1
|
Zhu H, Chu L, Lv H, Ye Q, Juodkazis S, Chen F. Ultrafast Laser Manipulation of In-Lattice Plasmonic Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402840. [PMID: 39023166 PMCID: PMC11481187 DOI: 10.1002/advs.202402840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/04/2024] [Indexed: 07/20/2024]
Abstract
Plasmonic nanoparticles enable manipulation and enhancement of light fields at deep subwavelength scales, leading to structures and devices for diverse applications in optics. Despite hybrid plasmonic materials display remarkable optical properties due to interactions between components in nanoproximity, scalable production of plasmonic nanostructures within a single-crystalline matrix to achieve an ideal plasmon-crystal interface remains challenging. Here, a novel approach is presented to realize efficient manipulation of in-lattice plasmonic nanoparticles. Employing ultrafast-laser-driven plasmonic nanolithography, metallic nanoparticles with controllable morphology are precisely defined in the crystalline lattice of yttrium aluminum garnet (YAG) crystal. Through direct ion implantation, hybrid plasmonic material composed of nanoparticles embedded in a sub-surface amorphous YAG layer is created. Subsequently, femtosecond laser pulses guide formation and reshaping of plasmonic nanoparticles from the amorphous layer into the single-crystalline matrix along direction of light propagation, facilitated by a plasmon-mediated evolution of laser energy deposition. By tailoring resonance modes and optimizing the coupling between structured particle assemblies, a range of applications including polarization-dependent absorption and nonlinearity, controllable photoluminescence, and structural color generation is demonstrated. This research introduces a new approach for fabricating advanced optical materials featuring in-lattice plasmonic nanostructures, paving the way for the development of diverse functional photonic devices.
Collapse
Affiliation(s)
- Han Zhu
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Lingrui Chu
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Hengyue Lv
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Qingchuan Ye
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Saulius Juodkazis
- Optical Sciences CentreFaculty of ScienceEngineering and TechnologySwinburne University of TechnologyHawthornVIC3122Australia
| | - Feng Chen
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| |
Collapse
|
2
|
Ehtesabi S, Richter M, Kupfer S, Gräfe S. Assessing plasmon-induced reactions by a combined quantum chemical-quantum/classical hybrid approach. NANOSCALE 2024; 16:15219-15229. [PMID: 39072363 PMCID: PMC11325215 DOI: 10.1039/d4nr02099e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Plasmon-driven reactions on metal nanoparticles feature rich and complex mechanistic contributions, involving a manifold of electronic states, near-field enhancement, and heat, among others. Although localized surface plasmon resonances are believed to initiate these reactions, the complex reactivity demands deeper exploration. This computational study investigates factors influencing chemical processes on plasmonic nanoparticles, exemplified by protonation of 4-mercaptopyridine (4-MPY) on silver nanoparticles. We examine the impact of molecular binding modes and molecule-molecule interactions on the nanoparticle's surface, near-field electromagnetic effects, and charge-transfer phenomena. Two proton sources were considered at ambient conditions, molecular hydrogen and water. Our findings reveal that the substrate's binding mode significantly affects not only the energy barriers governing the thermodynamics and kinetics of the reaction but also determine the directionality of light-driven charge-transfer at the 4-MPY-Ag interface, pivotal in the chemical contribution involved in the reaction mechanism. In addition, significant field enhancement surrounding the adsorbed molecule is observed (eletromagnetic contribution) which was found insufficient to modify the ground state thermodynamics. Instead, it initiates and amplifies light-driven charge-transfer and thus modulates the excited states' reactivity in the plasmonic-molecular hybrid system. This research elucidates protonation mechanisms on silver surfaces, highlighting the role of molecular-surface and molecule-molecule-surface orientation in plasmon-catalysis.
Collapse
Affiliation(s)
- Sadaf Ehtesabi
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Martin Richter
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Stephan Kupfer
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Stefanie Gräfe
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany.
- Fraunhofer Institute for Applied Optics and Precision Engineering, 07745 Jena, Germany
| |
Collapse
|
3
|
Melendez LV, Nguyen CK, Wilms M, Syed N, Daeneke T, Duffy NW, Fery A, Della Gaspera E, Gómez DE. Probing the Interaction between Individual Metal Nanocrystals and Two-Dimensional Metal Oxides via Electron Energy Loss Spectroscopy. NANO LETTERS 2024; 24:1944-1950. [PMID: 38305174 DOI: 10.1021/acs.nanolett.3c04225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Metal nanoparticles can photosensitize two-dimensional metal oxides, facilitating their electrical connection to devices and enhancing their abilities in catalysis and sensing. In this study, we investigated how individual silver nanoparticles interact with two-dimensional tin oxide and antimony-doped indium oxide using electron energy loss spectroscopy (EELS). The measurement of the spectral line width of the longitudinal plasmon resonance of the nanoparticles in absence and presence of 2D materials allowed us to quantify the contribution of chemical interface damping to the line width. Our analysis reveals that a stronger interaction (damping) occurs with 2D antimony-doped indium oxide due to its highly homogeneous surface. The results of this study offer new insight into the interaction between metal nanoparticles and 2D materials.
Collapse
Affiliation(s)
- Lesly V Melendez
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Chung Kim Nguyen
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Michael Wilms
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Nitu Syed
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
- School of Physics, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Torben Daeneke
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Noel W Duffy
- CSIRO Energy, Clayton South, Victoria 3169, Australia
| | - Andreas Fery
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Bergstr. 66, 01069 Dresden, Germany
- Institute for Physical Chemistry and Polymer Physics, Leibniz Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | | | - Daniel E Gómez
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
4
|
Zheng JR, You EM, Hu YF, Yi J, Tian ZQ. Ultrabroadband hot-hole photodetector based on ultrathin gold film. NANOSCALE 2023; 15:8863-8869. [PMID: 37128810 DOI: 10.1039/d3nr00220a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Hot carriers injected into semiconductor enables below-bandgap photodetection, thus attracting increasing interest. The performance of hot carrier-based device is directly related to the absorptivity of metal. Several strategies such as surface plasmons, metamaterials, and optical cavities are utilized to enhance the weak intrinsic absorption of the metal. However, the detection range is limited by their narrow resonance bandwidth alternatively. Impedance-matched absorbers, whose sheet resistance is equal to half of the free-space impedance (188 Ω), can achieve a wavelength-independent absorptivity up to 50%. Herein, we theoretically design a purely planar hot-hole photodetector based on ultrathin gold film, a new type of metallic impedance-matched absorber. Benefiting both from the efficient absorption and ultrathin nature of the film, we predict that the photoresponsivity of our device can reach 35.7 mA W-1 under zero bias at the wavelength of 1.3 μm, with a full width at half maximum (FWHM) of detection range reaching 1050 nm, setting a new record for the bandwidth of the hot carrier photodetectors. We also demonstrated that the device is robust to the incident angle and can be tuned through the external bias voltage. This work provides a pathway for broadband hot carrier detectors and other hot carrier-based applications.
Collapse
Affiliation(s)
- Jun-Rong Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China.
| | - En-Ming You
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China.
| | - Yuan-Fei Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China.
| | - Jun Yi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (iKKEM), Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (iKKEM), Xiamen 361005, China
| |
Collapse
|
5
|
Lee SA, Kuhs CT, Searles EK, Everitt HO, Landes CF, Link S. d-Band Hole Dynamics in Gold Nanoparticles Measured with Time-Resolved Emission Upconversion Microscopy. NANO LETTERS 2023; 23:3501-3506. [PMID: 37023287 DOI: 10.1021/acs.nanolett.3c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The performance of photocatalysts and photovoltaic devices can be enhanced by energetic charge carriers produced from plasmon decay, and the lifetime of these energetic carriers greatly affects overall efficiencies. Although hot electron lifetimes in plasmonic gold nanoparticles have been investigated, hot hole lifetimes have not been as thoroughly studied in plasmonic systems. Here, we demonstrate time-resolved emission upconversion microscopy and use it to resolve the lifetime and energy-dependent cooling of d-band holes formed in gold nanoparticles by plasmon excitation and by following plasmon decay into interband and then intraband electron-hole pairs.
