1
|
Ruan J, Yu X, Xu H, Cui W, Zhang K, Liu C, Sun W, Huang X, An L, Zhang Y. Suppressor tRNA in gene therapy. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2120-2131. [PMID: 38926247 DOI: 10.1007/s11427-024-2613-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024]
Abstract
Suppressor tRNAs are engineered or naturally occurring transfer RNA molecules that have shown promise in gene therapy for diseases caused by nonsense mutations, which result in premature termination codons (PTCs) in coding sequence, leading to truncated, often nonfunctional proteins. Suppressor tRNAs can recognize and pair with these PTCs, allowing the ribosome to continue translation and produce a full-length protein. This review introduces the mechanism and development of suppressor tRNAs, compares suppressor tRNAs with other readthrough therapies, discusses their potential for clinical therapy, limitations, and obstacles. We also summarize the applications of suppressor tRNAs in both in vitro and in vivo, offering new insights into the research and treatment of nonsense mutation diseases.
Collapse
Affiliation(s)
- Jingjing Ruan
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Liangzhu Laboratory, Hangzhou, 310000, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Xiaoxiao Yu
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Huixia Xu
- Department of Thoracic and Cardiovascular Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Wenrui Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Kaiye Zhang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Chenyang Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Wenlong Sun
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Xiaodan Huang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Lei An
- Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China.
| | - Yue Zhang
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Liangzhu Laboratory, Hangzhou, 310000, China.
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China.
- Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China.
| |
Collapse
|
2
|
Gao Y, Yang L, Li Z, Peng X, Li H. mRNA vaccines in tumor targeted therapy: mechanism, clinical application, and development trends. Biomark Res 2024; 12:93. [PMID: 39217377 PMCID: PMC11366172 DOI: 10.1186/s40364-024-00644-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Malignant tumors remain a primary cause of human mortality. Among the various treatment modalities for neoplasms, tumor vaccines have consistently shown efficacy and promising potential. These vaccines offer advantages such as specificity, safety, and tolerability, with mRNA vaccines representing promising platforms. By introducing exogenous mRNAs encoding antigens into somatic cells and subsequently synthesizing antigens through gene expression systems, mRNA vaccines can effectively induce immune responses. Katalin Karikó and Drew Weissman were awarded the 2023 Nobel Prize in Physiology or Medicine for their great contributions to mRNA vaccine research. Compared with traditional tumor vaccines, mRNA vaccines have several advantages, including rapid preparation, reduced contamination, nonintegrability, and high biodegradability. Tumor-targeted therapy is an innovative treatment modality that enables precise targeting of tumor cells, minimizes damage to normal tissues, is safe at high doses, and demonstrates great efficacy. Currently, targeted therapy has become an important treatment option for malignant tumors. The application of mRNA vaccines in tumor-targeted therapy is expanding, with numerous clinical trials underway. We systematically outline the targeted delivery mechanism of mRNA vaccines and the mechanism by which mRNA vaccines induce anti-tumor immune responses, describe the current research and clinical applications of mRNA vaccines in tumor-targeted therapy, and forecast the future development trends of mRNA vaccine application in tumor-targeted therapy.
Collapse
Affiliation(s)
- Yu Gao
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Zhenning Li
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, 110001, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
3
|
Tang Y, Wu Y, Wang S, Lu X, Gu X, Li Y, Yang F, Xu R, Wang T, Jiao Z, Wu Y, Liu L, Chen JQ, Wang Q, Chen Q. An integrative platform for detection of RNA 2'-O-methylation reveals its broad distribution on mRNA. CELL REPORTS METHODS 2024; 4:100721. [PMID: 38452769 PMCID: PMC10985248 DOI: 10.1016/j.crmeth.2024.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/29/2023] [Accepted: 02/13/2024] [Indexed: 03/09/2024]
Abstract
Ribose 2'-O-methylation is involved in critical biological processes, but its biological functions and significance in mRNAs remain underexplored. We have developed NJU-seq, a sensitive method for unbiased 2'-O-methylation (Nm) profiling, and Nm-VAQ, a site-specific quantification tool. Using these tools in tandem, we identified thousands of Nm sites on mRNAs of human and mouse cell lines, of which 68 of 84 selected sites were further validated to be more than 1% 2'-O-methylated. Unlike rRNA, most mRNA Nm sites were from 1% to 30% methylated. In addition, mRNA Nm was dynamic, changing according to the circumstance. Furthermore, we show that fibrillarin is involved as a methyltransferase. By mimicking the detected Nm sites and the context sequence, the RNA fragments could be 2'-O-methylated and demonstrated higher stability but lower translation efficiency. Last, profiling of Nm sites in lung surgery samples revealed common signatures of lung cancer pathogenesis, providing potential new diagnostic markers.
