge
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Keryn G Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Melinda A Brindley
- Department of Infectious Diseases, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Kevin P Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Ma K, Huang S, Ng KK, Lake NJ, Joseph S, Xu J, Lek A, Ge L, Woodman KG, Koczwara KE, Cohen J, Ho V, O’Connor CL, Brindley MA, Campbell KP, Lek M. Deep Mutational Scanning in Disease-related Genes with Saturation Mutagenesis-Reinforced Functional Assays (SMuRF). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.12.548370. [PMID: 37873263 PMCID: PMC10592615 DOI: 10.1101/2023.07.12.548370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods hamper crowd-sourcing approaches toward genome-wide resolution of variants in disease-related genes. Our framework, Saturation Mutagenesis-Reinforced Functional assays (SMuRF), addresses these issues by offering simple and cost-effective saturation mutagenesis, as well as streamlining functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Our approach opens new directions for enabling variant-to-function insights for disease genes in a manner that is broadly useful for crowd-sourcing implementation across standard research laboratories.
Collapse
Affiliation(s)
- Kaiyue Ma
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Equal second authors
| | - Kenneth K. Ng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Equal second authors
| | - Nicole J. Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Soumya Joseph
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Jenny Xu
- Yale University, New Haven, CT, USA
| | - Angela Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Muscular Dystrophy Association, Chicago, IL, USA
| | - Lin Ge
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, National Center for Children’s Health, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Keryn G. Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Melinda A. Brindley
- Department of Infectious Diseases, Department of Population Health, University of Georgia, Athens, GA, USA
- Senior Authors
| | - Kevin P. Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
- Senior Authors
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Senior Authors
- Lead Contact
| |
Collapse
|
3
|
Tayebi N, Leon‐Ricardo B, McCall K, Mehinovic E, Engelstad K, Huynh V, Turner TN, Weisenberg J, Thio LL, Hruz P, Williams RSB, De Vivo DC, Petit V, Haller G, Gurnett CA. Quantitative determination of SLC2A1 variant functional effects in GLUT1 deficiency syndrome. Ann Clin Transl Neurol 2023; 10:787-801. [PMID: 37000947 PMCID: PMC10187726 DOI: 10.1002/acn3.51767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 04/03/2023] Open
Abstract
OBJECTIVE The goal of this study is to demonstrate the utility of a growth assay to quantify the functional impact of single nucleotide variants (SNVs) in SLC2A1, the gene responsible for Glut1DS. METHODS The functional impact of 40 SNVs in SLC2A1 was quantitatively determined in HAP1 cells in which SLC2A1 is required for growth. Donor libraries were introduced into the endogenous SLC2A1 gene in HAP1-Lig4KO cells using CRISPR/Cas9. Cell populations were harvested and sequenced to quantify the effect of variants on growth and generate a functional score. Quantitative functional scores were compared to 3-OMG uptake, SLC2A1 cell surface expression, CADD score, and clinical data, including CSF/blood glucose ratio. RESULTS Nonsense variants (N = 3) were reduced in cell culture over time resulting in negative scores (mean score: -1.15 ± 0.17), whereas synonymous variants (N = 10) were not depleted (mean score: 0.25 ± 0.12) (P < 2e-16). Missense variants (N = 27) yielded a range of functional scores including slightly negative scores, supporting a partial function and intermediate phenotype. Several variants with normal results on either cell surface expression (p.N34S and p.W65R) or 3-OMG uptake (p.W65R) had negative functional scores. There is a moderate but significant correlation between our functional scores and CADD scores. INTERPRETATION Cell growth is useful to quantitatively determine the functional effects of SLC2A1 variants. Nonsense variants were reliably distinguished from benign variants in this in vitro functional assay. For facilitating early diagnosis and therapeutic intervention, future work is needed to determine the functional effect of every possible variant in SLC2A1.
