1
|
Aso M, Ohta C, Liu Y, Sasaki-Tabata K, Abe-Sadamatsu Y, Gatanaga C, Wang Y, Pei Y, Gao G, Katayama T, Taniguchi Y, Sasaki S. Design and synthesis of an environment-sensitive 3-methyleneisoindolin-1-one fluorophore for labeling DNA-interacting proteins. Org Biomol Chem 2024; 22:7231-7239. [PMID: 39163382 DOI: 10.1039/d4ob01036a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
We designed 6-dimethylamino 3-methyleneisoindolin-1-one as an environment-sensitive fluorophore, examining its applications for protein labeling. Synthesized 3-methyleneisoindolin-1-one exhibits solvatochromic fluorescence (λemmax; 472 nm in 2-PrOH, 512 nm in H2O). A positive linear dependence between λemmax and solvent dielectric constant (DC), as well as between Stokes shift and DC, and a negative correlation between fluorescence quantum yield and DC are observed in protic solvents. These properties are similar to those of the oxygen isosteric fluorophore, 4-dimethylaminophthalimide, a slovatochromic fluorophore utilized for labeling oligodeoxynucleotides (ODNs) and peptides. Notably, fluorescence intensity of 3-methyleneisoindolin-1-one is higher than the phthalimide in protic solvents used in this study. The 3-methyleneisoindolin-1-one demonstrated the higher stability in pH 8 solution than in pH 6 solution in contrast to the stability profile of the phthalimide, which was stable at pH 6 but was hydrolyzed at pH 8. We also synthesized an o-keto benzaldehyde derivative that converts a primary amine to 6-dimethylamino 3-methyleneisoindolin-1-one under biocompatible conditions and introduced it into ODNs for turn-on fluorescent protein labeling. The synthesized ODN with a protein-binding sequence of Escherichia coli DnaA was employed to modify the DNA-binding domain of DnaA, and the fluorescent properties of the modified protein were investigated.
Collapse
Affiliation(s)
- Mariko Aso
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Chiyoe Ohta
- Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yixuan Liu
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Kaori Sasaki-Tabata
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Yukiko Abe-Sadamatsu
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Chiemi Gatanaga
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Yichun Wang
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Yang Pei
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Guosheng Gao
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Tsutomu Katayama
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Yosuke Taniguchi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Shigeki Sasaki
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7, Huis Ten Bosche Machi, Sasebo 859-3298, Japan
| |
Collapse
|
2
|
Hillman A, Hyland SN, Wodzanowski KA, Moore DL, Ratna S, Jemas A, Sandles LMD, Chaya T, Ghosh A, Fox JM, Grimes CL. Minimalist Tetrazine N-Acetyl Muramic Acid Probes for Rapid and Efficient Labeling of Commensal and Pathogenic Peptidoglycans in Living Bacterial Culture and During Macrophage Invasion. J Am Chem Soc 2024; 146:6817-6829. [PMID: 38427023 PMCID: PMC10941766 DOI: 10.1021/jacs.3c13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
N-Acetyl muramic acid (NAM) probes containing alkyne or azide groups are commonly used to investigate aspects of cell wall synthesis because of their small size and ability to incorporate into bacterial peptidoglycan (PG). However, copper-catalyzed alkyne-azide cycloaddition (CuAAC) reactions are not compatible with live cells, and strain-promoted alkyne-azide cycloaddition (SPAAC) reaction rates are modest and, therefore, not as desirable for tracking the temporal alterations of bacterial cell growth, remodeling, and division. Alternatively, the tetrazine-trans-cyclooctene ligation (Tz-TCO), which is the fastest known bioorthogonal reaction and not cytotoxic, allows for rapid live-cell labeling of PG at biologically relevant time scales and concentrations. Previous work to increase reaction kinetics on the PG surface by using tetrazine probes was limited because of low incorporation of the probe. Described here are new approaches to construct a minimalist tetrazine (Tz)-NAM probe utilizing recent advancements in asymmetric tetrazine synthesis. This minimalist Tz-NAM probe was successfully incorporated into pathogenic and commensal bacterial PG where fixed and rapid live-cell, no-wash labeling was successful in both free bacterial cultures and in coculture with human macrophages. Overall, this probe allows for expeditious labeling of bacterial PG, thereby making it an exceptional tool for monitoring PG biosynthesis for the development of new antibiotic screens. The versatility and selectivity of this probe will allow for real-time interrogation of the interactions of bacterial pathogens in a human host and will serve a broader utility for studying glycans in multiple complex biological systems.