Collapse
Affiliation(s)
- Yao Tang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Yifan Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Sainan Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaolan Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiangwen Gu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yong Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Fan Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ruilin Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Tao Wang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zichen Jiao
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Liwei Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jian-Qun Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Qiang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Qihan Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China.
| |
Collapse
|
4
|
Song J, Luo N, Dong L, Peng J, Yi C. RNA base editors: The emerging approach of RNA therapeutics. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1844. [PMID: 38576085 DOI: 10.1002/wrna.1844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
RNA-based therapeutics offer a flexible and reversible approach for treating genetic disorders, such as antisense oligonucleotides, RNA interference, aptamers, mRNA vaccines, and RNA editing. In recent years, significant advancements have been made in RNA base editing to correct disease-relevant point mutations. These achievements have significantly influenced the fields of biotechnology, biomedical research and therapeutics development. In this article, we provide a comprehensive overview of the design and performance of contemporary RNA base editors, including A-to-I, C-to-U, A-to-m6A, and U-to-Ψ. We compare recent innovative developments and highlight their applications in disease-relevant contexts. Lastly, we discuss the limitations and future prospects of utilizing RNA base editing for therapeutic purposes. This article is categorized under: RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jinghui Song
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Nan Luo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Liting Dong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China
| |
Collapse
|
5
|
Song J, Zhuang Y, Yi C. Programmable RNA base editing via targeted modifications. Nat Chem Biol 2024; 20:277-290. [PMID: 38418907 DOI: 10.1038/s41589-023-01531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/18/2023] [Indexed: 03/02/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editors are powerful tools in biology and hold great promise for the treatment of human diseases. Advanced DNA base editing tools, such as cytosine base editor and adenine base editor, have been developed to correct permanent mistakes in genetic material. However, undesired off-target edits would also be permanent, which poses a considerable risk for therapeutics. Alternatively, base editing at the RNA level is capable of correcting disease-causing mutations but does not lead to lasting genotoxic effects. RNA base editors offer temporary and reversible therapies and have been catching on in recent years. Here, we summarize some emerging RNA editors based on A-to-inosine, C-to-U and U-to-pseudouridine changes. We review the programmable RNA-targeting systems as well as modification enzyme-based effector proteins and highlight recent technological breakthroughs. Finally, we compare editing tools, discuss limitations and opportunities, and provide insights for the future directions of RNA base editing.
Collapse
Affiliation(s)
- Jinghui Song
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Yuan Zhuang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, People's Republic of China.
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China.
| |
Collapse
|
6
|
Li B, Qu L, Yang J. RNA-Guided RNA Modifications: Biogenesis, Functions, and Applications. Acc Chem Res 2023; 56:3198-3210. [PMID: 37931323 DOI: 10.1021/acs.accounts.3c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Post-transcriptional modifications are ubiquitous in both protein-coding and noncoding RNAs (ncRNAs), playing crucial functional roles in diverse biological processes across all kingdoms of life. These RNA modifications can be achieved through two distinct mechanisms: RNA-independent and RNA-guided (also known as RNA-dependent). In the RNA-independent mechanism, modifications are directly introduced onto RNA molecules by enzymes without the involvement of other RNA molecules, while the cellular RNA-guided RNA modification system exists in the form of RNA-protein complexes, wherein one guide RNA collaborates with a set of proteins, including the modifying enzyme. The primary function of guide RNAs lies in their ability to bind to complementary regions within the target RNAs, orchestrating the installation of specific modifications. Both mechanisms offer unique advantages and are critical to the diverse and dynamic landscape of RNA modifications. RNA-independent modifications provide rapid and direct modification of RNA molecules, while RNA-guided mechanisms offer precise and programmable means to introduce modifications at specific RNA sites. Recently, emerging evidence has shed light on RNA-guided RNA modifications as a captivating area of research, providing precise and programmable control over RNA sequences and functions.In this Account, we focus on RNA modifications synthesized in an RNA-guided manner, including 2'-O-methylated nucleotides (Nm), pseudouridine (Ψ), N4-acetylcytidine (ac4C), and inosine (I). This Account sheds light on the intricate processes of biogenesis and elucidates the regulatory roles of these modifications in RNA metabolism. These roles include pivotal functions such as RNA stability, translation, and splicing, where each modification contributes to the diverse and finely tuned regulatory landscape of RNA biology. In addition to elucidating the biogenesis and functions of these modifications, we also provide an overview of high-throughput methods and their underlying biochemical principles used for the transcriptome-wide investigation of these modifications and their fundamental interactions in RNA-guided systems. This includes exploring RNA-protein interactions and RNA-RNA interactions, which play crucial roles in the dynamic regulatory networks of RNA-guided modifications. The ever-advancing methodologies have greatly enhanced our understanding of the dynamic and widespread nature of RNA-guided RNA modifications and their regulatory functions. Furthermore, the applications of RNA-guided RNA modifications are discussed, illuminating their potential in diverse fields. From basic research to gene therapy, the programmable nature of RNA-guided modifications presents exciting opportunities for manipulating gene expression and developing innovative therapeutic strategies.