Collapse
Affiliation(s)
- Stephen A Lee
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Christopher T Kuhs
- U.S. Army DEVCOM Army Research Laboratory-South, Houston, Texas 77005, United States
| | - Emily K Searles
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Henry O Everitt
- U.S. Army DEVCOM Army Research Laboratory-South, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Christy F Landes
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Stephan Link
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
6
|
Melendez LV, Van Embden J, Connell TU, Duffy NW, Gómez DE. Optimal Geometry for Plasmonic Hot-Carrier Extraction in Metal-Semiconductor Nanocrystals. ACS NANO 2023; 17:4659-4666. [PMID: 36801851 DOI: 10.1021/acsnano.2c10892] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Plasmon-induced energy and charge transfer from metal nanostructures hold great potential for harvesting solar energy. Presently, the efficiencies of charge-carrier extraction are still low due to the competitive ultrafast mechanisms of plasmon relaxation. Using single-particle electron energy loss spectroscopy, we correlate the geometrical and compositional details of individual nanostructures to their carrier extraction efficiencies. By removing ensemble effects, we are able to show a direct structure-function relationship that permits the rational design of the most efficient metal-semiconductor nanostructures for energy harvesting applications. In particular, by developing a hybrid system comprising Au nanorods with epitaxially grown CdSe tips, we are able to control and enhance charge extraction. We show that optimal structures can have efficiencies as high as 45%. The quality of the Au-CdSe interface and the dimensions of the Au rod and CdSe tip are shown to be critical for achieving these high efficiencies of chemical interface damping.
Collapse
Affiliation(s)
- Lesly V Melendez
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Joel Van Embden
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Timothy U Connell
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3220, Australia
| | - Noel W Duffy
- CSIRO Energy, Clayton South, VIC 3169, Australia
| | - Daniel E Gómez
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
7
|
Pincelli T, Vasileiadis T, Dong S, Beaulieu S, Dendzik M, Zahn D, Lee SE, Seiler H, Qi Y, Xian RP, Maklar J, Coy E, Mueller NS, Okamura Y, Reich S, Wolf M, Rettig L, Ernstorfer R. Observation of Multi-Directional Energy Transfer in a Hybrid Plasmonic-Excitonic Nanostructure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209100. [PMID: 36482148 DOI: 10.1002/adma.202209100] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Hybrid plasmonic devices involve a nanostructured metal supporting localized surface plasmons to amplify light-matter interaction, and a non-plasmonic material to functionalize charge excitations. Application-relevant epitaxial heterostructures, however, give rise to ballistic ultrafast dynamics that challenge the conventional semiclassical understanding of unidirectional nanometal-to-substrate energy transfer. Epitaxial Au nanoislands are studied on WSe2 with time- and angle-resolved photoemission spectroscopy and femtosecond electron diffraction: this combination of techniques resolves material, energy, and momentum of charge-carriers and phonons excited in the heterostructure. A strong non-linear plasmon-exciton interaction that transfers the energy of sub-bandgap photons very efficiently to the semiconductor is observed, leaving the metal cold until non-radiative exciton recombination heats the nanoparticles on hundreds of femtoseconds timescales. The results resolve a multi-directional energy exchange on timescales shorter than the electronic thermalization of the nanometal. Electron-phonon coupling and diffusive charge-transfer determine the subsequent energy flow. This complex dynamics opens perspectives for optoelectronic and photocatalytic applications, while providing a constraining experimental testbed for state-of-the-art modelling.
Collapse
Affiliation(s)
- Tommaso Pincelli
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Thomas Vasileiadis
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, Poznan, 61-614, Poland
| | - Shuo Dong
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Samuel Beaulieu
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, Talence, F33405, France
| | - Maciej Dendzik
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
- Department of Applied Physics, KTH Royal Institute of Technology, Hannes Alfvéns väg 12, Stockholm, 114 19, Sweden
| | - Daniela Zahn
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Sang-Eun Lee
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Hélène Seiler
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
- Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Yingpeng Qi
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - R Patrick Xian
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
- Department of Statistical Sciences, University of Toronto, 700 University Avenue, Toronto, M5G 1Z5, Canada
| | - Julian Maklar
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University, ul. Wszechnicy Piastowskiej 3, Poznań, PL 61614, Poland
| | - Niclas S Mueller
- Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB30HE, UK
| | - Yu Okamura
- Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Stephanie Reich
- Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Martin Wolf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Laurenz Rettig
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Ralph Ernstorfer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| |
Collapse
|
8
|
Wang X, Gao S, Ma J. Schottky barrier effect on plasmon-induced charge transfer. NANOSCALE 2023; 15:1754-1762. [PMID: 36598756 DOI: 10.1039/d2nr05937a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plasmon-induced charge transfer causes electron-hole spatial separation at the metal-semiconductor interface, which plays a key role in photocatalytic and photovoltaic applications. The Schottky barrier formed at the metal-semiconductor interface can modify the hot carrier dynamics. Taking the Ag-TiO2 system as an example, we have investigated plasmon-induced charge transfer at the Schottky junction using quantum mechanical simulations. We find that the Schottky barrier induced by n-type doping enhances the electron transfer and that induced by p-type doping enhances the hole transfer, which is attributed to the shift of the Fermi energy and the band bending of the Schottky junction at the interface. The Schottky barrier also modifies the layer distribution of hot carriers. In particular, for the system with a large band bending, there exists electron-hole spatial separation inside the TiO2 substrate. Our results reveal the mechanism and dynamics of charge transfer at the Schottky junction, and pave the way for manipulating plasmon-assisted photocatalytic and photovoltaic applications.
Collapse
Affiliation(s)
- Xinxin Wang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Shiwu Gao
- Beijing Computational Science Research Center, Beijing, 100193, China.
| | - Jie Ma
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
9
|
Karna P, Hoque MSB, Thakur S, Hopkins PE, Giri A. Direct Measurement of Ballistic and Diffusive Electron Transport in Gold. NANO LETTERS 2023; 23:491-496. [PMID: 36598434 PMCID: PMC9881161 DOI: 10.1021/acs.nanolett.2c03781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/28/2022] [Indexed: 06/17/2023]
Abstract
We experimentally show that the ballistic length of hot electrons in laser-heated gold films can exceed ∼150 nm, which is ∼50% greater than the previously reported value of 100 nm inferred from pump-probe experiments. We also find that the mean free path of electrons at the peak temperature following interband excitation can reach upward of ∼45 nm, which is higher than the average value of 30 nm predicted from our parameter-free density functional perturbation theory. Our first-principles calculations of electron-phonon coupling reveal that the increase in the mean free path due to interband excitation is a consequence of drastically reduced electron-phonon coupling from lattice stiffening, thus providing the microscopic understanding of our experimental findings.
Collapse
Affiliation(s)
- Pravin Karna
- Department
of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Md Shafkat Bin Hoque
- Department
of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Sandip Thakur
- Department
of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Patrick E. Hopkins
- Department
of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
- Department
of Materials Science and Engineering, University
of Virginia, Charlottesville, Virginia 22904, United States
- Department
of Physics, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Ashutosh Giri
- Department
of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
10
|
Wan X, Pan Y, Xu Y, Liu J, Chen H, Pan R, Zhao Y, Su P, Li Y, Zhang X, Zhang S, Li H, Su D, Weng Y, Zhang J. Ultralong Lifetime of Plasmon-Excited Electrons Realized in Nonepitaxial/Epitaxial Au@CdS/CsPbBr 3 Triple-Heteronanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207555. [PMID: 36353881 DOI: 10.1002/adma.202207555] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Combination of the strong light-absorbing power of plasmonic metals with the superior charge carrier dynamics of halide perovskites is appealing for bio-inspired solar-energy conversion due to the potential to acquire long-lived plasmon-induced hot electrons. However, the direct coupling of these two materials, with Au/CsPbBr3 heteronanocrystals (HNCs) as a prototype, results in severe suppression of plasmon resonances. The present work shows that interfacial engineering is a key knob for overcoming this impediment, based on the creation of a CdS mediate layer between Au and CsPbBr3 forming atomically organized Au-CdS and CdS-CsPbBr3 interfaces by nonepitaxial/epitaxial combined strategy. Transient spectroscopy studies demonstrate that the resulting Au@CdS/CsPbBr3 HNCs generate remarkably long-lived plasmon-induced charge carriers with lifetime up to nanosecond timescale, which is several orders of magnitude longer than those reported for colloidal plasmonic metal-semiconductor systems. Such long-lived carriers extracted from plasmonic antennas enable to drive CO2 photoreduction with efficiency outperforming previously reported CsPbBr3 -based photocatalysts. The findings disclose a new paradigm for achieving much elongated time windows to harness the substantial energy of transient plasmons through realization of synergistic coupling of plasmonic metals and halide perovskites.
Collapse
Affiliation(s)
- Xiaodong Wan
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yue Pan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yanjun Xu
- The Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jia Liu
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hailong Chen
- The Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Rongrong Pan
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yizhou Zhao
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Peiwu Su
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yuemei Li
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiuming Zhang
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Shuping Zhang
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hongbo Li
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Yuxiang Weng
- The Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiatao Zhang
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing, 100081, P. R. China
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
11
|
Joshi G, Saha A, Dutta A, Khatua S. NIR-Driven Photocatalytic Hydrogen Production by Silane- and Tertiary Amine-Bound Plasmonic Gold Nanoprisms. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38815-38823. [PMID: 35980736 DOI: 10.1021/acsami.2c10152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Near-infrared (NIR) photon-driven H2 production from water is regarded as one of the best routes for establishing a sustainable hydrogen-based energy economy. Here, we have developed a gold nanoprism-based photocatalytic assembly, rationally capped with an amine and a silane ligand pair, which exhibited an excellent H2 production rate (146 μL mg-1 h-1) in neutral water while achieving an absolute incident photon-to-hydrogen conversion efficiency of 0.53%. An array of spectroscopic and microscopic experiments unravel that the amine ligand scavenges the hot hole while the silane aids the H2 production via hydrolysis during the photocatalysis on the plasmon surface. This photocatalytic H2 production reactivity can be retained for multiple cycles following the replenishment of amine and silane. Hence, this photocatalytic assembly can set up the template for a large-scale NIR-driven H2 production unit.
