1
|
Zhang L, Burns N, Ji Z, Sun S, Deutscher SL, Carson WE, Guo P. Nipple fluid for breast cancer diagnosis using the nanopore of Phi29 DNA-packaging motor. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102642. [PMID: 36581256 PMCID: PMC10035634 DOI: 10.1016/j.nano.2022.102642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 12/02/2022] [Indexed: 12/27/2022]
Abstract
Detection of cancer in its early stage is a challenging task for oncologists. Inflammatory breast cancer has symptoms that are similar to mastitis and can be mistaken for microbial infection. Currently, the differential diagnosis between mastitis and Inflammatory breast cancer via nipple aspirate fluid (NAF) is difficult. Here, we report a label-free and amplification-free detection platform using an engineered nanopore of the phi29 DNA-packaging motor with biomarker Galectin3 (GAL3), Thomsen-Friedenreich (TF) binding peptide as the probe fused at its C-terminus. The binding of the biomarker in NAF samples from breast cancer patients to the probe results in the connector's conformational change with a current blockage of 32 %. Utilization of dwell time, blockage ratio, and peak signature enable us to detect basal levels of biomarkers from patient NAF samples at the single-molecule level. This platform will allow for breast cancers to be resolved at an early stage with accuracy and thoroughness.
Collapse
Affiliation(s)
- Long Zhang
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Nicolas Burns
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Zhouxiang Ji
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Steven Sun
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Susan L Deutscher
- Department of Biochemistry, University of Missouri, Harry S. Truman Memorial VA Hospital, Columbia, MO 65211, USA.
| | - William E Carson
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Zhang M, Chen C, Zhang Y, Geng J. Biological nanopores for sensing applications. Proteins 2022; 90:1786-1799. [PMID: 35092317 DOI: 10.1002/prot.26308] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/27/2021] [Accepted: 01/27/2022] [Indexed: 02/05/2023]
Abstract
Biological nanopores are proteins with transmembrane pore that can be embedded in lipid bilayer. With the development of single-channel current measurement technologies, biological nanopores have been reconstituted into planar lipid bilayer and used for single-molecule sensing of various analytes and events such as single-molecule DNA sensing and sequencing. To improve the sensitivity for specific analytes, various engineered nanopore proteins and strategies are deployed. Here, we introduce the origin and principle of nanopore sensing technology as well as the structure and associated properties of frequently used protein nanopores. Furthermore, sensing strategies for different applications are reviewed, with focus on the alteration of buffer condition, protein engineering, and deployment of accessory proteins and adapter-assisted sensing. Finally, outlooks for de novo design of nanopore and nanopore beyond sensing are discussed.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Laboratory Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Chen
- Department of Laboratory Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, China
| | - Yanjing Zhang
- Department of Laboratory Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, China
| | - Jia Geng
- Department of Laboratory Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Zhang L, Burns N, Jordan M, Jayasinghe L, Guo P. Macromolecule sensing and tumor biomarker detection by harnessing terminal size and hydrophobicity of viral DNA packaging motor channels into membranes and flow cells. Biomater Sci 2021; 10:167-177. [PMID: 34812812 DOI: 10.1039/d1bm01264a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biological nanopores for single-pore sensing have the advantage of size homogeneity, structural reproducibility, and channel amenability. In order to translate this to clinical applications, the functional biological nanopore must be inserted into a stable system for high-throughput analysis. Here we report factors that control the rate of pore insertion into polymer membrane and analyte translocation through the channel of viral DNA packaging motors of Phi29, T3 and T7. The hydrophobicity of aminol or carboxyl terminals and their relation to the analyte translocation were investigated. It was found that both the size and the hydrophobicity of the pore terminus are critical factors for direct membrane insertion. An N-terminus or C-terminus hydrophobic mutation is crucial for governing insertion orientation and subsequent macromolecule translocation due to the one-way traffic property. The N- or C-modification led to two different modes of application. The C-terminal insertion permits translocation of analytes such as peptides to enter the channel through the N terminus, while N-terminus insertion prevents translocation but offers the measurement of gating as a sensing parameter, thus generating a tool for detection of markers. A urokinase-type Plasminogen Activator Receptor (uPAR) binding peptide was fused into the C-terminal of Phi29 nanopore to serve as a probe for uPAR protein detection. The uPAR has proven to be a predictive biomarker in several types of cancer, including breast cancer. With an N-terminal insertion, the binding of the uPAR antigen to individual peptide probe induced discretive steps of current reduction due to the induction of channel gating. The distinctive current signatures enabled us to distinguish uPAR positive and negative tumor cell lines. This finding provides a theoretical basis for a robust biological nanopore sensing system for high-throughput macromolecular sensing and tumor biomarker detection.
Collapse
Affiliation(s)
- Long Zhang
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; Dorothy M. Davis Heart and Lung Research Institute; James Comprehensive Cancer Center; College of Medicine; The Ohio State University, Columbus, OH 43210, USA.
| | - Nicolas Burns
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; Dorothy M. Davis Heart and Lung Research Institute; James Comprehensive Cancer Center; College of Medicine; The Ohio State University, Columbus, OH 43210, USA.