Collapse
Affiliation(s)
- Bin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 Guangdong, China
| | - Lianghu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 Guangdong, China
| | - Jianhua Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 Guangdong, China
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| |
Collapse
|
7
|
From Antisense RNA to RNA Modification: Therapeutic Potential of RNA-Based Technologies. Biomedicines 2021; 9:biomedicines9050550. [PMID: 34068948 PMCID: PMC8156014 DOI: 10.3390/biomedicines9050550] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Therapeutic oligonucleotides interact with a target RNA via Watson-Crick complementarity, affecting RNA-processing reactions such as mRNA degradation, pre-mRNA splicing, or mRNA translation. Since they were proposed decades ago, several have been approved for clinical use to correct genetic mutations. Three types of mechanisms of action (MoA) have emerged: RNase H-dependent degradation of mRNA directed by short chimeric antisense oligonucleotides (gapmers), correction of splicing defects via splice-modulation oligonucleotides, and interference of gene expression via short interfering RNAs (siRNAs). These antisense-based mechanisms can tackle several genetic disorders in a gene-specific manner, primarily by gene downregulation (gapmers and siRNAs) or splicing defects correction (exon-skipping oligos). Still, the challenge remains for the repair at the single-nucleotide level. The emerging field of epitranscriptomics and RNA modifications shows the enormous possibilities for recoding the transcriptome and repairing genetic mutations with high specificity while harnessing endogenously expressed RNA processing machinery. Some of these techniques have been proposed as alternatives to CRISPR-based technologies, where the exogenous gene-editing machinery needs to be delivered and expressed in the human cells to generate permanent (DNA) changes with unknown consequences. Here, we review the current FDA-approved antisense MoA (emphasizing some enabling technologies that contributed to their success) and three novel modalities based on post-transcriptional RNA modifications with therapeutic potential, including ADAR (Adenosine deaminases acting on RNA)-mediated RNA editing, targeted pseudouridylation, and 2′-O-methylation.
Collapse
|
8
|
Doherty EE, Wilcox XE, van Sint Fiet L, Kemmel C, Turunen JJ, Klein B, Tantillo DJ, Fisher AJ, Beal PA. Rational Design of RNA Editing Guide Strands: Cytidine Analogs at the Orphan Position. J Am Chem Soc 2021; 143:6865-6876. [PMID: 33939417 PMCID: PMC8608393 DOI: 10.1021/jacs.0c13319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adenosine Deaminases Acting on RNA (ADARs) convert adenosine to inosine in double stranded RNA. Human ADARs can be directed to predetermined target sites in the transcriptome by complementary guide strands, allowing for the correction of disease-causing mutations at the RNA level. Here we use structural information available for ADAR2-RNA complexes to guide the design of nucleoside analogs for the position in the guide strand that contacts a conserved glutamic acid residue in ADARs (E488 in human ADAR2), which flips the adenosine into the ADAR active site for deamination. Mutating this residue to glutamine (E488Q) results in higher activity because of the hydrogen bond donating ability of Q488 to N3 of the orphan cytidine on the guide strand. We describe the evaluation of cytidine analogs for this position that stabilize an activated conformation of the enzyme-RNA complex and increase catalytic rate for deamination by the wild-type enzyme. A new crystal structure of ADAR2 bound to duplex RNA bearing a cytidine analog revealed a close contact between E488, stabilized by an additional hydrogen bond and altered charge distribution when compared to cytidine. In human cells and mouse primary liver fibroblasts, this single nucleotide modification increased directed editing yields when compared to an otherwise identical guide oligonucleotide. Our results show that modification of the guide RNA can mimic the effect of hyperactive mutants and advance the approach of recruiting endogenous ADARs for site-directed RNA editing.
Collapse
Affiliation(s)
- Erin E Doherty
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Xander E Wilcox
- Department of Chemistry, University of California, Davis, California 95616, United States
| | | | | | | | - Bart Klein
- ProQR Therapeutics, 2333 CK Leiden, The Netherlands
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Andrew J Fisher
- Department of Chemistry, University of California, Davis, California 95616, United States
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, United States
| | - Peter A Beal
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
9
|
Smith TS, Zoltek MA, Simon MD. Reengineering a tRNA Methyltransferase To Covalently Capture New RNA Substrates. J Am Chem Soc 2019; 141:17460-17465. [PMID: 31626536 DOI: 10.1021/jacs.9b08529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Covalent RNA modifications can alter the function and metabolism of RNA transcripts. Altering the RNA substrate specificities of the enzymes that install these modifications can provide powerful tools to study and manipulate RNA. To develop new tools and probe the plasticity of the substrate specificity of one of these enzymes, we examined the engineerability of the uridine-54 tRNA methyltransferase, TrmA. Starting from a mutant that remains covalently bound to its substrate RNA (E358Q, TrmA*), we were able to use both rational design and a high-throughput sequencing assay to examine the RNA substrates of TrmA*. Although rational engineering substantially changed TrmA* specificity, the rationally designed substrate mutants we developed still retained activity with the wild-type protein. Using high-throughput substrate screening of additional TrmA* mutants, we identified a triple mutant of the substrate RNA (C56A;A58G;C60U) that is efficiently trapped by a TrmA* double mutant (E49R;R51E) but not by the wild-type TrmA*. This work establishes a foundation for using protein engineering to reconfigure substrate specificities of RNA-modifying enzymes and covalently trap RNAs with engineered proteins.