Collapse
Affiliation(s)
- Ashlyn
S. Hillman
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Stephen N. Hyland
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Kimberly A. Wodzanowski
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - DeVonte L. Moore
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Sushanta Ratna
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Andrew Jemas
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Liam-Michael D. Sandles
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Timothy Chaya
- Department
of Plant and Soil Sciences, University of
Delaware, Newark, Delaware 19716, United States
| | - Arit Ghosh
- Delaware
Biotechnology Institute, UDEL Flow Cytometry Core, University of Delaware, Newark, Delaware 19716, United States
| | - Joseph M. Fox
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | - Catherine L. Grimes
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
- Department
of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
3
|
Abatematteo FS, Majellaro M, Montsch B, Prieto-Díaz R, Niso M, Contino M, Stefanachi A, Riganti C, Mangiatordi GF, Delre P, Heffeter P, Sotelo E, Abate C. Development of Fluorescent 4-[4-(3 H-Spiro[isobenzofuran-1,4'-piperidin]-1'-yl)butyl]indolyl Derivatives as High-Affinity Probes to Enable the Study of σ Receptors via Fluorescence-Based Techniques. J Med Chem 2023; 66:3798-3817. [PMID: 36919956 PMCID: PMC10041534 DOI: 10.1021/acs.jmedchem.2c01227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Sigma (σ) receptor subtypes, σ1 and σ2, are targets of wide pharmaceutical interest. The σ2 receptor holds promise for the development of diagnostics and therapeutics against cancer and Alzheimer's disease. Nevertheless, little is known about the mechanisms activated by the σ2 receptor. To contribute to the exploitation of its therapeutic potential, we developed novel specific fluorescent ligands. Indole derivatives bearing the N-butyl-3H-spiro[isobenzofuran-1,4'-piperidine] portion were functionalized with fluorescent tags. Nanomolar-affinity fluorescent σ ligands, spanning from green to red to near-infrared emission, were obtained. Compounds 19 (σ pan affinity) and 29 (σ2 selective), which displayed the best compromise between pharmacodynamic and photophysical properties, were investigated in flow cytometry, confocal, and live cell microscopy, demonstrating their specificity for the σ2 receptor. To the best of our knowledge, these are the first red-emitting fluorescent σ2 ligands, validated as powerful tools for the study of σ2 receptors via fluorescence-based techniques.
Collapse
Affiliation(s)
| | - Maria Majellaro
- Centro Singular Investigación Quimica Biologica e Materiales Moleculares (CIQUS), Departamento de Quimica Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Bianca Montsch
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Rubén Prieto-Díaz
- Centro Singular Investigación Quimica Biologica e Materiales Moleculares (CIQUS), Departamento de Quimica Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mauro Niso
- Dipartimento di Farmacia-Scienze del Farmaco, Via Orabona, 4, 79125 Bari, Italy
| | | | - Angela Stefanachi
- Dipartimento di Farmacia-Scienze del Farmaco, Via Orabona, 4, 79125 Bari, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
| | | | - Pietro Delre
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Cristallografia, Via Amendola, 70126 Bari, Italy
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Eddy Sotelo
- Centro Singular Investigación Quimica Biologica e Materiales Moleculares (CIQUS), Departamento de Quimica Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Via Orabona, 4, 79125 Bari, Italy
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Cristallografia, Via Amendola, 70126 Bari, Italy
| |
Collapse
|
4
|
Mehta R, Rivera DD, Reilley DJ, Tan D, Thomas PW, Hinojosa A, Stewart AC, Cheng Z, Thomas CA, Crowder MW, Alexandrova AN, Fast W, Que EL. Visualizing the Dynamic Metalation State of New Delhi Metallo-β-lactamase-1 in Bacteria Using a Reversible Fluorescent Probe. J Am Chem Soc 2021; 143:8314-8323. [PMID: 34038127 DOI: 10.1021/jacs.1c00290] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