Collapse
Affiliation(s)
- Gayatri Joshi
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Avishek Saha
- CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arnab Dutta
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
- National Center of Excellence-CCUS, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| | - Saumyakanti Khatua
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| |
Collapse
|
12
|
Ma J, Wang J, Gao S. Effect of light polarization on plasmon-induced charge transfer. J Chem Phys 2022; 156:244704. [DOI: 10.1063/5.0094444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Plasmonic nanoclusters can strongly absorb light energy and generate hot carriers, which have great potentials in photovoltaic and photocatalytic applications. A vital step for those plasmonic applications is the charge transfer at the metal–semiconductor interface. The effect of the light polarization on the charge transfer has not been theoretically investigated so far. Here, we take the Ag–TiO2 system as a model system to study the polarization effect using time-dependent density functional theory simulations. We find that the charge transfer is sensitive to the light polarization, which has its origin in the polarization-dependent hot carrier distributions. For the linearly polarized light, it shows a sine-square dependence on the polar angle, indicating that the charge transfer response to the linear polarization can be decomposed into components perpendicular and parallel to the interface. We also find that there exists directional charge transfer with a circular light polarization. Our results demonstrate that the light polarization can significantly affect the charge transfer behavior and, thus, offer a new degree of freedom to manipulate the plasmonic applications.
Collapse
Affiliation(s)
- Jie Ma
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Jiayuan Wang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Shiwu Gao
- Beijing Computational Science Research Center, Beijing 100193, China
| |
Collapse
|
13
|
Liu G, Lou Y, Zhao Y, Burda C. Directional Damping of Plasmons at Metal-Semiconductor Interfaces. Acc Chem Res 2022; 55:1845-1856. [PMID: 35696292 DOI: 10.1021/acs.accounts.2c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ConspectusOver the past decade, it has been shown that surface plasmons can enhance photoelectric conversion in photovoltaics, photocatalysis, and other optoelectronic applications through their plasmonic absorption and damping processes. However, plasmonically enhanced devices have yet to routinely match or exceed the efficiencies of traditional semiconductor devices. The effect of plasmonic losses dissipates the absorbed photoenergy mostly into heat and that has hampered the realization of superior next-generation plasmonic optoelectronic devices. Several approaches are being explored to alleviate this situation, including using gain to compensate for the plasmonic losses, designing and synthesizing alternative low-loss plasmonic materials, and reducing activation barriers in plasmonic devices and physical thicknesses of photoabsorber layers to lower the plasmonic losses. A newly proposed plasmon-induced interfacial charge-transfer transition (PIICTT) mechanism has proven to be effective in minimizing energy loss during interfacial charge transfer. The PIICTT leads to a damping of metallic plasmonics by directly generating excitons at the plasmonic metal/semiconductor heteronanostructures. This novel concept has been proven to overcome some of the limitations of electron-transfer inefficiencies, renewing a focus on surface plasmon damping processes with the goal that the plasmonic excitation energies of metal nanoparticles can be more efficiently transferred to the adjacent semiconductor components in the absence and presence of an effective interlayer of carrier-selective blocking layer (CSBL). Several theoretical and experimental studies have concluded that efficient plasmon-induced ultrafast hot-carrier transfer was observed in plasmonic-metal/semiconductor heteronanostructures. The PIICTT mechanism may well be a general phenomenon at plasmonic metal/semiconductor, metal/molecule, semiconductor/semiconductor, and semiconductor/molecule heterointerfaces. Thus, the PIICTT presents a new opportunity to limit energy loss in plasmonic-metal nanostructures and increase device efficiencies based on plasmonic coupling. The nonradiative damping of surface plasmons can impact the energy flux direction and thereby provide a new process beyond light trapping, focusing, and hot carrier creation.In this Account, we draw much attention to the benefits of interfacial plasmonic coupling, highlighting recent pioneering discoveries in which plasmon-induced interfacial charge- and energy-transfer processes enable the generation of hot charge carriers near the plasmonic-metal/semiconductor interfaces. This process is likely to increase the photoelectric conversion efficiency, constituting "plasmonic enhancement". We also discuss recent advances in the dynamics of surface plasmon relaxation and highlight exciting new possibilities for plasmonic metals and their interactions with strongly attached semiconductors to provide directional energy fluxes. While this new research area comes on the heels of much elaborate research on both metal and semiconductor nanomaterials, it provides a subtle but important refinement in understanding the optoelectronic properties of materials with far-reaching consequences from fundamental interface science to technological applications. We hope that this Account will contribute to a more systematic description of interface-coupled plasmonics, both fundamentally and in terms of applications toward the design of plasmonic heterostructured devices.
Collapse
Affiliation(s)
- Guoning Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.,School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Yongbing Lou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yixin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Clemens Burda
- Department of Chemistry, Millis Science Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
14
|
Liu W, Wang Z, Chen Z, Luo J, Li S, Wang L. Algorithm advances and applications of time‐dependent first‐principles simulations for ultrafast dynamics. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wen‐Hao Liu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors Chinese Academy of Sciences Beijing China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
| | - Zhi Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors Chinese Academy of Sciences Beijing China
| | - Zhang‐Hui Chen
- Materials Science Division Lawrence Berkeley National Laboratory Berkeley California USA
| | - Jun‐Wei Luo
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors Chinese Academy of Sciences Beijing China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
- Beijing Academy of Quantum Information Sciences Beijing China
| | - Shu‐Shen Li
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors Chinese Academy of Sciences Beijing China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
- Beijing Academy of Quantum Information Sciences Beijing China
| | - Lin‐Wang Wang
- Materials Science Division Lawrence Berkeley National Laboratory Berkeley California USA
| |
Collapse
|
15
|
Lu Y, Wu LW, Cao W, Huang YF. Finding a Sensitive Surface-Enhanced Raman Spectroscopic Thermometer at the Nanoscale by Examining the Functional Groups. Anal Chem 2022; 94:6011-6016. [PMID: 35377614 DOI: 10.1021/acs.analchem.2c00633] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Temperature variation at the nanoscale is pivotal for the thermodynamics and kinetics of small entities. Surface-enhanced Raman spectroscopy (SERS) is a promising technique for monitoring temperature variations at the nanoscale. A key but ambiguous topic is methods to design a sensitive SERS thermometer. Here, we elucidate that the type of chemical bond of molecular probes and the surface chemical bonding effect are crucial for maximizing the sensitivity of the SERS thermometer, as illustrated by the variable-temperature SERS measurements and quantum chemistry calculations for the frequency-temperature functions of a series of molecules. The sensitivity of the frequency-temperature function follows the sequence of triple bond > double bond > single bond, which is available for both aliphatic and aromatic molecules. The surface chemical bonding effect between the SERS substrate and molecular probe substantially increases the sensitivity of the frequency-temperature function. These results provide universally available guidelines for the rational design of a sensitive SERS thermometer by examining the functional groups of molecular probes.
Collapse
Affiliation(s)
- Yang Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Li-Wen Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Wumei Cao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yi-Fan Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| |
Collapse
|
16
|
Shao W, Liu T. Planar narrowband Tamm plasmon-based hot-electron photodetectors with double distributed Bragg reflectors. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/ac396b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abstract
Hot-electron photodetectors (HE PDs) are attracting a great deal of attention from plasmonic community. Many efficient HE PDs with various plasmonic nanostructures have been demonstrated, but their preparations usually rely on complicated and costly fabrication techniques. Planar HE PDs are viewed as potential candidates of cost-effective and large-area applications, but they likely fail in the simultaneous achievement of outstanding optical absorption and hot-electron collection. To reconcile the contradiction between optical and electrical requirements, herein, we propose a planar HE PD based on optical Tamm plasmons (TPs) consisted of an ultrathin gold film (10 nm) sandwiched between two distributed Bragg reflectors (DBRs). Simulated results show that strong optical absorption (>0.95) in the ultrathin Au film is realized. Electrical calculations show that the predicted peak photo-responsivity of proposed HE PD with double DBRs is over two times larger than that of conventional single-DBR HE PD. Moreover, the planar dual-DBR HE PDs exhibit a narrowband photodetection functionality and sustained performance under oblique incidences. The optical nature associated with TP resonance is elaborated.