Collapse
Affiliation(s)
- Tyler S Smith
- Department of Molecular Biophysics & Biochemistry , Yale University , New Haven , Connecticut 06511 , United States.,Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States
| | - Madeline A Zoltek
- Department of Molecular Biophysics & Biochemistry , Yale University , New Haven , Connecticut 06511 , United States.,Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States
| | - Matthew D Simon
- Department of Molecular Biophysics & Biochemistry , Yale University , New Haven , Connecticut 06511 , United States.,Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States
| |
Collapse
|
10
|
Ankenbruck N, Courtney T, Naro Y, Deiters A. Optochemical Control of Biological Processes in Cells and Animals. Angew Chem Int Ed Engl 2018; 57:2768-2798. [PMID: 28521066 PMCID: PMC6026863 DOI: 10.1002/anie.201700171] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/06/2017] [Indexed: 12/13/2022]
Abstract
Biological processes are naturally regulated with high spatial and temporal control, as is perhaps most evident in metazoan embryogenesis. Chemical tools have been extensively utilized in cell and developmental biology to investigate cellular processes, and conditional control methods have expanded applications of these technologies toward resolving complex biological questions. Light represents an excellent external trigger since it can be controlled with very high spatial and temporal precision. To this end, several optically regulated tools have been developed and applied to living systems. In this review we discuss recent developments of optochemical tools, including small molecules, peptides, proteins, and nucleic acids that can be irreversibly or reversibly controlled through light irradiation, with a focus on applications in cells and animals.
Collapse
Affiliation(s)
- Nicholas Ankenbruck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Taylor Courtney
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Yuta Naro
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| |
Collapse
|
11
|
Ankenbruck N, Courtney T, Naro Y, Deiters A. Optochemische Steuerung biologischer Vorgänge in Zellen und Tieren. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201700171] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nicholas Ankenbruck
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Taylor Courtney
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Yuta Naro
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Alexander Deiters
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| |
Collapse
|
12
|
Fukuda M, Umeno H, Nose K, Nishitarumizu A, Noguchi R, Nakagawa H. Construction of a guide-RNA for site-directed RNA mutagenesis utilising intracellular A-to-I RNA editing. Sci Rep 2017; 7:41478. [PMID: 28148949 PMCID: PMC5288656 DOI: 10.1038/srep41478] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 12/20/2016] [Indexed: 01/24/2023] Open
Abstract
As an alternative to DNA mutagenesis, RNA mutagenesis can potentially become a powerful gene-regulation method for fundamental research and applied life sciences. Adenosine-to-inosine (A-to-I) RNA editing alters genetic information at the transcript level and is an important biological process that is commonly conserved in metazoans. Therefore, a versatile RNA-mutagenesis method can be achieved by utilising the intracellular RNA-editing mechanism. Here, we report novel guide RNAs capable of inducing A-to-I mutations by guiding the editing enzyme, human adenosine deaminase acting on RNA (ADAR). These guide RNAs successfully introduced A-to-I mutations into the target-site, which was determined by the reprogrammable antisense region. In ADAR2-over expressing cells, site-directed RNA editing could also be performed by simply introducing the guide RNA. Our guide RNA framework provides basic insights into establishing a generally applicable RNA-mutagenesis method.
Collapse
Affiliation(s)
- Masatora Fukuda
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, Fukuoka 814-0180, Japan
| | - Hiromitsu Umeno
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, Fukuoka 814-0180, Japan
| | - Kanako Nose
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, Fukuoka 814-0180, Japan
| | - Azusa Nishitarumizu
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, Fukuoka 814-0180, Japan
| | - Ryoma Noguchi
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, Fukuoka 814-0180, Japan
| | - Hiroyuki Nakagawa
- Department of Earth System Science, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, Fukuoka, 814-0180, Japan
| |
Collapse
|
13
|
Reautschnig P, Vogel P, Stafforst T. The notorious R.N.A. in the spotlight - drug or target for the treatment of disease. RNA Biol 2016; 14:651-668. [PMID: 27415589 PMCID: PMC5449091 DOI: 10.1080/15476286.2016.1208323] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
mRNA is an attractive drug target for therapeutic interventions. In this review we highlight the current state, clinical trials, and developments in antisense therapy, including the classical approaches like RNaseH-dependent oligomers, splice-switching oligomers, aptamers, and therapeutic RNA interference. Furthermore, we provide an overview on emerging concepts for using RNA in therapeutic settings including protein replacement by in-vitro-transcribed mRNAs, mRNA as vaccines and anti-allergic drugs. Finally, we give a brief outlook on early-stage RNA repair approaches that apply endogenous or engineered proteins in combination with short RNAs or chemically stabilized oligomers for the re-programming of point mutations, RNA modifications, and frame shift mutations directly on the endogenous mRNA.