New Delhi metallo-β-lactamase (NDM) grants resistance to a broad spectrum of β-lactam antibiotics, including last-resort carbapenems, and is emerging as a global antibiotic resistance threat. Limited zinc availability adversely impacts the ability of NDM-1 to provide resistance, but a number of clinical variants have emerged that are more resistant to zinc scarcity (e.g., NDM-15). To provide a novel tool to better study metal ion sequestration in host-pathogen interactions, we describe the development of a fluorescent probe that reports on the dynamic metalation state of NDM within Escherichia coli. The thiol-containing probe selectively coordinates the dizinc metal cluster of NDM and results in a 17-fold increase in fluorescence intensity. Reversible binding enables competition and time-dependent studies that reveal fluorescence changes used to detect enzyme localization, substrate and inhibitor engagement, and changes to metalation state through the imaging of live E. coli using confocal microscopy. NDM-1 is shown to be susceptible to demetalation by intracellular and extracellular metal chelators in a live-cell model of zinc dyshomeostasis, whereas the NDM-15 metalation state is shown to be more resistant to zinc flux. The development of this reversible turn-on fluorescent probe for the metalation state of NDM provides a new tool for monitoring the impact of metal ion sequestration by host defense mechanisms and for detecting inhibitor-target engagement during the development of therapeutics to counter this resistance determinant.
Collapse
Affiliation(s)
- Radhika Mehta
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Dann D Rivera
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - David J Reilley
- Department of Chemistry and Biochemistry, University of California-Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Dominique Tan
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Pei W Thomas
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - Abigail Hinojosa
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Alesha C Stewart
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - Zishuo Cheng
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Caitlyn A Thomas
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Michael W Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California-Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Walter Fast
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - Emily L Que
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street Stop A5300, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Chen X, Zhong C, Lu Y, Yao M, Guan Z, Chen C, Zhu H, Luo Z, Zhang Y. Practical access to fluorescent 2,3-naphthalimide derivatives via didehydro-Diels-Alder reaction. Chem Commun (Camb) 2021; 57:5155-5158. [PMID: 33900353 DOI: 10.1039/d1cc01437d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical and efficient approach for the synthesis of fluorescent 2,3-naphthalimide derivatives has been developed from readily available starting materials via an intramolecular didehydro-Diels-Alder reaction, which proceeded well under room temperature, exhibiting a wide substrate scope and good functional group tolerance. The practicability of this methodology has been verified by one-step synthesis of the environmentally sensitive fluorophore 6-DMN on a gram scale with a shorter time, fewer steps and less waste disposal, and without the utilization of toxic transition metals. The present experimental and computational studies support the crucial role of the propiolimide moiety in the transformation.
Collapse
Affiliation(s)
- Xia Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Cheng Zhong
- Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yuling Lu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Meng Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhenhua Guan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zengwei Luo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
6
|
Horsfall AJ, Chav T, Bruning JB, Abell AD. A turn-on fluorescent PCNA sensor. Bioorg Med Chem Lett 2021; 41:128031. [PMID: 33839250 DOI: 10.1016/j.bmcl.2021.128031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
The solvatochromic amino-acids 4-DMNA or 4-DAPA, were separately introduced at position 147, 150 or 151 of a short p21 peptide (141-155) known to bind sliding clamp protein PCNA. The ability of these peptides, 1a-3a and 1b-3b, to act as a turn-on fluorescent sensor for PCNA was then investigated. The 4-DMNA-containing peptides (1a-3a) displayed up to a 40-fold difference in fluorescence between a polar (Tris buffer) and a hydrophobic solvent (dioxane with 5 mM 18-crown-6), while the 4-DAPA-containing peptides (1b-3b) displayed a significantly enhanced (300-fold) increase in fluorescence from Tris buffer to dioxane with 18-crown-6. SPR analysis of the peptides against PCNA revealed that the 151-substituted peptides 3a and 3b interacted specifically with PCNA, with KD values of 921 nM and 1.28 μM, respectively. Analysis of the fluorescence of these peptides in the presence of increasing concentrations of PCNA revealed a 10-fold change in fluorescence for 3a at 2.5 equivalents of PCNA, compared to only a 3.5-fold change in fluorescence for 3b. Peptide 3a is an important lead for development of a PCNA-selective turn-on fluorescent sensor for application as a cell proliferation sensor to investigate diseases such as cancer.