Collapse
|
17
|
|
18
|
Linic S, Chavez S, Elias R. Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures. NATURE MATERIALS 2021; 20:916-924. [PMID: 33398116 DOI: 10.1038/s41563-020-00858-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/16/2020] [Indexed: 05/21/2023]
Abstract
Strong interactions of electromagnetic fields with plasmonic nanomaterials have been exploited in various applications. These applications have centred on plasmon-enhanced scattering rates in nearby molecules or plasmon-induced heating. A question that has emerged recently is whether it is possible to use plasmonic nanostructures in a range of hot electron (hole) applications, including photocatalysis, photovoltaics and photodetection. These applications require coupling of a plasmonic component, which amplifies the interaction of light with the material, to an attached non-plasmonic component that extracts this energy in the form of electronic excitations to perform a function. In this Perspective, we discuss recent work in the emerging field of hybrid plasmonics. We focus on fundamental questions related to the nanoscopic flow of energy and excited charge carriers in these multicomponent materials. We also address critical misconceptions, challenges and opportunities that require more attention.
Collapse
|
19
|
Abstract
The size- and shape-controlled enhanced optical response of metal nanoparticles (NPs) is referred to as a localized surface plasmon resonance (LSPR). LSPRs result in amplified surface and interparticle electric fields, which then enhance light absorption of the molecules or other materials coupled to the metallic NPs and/or generate hot carriers within the NPs themselves. When mediated by metallic NPs, photocatalysis can take advantage of this unique optical phenomenon. This review highlights the contributions of quantum mechanical modeling in understanding and guiding current attempts to incorporate plasmonic excitations to improve the kinetics of heterogeneously catalyzed reactions. A range of first-principles quantum mechanics techniques has offered insights, from ground-state density functional theory (DFT) to excited-state theories such as multireference correlated wavefunction methods. Here we discuss the advantages and limitations of these methods in the context of accurately capturing plasmonic effects, with accompanying examples.
Collapse
Affiliation(s)
- John Mark P. Martirez
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Junwei Lucas Bao
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Emily A. Carter
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
- Office of the Chancellor, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
20
|
Basu TS, Diesch S, Hayakawa R, Wakayama Y, Scheer E. Single-charge transport through hybrid core-shell Au-ZnS quantum dots: a comprehensive analysis from a modified energy structure. NANOSCALE 2021; 13:4978-4984. [PMID: 33634301 DOI: 10.1039/d0nr06883g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We examined the modified electronic structure and single-carrier transport of individual hybrid core-shell metal-semiconductor Au-ZnS quantum dots (QDs) using a scanning tunnelling microscope. Nearly monodisperse ultra-small QDs are achieved by a facile wet chemical route. The exact energy structures are evaluated by scanning tunnelling spectroscopy (STS) measurements at 300 mK for the individual nanoobjects starting from the main building block Au nanocrystals (NCs) to the final Au-ZnS QDs. The study divulges the evolution of the energy structure and the charge transport from the single metallic building block core to the core-shell metal-semiconductor QDs. Furthermore, we successfully determined the contributions related to the quantum-confinement-induced excitonic band structure of the ZnS nano-shell and the charging energy of the system by applying a semi-empirical approach considering a double barrier tunnel junction (DBTJ) arrangement. We detect strong conductance peaks in Au-ZnS QDs due to the overlapping of the energy structure of the Au nano-core and the discrete energy states of the semiconductor ZnS nano-shell. Our findings will help in understanding the electronic properties of metal-semiconductor QDs. The outcomes therefore have the potential to fabricate tailored metal-semiconductor QDs for single-electron devices.
Collapse
Affiliation(s)
- Tuhin Shuvra Basu
- Department of Physics, University of Konstanz, 78457 Konstanz, Germany.
| | | | | | | | | |
Collapse
|
21
|
Jia M, Zhang Y, Li Z, Crouch E, Doble S, Avenoso J, Yan H, Ni C, Gundlach L. A versatile strategy for controlled assembly of plasmonic metal/semiconductor hemispherical nano-heterostructure arrays. NANOSCALE 2020; 12:17530-17537. [PMID: 32812597 DOI: 10.1039/d0nr03551c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent advances in manipulating plasmonic properties of metal/semiconductor heterostructures have opened up new avenues for basic research and applications. Herein, we present a versatile strategy for the assembly of arrays of plasmonic metal/semiconductor hemispherical nano-heterostructures (MSHNs) with control over spacing and size of the metal/semiconductor heterostructure array, which can facilitate a wide range of scientific studies and applications. The strategy combines nanosphere lithography for generating the metal core array with solution-based chemical methods for the semiconductor shell that are widely available and kinetically controllable. Periodic arrays of Au/Cu2O and Ag/Cu2O heterostructures are synthesized to demonstrate the approach and highlight the versatility and importance of the tunability of plasmonic properties. The morphology, structure, optical properties, and elemental compositions of the heterostructures were analyzed. This strategy can be important for understanding and manipulating fundamental nanoscale solid-state physical and chemical properties, as well as assembling heterostructures with desirable structure and functionality for applications.
Collapse
Affiliation(s)
- Meng Jia
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jun H, Choi S, Lee JB, Nam YS. Plasmonic Heterostructure Functionalized with a Carbene-Linked Molecular Catalyst for Sustainable and Selective Carbon Dioxide Reduction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33817-33826. [PMID: 32638585 DOI: 10.1021/acsami.0c09517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hybridization of homogeneous catalytic sites with a photoelectrode is an attractive approach to highly selective and tunable photocatalysis using heterogeneous platforms. However, weak and unclear surface chemistry often leads to the dissociation and irregular orientation of catalytic centers, restricting long-term usability with high selectivity. Well-defined and robust ligands that can persist under harsh photocatalytic conditions are essential for the success of hybrid-type photocatalysis. Here, we introduce N-heterocyclic carbene as a durable linker for the immobilization of a Rubpy complex-based CO2 reduction site (cis-dichloro-(4,4'-diphosphonato-Rubpy)(p-cymene) (RuCY)) on a p-type gallium nitride/gold nanoparticle (p-GaN/AuNP) heterostructure. The p-GaN/AuNPs/RuCY photocathode was coupled with a hematite photoanode to drive photoelectrochemical CO2 reduction along with water oxidation. Highly selective CO2 reduction into formates, up to 98.2%, was achieved utilizing plasmonic hot electrons accumulated on AuNPs. The turnover frequency was 1.46 min-1 with a faradic efficiency of 96.8% under visible light illumination (243 mW·cm-2). This work demonstrates that the N-heterocyclic carbene-mediated surface functionalization with homogeneous catalytic sites is a promising approach to increase the sustainability and usability of hybrid catalysts.
Collapse
|
23
|
Wu Q, Zhou L, Schatz GC, Zhang Y, Guo H. Mechanistic Insights into Photocatalyzed H2 Dissociation on Au Clusters. J Am Chem Soc 2020; 142:13090-13101. [DOI: 10.1021/jacs.0c04491] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Qisheng Wu
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Linsen Zhou
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - George C. Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yu Zhang
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
24
|
V Grayli S, Zhang X, MacNab FC, Kamal S, Star D, Leach GW. Scalable, Green Fabrication of Single-Crystal Noble Metal Films and Nanostructures for Low-Loss Nanotechnology Applications. ACS NANO 2020; 14:7581-7592. [PMID: 32401491 DOI: 10.1021/acsnano.0c03466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The confinement of spatially extended electromagnetic waves to nanometer-scale metal structures can be harnessed for application in information processing, energy harvesting, sensing, and catalysis. Metal nanostructures enable negative refractive index, subwavelength resolution imaging, and patterning through engineered metamaterials and promise technologies that will operate in the quantum plasmonics regime. However, the controlled fabrication of high-definition single-crystal subwavelength metal nanostructures has remained a significant hurdle due to the tendency for polycrystalline metal growth using conventional physical vapor deposition methods and the challenges associated with placing solution-grown nanocrystals in desired orientations and locations on a surface to manufacture functional devices. Here, we introduce a scalable and green wet chemical approach to monocrystalline noble metal thin films and nanostructures. The method enables the fabrication of ultrasmooth, epitaxial, single-crystal films of controllable thickness that are ideal for the subtractive manufacture of nanostructures through ion beam milling and additive crystalline nanostructure via lithographic patterning for large-area, single-crystal metasurfaces and high aspect ratio nanowires. Our single-crystal nanostructures demonstrate improved feature quality, pattern transfer yield, reduced optical and resistive losses, and tailored local fields to yield greater optical response and improved stability compared to those of polycrystalline structures-supporting greater local field enhancements and enabling practical advances at the nanoscale.