| | - Michael Jordan
- Oxford Nanopore Technologies Ltd, Gosling Building, Edmund Halley Road, Oxford Science Park, Oxford, OX4 4DQ, UK
| | - Lakmal Jayasinghe
- Oxford Nanopore Technologies Ltd, Gosling Building, Edmund Halley Road, Oxford Science Park, Oxford, OX4 4DQ, UK
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; Dorothy M. Davis Heart and Lung Research Institute; James Comprehensive Cancer Center; College of Medicine; The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
4
|
Translation of the long-term fundamental studies on viral DNA packaging motors into nanotechnology and nanomedicine. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1103-1129. [DOI: 10.1007/s11427-020-1752-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
|
5
|
Ji Z, Jordan M, Jayasinghe L, Guo P. Insertion of channel of phi29 DNA packaging motor into polymer membrane for high-throughput sensing. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 25:102170. [PMID: 32035271 DOI: 10.1016/j.nano.2020.102170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/25/2019] [Accepted: 01/29/2020] [Indexed: 11/19/2022]
Abstract
The connector channel of bacteriophage phi29 DNA packaging motor has been inserted into the lipid bilayer membrane and has shown potential for the sensing of DNA, RNA, chemicals, peptides, and antibodies. Properties such as high solubility and large channel size have made phi29 channel an advantageous system for those applications; however, previously studied lipid membranes have short lifetimes, and they are frangible and unstable under voltages higher than 200 mV. Thus, the application of this lipid membrane platform for clinical applications is challenging. Here we report the insertion of the connector into the stable polymer membrane in MinION flow cell that contains 2048 wells for high-throughput sensing by the liposome-polymer fusion process. The successful insertion of phi29 connector was confirmed by a unique gating phenomenon. Peptide translocation through the inserted phi29 connector was also observed, revealing the potential of applying phi29 connector for high-throughput peptide sensing.
Collapse
Affiliation(s)
- Zhouxiang Ji
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Michael Jordan
- Oxford Nanopore Technologies Limited, Oxford Science Park, UK
| | | | - Peixuan Guo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA; Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA; College of Medicine, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
6
|
Fliervoet LA, Lisitsyna ES, Durandin NA, Kotsis I, Maas-Bakker RFM, Yliperttula M, Hennink WE, Vuorimaa-Laukkanen E, Vermonden T. Structure and Dynamics of Thermosensitive pDNA Polyplexes Studied by Time-Resolved Fluorescence Spectroscopy. Biomacromolecules 2020; 21:73-88. [PMID: 31500418 PMCID: PMC6961130 DOI: 10.1021/acs.biomac.9b00896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/29/2019] [Indexed: 12/15/2022]
Abstract
Combining multiple stimuli-responsive functionalities into the polymer design is an attractive approach to improve nucleic acid delivery. However, more in-depth fundamental understanding how the multiple functionalities in the polymer structures are influencing polyplex formation and stability is essential for the rational development of such delivery systems. Therefore, in this study the structure and dynamics of thermosensitive polyplexes were investigated by tracking the behavior of labeled plasmid DNA (pDNA) and polymer with time-resolved fluorescence spectroscopy using fluorescence resonance energy transfer (FRET). The successful synthesis of a heterofunctional poly(ethylene glycol) (PEG) macroinitiator containing both an atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain-transfer (RAFT) initiator is reported. The use of this novel PEG macroinitiator allows for the controlled polymerization of cationic and thermosensitive linear triblock copolymers and labeling of the chain-end with a fluorescent dye by maleimide-thiol chemistry. The polymers consisted of a thermosensitive poly(N-isopropylacrylamide) (PNIPAM, N), hydrophilic PEG (P), and cationic poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA, D) block, further referred to as NPD. Polymer block D chain-ends were labeled with Cy3, while pDNA was labeled with FITC. The thermosensitive NPD polymers were used to prepare pDNA polyplexes, and the effect of the N/P charge ratio, temperature, and composition of the triblock copolymer on the polyplex properties were investigated, taking nonthermosensitive PD polymers as the control. FRET was observed both at 4 and 37 °C, indicating that the introduction of the thermosensitive PNIPAM block did not compromise the polyplex structure even above the polymer's cloud point. Furthermore, FRET results showed that the NPD- and PD-based polyplexes have a less dense core compared to polyplexes based on cationic homopolymers (such as PEI) as reported before. The polyplexes showed to have a dynamic character meaning that the polymer chains can exchange between the polyplex core and shell. Mobility of the polymers allow their uniform redistribution within the polyplex and this feature has been reported to be favorable in the context of pDNA release and subsequent improved transfection efficiency, compared to nondynamic formulations.
Collapse
Affiliation(s)
- Lies A.
L. Fliervoet
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Ekaterina S. Lisitsyna
- Chemistry
and Advanced Materials, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland
| | - Nikita A. Durandin
- Chemistry
and Advanced Materials, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland
| | - Ilias Kotsis
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Roel F. M. Maas-Bakker
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Marjo Yliperttula
- Division
of Pharmaceutical Biosciences and Drug Research Program, University of Helsinki, P.O. Box 56 (Viikinkaari 5E), 00014 Helsinki, Finland
| | - Wim E. Hennink
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Elina Vuorimaa-Laukkanen
- Chemistry
and Advanced Materials, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland
| | - Tina Vermonden
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
7
|
Li H, Wang S, Ji Z, Xu C, Shlyakhtenko LS, Guo P. Construction of RNA nanotubes. NANO RESEARCH 2019; 12:1952-1958. [PMID: 32153728 PMCID: PMC7062307 DOI: 10.1007/s12274-019-2463-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Nanotubes are miniature materials with significant potential applications in nanotechnological, medical, biological and material sciences. The quest for manufacturing methods of nano-mechanical modules is in progress. For example, the application of carbon nanotubes has been extensively investigated due to the precise width control, but the precise length control remains challenging. Here we report two approaches for the one-pot self-assembly of RNA nanotubes. For the first approach, six RNA strands were used to assemble the nanotube by forming a 11 nm long hollow channel with the inner diameter of 1.7 nm and the outside diameter of 6.3 nm. For the second approach, six RNA strands were designed to hybridize with their neighboring strands by complementary base pairing and formed a nanotube with a six-helix hollow channel similar to the nanotube assembled by the first approach. The fabricated RNA nanotubes were characterized by gel electrophoresis and atomic force microscopy (AFM), confirming the formation of nanotube-shaped RNA nanostructures. Cholesterol molecules were introduced into RNA nanotubes to facilitate their incorporation into lipid bilayer. Incubation of RNA nanotube complex with the free-standing lipid bilayer membrane under applied voltage led to discrete current signatures. Addition of peptides into the sensing chamber revealed discrete steps of current blockage. Polyarginine peptides with different lengths can be detected by current signatures, suggesting that the RNA-cholesterol complex holds the promise of achieving single molecule sensing of peptides.