Collapse
Affiliation(s)
- Aimee J Horsfall
- ARC Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Theresa Chav
- ARC Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - John B Bruning
- Institute of Photonics and Advanced Sensing, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
7
|
Pratt EPS, Damon LJ, Anson KJ, Palmer AE. Tools and techniques for illuminating the cell biology of zinc. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118865. [PMID: 32980354 DOI: 10.1016/j.bbamcr.2020.118865] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022]
Abstract
Zinc (Zn2+) is an essential micronutrient that is required for a wide variety of cellular processes. Tools and methods have been instrumental in revealing the myriad roles of Zn2+ in cells. This review highlights recent developments fluorescent sensors to measure the labile Zn2+ pool, chelators to manipulate Zn2+ availability, and fluorescent tools and proteomics approaches for monitoring Zn2+-binding proteins in cells. Finally, we close with some highlights on the role of Zn2+ in regulating cell function and in cell signaling.
Collapse
Affiliation(s)
- Evan P S Pratt
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80303, United States of America
| | - Leah J Damon
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80303, United States of America
| | - Kelsie J Anson
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80303, United States of America
| | - Amy E Palmer
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80303, United States of America.
| |
Collapse
|
8
|
Das A, Dutta T, Gadhe L, Koner AL, Saraogi I. Biocompatible Fluorescent Probe for Selective Detection of Amyloid Fibrils. Anal Chem 2020; 92:10336-10341. [DOI: 10.1021/acs.analchem.0c00379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Anirban Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri 462066, MP India
| | - Tanoy Dutta
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri 462066, MP India
| | - Laxmikant Gadhe
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Apurba Lal Koner
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri 462066, MP India
| | - Ishu Saraogi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri 462066, MP India
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri 462066, MP India
| |
Collapse
|
9
|
Design and synthesis of fluorescent ligands for the detection of cannabinoid type 2 receptor (CB2R). Eur J Med Chem 2020; 188:112037. [PMID: 31954990 DOI: 10.1016/j.ejmech.2020.112037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/17/2019] [Accepted: 01/03/2020] [Indexed: 12/28/2022]
Abstract
The Cannabinoid 2 receptor, CB2R, belonging to the endocannabinoid system, ECS, is involved in the first steps of neurodegeneration and cancer evolution and progression and thus its modulation may be exploited in the therapeutic and diagnostic fields. However, CB2Rs distribution and signaling pathways in physiological and pathological conditions are still controversial mainly because of the lack of reliable diagnostic tools. With the aim to produce green and safe systems to detect CB2R, we designed a series of fluorescent ligands with three different green fluorescent moieties (4-dimethylaminophthalimide, 4-DMAP, 7-nitro-4-yl-aminobenzoxadiazole, NBD, and Fluorescein-thiourea, FTU) linked to the N1-position of the CB2R pharmacophore N-adamantyl-4-oxo-1,4-dihydroquinoline-3-carboxamide through polymethylene chains. Compound 28 emerged for its compromise between good pharmacodynamic properties (CB2R Ki = 130 nM and no affinity vs the other subtype CB1R) and optimal fluorescent spectroscopic properties. Therefore, compound 28 was studied through FACS (saturation and competitive binding studies) and fluorescence microscopy (visualization and competitive binding) in engineered cells (CB2R-HEK293 cells) and in diverse tumour cells. The fluoligand binding assays were successfully set up, and affinity values for the two reference compounds GW405833 and WIN55,212-2, comparable to the values obtained by radioligand binding assays, were obtained. Fluoligand 28 also allowed the detection of the presence and quantification of the CB2R in the same cell lines. The interactions of compound 28 within the CB2R binding site were also investigated by molecular docking simulations, and indications for the improvement of the CB2R affinity of this class of compounds were provided. Overall, the results obtained through these studies propose compound 28 as a safe and green alternative to the commonly used radioligands for in vitro investigations.