Collapse
Affiliation(s)
- Naeimeh Tayebi
- Department of NeurologyWashington University in St LouisSt LouisMissouriUSA
| | - Brian Leon‐Ricardo
- Department of NeurologyWashington University in St LouisSt LouisMissouriUSA
| | - Kevin McCall
- Department of NeurologyWashington University in St LouisSt LouisMissouriUSA
| | - Elvisa Mehinovic
- Department of GeneticsWashington University in St LouisSt LouisMissouriUSA
| | - Kristin Engelstad
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Vincent Huynh
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Tychele N. Turner
- Department of GeneticsWashington University in St LouisSt LouisMissouriUSA
| | - Judy Weisenberg
- Department of NeurologyWashington University in St LouisSt LouisMissouriUSA
| | - Liu L. Thio
- Department of NeurologyWashington University in St LouisSt LouisMissouriUSA
| | - Paul Hruz
- Department of PediatricsWashington University in St LouisSt LouisMissouriUSA
| | - Robin S. B. Williams
- Centre for Biomedical Sciences, Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | - Darryl C. De Vivo
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | | | - Gabe Haller
- Department of NeurologyWashington University in St LouisSt LouisMissouriUSA
- Department of GeneticsWashington University in St LouisSt LouisMissouriUSA
- Department of Neurological SurgeryWashington University in St LouisSt LouisMissouriUSA
| | | |
Collapse
|
4
|
Zhao F, Chen F, Yu H, Fan S, Bai M, Xue J, Zhao Y, Zuo X, Fan C, Zhao Y. CRISPR/Cas system-guided plasmid mutagenesis without sequence restriction. FUNDAMENTAL RESEARCH 2022. [DOI: 10.1016/j.fmre.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
5
|
Li C, Haller G, Weihl CC. Current and Future Approaches to Classify VUSs in LGMD-Related Genes. Genes (Basel) 2022; 13:genes13020382. [PMID: 35205425 PMCID: PMC8871643 DOI: 10.3390/genes13020382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 01/09/2023] Open
Abstract
Next-generation sequencing (NGS) has revealed large numbers of genetic variants in LGMD-related genes, with most of them classified as variants of uncertain significance (VUSs). VUSs are genetic changes with unknown pathological impact and present a major challenge in genetic test interpretation and disease diagnosis. Understanding the phenotypic consequences of VUSs can provide clinical guidance regarding LGMD risk and therapy. In this review, we provide a brief overview of the subtypes of LGMD, disease diagnosis, current classification systems for investigating VUSs, and a potential deep mutational scanning approach to classify VUSs in LGMD-related genes.
Collapse
Affiliation(s)
- Chengcheng Li
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA; (C.L.); (G.H.)
| | - Gabe Haller
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA; (C.L.); (G.H.)
- Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Conrad C. Weihl
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA; (C.L.); (G.H.)
- Correspondence:
| |
Collapse
|
6
|
Shieh P, Hill MR, Zhang W, Kristufek SL, Johnson JA. Clip Chemistry: Diverse (Bio)(macro)molecular and Material Function through Breaking Covalent Bonds. Chem Rev 2021; 121:7059-7121. [PMID: 33823111 DOI: 10.1021/acs.chemrev.0c01282] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the two decades since the introduction of the "click chemistry" concept, the toolbox of "click reactions" has continually expanded, enabling chemists, materials scientists, and biologists to rapidly and selectively build complexity for their applications of interest. Similarly, selective and efficient covalent bond breaking reactions have provided and will continue to provide transformative advances. Here, we review key examples and applications of efficient, selective covalent bond cleavage reactions, which we refer to herein as "clip reactions." The strategic application of clip reactions offers opportunities to tailor the compositions and structures of complex (bio)(macro)molecular systems with exquisite control. Working in concert, click chemistry and clip chemistry offer scientists and engineers powerful methods to address next-generation challenges across the chemical sciences.
Collapse
Affiliation(s)
- Peyton Shieh
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Megan R Hill
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Wenxu Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Samantha L Kristufek
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Vihinen M. Functional effects of protein variants. Biochimie 2020; 180:104-120. [PMID: 33164889 DOI: 10.1016/j.biochi.2020.10.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Genetic and other variations frequently affect protein functions. Scientific articles can contain confusing descriptions about which function or property is affected, and in many cases the statements are pure speculation without any experimental evidence. To clarify functional effects of protein variations of genetic or non-genetic origin, a systematic conceptualisation and framework are introduced. This framework describes protein functional effects on abundance, activity, specificity and affinity, along with countermeasures, which allow cells, tissues and organisms to tolerate, avoid, repair, attenuate or resist (TARAR) the effects. Effects on abundance discussed include gene dosage, restricted expression, mis-localisation and degradation. Enzymopathies, effects on kinetics, allostery and regulation of protein activity are subtopics for the effects of variants on activity. Variation outcomes on specificity and affinity comprise promiscuity, specificity, affinity and moonlighting. TARAR mechanisms redress variations with active and passive processes including chaperones, redundancy, robustness, canalisation and metabolic and signalling rewiring. A framework for pragmatic protein function analysis and presentation is introduced. All of the mechanisms and effects are described along with representative examples, most often in relation to diseases. In addition, protein function is discussed from evolutionary point of view. Application of the presented framework facilitates unambiguous, detailed and specific description of functional effects and their systematic study.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, BMC B13, Lund University, SE-22 184, Lund, Sweden.