Collapse
Affiliation(s)
- Hui Li
- Center for RNA Nanobiotechnology and Nanomedicine; Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy; Department of Physiology & Cell Biology, College of Medicine; Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Shaoying Wang
- Center for RNA Nanobiotechnology and Nanomedicine; Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy; Department of Physiology & Cell Biology, College of Medicine; Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhouxiang Ji
- Center for RNA Nanobiotechnology and Nanomedicine; Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy; Department of Physiology & Cell Biology, College of Medicine; Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Congcong Xu
- Center for RNA Nanobiotechnology and Nanomedicine; Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy; Department of Physiology & Cell Biology, College of Medicine; Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Lyudmila S Shlyakhtenko
- UNMC Nanoimaging Core Facility, Department of Pharmaceutical Sciences, College of Pharmacy University of Nebraska Medical Center, Omaha, NE, 68182, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine; Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy; Department of Physiology & Cell Biology, College of Medicine; Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
8
|
Niu H, Zhang W, Wei L, Liu M, Liu H, Zhao C, Zhang P, Liao Q, Liu Y, Yuan Q, Wu S, Kang M, Geng J. Rapid Nanopore Assay for Carbapenem-Resistant Klebsiella pneumoniae. Front Microbiol 2019; 10:1672. [PMID: 31417504 PMCID: PMC6682601 DOI: 10.3389/fmicb.2019.01672] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/08/2019] [Indexed: 02/05/2023] Open
Abstract
The prevalence of carbapenem-resistant Klebsiella pneumoniae (CRKP) is rapidly increasing worldwide in recent decades and poses a challenge for today's clinical practice. Rapid detection of CRKP can avoid inappropriate antimicrobial therapy and save lives. Traditional detection methods for CRKP are extremely time-consuming; PCR and other sequencing methods are too expensive and technologically demanding, making it hard to meet the clinical demands. Nanopore assay has been used for screening biomarkers of diseases recently because of its high sensitivity, real-time detection, and low cost. In this study, we distinguished CRKP from carbapenem-sensitive K. pneumoniae (CSKP) by the detection of increasing amount of extracted 16S ribosomal RNA (16S rRNA) from bacterial culture with antibiotics imipenem, indicating the uninhibited growth of CRKP by the imipenem. Specific signals from single channel recording of 16S rRNA bound with probes by MspA nanopore allowed the ultra-sensitive and fast quantitative detection of 16S rRNA. We proved that only 4 h of CRKP culture time was needed for nanopore assay to distinguish the CRKP and CSKP. The time-cost of the assay is only about 5% of disk diffusion method while reaching the similar accuracy. This new method has the potential application in the fast screening of drug resistance in clinical microorganism samples.
Collapse
Affiliation(s)
- Haofu Niu
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
- Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Weili Zhang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Liangwan Wei
- Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Meng Liu
- Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Hao Liu
- Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Changjian Zhao
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Peng Zhang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Quanfeng Liao
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Ya Liu
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Qingyue Yuan
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Siying Wu
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Mei Kang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| |
Collapse
|
9
|
Ji Z, Kang X, Wang S, Guo P. Nano-channel of viral DNA packaging motor as single pore to differentiate peptides with single amino acid difference. Biomaterials 2018; 182:227-233. [PMID: 30138785 DOI: 10.1016/j.biomaterials.2018.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/17/2018] [Accepted: 08/02/2018] [Indexed: 12/23/2022]
Abstract
Detection, differentiation, mapping, and sequencing of proteins are important in proteomics for the assessment of cell development such as protein methylation or phosphorylation as well as the diagnosis of diseases including metabolic disorder, mental illness, immunological ailments, and malignant cancers. Nanopore technology has demonstrated the potential for the sequencing or sensing of DNA, RNA, chemicals, or other macromolecules. Due to the diversity of protein in shape, structure and charge and the composition versatility of 20 amino acids, the sequencing of proteins remains challenging. Herein, we report the application of the channel of bacteriophage T7 DNA packaging motor for the differentiation of an assortment of peptides of a single amino acid difference. Explicit fingerprints or signatures were obtained based on current blockage and dwell time of individual peptide. Data from the clear mapping of small proteins after protease digestion suggests the potential of using T7 motor channel for proteomics including protein sequencing.
Collapse
Affiliation(s)
- Zhouxiang Ji
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Xinqi Kang
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Shaoying Wang
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
10
|
Haque F, Zhang H, Wang S, Chang CL, Savran C, Guo P. Methods for Single-Molecule Sensing and Detection Using Bacteriophage Phi29 DNA Packaging Motor. Methods Mol Biol 2018; 1805:423-450. [PMID: 29971730 DOI: 10.1007/978-1-4939-8556-2_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Bacteriophage phi29 DNA packaging motor consists of a dodecameric portal channel protein complex termed connector that allows transportation of genomic dsDNA and a hexameric packaging RNA (pRNA) ring to gear the motor. The elegant design of the portal protein has facilitated its applications for real-time single-molecule detection of biopolymers and chemicals with high sensitivity and selectivity. The robust self-assembly property of the pRNA has enabled biophysical studies of the motor complex to determine the stoichiometry and structure/folding of the pRNA at single-molecule level. This chapter focuses on biophysical and analytical methods for studying the phi29 motor components at the single-molecule level, such as single channel conductance assays of membrane-embedded connectors; single molecule photobleaching (SMPB) assay for determining the stoichiometry of phi29 motor components; fluorescence resonance energy transfer (FRET) assay for determining the structure and folding of pRNA; atomic force microscopy (AFM) for imaging pRNA nanoparticles of various size, shape, and stoichiometry; and bright-field microscopy with magnetomechanical system for direct visualization of viral DNA packaging process. The phi29 system with explicit engineering capability has incredible potentials for diverse applications in nanotechnology and nanomedicine including, but not limited to, DNA sequencing, drug delivery to diseased cells, environmental surveillance, and early disease diagnosis.
