1
|
Li Y, Wang J, Li E, Yang X, Yang J. Shifts in Microbial Community Structure and Co-occurrence Network along a Wide Soil Salinity Gradient. Microorganisms 2024; 12:1268. [PMID: 39065037 PMCID: PMC11278679 DOI: 10.3390/microorganisms12071268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The response of microbiomes to salinity has been clarified in different geographic scales or ecosystems. However, how soil microbial community structure and interaction respond to salinity across wide salinity range and climatic region is still unclearly resolved. To address this issue, we examined the microbial community's composition in saline soils from two climatic regions (coastal wetland and arid desert). Our research confirms that soil salinity had a negative effect on soil nutrient content. Salinity decreased the relative abundance of bacteria, but increased archaea abundance, leading to the shifts from bacteria dominant community to archaea dominant community. Low-water medium-salinity soil (LWMS) had the most complex archaeal community network, whereas for bacteria, the most complex bacterial community network was observed in low-water high-salinity soils (LWHS). Key microbial taxa differed in three salinity gradients. Salinity, soil water content, pH, total nitrogen (TN), and soil organic carbon (SOC) were the main driving factors for the composition of archaeal and bacterial community. Salinity directly affected archaeal community, but indirectly influenced bacteria community through SOC; pH affected archaeal community indirectly through TN, but directly affected bacterial community. Our study suggests that soil salinity dramatically influences diversity, composition, and interactions within the microbial community.
Collapse
Affiliation(s)
- Yan Li
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; (Y.L.)
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi 830017, China
| | - Juan Wang
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; (Y.L.)
- Chengdu Institute of Biology, Chinese Academy Sciences, Chengdu 610042, China
| | - Eryang Li
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; (Y.L.)
| | - Xiaodong Yang
- Department of Geography & Spatial Information Technology, Ningbo University, Ningbo 315211, China
| | - Jianjun Yang
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; (Y.L.)
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi 830017, China
| |
Collapse
|
2
|
Sensevdi ER, Sourrouille ZA, Quax TE. Host range and cell recognition of archaeal viruses. Curr Opin Microbiol 2024; 77:102423. [PMID: 38232492 DOI: 10.1016/j.mib.2023.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
Archaea are members of a separate domain of life that have unique properties, such as the composition of their cell walls and the structure of their lipid bilayers. Consequently, archaeal viruses face different challenges to infect host cells in comparison with viruses of bacteria and eukaryotes. Despite their significant impact on shaping microbial communities, our understanding of infection processes of archaeal viruses remains limited. Several receptors used by archaeal viruses to infect cells have recently been identified. The interactions between viruses and receptors are one of the determinants of the host range of viruses. Here, we review the current literature on host ranges of archaeal viruses and factors that might impact the width of these host ranges.
Collapse
Affiliation(s)
- Emine Rabia Sensevdi
- Biology of Archaea and Viruses, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, 9747 Groningen AG, the Netherlands
| | - Zaloa Aguirre Sourrouille
- Biology of Archaea and Viruses, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, 9747 Groningen AG, the Netherlands
| | - Tessa Ef Quax
- Biology of Archaea and Viruses, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, 9747 Groningen AG, the Netherlands.
| |
Collapse
|
3
|
Lynes MM, Jay ZJ, Kohtz AJ, Hatzenpichler R. Methylotrophic methanogenesis in the Archaeoglobi revealed by cultivation of Ca. Methanoglobus hypatiae from a Yellowstone hot spring. THE ISME JOURNAL 2024; 18:wrae026. [PMID: 38452205 PMCID: PMC10945360 DOI: 10.1093/ismejo/wrae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/09/2024] [Accepted: 02/08/2024] [Indexed: 03/09/2024]
Abstract
Over the past decade, environmental metagenomics and polymerase chain reaction-based marker gene surveys have revealed that several lineages beyond just a few well-established groups within the Euryarchaeota superphylum harbor the genetic potential for methanogenesis. One of these groups are the Archaeoglobi, a class of thermophilic Euryarchaeota that have long been considered to live non-methanogenic lifestyles. Here, we enriched Candidatus Methanoglobus hypatiae, a methanogen affiliated with the family Archaeoglobaceae, from a hot spring in Yellowstone National Park. The enrichment is sediment-free, grows at 64-70°C and a pH of 7.8, and produces methane from mono-, di-, and tri-methylamine. Ca. M. hypatiae is represented by a 1.62 Mb metagenome-assembled genome with an estimated completeness of 100% and accounts for up to 67% of cells in the culture according to fluorescence in situ hybridization. Via genome-resolved metatranscriptomics and stable isotope tracing, we demonstrate that Ca. M. hypatiae expresses methylotrophic methanogenesis and energy-conserving pathways for reducing monomethylamine to methane. The detection of Archaeoglobi populations related to Ca. M. hypatiae in 36 geochemically diverse geothermal sites within Yellowstone National Park, as revealed through the examination of previously published gene amplicon datasets, implies a previously underestimated contribution to anaerobic carbon cycling in extreme ecosystems.