| |
Collapse
|
8
|
Csörgő B, Nyerges A, Pál C. Targeted mutagenesis of multiple chromosomal regions in microbes. Curr Opin Microbiol 2020; 57:22-30. [PMID: 32599531 PMCID: PMC7613694 DOI: 10.1016/j.mib.2020.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022]
Abstract
Directed evolution allows the effective engineering of proteins, biosynthetic pathways, and cellular functions. Traditional plasmid-based methods generally subject one or occasionally multiple genes-of-interest to mutagenesis, require time-consuming manual interventions, and the genes that are subjected to mutagenesis are outside of their native genomic context. Other methods mutagenize the whole genome unselectively which may distort the outcome. Recent recombineering- and CRISPR-based technologies radically change this field by allowing exceedingly high mutation rates at multiple, predefined loci in their native genomic context. In this review, we focus on recent technologies that potentially allow accelerated tunable mutagenesis at multiple genomic loci in the native genomic context of these target sequences. These technologies will be compared by four main criteria, including the scale of mutagenesis, portability to multiple microbial species, off-target mutagenesis, and cost-effectiveness. Finally, we discuss how these technical advances open new avenues in basic research and biotechnology.
Collapse
Affiliation(s)
- Bálint Csörgő
- Department of Microbiology and Immunology, University of California, San Francisco, 94143, San Francisco, CA, USA; Genome Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany.
| | - Akos Nyerges
- Synthetic and Systems Biology Unit, Biological Research Centre, 6726, Szeged, Hungary; Department of Genetics, Harvard Medical School, 02115, Boston, MA, USA
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Biological Research Centre, 6726, Szeged, Hungary.
| |
Collapse
|
9
|
Devarajan S, Moon I, Ho MF, Larson NB, Neavin DR, Moyer AM, Black JL, Bielinski SJ, Scherer SE, Wang L, Weinshilboum RM, Reid JM. Pharmacogenomic Next-Generation DNA Sequencing: Lessons from the Identification and Functional Characterization of Variants of Unknown Significance in CYP2C9 and CYP2C19. Drug Metab Dispos 2019; 47:425-435. [PMID: 30745309 DOI: 10.1124/dmd.118.084269] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/15/2019] [Indexed: 02/06/2023] Open
Abstract
CYP2C9 and CYP2C19 are highly polymorphic pharmacogenes; however, clinically actionable genetic variability in drug metabolism due to these genes has been limited to a few common alleles. The identification and functional characterization of less-common open reading frame sequence variation might help to individualize therapy with drugs that are substrates for the enzymes encoded by these genes. The present study identified seven uncharacterized variants each in CYP2C9 and CYP2C19 using next-generation sequence data for 1013 subjects, and functionally characterized the encoded proteins. Constructs were created and transiently expressed in COS-1 cells for the assay of protein concentration and enzyme activities using fluorometric substrates and liquid chromatography- tandem mass spectrometry with tolbutamide (CYP2C9) and (S)-mephenytoin (CYP2C19) as prototypic substrates. The results were compared with the SIFT, Polyphen, and Provean functional prediction software programs. Cytochrome P450 oxidoreductase (CPR) activities were also determined. Positive correlations were observed between protein content and fluorometric enzyme activity for variants of CYP2C9 (P < 0.05) and CYP2C19 (P < 0.0005). However, CYP2C9 709G>C and CYP2C19 65A>G activities were much lower than predicted based on protein content. Substrate intrinsic clearance values for CYP2C9 218C>T, 343A>C, and CYP2C19 337G>A, 518C>T, 556C>T, and 557G>A were less than 25% of wild-type allozymes. CPR activity levels were similar for all variants. In summary, sequencing of CYP2C9 and CYP2C19 in 1013 subjects identified low-frequency variants that had not previously been functionally characterized. In silico predictions were not always consistent with functional assay results. These observations emphasize the need for high-throughput methods for pharmacogene variant mutagenesis and functional characterization.
Collapse
Affiliation(s)
- Sandhya Devarajan
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - Irene Moon
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - Ming-Fen Ho
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - Nicholas B Larson
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - Drew R Neavin
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - Ann M Moyer
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - John L Black
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - Suzette J Bielinski
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - Steven E Scherer
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - Liewei Wang
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - Richard M Weinshilboum
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| | - Joel M Reid
- Departments of Molecular Pharmacology and Experimental Therapeutics (S.D., I.M., M.-F.H., L.W., R.M.W., J.M.R.) and Health Sciences Research (N.B.L., S.J.B.), Personalized Genomics Laboratory, Department of Laboratory Medicine and Pathology (A.M.M., J.L.B.), and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences (D.R.N.), Mayo Clinic, Rochester, Minnesota; and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas (S.E.S.)