Collapse
Affiliation(s)
- Farzin Haque
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, USA.,Department of Physiology and Cell Biology, Dorothy M Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA.,Nanobiotechnology Center, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Hui Zhang
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, USA.,Department of Physiology and Cell Biology, Dorothy M Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA.,Nanobiotechnology Center, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Shaoying Wang
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, USA.,Department of Physiology and Cell Biology, Dorothy M Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA.,Nanobiotechnology Center, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Chun-Li Chang
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.,School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Cagri Savran
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.,School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Peixuan Guo
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, USA. .,Department of Physiology and Cell Biology, Dorothy M Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA. .,Nanobiotechnology Center, University of Kentucky, Lexington, KY, USA. .,Markey Cancer Center, University of Kentucky, Lexington, KY, USA. .,Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA. .,Sylvan G. Frank Endowed Chair in Pharmaceutics and Drug Delivery, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
11
|
Wang S, Zhao Z, Haque F, Guo P. Engineering of protein nanopores for sequencing, chemical or protein sensing and disease diagnosis. Curr Opin Biotechnol 2017; 51:80-89. [PMID: 29232619 DOI: 10.1016/j.copbio.2017.11.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 11/17/2022]
Abstract
Biological systems contain highly-ordered structures performing diverse functions. The elegant structures of biomachines have inspired the development of nanopores as single molecule sensors. Over the years, the utility of nanopores for detecting a wide variety of analytes have rapidly emerged for sensing, sequencing and diagnostic applications. Several protein channels with diverse shapes and sizes, such as motor channels from bacteriophage Phi29, SPP1, T3, and T4, as well as α-hemolysin, MspA, aerolysin, FluA, OmpF/G, CsgG, ClyA, have been continually investigated and developed as nanopores. Herein, we focus on advances in biological nanopores for single molecule sensing and DNA sequencing from a protein engineering standpoint for changing pore sizes, altering charge distributions, enhancing sensitivity, improving stability, and imparting new detection capabilities.
Collapse
Affiliation(s)
| | - Zhengyi Zhao
- Nanobio Delivery Pharmaceutical Co. Ltd., Columbus, OH, USA
| | | | - Peixuan Guo
- College of Pharmacy, Division of Pharmaceutics & Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA; College of Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
12
|
Construction of an aerolysin nanopore in a lipid bilayer for single-oligonucleotide analysis. Nat Protoc 2017; 12:1901-1911. [PMID: 28837133 DOI: 10.1038/nprot.2017.077] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nanopore techniques offer the possibility to study biomolecules at the single-molecule level in a low-cost, label-free and high-throughput manner. By analyzing the level, duration and frequency of ionic current blockades, information regarding the structural conformation, mass, length and concentration of single molecules can be obtained in physiological conditions. Aerolysin monomers assemble into small pores that provide a confined space for effective electrochemical control of a single molecule interacting with the pore, which significantly improves the temporal resolution of this technique. In comparison with other reported protein nanopores, aerolysin maintains its functional stability in a wide range of pH conditions, which allows for the direct discrimination of oligonucleotides between 2 and 10 nt in length and the monitoring of the stepwise cleavage of oligonucleotides by exonuclease I (Exo I) in real time. This protocol describes the process of activating proaerolysin using immobilized trypsin to obtain the aerolysin monomer, the construction of a lipid membrane and the insertion of an individual aerolysin nanopore into this membrane. A step-by-step description is provided of how to perform single-oligonucleotide analyses and how to process the acquired data. The total time required for this protocol is ∼3 d.
Collapse
|
13
|
He W, Felderman M, Evans AC, Geng J, Homan D, Bourguet F, Fischer NO, Li Y, Lam KS, Noy A, Xing L, Cheng RH, Rasley A, Blanchette CD, Kamrud K, Wang N, Gouvis H, Peterson TC, Hubby B, Coleman MA. Cell-free production of a functional oligomeric form of a Chlamydia major outer-membrane protein (MOMP) for vaccine development. J Biol Chem 2017; 292:15121-15132. [PMID: 28739800 DOI: 10.1074/jbc.m117.784561] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/13/2017] [Indexed: 11/06/2022] Open
Abstract
Chlamydia is a prevalent sexually transmitted disease that infects more than 100 million people worldwide. Although most individuals infected with Chlamydia trachomatis are initially asymptomatic, symptoms can arise if left undiagnosed. Long-term infection can result in debilitating conditions such as pelvic inflammatory disease, infertility, and blindness. Chlamydia infection, therefore, constitutes a significant public health threat, underscoring the need for a Chlamydia-specific vaccine. Chlamydia strains express a major outer-membrane protein (MOMP) that has been shown to be an effective vaccine antigen. However, approaches to produce a functional recombinant MOMP protein for vaccine development are limited by poor solubility, low yield, and protein misfolding. Here, we used an Escherichia coli-based cell-free system to express a MOMP protein from the mouse-specific species Chlamydia muridarum (MoPn-MOMP or mMOMP). The codon-optimized mMOMP gene was co-translated with Δ49apolipoprotein A1 (Δ49ApoA1), a truncated version of mouse ApoA1 in which the N-terminal 49 amino acids were removed. This co-translation process produced mMOMP supported within a telodendrimer nanolipoprotein particle (mMOMP-tNLP). The cell-free expressed mMOMP-tNLPs contain mMOMP multimers similar to the native MOMP protein. This cell-free process produced on average 1.5 mg of purified, water-soluble mMOMP-tNLP complex in a 1-ml cell-free reaction. The mMOMP-tNLP particle also accommodated the co-localization of CpG oligodeoxynucleotide 1826, a single-stranded synthetic DNA adjuvant, eliciting an enhanced humoral immune response in vaccinated mice. Using our mMOMP-tNLP formulation, we demonstrate a unique approach to solubilizing and administering membrane-bound proteins for future vaccine development. This method can be applied to other previously difficult-to-obtain antigens while maintaining full functionality and immunogenicity.
