1
|
Gao Q, Ni P, Wang Y, Huo P, Zhang X, Wang S, Xiao F, Li Y, Feng W, Yuan J, Zhang T, Li Q, Fan B, Kan Y, Li Z, Qi Y, Xing J, Yang Z, Cheng H, Gao X, Feng X, Xue M, Liu Y, Luo Y, Lu Z, Zhao Y. DDAH1 promotes neurogenesis and neural repair in cerebral ischemia. Acta Pharm Sin B 2024; 14:2097-2118. [PMID: 38799640 PMCID: PMC11119513 DOI: 10.1016/j.apsb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 05/29/2024] Open
Abstract
Choline acetyltransferase (ChAT)-positive neurons in neural stem cell (NSC) niches can evoke adult neurogenesis (AN) and restore impaired brain function after injury, such as acute ischemic stroke (AIS). However, the relevant mechanism by which ChAT+ neurons develop in NSC niches is poorly understood. Our RNA-seq analysis revealed that dimethylarginine dimethylaminohydrolase 1 (DDAH1), a hydrolase for asymmetric NG,NG-dimethylarginine (ADMA), regulated genes responsible for the synthesis and transportation of acetylcholine (ACh) (Chat, Slc5a7 and Slc18a3) after stroke insult. The dual-luciferase reporter assay further suggested that DDAH1 controlled the activity of ChAT, possibly through hypoxia-inducible factor 1α (HIF-1α). KC7F2, an inhibitor of HIF-1α, abolished DDAH1-induced ChAT expression and suppressed neurogenesis. As expected, DDAH1 was clinically elevated in the blood of AIS patients and was positively correlated with AIS severity. By comparing the results among Ddah1 general knockout (KO) mice, transgenic (TG) mice and wild-type (WT) mice, we discovered that DDAH1 upregulated the proliferation and neural differentiation of NSCs in the subgranular zone (SGZ) under ischemic insult. As a result, DDAH1 may promote cognitive and motor function recovery against stroke impairment, while these neuroprotective effects are dramatically suppressed by NSC conditional knockout of Ddah1 in mice.
Collapse
Affiliation(s)
- Qiming Gao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Pinfei Ni
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yilin Wang
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Peiyun Huo
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaojie Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Sihan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Fuyao Xiao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yixuan Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Feng
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juntao Yuan
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Teng Zhang
- Department of Laboratory Animal, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Qiang Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Boyu Fan
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuhao Kan
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Zhirui Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yimiao Qi
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Junfei Xing
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Zhenghong Yang
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Haixiao Cheng
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xinran Gao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaoyan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Ming Xue
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yang Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yumin Luo
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Zhongbing Lu
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuming Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
2
|
Beiriger J, Habib A, Jovanovich N, Kodavali CV, Edwards L, Amankulor N, Zinn PO. The Subventricular Zone in Glioblastoma: Genesis, Maintenance, and Modeling. Front Oncol 2022; 12:790976. [PMID: 35359410 PMCID: PMC8960165 DOI: 10.3389/fonc.2022.790976] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is a malignant tumor with a median survival rate of 15-16 months with standard care; however, cases of successful treatment offer hope that an enhanced understanding of the pathology will improve the prognosis. The cell of origin in GBM remains controversial. Recent evidence has implicated stem cells as cells of origin in many cancers. Neural stem/precursor cells (NSCs) are being evaluated as potential initiators of GBM tumorigenesis. The NSCs in the subventricular zone (SVZ) have demonstrated similar molecular profiles and share several distinctive characteristics to proliferative glioblastoma stem cells (GSCs) in GBM. Genomic and proteomic studies comparing the SVZ and GBM support the hypothesis that the tumor cells and SVZ cells are related. Animal models corroborate this connection, demonstrating migratory patterns from the SVZ to the tumor. Along with laboratory and animal research, clinical studies have demonstrated improved progression-free survival in patients with GBM after radiation to the ipsilateral SVZ. Additionally, key genetic mutations in GBM for the most part carry regulatory roles in the SVZ as well. An exciting avenue towards SVZ modeling and determining its role in gliomagenesis in the human context is human brain organoids. Here we comprehensively discuss and review the role of the SVZ in GBM genesis, maintenance, and modeling.
Collapse
Affiliation(s)
- Jamison Beiriger
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Nicolina Jovanovich
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Chowdari V. Kodavali
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Lincoln Edwards
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Nduka Amankulor
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Pascal O. Zinn
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| |
Collapse
|
3
|
Rusznák Z, Henskens W, Schofield E, Kim WS, Fu Y. Adult Neurogenesis and Gliogenesis: Possible Mechanisms for Neurorestoration. Exp Neurobiol 2016; 25:103-12. [PMID: 27358578 PMCID: PMC4923354 DOI: 10.5607/en.2016.25.3.103] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/08/2016] [Accepted: 06/08/2016] [Indexed: 12/22/2022] Open
Abstract
The subgranular zone (SGZ) and subventricular zone (SVZ) are developmental remnants of the germinal regions of the brain, hence they retain the ability to generate neuronal progenitor cells in adult life. Neurogenesis in adult brain has an adaptive function because newly produced neurons can integrate into and modify existing neuronal circuits. In contrast to the SGZ and SVZ, other brain regions have a lower capacity to produce new neurons, and this usually occurs via parenchymal and periventricular cell genesis. Compared to neurogenesis, gliogenesis occurs more prevalently in the adult mammalian brain. Under certain circumstances, interaction occurs between neurogenesis and gliogenesis, facilitating glial cells to transform into neuronal lineage. Therefore, modulating the balance between neurogenesis and gliogenesis may present a new perspective for neurorestoration, especially in diseases associated with altered neurogenesis and/or gliogenesis, cell loss, or disturbed homeostasis of cellular constitution. The present review discusses important neuroanatomical features of adult neurogenesis and gliogenesis, aiming to explore how these processes could be modulated toward functional repair of the adult brain.
Collapse
Affiliation(s)
- Zoltán Rusznák
- Neuroscience Research Australia, Sydney, NSW 2031, Australia
| | - Willem Henskens
- Neuroscience Research Australia, Sydney, NSW 2031, Australia.; Prince of Wales Clinical School, UNSW Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Emma Schofield
- Neuroscience Research Australia, Sydney, NSW 2031, Australia
| | - Woojin S Kim
- Neuroscience Research Australia, Sydney, NSW 2031, Australia.; School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - YuHong Fu
- Neuroscience Research Australia, Sydney, NSW 2031, Australia.; School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|