Collapse
|
10
|
Mehta R, Qureshi MH, Purchal MK, Greer SM, Gong S, Ngo C, Que EL. A new probe for detecting zinc-bound carbonic anhydrase in cell lysates and cells. Chem Commun (Camb) 2018; 54:5442-5445. [PMID: 29745391 DOI: 10.1039/c8cc02034e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We report the synthesis and application of a small molecule probe for carbonic anhydrase (CA) to track holo-CA in cell lysates and live-cell models of zinc dyshomeostasis. The probe displays a 12-fold increase in fluorescence upon binding to bovine CA and also responds to human CA isoforms.
Collapse
Affiliation(s)
- Radhika Mehta
- Department of Chemistry, University of Texas at Austin, 105 E 24th St Stop A5300, Austin, TX 78712, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Chandra F, Mallick S, Koner AL. Spectroscopic investigation of bio-mimetic solvolysis of 6-(N,N-dimethylamino)-2,3-naphthalic anhydride in confined nanocavities. Phys Chem Chem Phys 2017; 19:4337-4344. [DOI: 10.1039/c6cp08009j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzymes are biological catalysts that can vastly accelerate the reaction rate of a substrate by accommodating it within the active site.
Collapse
Affiliation(s)
- Falguni Chandra
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal-462066
- India
| | - Suman Mallick
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal-462066
- India
| | - Apurba L. Koner
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal-462066
- India
| |
Collapse
|
12
|
Mallick S, Pal K, Koner AL. Probing microenvironment of micelle and albumin using diethyl 6-(dimethylamino)naphthalene-2,3-dicarboxylate: An electroneutral solvatochromic fluorescent probe. J Colloid Interface Sci 2016; 467:81-89. [DOI: 10.1016/j.jcis.2015.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/08/2015] [Accepted: 12/11/2015] [Indexed: 11/15/2022]
|
13
|
Mallick S, Chandra F, Koner AL. A ratiometric fluorescent probe for detection of biogenic primary amines with nanomolar sensitivity. Analyst 2016; 141:827-31. [DOI: 10.1039/c5an01911g] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An ultrasensitive ratiometric fluorescent sensor made of an N,N-dimethylaminonaphthalene anhydride moiety for detection of aliphatic primary amines is reported.
Collapse
Affiliation(s)
- Suman Mallick
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal-462066
- India
| | - Falguni Chandra
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal-462066
- India
| | - Apurba L. Koner
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal-462066
- India
| |
Collapse
|
14
|
Niso M, Riganti C, Pati ML, Ghigo D, Berardi F, Abate C. Novel and Selective Fluorescent σ2 -Receptor Ligand with a 3,4-Dihydroisoquinolin-1-one Scaffold: A Tool to Study σ2 Receptors in Living Cells. Chembiochem 2015; 16:1078-83. [PMID: 25757101 DOI: 10.1002/cbic.201402712] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Indexed: 11/11/2022]
Abstract
Although sigma-2 (σ2 ) receptors are still enigmatic proteins, they are promising targets for tumor treatment and diagnosis. With the aim of clarifying their role in oncology, we developed a σ2 -selective fluorescent tracer (compound 5) as a specific tool to study σ2 receptors. By using flow cytometry with 5, we performed competition binding studies on three different cell lines where we also detected the content of the σ2 receptors, avoiding the inconvenient use of radioligands. Comparison with a previously developed mixed σ1 /σ2 fluorescent tracer (1) also allowed for the detection of σ1 receptors within these cells. Results obtained by flow cytometry with tracers 1 and 5 were confirmed by standard methods (western blot for σ1 , and Scatchard analysis for σ2 receptors). Thus, we have produced powerful new tools for research on the σ whose reliability and adaptability to a number of fluorescence techniques will be useful to elucidate the roles of σ receptors in oncology.