Collapse
Affiliation(s)
- Wei He
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | | | - Angela C Evans
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Jia Geng
- From the Lawrence Livermore National Laboratory, Livermore, California 94550.,School of Natural Sciences, University of California, Merced, California 95343
| | - David Homan
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Feliza Bourguet
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Nicholas O Fischer
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Yuanpei Li
- the Department of Biochemistry and Molecular Medicine and
| | - Kit S Lam
- the Department of Biochemistry and Molecular Medicine and
| | - Aleksandr Noy
- From the Lawrence Livermore National Laboratory, Livermore, California 94550.,School of Natural Sciences, University of California, Merced, California 95343
| | - Li Xing
- the Department of Molecular and Cellular Biology, University of California, Davis, California 95618
| | - R Holland Cheng
- the Department of Molecular and Cellular Biology, University of California, Davis, California 95618
| | - Amy Rasley
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Craig D Blanchette
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Kurt Kamrud
- Synthetic Genomics Vaccine Inc., La Jolla, California 92037
| | - Nathaniel Wang
- Synthetic Genomics Vaccine Inc., La Jolla, California 92037
| | - Heather Gouvis
- Synthetic Genomics Vaccine Inc., La Jolla, California 92037
| | | | - Bolyn Hubby
- Synthetic Genomics Vaccine Inc., La Jolla, California 92037
| | - Matthew A Coleman
- From the Lawrence Livermore National Laboratory, Livermore, California 94550, .,Radiation Oncology, School of Medicine, University of California Davis, Sacramento, California 95817, and
| |
Collapse
|
14
|
Howorka S. Building membrane nanopores. NATURE NANOTECHNOLOGY 2017; 12:619-630. [PMID: 28681859 DOI: 10.1038/nnano.2017.99] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 04/19/2017] [Indexed: 05/28/2023]
Abstract
Membrane nanopores-hollow nanoscale barrels that puncture biological or synthetic membranes-have become powerful tools in chemical- and biosensing, and have achieved notable success in portable DNA sequencing. The pores can be self-assembled from a variety of materials, including proteins, peptides, synthetic organic compounds and, more recently, DNA. But which building material is best for which application, and what is the relationship between pore structure and function? In this Review, I critically compare the characteristics of the different building materials, and explore the influence of the building material on pore structure, dynamics and function. I also discuss the future challenges of developing nanopore technology, and consider what the next-generation of nanopore structures could be and where further practical applications might emerge.
Collapse
Affiliation(s)
- Stefan Howorka
- Department of Chemistry, Institute of Structural Molecular Biology, University College London, London WC1H 0AJ, UK
| |
Collapse
|
15
|
Jing P, Burris B, Zhang R. Forces from the Portal Govern the Late-Stage DNA Transport in a Viral DNA Packaging Nanomotor. Biophys J 2017; 111:162-77. [PMID: 27410744 DOI: 10.1016/j.bpj.2016.05.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 01/09/2023] Open
Abstract
In the Phi29 bacteriophage, the DNA packaging nanomotor packs its double-stranded DNA genome into the virus capsid. At the late stage of DNA packaging, the negatively charged genome is increasingly compacted at a higher density in the capsid with a higher internal pressure. During the process, two Donnan effects, osmotic pressure and Donnan equilibrium potentials, are significantly amplified, which, in turn, affect the channel activity of the portal protein, GP10, embedded in the semipermeable capsid shell. In the research, planar lipid bilayer experiments were used to study the channel activities of the viral protein. The Donnan effect on the conformational changes of the viral protein was discovered, indicating GP10 may not be a static channel at the late stage of DNA packaging. Due to the conformational changes, GP10 may generate electrostatic forces that govern the DNA transport. For the section of the genome DNA that remains outside of the connector channel, a strong repulsive force from the viral protein would be generated against the DNA entry; however, for the section of the genome DNA within the channel, the portal protein would become a Brownian motor, which adopts the flash Brownian ratchet mechanism to pump the DNA against the increasingly built-up internal pressure (up to 20 atm) in the capsid. Therefore, the DNA transport in the nanoscale viral channel at the late stage of DNA packaging could be a consequence of Brownian movement of the genomic DNA, which would be rectified and harnessed by the forces from the interior wall of the viral channel under the influence of the Donnan effect.
Collapse
Affiliation(s)
- Peng Jing
- Department of Chemistry, College of Arts and Sciences, Indiana University-Purdue University Fort Wayne, Fort Wayne, Indiana.
| | - Benjamin Burris
- Department of Chemistry, College of Arts and Sciences, Indiana University-Purdue University Fort Wayne, Fort Wayne, Indiana
| | - Rong Zhang
- Division of Endocrinology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Wang S, Zhou Z, Zhao Z, Zhang H, Haque F, Guo P. Channel of viral DNA packaging motor for real time kinetic analysis of peptide oxidation states. Biomaterials 2017; 126:10-17. [PMID: 28237908 PMCID: PMC5421631 DOI: 10.1016/j.biomaterials.2017.01.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/22/2016] [Accepted: 01/27/2017] [Indexed: 10/20/2022]
Abstract
Nanopore technology has become a powerful tool in single molecule sensing, and protein nanopores appear to be more advantageous than synthetic counterparts with regards to channel amenability, structure homogeneity, and production reproducibility. However, the diameter of most of the well-studied protein nanopores is too small to allow the passage of protein or peptides that are typically in multiple nanometers scale. The portal channel from bacteriophage SPP1 has a large channel size that allows the translocation of peptides with higher ordered structures. Utilizing single channel conductance assay and optical single molecule imaging, we observed translocation of peptides and quantitatively analyzed the dynamics of peptide oligomeric states in real-time at single molecule level. The oxidative and the reduced states of peptides were clearly differentiated based on their characteristic electronic signatures. A similar Gibbs free energy (ΔG0) was obtained when different concentrations of substrates were applied, suggesting that the use of SPP1 nanopore for real-time quantification of peptide oligomeric states is feasible. With the intrinsic nature of size and conjugation amenability, the SPP1 nanopore has the potential for development into a tool for the quantification of peptide and protein structures in real time.
