1
|
Han D, Cui Y, Deng X, Li C, Zhu X, Wang B, Chu GC, Wang ZA, Tang S, Zheng JS, Liang LJ, Liu L. Mechanically Triggered Protein Desulfurization. J Am Chem Soc 2025. [PMID: 39849831 DOI: 10.1021/jacs.4c13464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
The technology of native chemical ligation and postligation desulfurization has greatly expanded the scope of modern chemical protein synthesis. Here, we report that ultrasonic energy can trigger robust and clean protein desulfurization, and we developed an ultrasound-induced desulfurization (USID) strategy that is simple to use and generally applicable to peptides and proteins. The USID strategy involves a simple ultrasonic cleaning bath and an easy-to-use and easy-to-remove sonosensitizer, titanium dioxide. It features mild and convenient reaction conditions and excellent functional group compatibility, e.g., with thiazolidine (Thz) and serotonin, which are sensitive to other desulfurization strategies. The USID strategy is robust: without reoptimizing the reaction conditions, the same USID procedure can be used for the clean desulfurization of a broad range of proteins with one or more sulfhydryl groups, even in multi-hundred-milligram scale reactions. The utility of USID was demonstrated by the one-pot synthesis of bioactive cyclopeptides such as Cycloleonuripeptide E and Segetalin F, as well as convergent chemical synthesis of functionally important proteins such as histone H3.5 using Thz as a temporary protecting group. A mechanistic investigation indicated that USID proceeds via a radical-based mechanism promoted by low-frequency and low-intensity ultrasonication. Overall, our work introduces a mechanically triggered approach with the potential to become a robust desulfurization method for general use in chemical protein synthesis by both academic and industrial laboratories.
Collapse
Affiliation(s)
- Dongyang Han
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yan Cui
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiangyu Deng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chuntong Li
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xianglai Zhu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bingji Wang
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Chao Chu
- The First Affiliated Hospital of USTC, MOE Key Laboratory of Cellular Dynamics, and Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Zhipeng A Wang
- Desai Sethi Urology Institute, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Shan Tang
- Department of Oncology, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Ji-Shen Zheng
- The First Affiliated Hospital of USTC, MOE Key Laboratory of Cellular Dynamics, and Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Lu-Jun Liang
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Hananya N, Koren S, Muir TW. Interrogating epigenetic mechanisms with chemically customized chromatin. Nat Rev Genet 2024; 25:255-271. [PMID: 37985791 PMCID: PMC11176933 DOI: 10.1038/s41576-023-00664-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 11/22/2023]
Abstract
Genetic and genomic techniques have proven incredibly powerful for identifying and studying molecular players implicated in the epigenetic regulation of DNA-templated processes such as transcription. However, achieving a mechanistic understanding of how these molecules interact with chromatin to elicit a functional output is non-trivial, owing to the tremendous complexity of the biochemical networks involved. Advances in protein engineering have enabled the reconstitution of 'designer' chromatin containing customized post-translational modification patterns, which, when used in conjunction with sophisticated biochemical and biophysical methods, allow many mechanistic questions to be addressed. In this Review, we discuss how such tools complement established 'omics' techniques to answer fundamental questions on chromatin regulation, focusing on chromatin mark establishment and protein-chromatin interactions.
Collapse
Affiliation(s)
- Nir Hananya
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Shany Koren
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
3
|
Antonenko A, Singh AK, Mosna K, Krężel A. OaAEP1 Ligase-Assisted Chemoenzymatic Synthesis of Full Cysteine-Rich Metal-Binding Cyanobacterial Metallothionein SmtA. Bioconjug Chem 2023. [PMID: 36921066 PMCID: PMC10119931 DOI: 10.1021/acs.bioconjchem.3c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Among all approaches used for the semisynthesis of natural or chemically modified products, enzyme-assisted ligation is among the most promising and dynamically developing approaches. Applying an efficient C247A mutant of Oldenlandia affinis plant ligase OaAEP1 and solid-phase peptide synthesis chemistry, we present the chemoenzymatic synthesis of a complete sequence of the cysteine-rich and metal-binding cyanobacterial metallothionein Synechococcus metallothionein A (SmtA). Zn(II) and Cd(II) binding to the newly synthesized SmtA showed identical properties to the protein expressed in Escherichia coli. The presented approach is the first example of the use of OaAEP1 mutant for total protein synthesis of metallothionein, which occurs in mild conditions preventing cysteine thiol oxidation. The recognition motif of the applied enzyme could naturally occur in the protein structure or be synthetically or genetically incorporated in some loops or secondary structure elements. Therefore, we envision that this strategy can be used for efficiently obtaining SmtA and for a wide range of proteins and their derivatives.