Collapse
Affiliation(s)
- Philipp Reautschnig
- a Interfaculty Institute of Biochemistry, University of Tübingen Auf der Morgenstelle , Tübingen , Germany
| | - Paul Vogel
- a Interfaculty Institute of Biochemistry, University of Tübingen Auf der Morgenstelle , Tübingen , Germany
| | - Thorsten Stafforst
- a Interfaculty Institute of Biochemistry, University of Tübingen Auf der Morgenstelle , Tübingen , Germany
| |
Collapse
|
14
|
Marchand V, Blanloeil-Oillo F, Helm M, Motorin Y. Illumina-based RiboMethSeq approach for mapping of 2'-O-Me residues in RNA. Nucleic Acids Res 2016; 44:e135. [PMID: 27302133 PMCID: PMC5027498 DOI: 10.1093/nar/gkw547] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/06/2016] [Indexed: 12/22/2022] Open
Abstract
RNA 2′-O-methylation is one of the ubiquitous nucleotide modifications found in many RNA types from Bacteria, Archaea and Eukarya. RNAs bearing 2′-O-methylations show increased resistance to degradation and enhanced stability in helices. While the exact role of each 2′-O-Me residue remained elusive, the catalytic protein Fibrillarin (Nop1 in yeast) responsible for 2′-O-methylation in eukaryotes, is associated with human pathologies. Therefore, there is an urgent need to precisely map and quantify hundreds of 2′-O-Me residues in RNA using high-throughput technologies. Here, we develop a reliable protocol using alkaline fragmentation of total RNA coupled to a commonly used ligation approach, and Illumina sequencing. We describe a methodology to detect 2′-O-methylations with high sensitivity and reproducibility even with limited amount of starting material (1 ng of total RNA). The method provides a quantification of the 2′-O-methylation occupancy of a given site, allowing to detect relatively small changes (>10%) in 2′-O-methylation profiles. Altogether this technique unlocks a technological barrier since it will be applicable for routine parallel treatment of biological and clinical samples to decipher the functions of 2′-O-methylations in pathologies.
Collapse
Affiliation(s)
- Virginie Marchand
- IMoPA UMR7365 CNRS-UL, BioPole Lorraine University, 9 avenue de la Foret de Haye, 54505 Vandoeuvre-les-Nancy, France Next-Generation Sequencing Core Facility, FR3209 BMCT, Lorraine University, 9 avenue de la Foret de Haye, 54505 Vandoeuvre-les-Nancy, France
| | - Florence Blanloeil-Oillo
- IMoPA UMR7365 CNRS-UL, BioPole Lorraine University, 9 avenue de la Foret de Haye, 54505 Vandoeuvre-les-Nancy, France Next-Generation Sequencing Core Facility, FR3209 BMCT, Lorraine University, 9 avenue de la Foret de Haye, 54505 Vandoeuvre-les-Nancy, France
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Yuri Motorin
- IMoPA UMR7365 CNRS-UL, BioPole Lorraine University, 9 avenue de la Foret de Haye, 54505 Vandoeuvre-les-Nancy, France Next-Generation Sequencing Core Facility, FR3209 BMCT, Lorraine University, 9 avenue de la Foret de Haye, 54505 Vandoeuvre-les-Nancy, France
| |
Collapse
|
15
|
Dual function of C/D box small nucleolar RNAs in rRNA modification and alternative pre-mRNA splicing. Proc Natl Acad Sci U S A 2016; 113:E1625-34. [PMID: 26957605 DOI: 10.1073/pnas.1519292113] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
C/D box small nucleolar RNAs (SNORDs) are small noncoding RNAs, and their best-understood function is to target the methyltransferase fibrillarin to rRNA (for example, SNORD27 performs 2'-O-methylation of A27 in 18S rRNA). Unexpectedly, we found a subset of SNORDs, including SNORD27, in soluble nuclear extract made under native conditions, where fibrillarin was not detected, indicating that a fraction of the SNORD27 RNA likely forms a protein complex different from canonical snoRNAs found in the insoluble nuclear fraction. As part of this previously unidentified complex,SNORD27 regulates the alternative splicing of the transcription factor E2F7p re-mRNA through direct RNA-RNA interaction without methylating the RNA, likely by competing with U1 small nuclear ribonucleoprotein (snRNP). Furthermore, knockdown of SNORD27 activates previously "silent" exons in several other genes through base complementarity across the entire SNORD27 sequence, not just the antisense boxes. Thus, some SNORDs likely function in both rRNA and pre-mRNA processing, which increases the repertoire of splicing regulators and links both processes.
Collapse
|
16
|
Hanswillemenke A, Kuzdere T, Vogel P, Jékely G, Stafforst T. Site-Directed RNA Editing in Vivo Can Be Triggered by the Light-Driven Assembly of an Artificial Riboprotein. J Am Chem Soc 2015; 137:15875-81. [PMID: 26594902 PMCID: PMC4731850 DOI: 10.1021/jacs.5b10216] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Site-directed
RNA editing allows for the manipulation of RNA and
protein function by reprogramming genetic information at the RNA level.
For this we assemble artificial RNA-guided editases and demonstrate
their transcript repair activity in cells and in developing embryos
of the annelid Platynereis dumerilii. A hallmark
of our assembly strategy is the covalent attachment of guideRNA and
editing enzyme by applying the SNAP-tag technology, a process that
we demonstrate here to be readily triggered by light in vitro, in
mammalian cell culture, and also in P. dumerilii.
Lacking both sophisticated chemistry and extensive genetic engineering,
this technology provides a convenient route for the light-dependent
switching of protein isoforms. The presented strategy may also serve
as a blue-print for the engineering of addressable machineries that
apply tailored nucleic acid analogues to manipulate RNA or DNA site-specifically
in living organisms.