Collapse
Affiliation(s)
- Shaoying Wang
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine, Department of Physiology & Cell Biology; and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA; College of Pharmacy, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Zhi Zhou
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine, Department of Physiology & Cell Biology; and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
| | - Zhengyi Zhao
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine, Department of Physiology & Cell Biology; and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA; College of Pharmacy, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Hui Zhang
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine, Department of Physiology & Cell Biology; and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
| | - Farzin Haque
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine, Department of Physiology & Cell Biology; and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
| | - Peixuan Guo
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine, Department of Physiology & Cell Biology; and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
17
|
Ji Z, Wang S, Zhao Z, Zhou Z, Haque F, Guo P. Fingerprinting of Peptides with a Large Channel of Bacteriophage Phi29 DNA Packaging Motor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4572-8. [PMID: 27435806 PMCID: PMC5166430 DOI: 10.1002/smll.201601157] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/16/2016] [Indexed: 05/27/2023]
Abstract
Nanopore technology has become a highly sensitive and powerful tool for single molecule sensing of chemicals and biopolymers. Protein pores have the advantages of size amenability, channel homogeneity, and fabrication reproducibility. But most well-studied protein pores for sensing are too small for passage of peptide analytes that are typically a few nanometers in dimension. The funnel-shaped channel of bacteriophage phi29 DNA packaging motor has previously been inserted into a lipid membrane to serve as a larger pore with a narrowest N-terminal constriction of 3.6 nm and a wider C-terminal end of 6 nm. Here, the utility of phi29 motor channel for fingerprinting of various peptides using single molecule electrophysiological assays is reported. The translocation of peptides is proved unequivocally by single molecule fluorescence imaging. Current blockage percentage and distinctive current signatures are used to distinguish peptides with high confidence. Each peptide generated one or two distinct current blockage peaks, serving as typical fingerprint for each peptide. The oligomeric states of peptides can also be studied in real time at single molecule level. The results demonstrate the potential for further development of phi29 motor channel for detection of disease-associated peptide biomarkers.
Collapse
|
18
|
Zhou Z, Ji Z, Wang S, Haque F, Guo P. Oriented single directional insertion of nanochannel of bacteriophage SPP1 DNA packaging motor into lipid bilayer via polar hydrophobicity. Biomaterials 2016; 105:222-227. [PMID: 27529454 DOI: 10.1016/j.biomaterials.2016.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/21/2016] [Accepted: 08/01/2016] [Indexed: 12/23/2022]
Abstract
Insertion of biological nanopore into artificial membrane is of fundamental importance in nanotechnology. Many applications require control and knowledge of channel orientation. In this work, the insertion orientation of the bacteriophage SPP1 and phi29 DNA packaging motors into lipid membranes was investigated. Single molecule electrophysiological assays and Ni-NTA-nanogold binding assays revealed that both SPP1 and phi29 motor channels exhibited a one-way traffic property for TAT peptide translocation from N- to C-termini of the protein channels. SPP1 motor channels preferentially inserts into liposomes with their C-terminal wider region facing inward. Changing the hydrophobicity of the N- or C-termini of phi29 connector alters the insertion orientation, suggesting that the hydrophobicity and hydrophilicity of the termini of the protein channel governs the orientation of the insertion into lipid membrane. It is proposed that the specificity in motor channel orientation is a result of the hydrophilic/hydrophobic interaction at the air/water interface when the protein channels are incorporating into liposome membranes.
Collapse
Affiliation(s)
- Zhi Zhou
- College of Pharmacy, College of Medicine/Dept. Physiology and Cell Biology/Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Zhouxiang Ji
- College of Pharmacy, College of Medicine/Dept. Physiology and Cell Biology/Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Shaoying Wang
- College of Pharmacy, College of Medicine/Dept. Physiology and Cell Biology/Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Farzin Haque
- College of Pharmacy, College of Medicine/Dept. Physiology and Cell Biology/Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Peixuan Guo
- College of Pharmacy, College of Medicine/Dept. Physiology and Cell Biology/Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
19
|
Three-step channel conformational changes common to DNA packaging motors of bacterial viruses T3, T4, SPP1, and Phi29. Virology 2016; 500:285-291. [PMID: 27181501 DOI: 10.1016/j.virol.2016.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/09/2016] [Accepted: 04/11/2016] [Indexed: 11/21/2022]
Abstract
The DNA packaging motor of dsDNA bacterial viruses contains a head-tail connector with a channel for the genome to enter during assembly and to exit during host infection. The DNA packaging motor of bacterial virus phi29 was recently reported to use the "One-way revolving" mechanism for DNA packaging. This raises a question of how dsDNA is ejected during infection if the channel acts as a one-way inward valve. Here we report a three step conformational change of the portal channel that is common among DNA translocation motors of bacterial viruses T3, T4, SPP1, and phi29. The channels of these motors exercise three discrete steps of gating, as revealed by electrophysiological assays. The data suggest that the three step channel conformational changes occur during DNA entry process, resulting in a structural transition in preparation for DNA movement in the reverse direction during ejection.