Collapse
Affiliation(s)
- Mauro Niso
- Dipartimento di Farmacia-Scienze del Farmaco, Via Orabona, 4. 70125 Bari (Italy)
| | | | | | | | | | | |
Collapse
|
15
|
Abate C, Niso M, Marottoli R, Riganti C, Ghigo D, Ferorelli S, Ossato G, Perrone R, Lacivita E, Lamb DC, Berardi F. Novel derivatives of 1-cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]piperazine (PB28) with improved fluorescent and σ receptors binding properties. J Med Chem 2014; 57:3314-23. [PMID: 24697311 DOI: 10.1021/jm401874n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the promising potentials of σ2 receptors in cancer therapy and diagnosis, there are still ambiguities related to the nature and physiological role of the σ2 protein. With the aim of providing potent and reliable tools to be used in σ2 receptor research, we developed a novel series of fluorescent σ2 ligands on the basis of our previous work, where high-affinity σ2 ligand 1-cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-n-propyl]piperazine (1, PB28) was used as the pharmacophore. Compared to the previous compounds, these novel ligands displayed improved fluorescence and σ2 binding properties, were σ2-specifically taken up by breast tumor cells, and were successfully employed in confocal microscopy. Compound 14, which was the best compromise between pharmacological and fluorescent properties, was successfully employed in flow cytometry, demonstrating its potential to be used as a tool in nonradioactive binding assays for studying the affinity of putative σ2 receptor ligands.
Collapse
Affiliation(s)
- Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO , Via Orabona 4, I-70125 Bari, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sainlos M, Iskenderian-Epps WS, Olivier NB, Choquet D, Imperiali B. Caged Mono- and Divalent Ligands for Light-Assisted Disruption of PDZ Domain-Mediated Interactions. J Am Chem Soc 2013; 135:4580-3. [DOI: 10.1021/ja309870q] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Matthieu Sainlos
- Departments of Chemistry and
Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- University of Bordeaux, IINS, CNRS, UMR 5297, F-33000 Bordeaux, France
- CNRS, IINS, UMR 5297,
F-33000 Bordeaux, France
| | - Wendy S. Iskenderian-Epps
- Departments of Chemistry and
Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nelson B. Olivier
- Departments of Chemistry and
Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daniel Choquet
- University of Bordeaux, IINS, CNRS, UMR 5297, F-33000 Bordeaux, France
- CNRS, IINS, UMR 5297,
F-33000 Bordeaux, France
| | - Barbara Imperiali
- Departments of Chemistry and
Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
Baathulaa K, Xu Y, Qian X. Short and scalable synthesis of an anhydride precursor of the environment-sensitive fluorophore 6-dimethylaminonaphthalimide. Nat Protoc 2011; 6:1990-7. [DOI: 10.1038/nprot.2011.415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Sainlos M, Tigaret C, Poujol C, Olivier NB, Bard L, Breillat C, Thiolon K, Choquet D, Imperiali B. Biomimetic divalent ligands for the acute disruption of synaptic AMPAR stabilization. Nat Chem Biol 2010; 7:81-91. [DOI: 10.1038/nchembio.498] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 11/08/2010] [Indexed: 11/09/2022]
|
19
|
Sainlos M, Imperiali B. Tools for investigating peptide-protein interactions: peptide incorporation of environment-sensitive fluorophores through SPPS-based 'building block' approach. Nat Protoc 2008; 2:3210-8. [PMID: 18079721 DOI: 10.1038/nprot.2007.443] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This protocol presents the synthesis and peptide incorporation of environment-sensitive fluorescent amino acids derived from the dimethylamino-phthalimide family. The procedure uses anhydride precursors of 4-dimethylaminophthalimide (4-DMAP) or 6-dimethylaminonaphthalimide (6-DMN), whose syntheses are described in a related protocol by these authors. In this study, the corresponding fluorescent amino acids can be readily obtained in Fmoc-protected form for convenient use as building blocks in solid phase peptide synthesis (SPPS). The time required to complete the procedure depends on the size and the number of peptides targeted. Alternatively, the chromophores can be incorporated directly after SPPS via on-resin derivatization of peptides, which is an option described in a related protocol by these authors.
Collapse
Affiliation(s)
- Matthieu Sainlos
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| | | |
Collapse
|
20
|
Sainlos M, Imperiali B. Tools for investigating peptide–protein interactions: peptide incorporation of environment-sensitive fluorophores via on-resin derivatization. Nat Protoc 2007; 2:3201-9. [DOI: 10.1038/nprot.2007.442] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|