Collapse
Affiliation(s)
- Alfred Hanswillemenke
- Interfaculty Institute of Biochemistry, University of Tübingen , Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Tahsin Kuzdere
- Interfaculty Institute of Biochemistry, University of Tübingen , Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Paul Vogel
- Interfaculty Institute of Biochemistry, University of Tübingen , Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Gáspár Jékely
- Max-Planck-Institute for Developmental Biology , Spemannstraße 35, 72076 Tübingen, Germany
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen , Auf der Morgenstelle 15, 72076 Tübingen, Germany
| |
Collapse
|
17
|
deLorimier E, Coonrod LA, Copperman J, Taber A, Reister EE, Sharma K, Todd PK, Guenza MG, Berglund JA. Modifications to toxic CUG RNAs induce structural stability, rescue mis-splicing in a myotonic dystrophy cell model and reduce toxicity in a myotonic dystrophy zebrafish model. Nucleic Acids Res 2014; 42:12768-78. [PMID: 25303993 PMCID: PMC4227782 DOI: 10.1093/nar/gku941] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CUG repeat expansions in the 3′ UTR of dystrophia myotonica protein kinase (DMPK) cause myotonic dystrophy type 1 (DM1). As RNA, these repeats elicit toxicity by sequestering splicing proteins, such as MBNL1, into protein–RNA aggregates. Structural studies demonstrate that CUG repeats can form A-form helices, suggesting that repeat secondary structure could be important in pathogenicity. To evaluate this hypothesis, we utilized structure-stabilizing RNA modifications pseudouridine (Ψ) and 2′-O-methylation to determine if stabilization of CUG helical conformations affected toxicity. CUG repeats modified with Ψ or 2′-O-methyl groups exhibited enhanced structural stability and reduced affinity for MBNL1. Molecular dynamics and X-ray crystallography suggest a potential water-bridging mechanism for Ψ-mediated CUG repeat stabilization. Ψ modification of CUG repeats rescued mis-splicing in a DM1 cell model and prevented CUG repeat toxicity in zebrafish embryos. This study indicates that the structure of toxic RNAs has a significant role in controlling the onset of neuromuscular diseases.
Collapse
Affiliation(s)
- Elaine deLorimier
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Leslie A Coonrod
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Jeremy Copperman
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Alex Taber
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Emily E Reister
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Kush Sharma
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Marina G Guenza
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - J Andrew Berglund
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
18
|
Vogel P, Stafforst T. Site-Directed RNA Editing with Antagomir Deaminases - A Tool to Study Protein and RNA Function. ChemMedChem 2014; 9:2021-5. [DOI: 10.1002/cmdc.201402139] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Indexed: 12/20/2022]
|
19
|
Abstract
snoRNAs (small nucleolar RNAs) constitute one of the largest and best-studied classes of non-coding RNAs that confer enzymatic specificity. With associated proteins, these snoRNAs form ribonucleoprotein complexes that can direct 2'-O-methylation or pseudouridylation of target non-coding RNAs. Aided by computational methods and high-throughput sequencing, new studies have expanded the diversity of known snoRNA functions. Complexes incorporating snoRNAs have dynamic specificity, and include diverse roles in RNA silencing, telomerase maintenance and regulation of alternative splicing. Evidence that dysregulation of snoRNAs can cause human disease, including cancer, indicates that the full scope of snoRNA roles remains an unfinished story. The diversity in structure, genomic origin and function between snoRNAs found in different complexes and among different phyla illustrates the surprising plasticity of snoRNAs in evolution. The ability of snoRNAs to direct highly specific interactions with other RNAs is a consistent thread in their newly discovered functions. Because they are ubiquitous throughout Eukarya and Archaea, it is likely they were a feature of the last common ancestor of these two domains, placing their origin over two billion years ago. In the present chapter, we focus on recent advances in our understanding of these ancient, but functionally dynamic RNA-processing machines.
Collapse
|
20
|
Makarova JA, Ivanova SM, Tonevitsky AG, Grigoriev AI. New functions of small nucleolar RNAs. BIOCHEMISTRY (MOSCOW) 2013; 78:638-50. [DOI: 10.1134/s0006297913060096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Falaleeva M, Stamm S. Processing of snoRNAs as a new source of regulatory non-coding RNAs: snoRNA fragments form a new class of functional RNAs. Bioessays 2012. [PMID: 23180440 DOI: 10.1002/bies.201200117] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent experimental evidence suggests that most of the genome is transcribed into non-coding RNAs. The initial transcripts undergo further processing generating shorter, metabolically stable RNAs with diverse functions. Small nucleolar RNAs (snoRNAs) are non-coding RNAs that modify rRNAs, tRNAs, and snRNAs that were considered stable. We review evidence that snoRNAs undergo further processing. High-throughput sequencing and RNase protection experiments showed widespread expression of snoRNA fragments, known as snoRNA-derived RNAs (sdRNAs). Some sdRNAs resemble miRNAs, these can associate with argonaute proteins and influence translation. Other sdRNAs are longer, form complexes with hnRNPs and influence gene expression. C/D box snoRNA fragmentation patterns are conserved across multiple cell types, suggesting a processing event, rather than degradation. The loss of expression from genetic loci that generate canonical snoRNAs and processed snoRNAs results in diseases, such as Prader-Willi Syndrome, indicating possible physiological roles for processed snoRNAs. We propose that processed snoRNAs acquire new roles in gene expression and represent a new class of regulatory RNAs distinct from canonical snoRNAs.