Collapse
Affiliation(s)
- Mackenzie M Lynes
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, Thermal Biology Institute, Montana State University, Bozeman, MT 59717, United States
| | - Zackary J Jay
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, Thermal Biology Institute, Montana State University, Bozeman, MT 59717, United States
| | - Anthony J Kohtz
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, Thermal Biology Institute, Montana State University, Bozeman, MT 59717, United States
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, Thermal Biology Institute, Montana State University, Bozeman, MT 59717, United States
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, United States
| |
Collapse
|
4
|
Grinter R, Greening C. Cofactor F420: an expanded view of its distribution, biosynthesis and roles in bacteria and archaea. FEMS Microbiol Rev 2021; 45:fuab021. [PMID: 33851978 PMCID: PMC8498797 DOI: 10.1093/femsre/fuab021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/11/2021] [Indexed: 12/11/2022] Open
Abstract
Many bacteria and archaea produce the redox cofactor F420. F420 is structurally similar to the cofactors FAD and FMN but is catalytically more similar to NAD and NADP. These properties allow F420 to catalyze challenging redox reactions, including key steps in methanogenesis, antibiotic biosynthesis and xenobiotic biodegradation. In the last 5 years, there has been much progress in understanding its distribution, biosynthesis, role and applications. Whereas F420 was previously thought to be confined to Actinobacteria and Euryarchaeota, new evidence indicates it is synthesized across the bacterial and archaeal domains, as a result of extensive horizontal and vertical biosynthetic gene transfer. F420 was thought to be synthesized through one biosynthetic pathway; however, recent advances have revealed variants of this pathway and have resolved their key biosynthetic steps. In parallel, new F420-dependent biosynthetic and metabolic processes have been discovered. These advances have enabled the heterologous production of F420 and identified enantioselective F420H2-dependent reductases for biocatalysis. New research has also helped resolve how microorganisms use F420 to influence human and environmental health, providing opportunities for tuberculosis treatment and methane mitigation. A total of 50 years since its discovery, multiple paradigms associated with F420 have shifted, and new F420-dependent organisms and processes continue to be discovered.
Collapse
Affiliation(s)
- Rhys Grinter
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Chris Greening
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
5
|
Abstract
Current understanding of the diversity, biology, and ecology of Archaea is very limited, especially considering how few of the known phyla have been cultured or genomically explored. The reconstruction of “Ca. Methanomixophus” MAGs not only expands the known range of metabolic versatility of the members of Archaeoglobi but also suggests that the phylogenetic distribution of MCR and MTR complexes is even wider than previously anticipated. Euryarchaeal lineages have been believed to have a methanogenic last common ancestor. However, members of euryarchaeal Archaeoglobi have long been considered nonmethanogenic and their evolutionary history remains elusive. Here, three high-quality metagenomic-assembled genomes (MAGs) retrieved from high-temperature oil reservoir and hot springs, together with three newly assembled Archaeoglobi MAGs from previously reported hot spring metagenomes, are demonstrated to represent a novel genus of Archaeoglobaceae, “Candidatus Methanomixophus.” All “Ca. Methanomixophus” MAGs encode an M methyltransferase (MTR) complex and a traditional type of methyl-coenzyme M reductase (MCR) complex, which is different from the divergent MCR complexes found in “Ca. Polytropus marinifundus.” In addition, “Ca. Methanomixophus dualitatem” MAGs preserve the genomic capacity for dissimilatory sulfate reduction. Comparative phylogenetic analysis supports a laterally transferred origin for an MCR complex and vertical heritage of the MTR complex in this lineage. Metatranscriptomic analysis revealed concomitant in situ activity of hydrogen-dependent methylotrophic methanogenesis and heterotrophic fermentation within populations of “Ca. Methanomixophus hydrogenotrophicum” in a high-temperature oil reservoir. IMPORTANCE Current understanding of the diversity, biology, and ecology of Archaea is very limited, especially considering how few of the known phyla have been cultured or genomically explored. The reconstruction of “Ca. Methanomixophus” MAGs not only expands the known range of metabolic versatility of the members of Archaeoglobi but also suggests that the phylogenetic distribution of MCR and MTR complexes is even wider than previously anticipated.
