1
|
Zhou YG, Kermansha L, Zhang L, Mohamadi RM. Miniaturized Electrochemical Sensors to Facilitate Liquid Biopsy for Detection of Circulating Tumor Markers. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
2
|
Lee JS, Song J, Kim SO, Kim S, Lee W, Jackman JA, Kim D, Cho NJ, Lee J. Multifunctional hydrogel nano-probes for atomic force microscopy. Nat Commun 2016; 7:11566. [PMID: 27199165 PMCID: PMC4876479 DOI: 10.1038/ncomms11566] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 04/08/2016] [Indexed: 11/10/2022] Open
Abstract
Since the invention of the atomic force microscope (AFM) three decades ago, there have been numerous advances in its measurement capabilities. Curiously, throughout these developments, the fundamental nature of the force-sensing probe-the key actuating element-has remained largely unchanged. It is produced by long-established microfabrication etching strategies and typically composed of silicon-based materials. Here, we report a new class of photopolymerizable hydrogel nano-probes that are produced by bottom-up fabrication with compressible replica moulding. The hydrogel probes demonstrate excellent capabilities for AFM imaging and force measurement applications while enabling programmable, multifunctional capabilities based on compositionally adjustable mechanical properties and facile encapsulation of various nanomaterials. Taken together, the simple, fast and affordable manufacturing route and multifunctional capabilities of hydrogel AFM nano-probes highlight the potential of soft matter mechanical transducers in nanotechnology applications. The fabrication scheme can also be readily utilized to prepare hydrogel cantilevers, including in parallel arrays, for nanomechanical sensor devices.
Collapse
Affiliation(s)
- Jae Seol Lee
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 04107, South Korea
| | - Jungki Song
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 04107, South Korea
| | - Seong Oh Kim
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Seokbeom Kim
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 04107, South Korea
| | - Wooju Lee
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 04107, South Korea
| | - Joshua A. Jackman
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Dongchoul Kim
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 04107, South Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Jungchul Lee
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 04107, South Korea
| |
Collapse
|
3
|
Dinarelli S, Girasole M, Kasas S, Longo G. Nanotools and molecular techniques to rapidly identify and fight bacterial infections. J Microbiol Methods 2016; 138:72-81. [PMID: 26806415 DOI: 10.1016/j.mimet.2016.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 12/22/2022]
Abstract
Reducing the emergence and spread of antibiotic-resistant bacteria is one of the major healthcare issues of our century. In addition to the increased mortality, infections caused by multi-resistant bacteria drastically enhance the healthcare costs, mainly because of the longer duration of illness and treatment. While in the last 20years, bacterial identification has been revolutionized by the introduction of new molecular techniques, the current phenotypic techniques to determine the susceptibilities of common Gram-positive and Gram-negative bacteria require at least two days from collection of clinical samples. Therefore, there is an urgent need for the development of new technologies to determine rapidly drug susceptibility in bacteria and to achieve faster diagnoses. These techniques would also lead to a better understanding of the mechanisms that lead to the insurgence of the resistance, greatly helping the quest for new antibacterial systems and drugs. In this review, we describe some of the tools most currently used in clinical and microbiological research to study bacteria and to address the challenge of infections. We discuss the most interesting advancements in the molecular susceptibility testing systems, with a particular focus on the many applications of the MALDI-TOF MS system. In the field of the phenotypic characterization protocols, we detail some of the most promising semi-automated commercial systems and we focus on some emerging developments in the field of nanomechanical sensors, which constitute a step towards the development of rapid and affordable point-of-care testing devices and techniques. While there is still no innovative technique that is capable of completely substituting for the conventional protocols and clinical practices, many exciting new experimental setups and tools could constitute the basis of the standard testing package of future microbiological tests.
Collapse
Affiliation(s)
- S Dinarelli
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - M Girasole
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - S Kasas
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Physique de la Matière Vivante, Lausanne, Switzerland; Département des Neurosciences Fondamentales, Université de Lausanne, Lausanne, Switzerland
| | - G Longo
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Rome, Italy.
| |
Collapse
|
4
|
Etayash H, Jiang K, Azmi S, Thundat T, Kaur K. Real-time Detection of Breast Cancer Cells Using Peptide-functionalized Microcantilever Arrays. Sci Rep 2015; 5:13967. [PMID: 26434765 PMCID: PMC4593050 DOI: 10.1038/srep13967] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 08/12/2015] [Indexed: 12/26/2022] Open
Abstract
Ligand-directed targeting and capturing of cancer cells is a new approach for detecting circulating tumor cells (CTCs). Ligands such as antibodies have been successfully used for capturing cancer cells and an antibody based system (CellSearch(®)) is currently used clinically to enumerate CTCs. Here we report the use of a peptide moiety in conjunction with a microcantilever array system to selectively detect CTCs resulting from cancer, specifically breast cancer. A sensing microcantilever, functionalized with a breast cancer specific peptide 18-4 (WxEAAYQrFL), showed significant deflection on cancer cell (MCF7 and MDA-MB-231) binding compared to when exposed to noncancerous (MCF10A and HUVEC) cells. The peptide-functionalized microcantilever allowed efficient capture and detection of cancer cells in MCF7 spiked human blood samples emulating CTCs in human blood. A detection limit of 50-100 cancer cells mL(-1) from blood samples was achieved with a capture yield of 80% from spiked whole blood samples. The results emphasize the potential of peptide 18-4 as a novel peptide for capturing and detecting cancer cells in conjunction with nanomechanical cantilever platform. The reported peptide-based cantilever platform represents a new analytical approach that can lead to an alternative to the various detection platforms and can be leveraged to further study CTCs.