Collapse
Affiliation(s)
- Sasan V Grayli
- Department of Chemistry, Laboratory for Advanced Spectroscopy and Imaging Research, and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| | - Xin Zhang
- Department of Chemistry, Laboratory for Advanced Spectroscopy and Imaging Research, and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| | - Finlay C MacNab
- Department of Chemistry, Laboratory for Advanced Spectroscopy and Imaging Research, and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| | - Saeid Kamal
- Department of Chemistry, Laboratory for Advanced Spectroscopy and Imaging Research, and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| | - Dmitry Star
- Department of Chemistry, Laboratory for Advanced Spectroscopy and Imaging Research, and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| | - Gary W Leach
- Department of Chemistry, Laboratory for Advanced Spectroscopy and Imaging Research, and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| |
Collapse
|
25
|
Dubi Y, Un IW, Sivan Y. Thermal effects - an alternative mechanism for plasmon-assisted photocatalysis. Chem Sci 2020; 11:5017-5027. [PMID: 34122958 PMCID: PMC8159236 DOI: 10.1039/c9sc06480j] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/20/2020] [Indexed: 12/17/2022] Open
Abstract
Recent experiments claimed that the catalysis of reaction rates in numerous bond-dissociation reactions occurs via the decrease of activation barriers driven by non-equilibrium ("hot") electrons in illuminated plasmonic metal nanoparticles. Thus, these experiments identify plasmon-assisted photocatalysis as a promising path for enhancing the efficiency of various chemical reactions. Here, we argue that what appears to be photocatalysis is much more likely thermo-catalysis, driven by the well-known plasmon-enhanced ability of illuminated metallic nanoparticles to serve as heat sources. Specifically, we point to some of the most important papers in the field, and show that a simple theory of illumination-induced heating can explain the extracted experimental data to remarkable agreement, with minimal to no fit parameters. We further show that any small temperature difference between the photocatalysis experiment and a control experiment performed under external heating is effectively amplified by the exponential sensitivity of the reaction, and is very likely to be interpreted incorrectly as "hot" electron effects.
Collapse
Affiliation(s)
- Yonatan Dubi
- Department of Chemistry, Ben-Gurion University Israel
- Ilse Katz Center for Nanoscale Science and Technology, Ben-Gurion University Israel
| | - Ieng Wai Un
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev Israel
- Joan and Irwin Jacobs TIX Institute, National Tsing Hua University Taiwan
| | - Yonatan Sivan
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev Israel
- Ilse Katz Center for Nanoscale Science and Technology, Ben-Gurion University Israel
| |
Collapse
|
26
|
Huang YF, Wang W, Guo HY, Zhan C, Duan S, Zhan D, Wu DY, Ren B, Tian ZQ. Microphotoelectrochemical Surface-Enhanced Raman Spectroscopy: Toward Bridging Hot-Electron Transfer with a Molecular Reaction. J Am Chem Soc 2020; 142:8483-8489. [DOI: 10.1021/jacs.0c02523] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yi-Fan Huang
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Wang
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hong-Yu Guo
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chao Zhan
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sai Duan
- MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Dongping Zhan
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - De-Yin Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bin Ren
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
27
|
Liu J, Zhang J. Nanointerface Chemistry: Lattice-Mismatch-Directed Synthesis and Application of Hybrid Nanocrystals. Chem Rev 2020; 120:2123-2170. [DOI: 10.1021/acs.chemrev.9b00443] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jia Liu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| |
Collapse
|
28
|
Yu T, Zhang C, Liu H, Liu J, Li K, Qin L, Wu S, Li X. Planar, narrowband, and tunable photodetection in the near-infrared with Au/TiO 2 nanodiodes based on Tamm plasmons. NANOSCALE 2019; 11:23182-23187. [PMID: 31777895 DOI: 10.1039/c9nr07549f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There is increasing interest in hot-electron photodetection due to the extended photoresponse well below the semiconductor band edge. However, the photoresponsivity is extremely low and the metallic nanostructures used to excite surface plasmons (SPs) for improved quantum yield are too complex for practical applications. Here, we show that by exciting Tamm plasmons (TPs), a planar device consisting of a thin metal film of 30 nm on a distributed Bragg reflector (DBR) can absorb ∼93% of the incident light, resulting in a high hot-electron generation that is over 34-fold enhanced compared to that of the reference without the DBR. Besides, the electric field increases with the light penetration depth in the metal, leading to hot-electron generation that is strongly concentrated near the Schottky interface. As a result, the photoresponsivity can be over 30 (6) times larger than that of the reference (conventional grating system). Moreover, the planar device exhibits an easily tunable working wavelength from the visible to the near-infrared, sustained performance under oblique incidences, and a multiband photodetection functionality. The proposed strategy avoids the complicated fabrication of the metallic nanostructures, facilitating the compact, large-area, and low-cost photodetection, biosensing, and photocatalysis applications.
Collapse
Affiliation(s)
- Tong Yu
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China. and Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China.
| | - Cheng Zhang
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China. and Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China.
| | - Huimin Liu
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China. and Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China.
| | - Jianhui Liu
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China. and Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China.
| | - Ke Li
- Wenzheng College of Soochow University, Suzhou 215104, China
| | - Linling Qin
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China. and Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China.
| | - Shaolong Wu
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China. and Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China.
| | - Xiaofeng Li
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China. and Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China.
| |
Collapse
|
29
|
Ma J, Gao S. Plasmon-Induced Electron-Hole Separation at the Ag/TiO 2(110) Interface. ACS NANO 2019; 13:13658-13667. [PMID: 31393703 DOI: 10.1021/acsnano.9b03555] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plasmon-induced electron-hole separation at metal-semiconductor interfaces is an essential step in photovoltaics, photochemistry, and optoelectronics. Despite its importance in fundamental understandings and technological applications, the mechanism and dynamics of the charge separation under plasmon excitations have not been well understood. Here, the plasmon-induced charge separation between a Ag20 nanocluster and a TiO2(110) surface is investigated using time-dependent density functional theory simulations. It is found that the charge separation dynamics consists of two processes: during the first 10 fs an initial charge separation resulting from the plasmon-electron coupling at the interface and a subsequent charge redistribution governed by the sloshing motion of the charge-transfer plasmon. The interplay between the two processes determines the charge separation and leads to the inhomogeneous layer-dependent distribution of hot carriers. The hot electrons are more efficient than the hot holes in the charge injection, resulting in the charge separation. Over 40% of the hot electron-hole pairs are separated spatially from the interface. Finally, the second TiO2 layer receives the most net charges from the Ag nanocluster rather than the interfacial layer. These results reveal the mechanism and dynamics of the charge separation driven by the surface plasmon excitation and have broad implications in plasmonic applications.
Collapse
Affiliation(s)
- Jie Ma
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics and Advanced Research Institute of Multidisciplinary Science , Beijing Institute of Technology , Beijing 100081 , China
| | - Shiwu Gao
- Beijing Computational Science Research Center , Beijing 100193 , China
| |
Collapse
|
30
|
Prakash G, Srivastava RK, Gupta SN, Sood AK. Plasmon-induced efficient hot carrier generation in graphene on gold ultrathin film with periodic array of holes: Ultrafast pump-probe spectroscopy. J Chem Phys 2019; 151:234712. [PMID: 31864269 DOI: 10.1063/1.5117882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Using ultrafast pump-probe reflectivity with a 3.1 eV pump and coherent white light probe (1.1-2.6 eV), we show that graphene on gold nanostructures exhibits a strong coupling to the plasmonic resonances of the ordered lattice hole array, thus injecting a high density of hot carriers in graphene through plasmons. The system being studied is single-layer graphene on an ultrathin film of gold with periodic arrangements of holes showing anomalous transmission. A comparison is made with gold film with and without hole array. By selectively probing transient carrier dynamics in the spectral regions corresponding to plasmonic resonances, we show efficient plasmon induced hot carrier generation in graphene. We also show that due to high electromagnetic field intensities at the edge of the submicron holes, fast decay time (10-100 fs), and short decay length (1 nm) of plasmons, a highly confined density of hot carriers (very close to the edge of the holes) is generated by Landau damping of plasmons within the holey gold film. A contribution to transient decay dynamics due to the diffusion of the initial nonuniform distribution of hot carriers away from the hole edges is observed. Our results are important for future applications of novel hot carrier device concepts where hot carriers with tunable energy can be generated in different graphene regions connected seamlessly.
Collapse
Affiliation(s)
- Gyan Prakash
- Department of Physics, Indian Institute of Science, Bangalore 560 012, India
| | | | | | - A K Sood
- Department of Physics, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
31
|
Zheng F, Wang LW. Ultrafast Hot Carrier Injection in Au/GaN: The Role of Band Bending and the Interface Band Structure. J Phys Chem Lett 2019; 10:6174-6183. [PMID: 31538792 DOI: 10.1021/acs.jpclett.9b02402] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plasmon photochemistry can potentially play a significant role in photocatalysis. To realize this potential, it is critical to enhance the plasmon excited hot carrier transfer and collection. However, the lack of atomistic understanding of the carrier transfer across the interface, especially when the carrier is still "hot", makes it challenging to design a more efficient system. In this work, we apply the nonadiabatic molecular dynamics simulation to study hot carrier dynamics in the system of a Au nanocluster on top of a GaN surface. By setting up the initial excited hole in Au, the carrier transfer from Au to GaN is found to be on a subpicosecond time scale. The hot hole first cools to the band edge of Au d-states while it transfers to GaN. After the hole has cooled down to the band edge of GaN, we find that some of the charges can return back to Au. By applying different external potentials to mimic the Schottky barrier band bending, the returning charge can be reduced, demonstrating the importance of the internal electric field. Finally, with the understanding of the carrier transfer's pathway, we suggest that a ZnO layer between GaN and Au can effectively block the "cold" carrier from returning back to Au but still allow the hot carrier to transfer from Au to GaN.