Collapse
|
20
|
Jing P, Paraiso H, Burris B. Highly efficient integration of the viral portal proteins from different types of phages into planar bilayers for the black lipid membrane analysis. MOLECULAR BIOSYSTEMS 2015; 12:480-9. [PMID: 26661052 DOI: 10.1039/c5mb00573f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The planar lipid bilayer technology is a technique that yields incredibly useful structural function information about a single channel protein. It is also currently actively utilized as a powerful platform using biological protein nanopores for the development of single-molecule nanopore sensing technology, as well as ultrafast DNA sequencing technology. The portal protein, GP10, from the bacteriophage Φ29 was the first phage portal protein shown to be successfully inserted into planar bilayer membranes, thereby it may inspire more researchers to apply the techniques to portal proteins from the other bacteriophages. However, the technology is far from perfect since the insertion of the channel proteins into planar bilayer membranes is not only technically difficult but also time-consuming. For the fusion of phage portal proteins, vesicles are typically needed to be reconstituted with the portal proteins to form proteoliposomes. However, most of the phage portal proteins have low solubility, and may self-aggregate during the preparation of the proteoliposomes. Furthermore, the fusion of the formed proteoliposomes is sporadic, unpredictable and varied from person to person. Due to the lack of experimental consistency between labs, the results from different methodologies reported for generating fusible proteoliposomes are highly variable. In this research, we propose a new method for the preparation of the fusible proteoliposomes containing portal proteins from bacteriophages, to circumvent the problems aforementioned. Compared to the conventional methods, this method was able to avoid the protein aggregation issues during the vesicle preparation by eliminating the need for detergents and the subsequent time-consuming step for detergent removal. The proteoliposomes prepared by the method were shown to be more efficiently and rapidly inserted into planar bilayer membranes bathed in different conducting buffer solutions including those with nonelectrolytes such as glycerol and PEG. In addition, the method of forming proteoliposomes has significantly extended the shelf life of the proteoliposomes. To further explore its potentials, we have successfully applied the method to the insertion of a mutant portal protein, GP20, from T4 bacteriophage, a hydrophobic portal protein that has not been explored using the planar lipid bilayer membrane technique. The results suggest that this method could be used to prepare proteoliposomes formed by hydrophobic portal proteins from other bacteriophages.
Collapse
Affiliation(s)
- Peng Jing
- Department of Chemistry, College of Arts and Sciences, Indiana-Purdue University Fort Wayne, 2101 E. Coliseum Blvd., Fort Wayne, IN 46805-1499, USA.
| | - Hallel Paraiso
- Department of Biology, College of Arts and Sciences, Indiana-Purdue University Fort Wayne, 2101 E. Coliseum Blvd., Fort Wayne, IN 46805-1499, USA
| | - Benjamin Burris
- Department of Chemistry, College of Arts and Sciences, Indiana-Purdue University Fort Wayne, 2101 E. Coliseum Blvd., Fort Wayne, IN 46805-1499, USA.
| |
Collapse
|
21
|
Zhang Y, Kong XY, Gao L, Tian Y, Wen L, Jiang L. Fabrication of Nanochannels. MATERIALS (BASEL, SWITZERLAND) 2015; 8:6277-6308. [PMID: 28793564 PMCID: PMC5512911 DOI: 10.3390/ma8095304] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 08/30/2015] [Accepted: 09/02/2015] [Indexed: 12/30/2022]
Abstract
Nature has inspired the fabrication of intelligent devices to meet the needs of the advanced community and better understand the imitation of biology. As a biomimetic nanodevice, nanochannels/nanopores aroused increasing interest because of their potential applications in nanofluidic fields. In this review, we have summarized some recent results mainly focused on the design and fabrication of one-dimensional nanochannels, which can be made of many materials, including polymers, inorganics, biotic materials, and composite materials. These nanochannels have some properties similar to biological channels, such as selectivity, voltage-dependent current fluctuations, ionic rectification current and ionic gating, etc. Therefore, they show great potential for the fields of biosensing, filtration, and energy conversions. These advances can not only help people to understand the living processes in nature, but also inspire scientists to develop novel nanodevices with better performance for mankind.
Collapse
Affiliation(s)
- Yuqi Zhang
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, Shaanxi, China.
| | - Xiang-Yu Kong
- Laboratory of Bio-inspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Loujun Gao
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, Shaanxi, China.
| | - Ye Tian
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Liping Wen
- Laboratory of Bio-inspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Lei Jiang
- Laboratory of Bio-inspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
22
|
Haque F, Wang S, Stites C, Chen L, Wang C, Guo P. Single pore translocation of folded, double-stranded, and tetra-stranded DNA through channel of bacteriophage phi29 DNA packaging motor. Biomaterials 2015; 53:744-52. [PMID: 25890769 DOI: 10.1016/j.biomaterials.2015.02.104] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/22/2015] [Accepted: 02/24/2015] [Indexed: 12/11/2022]
Abstract
The elegant architecture of the channel of bacteriophage phi29 DNA packaging motor has inspired the development of biomimetics for biophysical and nanobiomedical applications. The reengineered channel inserted into a lipid membrane exhibits robust electrophysiological properties ideal for precise sensing and fingerprinting of dsDNA at the single-molecule level. Herein, we used single channel conduction assays to quantitatively evaluate the translocation dynamics of dsDNA as a function of the length and conformation of dsDNA. We extracted the speed of dsDNA translocation from the dwell time distribution and estimated the various forces involved in the translocation process. A ∼35-fold slower speed of translocation per base-pair was observed for long dsDNA, a significant contrast to the speed of dsDNA crossing synthetic pores. It was found that the channel could translocate both dsDNA with ∼32% of channel current blockage and with ∼64% for tetra-stranded DNA (two parallel dsDNA). The calculation of both cross-sectional areas of the dsDNA and tetra-stranded DNA suggested that the blockage was purely proportional to the physical space of the channel lumen and the size of the DNA substrate. Folded dsDNA configuration was clearly reflected in their characteristic current signatures. The finding of translocation of tetra-stranded DNA with 64% blockage is in consent with the recently elucidated mechanism of viral DNA packaging via a revolution mode that requires a channel larger than the dsDNA diameter of 2 nm to provide room for viral DNA revolving without rotation. The understanding of the dynamics of dsDNA translocation in the phi29 system will enable us to design more sophisticated single pore DNA translocation devices for future applications in nanotechnology and personal medicine.