Collapse
Affiliation(s)
- Hashem Etayash
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| | - Keren Jiang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| | - Sarfuddin Azmi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Thomas Thundat
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| | - Kamaljit Kaur
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California, 92618-1908, USA
| |
Collapse
|
5
|
Putrino G, Martyniuk M, Keating A, Faraone L, Dell J. On-chip read-out of picomechanical motion under ambient conditions. NANOSCALE 2015; 7:1927-1933. [PMID: 25529834 DOI: 10.1039/c4nr05419a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Monitoring the nanomechanical movement of suspended cantilever structures has found use in applications ranging from biological/chemical sensing to atomic force microscopy. Interrogating these sensors relies on the ability to accurately determine the sub-nanometre movements of the cantilever. Here we investigate a technique based on the combination of integrated silicon photonics and microelectromechanical systems (MEMS) to create an optically resonant microcavity and demonstrate its use for monitoring of the position of cantilevers on the picometer scale under ambient conditions with dynamic range extending over several microns. The technique is interferometric, and we show it to be sufficiently sensitive to measure both the first and second modes of cantilever Brownian motion. We anticipate that application of this technique will provide a physically robust, picometer precision, integrated cantilever movement read-out technology which can take cantilever sensors from laboratory controlled environments into real world conditions, allowing everyday applications.
Collapse
Affiliation(s)
- Gino Putrino
- The University of Western Australia, School of Electrical, Electronic and Computer Engineering, University of Western Australia, Perth, WA 6009, Australia.
| | | | | | | | | |
Collapse
|
6
|
Aghayee S, Benadiba C, Notz J, Kasas S, Dietler G, Longo G. Combination of fluorescence microscopy and nanomotion detection to characterize bacteria. J Mol Recognit 2014; 26:590-5. [PMID: 24089366 DOI: 10.1002/jmr.2306] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 11/11/2022]
Abstract
Antibiotic-resistant pathogens are a major health concern in everyday clinical practice. Because their detection by conventional microbial techniques requires minimally 24 h, some of us have recently introduced a nanomechanical sensor, which can reveal motion at the nanoscale. By monitoring the fluctuations of the sensor, this technique can evidence the presence of bacteria and their susceptibility to antibiotics in less than 1 h. Their amplitude correlates to the metabolism of the bacteria and is a powerful tool to characterize these microorganisms at low densities. This technique is new and calls for an effort to optimize its protocol and determine its limits. Indeed, many questions remain unanswered, such as the detection limits or the correlation between the bacterial distribution on the sensor and the detection's output. In this work, we couple fluorescence microscopy to the nanomotion investigation to determine the optimal experimental protocols and to highlight the effect of the different bacterial distributions on the sensor.
Collapse
Affiliation(s)
- S Aghayee
- Laboratoire de Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
7
|
Longo G, Kasas S. Effects of antibacterial agents and drugs monitored by atomic force microscopy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:230-44. [PMID: 24616433 DOI: 10.1002/wnan.1258] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/06/2014] [Accepted: 01/13/2014] [Indexed: 11/07/2022]
Abstract
Originally invented for topographic imaging, atomic force microscopy (AFM) has evolved into a multifunctional biological toolkit, enabling to measure structural and functional details of cells and molecules. Its versatility and the large scope of information it can yield make it an invaluable tool in any biologically oriented laboratory, where researchers need to perform characterizations of living samples as well as single molecules in quasi-physiological conditions and with nanoscale resolution. In the last 20 years, AFM has revolutionized the characterization of microbial cells by allowing a better understanding of their cell wall and of the mechanism of action of drugs and by becoming itself a powerful diagnostic tool to study bacteria. Indeed, AFM is much more than a high-resolution microscopy technique. It can reconstruct force maps that can be used to explore the nanomechanical properties of microorganisms and probe at the same time the morphological and mechanical modifications induced by external stimuli. Furthermore it can be used to map chemical species or specific receptors with nanometric resolution directly on the membranes of living organisms. In summary, AFM offers new capabilities and a more in-depth insight in the structure and mechanics of biological specimens with an unrivaled spatial and force resolution. Its application to the study of bacteria is extremely significant since it has already delivered important information on the metabolism of these small microorganisms and, through new and exciting technical developments, will shed more light on the real-time interaction of antimicrobial agents and bacteria.
Collapse
Affiliation(s)
- Giovanni Longo
- Ecole Polytechnique Fédérale de Lausanne, LPMV, Lausanne, Switzerland; Istituto Superiore di Sanità, Rome, Italy
| | | |
Collapse
|