Collapse
Affiliation(s)
- Marina Falaleeva
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY, USA
| | | |
Collapse
|
22
|
Stafforst T, Schneider MF. An RNA-deaminase conjugate selectively repairs point mutations. Angew Chem Int Ed Engl 2012; 51:11166-9. [PMID: 23038402 DOI: 10.1002/anie.201206489] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Indexed: 11/10/2022]
Abstract
Checking for mistakes: By conjugating a catalytic domain with a guide RNA, deamination activity can be harnessed to repair a specific codon on mRNA. This method can be used for the highly selective repair of point mutations in mRNA by site-selective editing.
Collapse
Affiliation(s)
- Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany.
| | | |
Collapse
|
23
|
Stafforst T, Schneider MF. Ein RNA-Deaminase-Konjugat ermöglicht die selektive Reparatur von Punktmutationen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206489] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Abstract
Isomerization from uridine to pseudouridine (pseudouridylation) is largely catalyzed by a family of small ribonucleoproteins called box H/ACA RNPs, each of which contains one unique small RNA-the box H/ACA RNA. The specificity of the pseudouridylation reaction is determined by the base-pairing interactions between the guide sequence of the box H/ACA RNA and the target sequence within an RNA substrate. Thus, by creating a new box H/ACA RNA harboring an artificial guide sequence that base-pairs with the substrate sequence, one can site-specifically introduce pseudouridines into virtually any RNA (e.g., mRNA, ribosomal RNA, small nuclear RNA, telomerase RNA and so on). Pseudouridylation changes the properties of a uridine residue and is likely to alter the role of its corresponding RNA in certain cellular processes, thereby enabling basic research into the effects of RNA modifications. Here we take a TRM4 reporter gene (also known as NCL1) as an example, and we present a protocol for designing a box H/ACA RNA to site-specifically pseudouridylate TRM4 mRNA. Disease-related mutation can result in early termination of translation by creating a premature termination codon (PTC); however, pseudouridylation at the PTC can suppress this translation termination (nonsense suppression). Thus, the experimental procedures described in this protocol may provide a novel way to treat PTC-related diseases. This protocol takes 10-13 d to complete.
Collapse
|
25
|
Galopier A, Hermann-Le Denmat S. Mitochondria of the yeasts Saccharomyces cerevisiae and Kluyveromyces lactis contain nuclear rDNA-encoded proteins. PLoS One 2011; 6:e16325. [PMID: 21283537 PMCID: PMC3026818 DOI: 10.1371/journal.pone.0016325] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 12/10/2010] [Indexed: 12/03/2022] Open
Abstract
In eukaryotes, the nuclear ribosomal DNA (rDNA) is the source of the structural 18S, 5.8S and 25S rRNAs. In hemiascomycetous yeasts, the 25S rDNA sequence was described to lodge an antisense open reading frame (ORF) named TAR1 for Transcript Antisense to Ribosomal RNA. Here, we present the first immuno-detection and sub-cellular localization of the authentic product of this atypical yeast gene. Using specific antibodies against the predicted amino-acid sequence of the Saccharomyces cerevisiae TAR1 product, we detected the endogenous Tar1p polypeptides in S. cerevisiae (Sc) and Kluyveromyces lactis (Kl) species and found that both proteins localize to mitochondria. Protease and carbonate treatments of purified mitochondria further revealed that endogenous Sc Tar1p protein sub-localizes in the inner membrane in a Nin-Cout topology. Plasmid-versions of 5′ end or 3′ end truncated TAR1 ORF were used to demonstrate that neither the N-terminus nor the C-terminus of Sc Tar1p were required for its localization. Also, Tar1p is a presequence-less protein. Endogenous Sc Tar1p was found to be a low abundant protein, which is expressed in fermentable and non-fermentable growth conditions. Endogenous Sc TAR1 transcripts were also found low abundant and consistently 5′ flanking regions of TAR1 ORF exhibit modest promoter activity when assayed in a luciferase-reporter system. Using rapid amplification of cDNA ends (RACE) PCR, we also determined that endogenous Sc TAR1 transcripts possess heterogeneous 5′ and 3′ ends probably reflecting the complex expression of a gene embedded in actively transcribed rDNA sequence. Altogether, our results definitively ascertain that the antisense yeast gene TAR1 constitutes a functional transcription unit within the nuclear rDNA repeats.
Collapse
|
26
|
Abstract
RNA-guided RNA 2'-O-methylation and pseudouridylation are naturally occurring processes, in which guide RNAs specifically direct modifications to rRNAs or spliceosomal snRNAs in the nucleus of eukaryotic cells. Modifications can profoundly alter the properties of an RNA, thus influencing the contributions of the RNA to the cellular process in which it participates. Recently, it has been shown that, by expressing artificial guide RNAs (derived from naturally occurring guide RNAs), modifications can also be specifically introduced into other RNAs, thus offering an opportunity to study RNAs in vivo. Here, we present strategies for constructing guide RNAs and manipulating RNA modifications in the nucleus.