Collapse
Affiliation(s)
- Farzin Haque
- Nanobiotechnology Center, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA.
| | - Shaoying Wang
- Nanobiotechnology Center, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Chris Stites
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Li Chen
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Biostatistics, University of Kentucky, Lexington, KY 40536, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Biostatistics, University of Kentucky, Lexington, KY 40536, USA
| | - Peixuan Guo
- Nanobiotechnology Center, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
23
|
Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes. Nature 2014; 514:612-5. [DOI: 10.1038/nature13817] [Citation(s) in RCA: 306] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 08/26/2014] [Indexed: 12/21/2022]
|
24
|
Braun CJ, Baer T, Moroni A, Thiel G. Pseudo painting/air bubble technique for planar lipid bilayers. J Neurosci Methods 2014; 233:13-7. [DOI: 10.1016/j.jneumeth.2014.05.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 05/21/2014] [Accepted: 05/24/2014] [Indexed: 10/25/2022]
|
25
|
Han W, Shen Y, She Q. Nanobiomotors of archaeal DNA repair machineries: current research status and application potential. Cell Biosci 2014; 4:32. [PMID: 24995126 PMCID: PMC4080772 DOI: 10.1186/2045-3701-4-32] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 06/13/2014] [Indexed: 11/10/2022] Open
Abstract
Nanobiomotors perform various important functions in the cell, and they also emerge as potential vehicle for drug delivery. These proteins employ conserved ATPase domains to convert chemical energy to mechanical work and motion. Several archaeal nucleic acid nanobiomotors, such as DNA helicases that unwind double-stranded DNA molecules during DNA damage repair, have been characterized in details. XPB, XPD and Hjm are SF2 family helicases, each of which employs two ATPase domains for ATP binding and hydrolysis to drive DNA unwinding. They also carry additional specific domains for substrate binding and regulation. Another helicase, HerA, forms a hexameric ring that may act as a DNA-pumping enzyme at the end processing of double-stranded DNA breaks. Common for all these nanobiomotors is that they contain ATPase domain that adopts RecA fold structure. This structure is characteristic for RecA/RadA family proteins and has been studied in great details. Here we review the structural analyses of these archaeal nucleic acid biomotors and the molecular mechanisms of how ATP binding and hydrolysis promote the conformation change that drives mechanical motion. The application potential of archaeal nanobiomotors in drug delivery has been discussed.
Collapse
Affiliation(s)
- Wenyuan Han
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China ; Archaeal Centre, Department of Biology, University of Copenhagen, Copenhagen Biocenter, Copenhagen, Denmark
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Qunxin She
- Archaeal Centre, Department of Biology, University of Copenhagen, Copenhagen Biocenter, Copenhagen, Denmark
| |
Collapse
|
26
|
|
27
|
Ying YL, Zhang J, Gao R, Long YT. Nanopore-Based Sequencing and Detection of Nucleic Acids. Angew Chem Int Ed Engl 2013; 52:13154-61. [DOI: 10.1002/anie.201303529] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Indexed: 01/30/2023]
|
28
|
Geng J, Wang S, Fang H, Guo P. Channel size conversion of Phi29 DNA-packaging nanomotor for discrimination of single- and double-stranded nucleic acids. ACS NANO 2013; 7:3315-23. [PMID: 23488809 PMCID: PMC3663147 DOI: 10.1021/nn400020z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanopores have been utilized to detect the conformation and dynamics of polymers, including DNA and RNA. Biological pores are extremely reproducible at the atomic level with uniform channel sizes. The channel of the bacterial virus phi29 DNA-packaging motor is a natural conduit for the transportation of double-stranded DNA (dsDNA) and has the largest diameter among the well-studied biological channels. The larger channel facilitates translocation of dsDNA and offers more space for further channel modification and conjugation. Interestingly, the relatively large wild-type channel, which translocates dsDNA, cannot detect single-stranded nucleic acids (ssDNA or ssRNA) under the current experimental conditions. Herein, we reengineered this motor channel by removing the internal loop segment of the channel. The modification resulted in two classes of channels. One class was the same size as the wild-type channel, while the other class had a cross-sectional area about 60% of the wild-type. This smaller channel was able to detect the real-time translocation of single-stranded nucleic acids at single-molecule level. While the wild-type connector exhibited a one-way traffic property with respect to dsDNA translocation, the loop-deleted connector was able to translocate ssDNA and ssRNA with equal competencies from both termini. This finding of size alterations in reengineered motor channels expands the potential application of the phi29 DNA-packaging motor in nanomedicine, nanobiotechnology, and high-throughput single-pore DNA sequencing.
Collapse
Affiliation(s)
- Jia Geng
- Nanobiotechnology Center, University of Kentucky, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40536, USA
| | - Shaoying Wang
- Nanobiotechnology Center, University of Kentucky, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40536, USA
| | - Huaming Fang
- Nanobiotechnology Center, University of Kentucky, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40536, USA
| | - Peixuan Guo
- Nanobiotechnology Center, University of Kentucky, Lexington, KY, 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40536, USA
- Address correspondence to: Peixuan Guo, University of Kentucky, Department of Pharmaceutical Sciences, 789 S. Limestone Avenue, Room # 565, Lexington, KY, USA 40536-0596, , Phone:859-218-0128, Fax:859-257-1307
| |
Collapse
|