1
|
Wu M, Su H, Zhao M. The Role of α-Synuclein in Methamphetamine-Induced Neurotoxicity. Neurotox Res 2021; 39:1007-1021. [PMID: 33555547 DOI: 10.1007/s12640-021-00332-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/19/2020] [Accepted: 01/06/2021] [Indexed: 12/28/2022]
Abstract
Methamphetamine (METH), a highly addictive psychostimulant, is the second most widely used illicit drug. METH produces damage dopamine neurons and apoptosis via multiple inter-regulating mechanisms, including dopamine overload, hyperthermia, oxidative stress, mitochondria dysfunction, endoplasmic reticulum stress, protein degradation system dysfunction, and neuroinflammation. Increasing evidence suggests that chronic METH abuse is associated with neurodegenerative changes in the human brain and an increased risk of Parkinson's disease (PD). METH use and PD may share some common steps in causing neurotoxicity. Accumulation of α-synuclein, a presynaptic protein, is the pathological hallmark of PD. Intriguingly, α-synuclein upregulation and aggregation are also found in dopaminergic neurons in the substantia nigra in chronic METH users. This suggests α-synuclein may play a role in METH-induced neurotoxicity. The mechanism of α-synuclein cytotoxicity in PD has attracted considerable attention; however, how α-synuclein affects METH-induced neurotoxicity has not been reviewed. In this review, we summarize the relationship between METH use and PD, interdependent mechanisms that are involved in METH-induced neurotoxicity and the significance of α-synuclein upregulation in response to METH use. The identification of α-synuclein overexpression and aggregation as a contributor to METH-induced neurotoxicity may provide a novel therapeutic target for the treatment of the deleterious effect of this drug and drug addiction.
Collapse
Affiliation(s)
- Manqing Wu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.
- Shanghai Clinical Research Center for Mental Health, Shanghai, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Flack A, Persons AL, Kousik SM, Celeste Napier T, Moszczynska A. Self-administration of methamphetamine alters gut biomarkers of toxicity. Eur J Neurosci 2018; 46:1918-1932. [PMID: 28661099 DOI: 10.1111/ejn.13630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 12/13/2022]
Abstract
Methamphetamine (METH) is a highly abused psychostimulant that is associated with an increased risk for developing Parkinson's disease (PD). This enhanced vulnerability likely relates to the toxic effects of METH that overlap with PD pathology, for example, aberrant functioning of α-synuclein and parkin. In PD, peripheral factors are thought to contribute to central nervous system (CNS) degeneration. For example, α-synuclein levels in the enteric nervous system (ENS) are elevated, and this precedes the onset of motor symptoms. It remains unclear whether neurons of the ENS, particularly catecholaminergic neurons, exhibit signs of METH-induced toxicity as seen in the CNS. The aim of this study was to determine whether self-administered METH altered the levels of α-synuclein, parkin, tyrosine hydroxylase (TH), and dopamine-β-hydroxylase (DβH) in the myenteric plexus of the distal colon ENS. Young adult male Sprague-Dawley rats self-administered METH for 3 h per day for 14 days and controls were saline-yoked. Distal colon tissue was collected at 1, 14, or 56 days after the last operant session. Levels of α-synuclein were increased, while levels of parkin, TH, and DβH were decreased in the myenteric plexus in the METH-exposed rats at 1 day following the last operant session and returned to the control levels after 14 or 56 days of forced abstinence. The changes were not confined to neurofilament-positive neurons. These results suggest that colon biomarkers may provide early indications of METH-induced neurotoxicity, particularly in young chronic METH users who may be more susceptible to progression to PD later in life.
Collapse
Affiliation(s)
- Amanda Flack
- Department of Pharmaceutical Sciences, Wayne State University, Eugene Applebaum College of Pharmaceutical Sciences, Detroit, MI, 48201, USA
| | - Amanda L Persons
- Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, USA.,Department of Pharmacology, Rush University Medial Center, Chicago, IL, USA
| | - Sharanya M Kousik
- Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, USA.,Department of Pharmacology, Rush University Medial Center, Chicago, IL, USA
| | - T Celeste Napier
- Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, USA.,Department of Pharmacology, Rush University Medial Center, Chicago, IL, USA.,Department of Psychiatry, Rush University Medical Center, Chicago, IL, USA
| | - Anna Moszczynska
- Department of Pharmaceutical Sciences, Wayne State University, Eugene Applebaum College of Pharmaceutical Sciences, Detroit, MI, 48201, USA
| |
Collapse
|