Collapse
Affiliation(s)
- Fan Zheng
- Joint Center for Artificial Photosynthesis and Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Lin-Wang Wang
- Joint Center for Artificial Photosynthesis and Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
32
|
Zahedian M, Koh ES, Dragnea B. Photothermal microspectroscopy with Bessel-Gauss beams and reflective objectives. APPLIED OPTICS 2019; 58:7352-7358. [PMID: 31674379 DOI: 10.1364/ao.58.007352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Here, we investigate scanning photothermal microspectroscopic imaging of metal nanoparticles with reflective objectives. We show that correction-less collection of spectra from single spherical nanoparticles embedded in a polymer is possible over a wide spectral band, with large depth of focus, long working distance, and high lateral spatial resolution. We posit that these beneficial characteristics are inherent of the Bessel-Gauss character of the focused beam. When compared with other types of optical microscopy, the combination of these characteristics give photothermal imaging with reflective objectives unique appeal for material characterization applications.
Collapse
|
33
|
Ahmadivand A, Gerislioglu B, Ramezani Z. Generation of magnetoelectric photocurrents using toroidal resonances: a new class of infrared plasmonic photodetectors. NANOSCALE 2019; 11:13108-13116. [PMID: 31268076 DOI: 10.1039/c9nr04312h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The detection of photons by plasmonic subwavelength devices underpins spectroscopy, low-power wavelength division multiplexing for short-distance optical communication, imaging, and time-gated distance measurements. In this work, we demonstrate infrared light-sensing using toroidal dipole-resonant plasmonic multipixel meta-atoms. As a key factor, the toroidal dipolar mode is an extremely localized electromagnetic excitation independent of the conventional multipoles. The exquisite behavior of this mode enables significant enhancements in the localized electromagnetic field and absorption cross-section, which boost the field confinement at the metal-dielectric interfaces. The proposed novel approach offers an advanced photodetection of the incident light based on substantial confinement of electromagnetic fields in a tiny spot, giving rise to the generation of hot carriers and a large photocurrent. Using both n- and p-type silicon (Si) substrates, we exploited the free-carrier absorption advantage of p-type Si to devise a high-responsivity device. Our findings show an unprecedented performance for infrared plasmonic photodetectors with low noises, high detectivity and remarkable internal quantum efficiency (IQE). Moreover, the tailored photodetection device provides a significant linear dynamic range of 46 dB and a fast operation speed. Our narrowband infrared light sensing photodevice offers a promising approach for further research studies over the optoelectronic and plasmonic tools and paves a viable route for low-dimensional photonic systems.
Collapse
Affiliation(s)
- Arash Ahmadivand
- Department of Electrical & Computer Engineering, 6100 Main St, Rice University, Houston, Texas 77005, USA.
| | - Burak Gerislioglu
- Department of Physics & Astronomy, 6100 Main St, Rice University, Houston, Texas 77005, USA
| | - Zeinab Ramezani
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, United States.
| |
Collapse
|
34
|
Kumar V, O'Donnell SC, Sang DL, Maggard PA, Wang G. Harnessing Plasmon-Induced Hot Carriers at the Interfaces With Ferroelectrics. Front Chem 2019; 7:299. [PMID: 31139615 PMCID: PMC6527762 DOI: 10.3389/fchem.2019.00299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/12/2019] [Indexed: 11/30/2022] Open
Abstract
This article reviews the scientific understanding and progress of interfacing plasmonic particles with ferroelectrics in order to facilitate the absorption of low-energy photons and their conversion to chemical fuels. The fundamental principles of hot carrier generation and charge injection are described for semiconductors interfaced with metallic nanoparticles and immersed in aqueous solutions, forming a synergistic juncture between the growing fields of plasmonically-driven photochemistry and semiconductor photocatalysis. The underlying mechanistic advantages of a metal-ferroelectric vs. metal-nonferroelectric interface are presented with respect to achieving a more optimal and efficient control over the Schottky barrier height and charge separation. Notable recent examples of using ferroelectric-interfaced plasmonic particles have demonstrated their roles in yielding significantly enhanced photocurrents as well as in the photon-driven production of molecular hydrogen. Notably, plasmonically-driven photocatalysis has been shown to occur for photon wavelengths in the infrared range, which is at lower energies than typically possible for conventional semiconductor photocatalysts. Recent results thus demonstrate that integrated ferroelectric-plasmonic systems represent a potentially transformative concept for use in the field of solar energy conversion.
Collapse
Affiliation(s)
- Vineet Kumar
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
| | - Shaun C O'Donnell
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
| | - Daniel L Sang
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
| | - Paul A Maggard
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
| | - Gufeng Wang
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
35
|
Mao Z, Vang H, Garcia A, Tohti A, Stokes BJ, Nguyen SC. Carrier Diffusion—The Main Contribution to Size-Dependent Photocatalytic Activity of Colloidal Gold Nanoparticles. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00390] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ziliang Mao
- Department of Chemistry and Chemical Biology, University of California Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Hnubci Vang
- Department of Chemistry and Chemical Biology, University of California Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Anthony Garcia
- Department of Chemistry and Chemical Biology, University of California Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Anargul Tohti
- Department of Chemistry and Chemical Biology, University of California Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Benjamin J. Stokes
- Department of Chemistry and Chemical Biology, University of California Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Son C. Nguyen
- Department of Chemistry and Chemical Biology, University of California Merced, 5200 North Lake Road, Merced, California 95343, United States
| |
Collapse
|
36
|
Plasmonic enhanced Cu 2O-Au-BFO photocathodes for solar hydrogen production. Sci Rep 2019; 9:5140. [PMID: 30914703 PMCID: PMC6435794 DOI: 10.1038/s41598-019-41613-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/13/2019] [Indexed: 11/21/2022] Open
Abstract
A novel Cu2O-Au-BFO heterostructure photocathode was constructed which significantly improved the efficiency of photo-generated carrier transfer for solar hydrogen production. A BiFeO3 (BFO) ferroelectric film was synthesized on top of a Cu2O layer by a sputtering process. The BFO layer acted to protect the Cu2O layer from photochemical corrosion, increasing photoelectrochemical (PEC) stability. The p–n heterojunction between Cu2O and BFO layers enhanced the PEC properties by suppressing charge recombination and improved interfacial charge transfer efficiency. When Cu2O and BFO are interfaced by Au Nanoparticles (NPs) the PEC performance was further enhanced, due to hot-electron transfer at the plasmonic resonance. After positive poling, the depolarization field across the whole volume of BFO film drove electrons into the electrolyte solution, inducing a significant anodic shift, Vop of 1.01 V vs. RHE, together with a significantly enhanced photocurrent density of −91 μA/cm2 at 0 V vs. RHE under 100 mW/cm2 illumination. The mechanism was investigated through experimental and theoretivcal calculations.
Collapse
|
37
|
Pensa E, Gargiulo J, Lauri A, Schlücker S, Cortés E, Maier SA. Spectral Screening of the Energy of Hot Holes over a Particle Plasmon Resonance. NANO LETTERS 2019; 19:1867-1874. [PMID: 30789274 DOI: 10.1021/acs.nanolett.8b04950] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plasmonic hot carriers have been recently identified as key elements for photocatalysis at visible wavelengths. The possibility to transfer energy between metal plasmonic nanoparticles and nearby molecules depends not only on carrier generation and collection efficiencies but also on their energy at the metal-molecule interface. Here an energy screening study was performed by monitoring the aniline electro-polymerization reaction via an illuminated 80 nm gold nanoparticle. Our results show that plasmon excitation reduces the energy required to start the polymerization reaction as much as 0.24 eV. Three possible photocatalytic mechanisms were explored: the enhanced near field of the illuminated particle, the temperature increase at the metal-liquid interface, and the excited electron-hole pairs. This last phenomenon is found to be the one contributing most prominently to the observed energy reduction.