Collapse
|
6
|
Tsaousis AD. On the Origin of Iron/Sulfur Cluster Biosynthesis in Eukaryotes. Front Microbiol 2019; 10:2478. [PMID: 31781051 PMCID: PMC6857552 DOI: 10.3389/fmicb.2019.02478] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/15/2019] [Indexed: 11/13/2022] Open
Abstract
Iron and sulfur are indispensable elements of every living cell, but on their own these elements are toxic and require dedicated machineries for the formation of iron/sulfur (Fe/S) clusters. In eukaryotes, proteins requiring Fe/S clusters (Fe/S proteins) are found in or associated with various organelles including the mitochondrion, endoplasmic reticulum, cytosol, and the nucleus. These proteins are involved in several pathways indispensable for the viability of each living cell including DNA maintenance, protein translation and metabolic pathways. Thus, the formation of Fe/S clusters and their delivery to these proteins has a fundamental role in the functions and the evolution of the eukaryotic cell. Currently, most eukaryotes harbor two (located in cytosol and mitochondrion) or three (located in plastid) machineries for the assembly of Fe/S clusters, but certain anaerobic microbial eukaryotes contain sulfur mobilization (SUF) machineries that were previously thought to be present only in archaeal linages. These machineries could not only stipulate which pathway was present in the last eukaryotic common ancestor (LECA), but they could also provide clues regarding presence of an Fe/S cluster machinery in the proto-eukaryote and evolution of Fe/S cluster assembly machineries in all eukaryotes.
Collapse
Affiliation(s)
- Anastasios D Tsaousis
- Laboratory of Molecular and Evolutionary Parasitology, ResistAnce Pathogenicity and Infectious Diseases (RAPID) Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
7
|
Santoro AE, Kellom M, Laperriere SM. Contributions of single-cell genomics to our understanding of planktonic marine archaea. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190096. [PMID: 31587640 DOI: 10.1098/rstb.2019.0096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Single-cell genomics has transformed many fields of biology, marine microbiology included. Here, we consider the impact of single-cell genomics on a specific group of marine microbes-the planktonic marine archaea. Despite single-cell enabled discoveries of novel metabolic function in the marine thaumarchaea, population-level investigations are hindered by an overall lower than expected recovery of thaumarchaea in single-cell studies. Metagenome-assembled genomes have so far been a more useful method for accessing genome-resolved insights into the Marine Group II euryarchaea. Future progress in the application of single-cell genomics to archaeal biology in the ocean would benefit from more targeted sorting approaches, and a more systematic investigation of potential biases against archaea in single-cell workflows including cell lysis, genome amplification and genome screening. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- A E Santoro
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106-9620, USA
| | - M Kellom
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106-9620, USA
| | - S M Laperriere
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106-9620, USA
| |
Collapse
|
8
|
Nayak DD, Metcalf WW. Genetic techniques for studies of methyl-coenzyme M reductase from Methanosarcina acetivorans C2A. Methods Enzymol 2018; 613:325-347. [PMID: 30509472 DOI: 10.1016/bs.mie.2018.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methanogenic archaea generate methane as a by-product of anaerobic respiration using CO2, C1 compounds (like methanol or methylated amines), or acetate as terminal electron acceptors. Methanogens are an untapped resource for biotechnological advances related to methane production as well as methane consumption. However, key biological features of these organisms remain poorly understood. One such feature is the enzyme methyl-coenzyme M reductase (referred to as MCR), which catalyzes the last step in the methanogenic pathway and results in methane formation. Gene essentiality has limited genetic analyses of MCR thus far. Therefore, studies of this important enzyme have been limited to biochemical and biophysical techniques that are especially laborious and often reliant on sophisticated instrumentation that is not commonly available. In this chapter, we outline our recently developed CRISPR-Cas9-based genome editing tools and describe how these tools have been used for the introduction of a tandem affinity purification tag at the chromosomal mcr locus in the model methanogen, Methanosarcina acetivorans C2A. We also report a protocol for rapid affinity purification of MCR from M. acetivorans C2A that will enable high-throughput studies of this enzyme in the future.