| |
Collapse
|
10
|
Li A, Acevedo-Rocha CG, Reetz MT. Boosting the efficiency of site-saturation mutagenesis for a difficult-to-randomize gene by a two-step PCR strategy. Appl Microbiol Biotechnol 2018; 102:6095-6103. [PMID: 29785500 PMCID: PMC6013526 DOI: 10.1007/s00253-018-9041-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 12/31/2022]
Abstract
Site-saturation mutagenesis (SSM) has been used in directed evolution of proteins for a long time. As a special form of saturation mutagenesis, it involves individual randomization at a given residue with formation of all 19 amino acids. To date, the most efficient embodiment of SSM is a one-step PCR-based approach using NNK codon degeneracy. However, in the case of difficult-to-randomize genes, SSM may not deliver all of the expected 19 mutants, which compels the user to invest further efforts by applying site-directed mutagenesis for the construction of the missing mutants. To solve this problem, we developed a two-step PCR-based technique in which a mutagenic primer and a non-mutagenic (silent) primer are used to generate a short DNA fragment, which is recovered and then employed as a megaprimer to amplify the whole plasmid. The present two-step and older one-step (partially overlapped primer approach) procedures were compared by utilizing cytochrome P450-BM3, which is a "difficult-to-randomize" gene. The results document the distinct superiority of the new method by checking the library quality on DNA level based on massive sequence data, but also at amino acid level. Various future applications in biotechnology can be expected, including the utilization when constructing mutability landscapes, which provide semi-rational information for identifying hot spots for protein engineering and directed evolution.
Collapse
Affiliation(s)
- Aitao Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062, China.,Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Muelheim, Germany.,Department of Chemistry, Philipps-Universität, Hans-Meerwein-Strasse 4, 35032, Marburg, Germany
| | | | - Manfred T Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Muelheim, Germany. .,Department of Chemistry, Philipps-Universität, Hans-Meerwein-Strasse 4, 35032, Marburg, Germany.
| |
Collapse
|
11
|
The evolution of substrate discrimination in macrolide antibiotic resistance enzymes. Nat Commun 2018; 9:112. [PMID: 29317655 PMCID: PMC5760710 DOI: 10.1038/s41467-017-02680-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022] Open
Abstract
The production of antibiotics by microbes in the environment and their use in medicine and agriculture select for existing and emerging resistance. To address this inevitability, prudent development of antibiotic drugs requires careful consideration of resistance evolution. Here, we identify the molecular basis for expanded substrate specificity in MphI, a macrolide kinase (Mph) that does not confer resistance to erythromycin, in contrast to other known Mphs. Using a combination of phylogenetics, drug-resistance phenotypes, and in vitro enzyme assays, we find that MphI and MphK phosphorylate erythromycin poorly resulting in an antibiotic-sensitive phenotype. Using likelihood reconstruction of ancestral sequences and site-saturation combinatorial mutagenesis, supported by Mph crystal structures, we determine that two non-obvious mutations in combination expand the substrate range. This approach should be applicable for studying the functional evolution of any antibiotic resistance enzyme and for evaluating the evolvability of resistance enzymes to new generations of antibiotic scaffolds. New antibiotics with reduced potential for resistance are urgently needed. Here, the authors use a multidisciplinary approach to characterize substrate discrimination in macrolide resistance kinases and present a strategy for the prediction of mutations that expand the substrate range of antibiotic-inactivating enzymes.
Collapse
|
12
|
Bratulic S, Badran AH. Modern methods for laboratory diversification of biomolecules. Curr Opin Chem Biol 2017; 41:50-60. [PMID: 29096324 PMCID: PMC6062405 DOI: 10.1016/j.cbpa.2017.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/03/2017] [Accepted: 10/08/2017] [Indexed: 11/29/2022]
Abstract
Genetic variation fuels Darwinian evolution, yet spontaneous mutation rates are maintained at low levels to ensure cellular viability. Low mutation rates preclude the exhaustive exploration of sequence space for protein evolution and genome engineering applications, prompting scientists to develop methods for efficient and targeted diversification of nucleic acid sequences. Directed evolution of biomolecules relies upon the generation of unbiased genetic diversity to discover variants with desirable properties, whereas genome-engineering applications require selective modifications on a genomic scale with minimal off-targets. Here, we review the current toolkit of mutagenesis strategies employed in directed evolution and genome engineering. These state-of-the-art methods enable facile modifications and improvements of single genes, multicomponent pathways, and whole genomes for basic and applied research, while simultaneously paving the way for genome editing therapeutic interventions.
Collapse
Affiliation(s)
- Sinisa Bratulic
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ahmed H Badran
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
13
|
Schaafsma GCP, Vihinen M. Large differences in proportions of harmful and benign amino acid substitutions between proteins and diseases. Hum Mutat 2017; 38:839-848. [DOI: 10.1002/humu.23236] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/05/2017] [Accepted: 04/20/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Gerard C. P. Schaafsma
- Protein Structure and Bioinformatics; Department of Experimental Medical Science; Lund University; Lund Sweden
| | | |
Collapse
|