Collapse
Affiliation(s)
- Evangelina Pensa
- The Blackett Laboratory, Department of Physics , Imperial College London , London SW7 2AZ , United Kingdom
| | - Julian Gargiulo
- The Blackett Laboratory, Department of Physics , Imperial College London , London SW7 2AZ , United Kingdom
| | - Alberto Lauri
- The Blackett Laboratory, Department of Physics , Imperial College London , London SW7 2AZ , United Kingdom
| | - Sebastian Schlücker
- Chair of Physical Chemistry I, Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE) , University of Duisburg-Essen , Universitätsstraße 5, 45141 Essen , Germany
| | - Emiliano Cortés
- The Blackett Laboratory, Department of Physics , Imperial College London , London SW7 2AZ , United Kingdom
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics , Ludwig-Maximilians-Universität München , 80539 München , Germany
| | - Stefan A Maier
- The Blackett Laboratory, Department of Physics , Imperial College London , London SW7 2AZ , United Kingdom
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics , Ludwig-Maximilians-Universität München , 80539 München , Germany
| |
Collapse
|
38
|
Huang X, Li H, Zhang C, Tan S, Chen Z, Chen L, Lu Z, Wang X, Xiao M. Efficient plasmon-hot electron conversion in Ag-CsPbBr 3 hybrid nanocrystals. Nat Commun 2019; 10:1163. [PMID: 30858372 PMCID: PMC6411736 DOI: 10.1038/s41467-019-09112-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 02/21/2019] [Indexed: 11/30/2022] Open
Abstract
Hybrid metal/semiconductor nano-heterostructures with strong exciton-plasmon coupling have been proposed for applications in hot carrier optoelectronic devices. However, the performance of devices based on this concept has been limited by the poor efficiency of plasmon-hot electron conversion at the metal/semiconductor interface. Here, we report that the efficiency of interfacial hot excitation transfer can be substantially improved in hybrid metal semiconductor nano-heterostructures consisting of perovskite semiconductors. In Ag–CsPbBr3 nanocrystals, both the plasmon-induced hot electron and the resonant energy transfer processes can occur on a time scale of less than 100 fs with quantum efficiencies of 50 ± 18% and 15 ± 5%, respectively. The markedly high efficiency of hot electron transfer observed here can be ascribed to the increased metal/semiconductor coupling compared with those in conventional systems. These findings suggest that hybrid architectures of metal and perovskite semiconductors may be excellent candidates to achieve highly efficient plasmon-induced hot carrier devices. Proposed devices exploiting the strong exciton-plasmon coupling are limited by the low efficiency of hot carrier generation. Here, Huang et al. study the efficiencies of different plasmon-hot electron conversion processes in metal/perovskite semiconductor nanocrystals to address this problem.
Collapse
Affiliation(s)
- Xinyu Huang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Hongbo Li
- College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China.,Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, 211816, Nanjing, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China. .,Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, 230026, Hefei, Anhui, China.
| | - Shijing Tan
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Zhangzhang Chen
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Lan Chen
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Zhenda Lu
- College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China.
| | - Xiaoyong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Min Xiao
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China. .,Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, 230026, Hefei, Anhui, China. .,Department of Physics, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
39
|
Khurgin JB. Hot carriers generated by plasmons: where are they generated and where do they go from there? Faraday Discuss 2019; 214:35-58. [PMID: 30806397 DOI: 10.1039/c8fd00200b] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A physically transparent unified theory of optically- and plasmon-induced hot carrier generation in metals is developed with all of the relevant mechanisms included. Analytical expressions that estimate the carrier generation rates and their locations, energies and directions of motion are obtained. Among the four mechanisms considered: interband absorption, phonon and defect assisted absorption, electron-electron scattering assisted absorption and surface-collision assisted absorption (Landau damping), it is the last one that generates hot carriers, which are most useful for practical applications in photodetection and photocatalysis.
Collapse
|
40
|
Hou X, Luo X, Fan X, Peng Z, Qiu T. Plasmon-coupled charge transfer in WO 3-x semiconductor nanoarrays: toward highly uniform silver-comparable SERS platforms. Phys Chem Chem Phys 2019; 21:2611-2618. [PMID: 30657494 DOI: 10.1039/c8cp07305h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal oxide semiconductors have been explored in surface-enhanced Raman scattering (SERS) active substrates, yet their detection sensitivity and enhancement effects are inferior. What's more, the reported fabrication technique ignored the effects of the electromagnetic mechanisms and was far from satisfactory for practical applications. Herein, we report on a convenient nanotechnique to fabricate large-area hexagon plum-blossom-like WO3-x nanoarrays based on aluminum nanobowl array substrates. Localized surface plasmon resonance can be increased via adjusting the time of tungsten magnetron sputtering with H2 annealing treatment. The introduction of a double-switch experiment demonstrates that localized surface plasmon-coupled photoinduced charge transfer can not only increase SERS enhancement comparable to similar silver nanostructures but also implement a low limit of detection below 10-9 M. A triple-switch experiment offers specific rules in the molecular detection of WO3-x semiconductors and important guidance for the fabrication of SERS-active semiconducting platforms.
Collapse
Affiliation(s)
- Xiangyu Hou
- School of Physics, Southeast University, Nanjing, 211189, P. R. China.
| | | | | | | | | |
Collapse
|
41
|
Wang YH, Wei J, Radjenovic P, Tian ZQ, Li JF. In Situ Analysis of Surface Catalytic Reactions Using Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. Anal Chem 2019; 91:1675-1685. [PMID: 30629409 DOI: 10.1021/acs.analchem.8b05499] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Electrochemistry and heterogeneous catalysis continue to attract enormous interest. In situ surface analysis is a dynamic research field capable of elucidating the catalytic mechanisms of reaction processes. Shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) is a nondestructive technique that has been cumulatively used to probe and analyze catalytic-reaction processes, providing important spectral evidence about reaction intermediates produced on catalyst surfaces. In this perspective, we review recent electrochemical- and heterogeneous-catalysis studies using SHINERS, highlight its advantages, summarize the flaws and prospects for improving the SHINERS technique, and give insight into its future research directions.
Collapse
Affiliation(s)
- Yao-Hui Wang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Jie Wei
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Petar Radjenovic
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Zhong-Qun Tian
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Jian-Feng Li
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China.,Shenzhen Research Institute of Xiamen University , Shenzhen 518000 , China
| |
Collapse
|
42
|
|
43
|
Shao W, Yang Q, Zhang C, Wu S, Li X. Planar dual-cavity hot-electron photodetectors. NANOSCALE 2019; 11:1396-1402. [PMID: 30604808 DOI: 10.1039/c8nr05369c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hot-electron photodetectors (HE PDs) are attracting increasing interests. However, the nanostructured HE PDs are fabricated via complicated and costly techniques, while the planar counterparts can hardly achieve outstanding photon absorption and hot-electron collection simultaneously. To address the incompatibility in optical and electrical domains, herein, we propose an HE PD based on planar dual cavities (i.e., DC-HE PD) one each for photon absorption and triple Schottky junctions for carrier collection. Optoelectronic simulation demonstrates that the resonant wavelength and the absorption efficiency of the device can be manipulated conveniently by tailoring the planar thickness. Compared with the single-cavity system, the absorption efficiency of the DC-HE PD with the multi-junction configuration doubled (∼100%) and the responsivity tripled (∼2 mA W-1). The high-performance optoelectronic responses are shown to be sustained over a wide range of incident angles. The detailed physical property, namely, the coupled-cavity nature and the detailed analysis of the hot electron dynamics are presented.
Collapse
Affiliation(s)
- Weijia Shao
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China.
| | | | | | | | | |
Collapse
|
44
|
Sivan Y, Un IW, Dubi Y. Assistance of metal nanoparticles in photocatalysis – nothing more than a classical heat source. Faraday Discuss 2019; 214:215-233. [DOI: 10.1039/c8fd00147b] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We show that the number of high energy non-thermal electrons in a metal under CW illumination is very low but much higher than in thermal equilibrium, implying that faster chemical reactions reported previously are extremely likely to originate from a pure thermal effect.
Collapse
Affiliation(s)
- Yonatan Sivan
- Unit of Electro-Optics Engineering
- Ben-Gurion University
- Israel
- Ilse Katz Center for Nanoscale Science and Technology
- Ben-Gurion University
| | - Ieng Wai Un
- Unit of Electro-Optics Engineering
- Ben-Gurion University
- Israel
- Joan and Irwin Jacobs TIX Institute
- National Tsing Hua University
| | - Yonatan Dubi
- Department of Chemistry
- Ben-Gurion University
- Israel
- Ilse Katz Center for Nanoscale Science and Technology
- Ben-Gurion University
| |
Collapse
|
45
|
Zhou W, Jiang D, Xue J, Li X. Selective growth of palladium nanocrystals on the (100) facets of truncated octahedral Cu2O for UV plasmonic photocatalysis. CrystEngComm 2019. [DOI: 10.1039/c8ce01697f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pd nanocrystals preferentially grown on the (100) facets of truncated octahedral Cu2O demonstrate a ca. 20-fold photocatalytic activity enhancement under UV light irradiation attributed to hot electron effects.