Collapse
Affiliation(s)
- Dipti D Nayak
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, United States; Department of Microbiology, University of Illinois, Urbana, IL, United States
| | - William W Metcalf
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, United States; Department of Microbiology, University of Illinois, Urbana, IL, United States.
| |
Collapse
|
9
|
García-Maldonado JQ, Escobar-Zepeda A, Raggi L, Bebout BM, Sanchez-Flores A, López-Cortés A. Bacterial and archaeal profiling of hypersaline microbial mats and endoevaporites, under natural conditions and methanogenic microcosm experiments. Extremophiles 2018; 22:903-916. [PMID: 30120599 DOI: 10.1007/s00792-018-1047-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/08/2018] [Indexed: 11/29/2022]
Abstract
Bacterial and archaeal community structure of five microbial communities, developing at different salinities in Baja California Sur, Mexico, were characterized by 16S rRNA sequencing. The response of the microbial community to artificial changes in salinity-sulfate concentrations and to addition of trimethylamine was also evaluated in microcosm experiments. Ordination analyses of the microbial community structure showed that microbial composition was distinctive for each hypersaline site. Members of bacteria were dominated by Bacteroidetes and Proteobacteria phyla, while Halobacteria of the Euryarchaeota phylum was the most represented class of archaea for all the environmental samples. At a higher phylogenetic resolution, methanogenic communities were dominated by members of the Methanosarcinales, Methanobacteriales and Methanococcales orders. Incubation experiments showed that putative hydrogenotrophic methanogens of the Methanomicrobiales increased in abundance only under lowest salinity and sulfate concentrations. Trimethylamine addition effectively increased the abundance of methylotrophic members from the Methanosarcinales, but also increased the relative abundance of the Thermoplasmata class, suggesting the potential capability of these microorganisms to use trimethylamine in hypersaline environments. These results contribute to the knowledge of microbial diversity in hypersaline environments from Baja California Sur, Mexico, and expand upon the available information for uncultured methanogenic archaea in these ecosystems.
Collapse
Affiliation(s)
- José Q García-Maldonado
- CONACYT - Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Antigua Carretera a Progreso Km. 6, Yucatán, 97310, Mexico.
| | - Alejandra Escobar-Zepeda
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Luciana Raggi
- CONACYT - Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Brad M Bebout
- Exobiology Branch, Ames Research Center, National Aeronautics and Space Administration, Moffett Field, CA, USA
| | - Alejandro Sanchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Alejandro López-Cortés
- Laboratorio de Geomicrobiología y Biotecnología, Instituto Politécnico Nacional 195, Centro de Investigaciones Biológicas del Noroeste, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur, 23096, Mexico.
| |
Collapse
|
10
|
Archaea diversity in vegetation gradients from the Brazilian Cerrado. Braz J Microbiol 2018; 49:522-528. [PMID: 29459210 PMCID: PMC6066726 DOI: 10.1016/j.bjm.2017.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/07/2017] [Accepted: 08/25/2017] [Indexed: 02/01/2023] Open
Abstract
We used 16S rRNA sequencing to assess the archaeal communities across a gradient of Cerrado. The archaeal communities differed across the gradient. Crenarcheota was the most abundant phyla, with Nitrosphaerales and NRPJ as the predominant classes. Euryachaeota was also found across the Cerrado gradient, including the classes Metanocellales and Methanomassiliicoccaceae.
Collapse
|