Collapse
|
27
|
Targeted 2'-O methylation at a nucleotide within the pseudoknot of telomerase RNA reduces telomerase activity in vivo. Mol Cell Biol 2010; 30:4368-78. [PMID: 20647541 DOI: 10.1128/mcb.00384-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Telomerase RNA is an essential component of telomerase, a ribonucleoprotein enzyme that maintains chromosome ends in most eukaryotes. Here we employ a novel approach, namely, RNA-guided RNA modification, to assess whether introducing 2'-O methylation into telomerase RNA can influence telomerase activity in vivo. We generate specific 2'-O methylation sites in and adjacent to the triple helix (within the conserved pseudoknot structure) of Saccharomyces cerevisiae telomerase RNA (TLC1). We show that 2'-O methylation at U809 reduces telomerase activity, resulting in telomere shortening, whereas 2'-O methylation at A804 or A805 leads to moderate telomere lengthening. Importantly, we also show that targeted 2'-O methylation does not affect TLC1 levels and that 2'-O-methylated TLC1 appears to be efficiently assembled into telomerase ribonucleoprotein. Our results demonstrate that RNA-guided RNA modification is a highly useful approach for modulating telomerase activity.
Collapse
|
28
|
A flexible RNA backbone within the polypyrimidine tract is required for U2AF65 binding and pre-mRNA splicing in vivo. Mol Cell Biol 2010; 30:4108-19. [PMID: 20606010 DOI: 10.1128/mcb.00531-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The polypyrimidine tract near the 3' splice site is important for pre-mRNA splicing. Using pseudouridine incorporation and in vivo RNA-guided RNA pseudouridylation, we have identified two important uridines in the polypyrimidine tract of adenovirus pre-mRNA. Conversion of either uridine into pseudouridine leads to a splicing defect in Xenopus oocytes. Using a variety of molecular biology methodologies, we show that the splicing defect is due to the failure of U2AF(65) to recognize the pseudouridylated polypyrimidine tract. This negative impact on splicing is pseudouridine specific, as no effect is observed when the uridine is changed to other naturally occurring nucleotides. Given that pseudouridine favors a C-3'-endo structure, our results suggest that it is backbone flexibility that is key to U2AF binding. Indeed, locking the key uridine in the C-3'-endo configuration while maintaining its uridine identity blocks U2AF(65) binding and splicing. This pseudouridine effect can also be applied to other pre-mRNA polypyrimidine tracts. Thus, our work demonstrates that in vivo binding of U2AF(65) to a polypyrimidine tract requires a flexible RNA backbone.
Collapse
|
29
|
Khanna A, Stamm S. Regulation of alternative splicing by short non-coding nuclear RNAs. RNA Biol 2010; 7:480-5. [PMID: 20657181 DOI: 10.4161/rna.7.4.12746] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recent results from deep-sequencing and tiling array studies indicated the existence of a large number of short, metabolically stable, non-coding RNAs. Some of these short RNAs derive from known RNA classes like snoRNA or tRNAs. There are intriguing similarities between short non-coding nuclear RNAs and oligonucleotides used to change alternative splicing events, which usually target a disease-relevant RNA. We review the current knowledge of this emerging class of RNAs and discuss evidence that some of these short RNAs could function in alternative splice site selection.
Collapse
Affiliation(s)
- Amit Khanna
- University of Kentucky, Molecular and Cellular Biochemistry, South Limestone, Lexington, KY, USA
| | | |
Collapse
|
30
|
Ge J, Liu H, Yu YT. Regulation of pre-mRNA splicing in Xenopus oocytes by targeted 2'-O-methylation. RNA (NEW YORK, N.Y.) 2010; 16:1078-1085. [PMID: 20348447 PMCID: PMC2856880 DOI: 10.1261/rna.2060210] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 02/10/2010] [Indexed: 05/29/2023]
Abstract
The 2'-OH group of the branch point adenosine is a key moiety to initiate pre-mRNA splicing. We use RNA-guided RNA modification to target the pre-mRNA branch point adenosine for 2'-O-methylation, with the aim of blocking pre-mRNA splicing in vertebrate cells. We show that, under certain conditions, injection of a branch point-specific artificial box C/D RNA into Xenopus oocytes effectively 2'-O-methylates adenovirus pre-mRNA at the target nucleotide. However, 2'-O-methylation at the authentic branch point activates a host of cryptic branch points, thus allowing splicing to continue. These cryptic sites are mapped, and mutated. Upon injection, pre-mRNA free of cryptic branch points fails to splice when the branch point-specific box C/D RNA is present. However, 2'-O-methylation at the branch point does not prevent pre-mRNA from being assembled into pre-catalytic spliceosome-like complexes prior to the first chemical step of splicing. Our results demonstrate that RNA-guided pre-mRNA modification can occur in the nucleoplasm of vertebrate cells, thus offering a powerful tool for molecular biology research.
Collapse
Affiliation(s)
- Junhui Ge
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | |
Collapse
|
31
|
Abstract
Spliceosomal snRNAs are extensively 2'-O-methylated and pseudouridylated. The modified nucleotides are relatively highly conserved across species, and are often clustered in regions of functional importance in pre-mRNA splicing. Over the past decade, the study of the mechanisms and functions of spliceosomal snRNA modifications has intensified. Two independent mechanisms behind these modifications, RNA-independent (protein-only) and RNA-dependent (RNA-guided), have been discovered. The role of spliceosomal snRNA modifications in snRNP biogenesis and spliceosome assembly has also been verified.
Collapse
Affiliation(s)
- John Karijolich
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | | |
Collapse
|