Collapse
Affiliation(s)
- Wei Zhou
- The State Key Laboratory for Oxo Synthesis and Selective Oxidation and Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Suzhou
- China
| | - Denghui Jiang
- Centre for Mineral Materials
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
| | - Jianbin Xue
- The State Key Laboratory for Oxo Synthesis and Selective Oxidation and Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Suzhou
- China
| | - Xinheng Li
- The State Key Laboratory for Oxo Synthesis and Selective Oxidation and Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Suzhou
- China
| |
Collapse
|
46
|
Dubi Y, Sivan Y. "Hot" electrons in metallic nanostructures-non-thermal carriers or heating? LIGHT, SCIENCE & APPLICATIONS 2019; 8:89. [PMID: 31645933 PMCID: PMC6804576 DOI: 10.1038/s41377-019-0199-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 08/18/2019] [Accepted: 09/07/2019] [Indexed: 05/06/2023]
Abstract
Understanding the interplay between illumination and the electron distribution in metallic nanostructures is a crucial step towards developing applications such as plasmonic photocatalysis for green fuels, nanoscale photodetection and more. Elucidating this interplay is challenging, as it requires taking into account all channels of energy flow in the electronic system. Here, we develop such a theory, which is based on a coupled Boltzmann-heat equations and requires only energy conservation and basic thermodynamics, where the electron distribution, and the electron and phonon (lattice) temperatures are determined uniquely. Applying this theory to realistic illuminated nanoparticle systems, we find that the electron and phonon temperatures are similar, thus justifying the (classical) single-temperature models. We show that while the fraction of high-energy "hot" carriers compared to thermalized carriers grows substantially with illumination intensity, it remains extremely small (on the order of 10-8). Importantly, most of the absorbed illumination power goes into heating rather than generating hot carriers, thus rendering plasmonic hot carrier generation extremely inefficient. Our formulation allows for the first time a unique quantitative comparison of theory and measurements of steady-state electron distributions in metallic nanostructures.
Collapse
Affiliation(s)
- Yonatan Dubi
- Department of Chemistry and the Ilse Katz Center for nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yonatan Sivan
- School of Electrical and Computer Engineering and the Ilse Katz Center for nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
47
|
Xiao Q, Connell TU, Cadusch JJ, Roberts A, Chesman ASR, Gómez DE. Hot-Carrier Organic Synthesis via the Near-Perfect Absorption of Light. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03486] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Qi Xiao
- CSIRO Manufacturing, Bayview Ave, Clayton, VIC 3168, Australia
| | | | - Jasper J. Cadusch
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ann Roberts
- School of Physics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Anthony S. R. Chesman
- CSIRO Manufacturing, Bayview Ave, Clayton, VIC 3168, Australia
- Melbourne Centre for Nanofabrication, Australian National Fabrication Facility, Clayton, VIC 3168, Australia
| | - Daniel E. Gómez
- RMIT University, Melbourne, VIC 3000, Australia
- Melbourne Centre for Nanofabrication, Australian National Fabrication Facility, Clayton, VIC 3168, Australia
| |
Collapse
|
48
|
Cheng J, Li Y, Plissonneau M, Li J, Li J, Chen R, Tang Z, Pautrot-d'Alençon L, He T, Tréguer-Delapierre M, Delville MH. Plasmon-induced hot electron transfer in AgNW@TiO 2@AuNPs nanostructures. Sci Rep 2018; 8:14136. [PMID: 30237426 PMCID: PMC6148267 DOI: 10.1038/s41598-018-32510-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/10/2018] [Indexed: 11/21/2022] Open
Abstract
Compared to the limited absorption cross-section of conventional photoactive TiO2 nanoparticles (NPs), plasmonic metallic nanoparticles can efficiently convert photons from an extended spectrum range into energetic carriers because of the localized surface plasmon resonance (LSPR). Using these metal oxide semiconductors as shells for plasmonic nanoparticles (PNPs) that absorb visible light could extend their applications. The photophysics of such systems is performed using transient absorption measurements and steady extinction simulations and shows that the plasmonic energy transfer from the AgNWs core to the TiO2 shell results from a hot carrier injection process. Lifetimes obtained from photobleaching decay dynamics suggest that (i) the presence of gold nanoparticles (AuNPs) in AgNWs@TiO2@AuNPs systems can further promote the hot carrier transfer process via plasmonic coupling effects and (ii) the carrier dynamics is greatly affected by the shell thickness of TiO2. This result points out a definite direction to design appropriate nanostructures with tunable charge transfer processes toward photo-induced energy conversion applications.
Collapse
Affiliation(s)
- Jiaji Cheng
- CNRS, Univ. Bordeaux, ICMCB, UMR 5026, F-33608, Pessac, France.,College of Physics and Energy, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Yiwen Li
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.,The Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | | | - Jiagen Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Junzi Li
- College of Physics and Energy, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Rui Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zikang Tang
- The Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | | | - Tingchao He
- College of Physics and Energy, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | | | | |
Collapse
|
49
|
McClure JP, Grew KN, Baker DR, Gobrogge E, Das N, Chu D. Harvesting resonantly-trapped light for small molecule oxidation reactions at the Au/α-Fe 2O 3 interface. NANOSCALE 2018; 10:7833-7850. [PMID: 29664495 DOI: 10.1039/c8nr01330f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plasmonic metal nanoparticles (NPs) extend the overall light absorption of semiconductor materials. However, it is not well understood how coupling metal NPs to semiconductors alters the photo-electrochemical activity of small molecule oxidation (SMO) reactions. Different photo-anode electrodes comprised of Au NPs and α-Fe2O3 are designed to elucidate how the coupling plays not only a role in the water oxidation reaction (WO) but also performs for different SMO reactions. In this regard, Au NPs are inserted at specific regions within and/or on α-Fe2O3 layers created with a sequential electron beam evaporation method and multiple annealing treatments. The SMO and WO reactions are probed with broad-spectrum irradiation experiments with an emphasis on light-driven enhancements above and below the α-Fe2O3 band gap. Thin films of α-Fe2O3 supported on a gold back reflective layer resonantly-traps incident light leading to enhanced SMO/WO conversion efficiencies at high overpotential (η) for above band-gap excitations with no SMO activity observed at low η. In contrast, a substantial increase in the light-driven SMO activity is observed at low η, as well as for below band-gap excitations when sufficiently thin α-Fe2O3 films are decorated with Au NPs at the solution-electrode interface. The enhanced photo-catalytic activity is correlated with increased surface oxygen content (hydroxyl groups) at the Au/α-Fe2O3 interface, as well as simulated volume-integrated near-field enhancements over select regions of the Au/α-Fe2O3 interface providing an important platform for future SMO/WO photo-electrocatalyst development.
Collapse
Affiliation(s)
- Joshua P McClure
- U.S. Army Research Laboratory, Adelphi, MD, 2800 Powder Mill Road, Adelphi, MD 20783, USA.
| | | | | | | | | | | |
Collapse
|
50
|
DuChene JS, Tagliabue G, Welch AJ, Cheng WH, Atwater HA. Hot Hole Collection and Photoelectrochemical CO 2 Reduction with Plasmonic Au/p-GaN Photocathodes. NANO LETTERS 2018; 18:2545-2550. [PMID: 29522350 DOI: 10.1021/acs.nanolett.8b00241] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Harvesting nonequilibrium hot carriers from plasmonic-metal nanostructures offers unique opportunities for driving photochemical reactions at the nanoscale. Despite numerous examples of hot electron-driven processes, the realization of plasmonic systems capable of harvesting hot holes from metal nanostructures has eluded the nascent field of plasmonic photocatalysis. Here, we fabricate gold/p-type gallium nitride (Au/p-GaN) Schottky junctions tailored for photoelectrochemical studies of plasmon-induced hot-hole capture and conversion. Despite the presence of an interfacial Schottky barrier to hot-hole injection of more than 1 eV across the Au/p-GaN heterojunction, plasmonic Au/p-GaN photocathodes exhibit photoelectrochemical properties consistent with the injection of hot holes from Au nanoparticles into p-GaN upon plasmon excitation. The photocurrent action spectrum of the plasmonic photocathodes faithfully follows the surface plasmon resonance absorption spectrum of the Au nanoparticles and open-circuit voltage studies demonstrate a sustained photovoltage during plasmon excitation. Comparison with Ohmic Au/p-NiO heterojunctions confirms that the vast majority of hot holes generated via interband transitions in Au are sufficiently hot to inject above the 1.1 eV interfacial Schottky barrier at the Au/p-GaN heterojunction. We further investigated plasmon-driven photoelectrochemical CO2 reduction with the Au/p-GaN photocathodes and observed improved selectivity for CO production over H2 evolution in aqueous electrolytes. Taken together, our results offer experimental validation of photoexcited hot holes more than 1 eV below the Au Fermi level and demonstrate a photoelectrochemical platform for harvesting hot carriers to drive solar-to-fuel energy conversion.
Collapse
|