Collapse
Affiliation(s)
- Anastasiia Antonenko
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| | - Avinash Kumar Singh
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| | - Karolina Mosna
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| |
Collapse
|
4
|
Proteins through the eyes of an organic chemist. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Nakatsu K, Okamoto A, Hayashi G, Murakami H. Repetitive Thiazolidine Deprotection Using a Thioester‐Compatible Aldehyde Scavenger for One‐Pot Multiple Peptide Ligation**. Angew Chem Int Ed Engl 2022; 61:e202206240. [DOI: 10.1002/anie.202206240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Koki Nakatsu
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho Chikusa-ku Nagoya 464-8603 Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Research Center for Advanced Science and Technology The University of Tokyo 4-6-1 Komaba Meguro-ku Tokyo 153-8904 Japan
| | - Gosuke Hayashi
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho Chikusa-ku Nagoya 464-8603 Japan
| | - Hiroshi Murakami
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Furo-cho Chikusa-ku Nagoya 464-8603 Japan
- Institute of Nano-Life-Systems Institutes of Innovation for Future Society Nagoya University Furo-cho Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
6
|
Sun Z, Ma W, Cao Y, Wei T, Mo X, Chow HY, Tan Y, Cheung CH, Liu J, Lee HK, Tse EC, Liu H, Li X. Superfast desulfurization for protein chemical synthesis and modification. Chem 2022. [DOI: 10.1016/j.chempr.2022.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Hayashi G, Nakatsu K, Okamoto A, Murakami H. Repetitive Thiazolidine Deprotection Using a Thioester‐Compatible Aldehyde Scavenger for One‐Pot Multiple Peptide Ligation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Gosuke Hayashi
- Nagoya University Graduate School of Engineering School of Engineering: Nagoya Daigaku Kogakubu Daigakuin Kogaku Kenkyuka Biomolecular Engineering Furo-choChikusa-ku 464-8603 Nagoya JAPAN
| | - Koki Nakatsu
- Nagoya University Graduate School of Engineering School of Engineering: Nagoya Daigaku Kogakubu Daigakuin Kogaku Kenkyuka Biomolecular Engineering JAPAN
| | - Akimitsu Okamoto
- The University of Tokyo Graduate School of Engineering Faculty of Engineering: Tokyo Daigaku Daigakuin Kogakukei Kenkyuka Kogakubu Chemistry and Biotechnology JAPAN
| | - Hiroshi Murakami
- Nagoya University Graduate School of Engineering School of Engineering: Nagoya Daigaku Kogakubu Daigakuin Kogaku Kenkyuka Biomolecular Engineering JAPAN
| |
Collapse
|
8
|
Wang ZA, Whedon SD, Wu M, Wang S, Brown EA, Anmangandla A, Regan L, Lee K, Du J, Hong JY, Fairall L, Kay T, Lin H, Zhao Y, Schwabe JWR, Cole PA. Histone H2B Deacylation Selectivity: Exploring Chromatin's Dark Matter with an Engineered Sortase. J Am Chem Soc 2022; 144:3360-3364. [PMID: 35175758 PMCID: PMC8895396 DOI: 10.1021/jacs.1c13555] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We describe a new method to produce histone H2B by semisynthesis with an engineered sortase transpeptidase. N-Terminal tail site-specifically modified acetylated, lactylated, and β-hydroxybutyrylated histone H2Bs were incorporated into nucleosomes and investigated as substrates of histone deacetylase (HDAC) complexes and sirtuins. A wide range of rates and site-specificities were observed by these enzyme forms suggesting distinct biological roles in regulating chromatin structure and epigenetics.
Collapse
Affiliation(s)
- Zhipeng A Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Department of Biological Chemistry and Molecular Pharmcology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Samuel D Whedon
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Department of Biological Chemistry and Molecular Pharmcology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Mingxuan Wu
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Department of Biological Chemistry and Molecular Pharmcology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Siyu Wang
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Edward A Brown
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Ananya Anmangandla
- Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Liam Regan
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Kwangwoon Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Department of Biological Chemistry and Molecular Pharmcology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jianfeng Du
- The Ben May Department for Cancer Research, Chicago, Illinois 60637, United States
| | - Jun Young Hong
- Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Louise Fairall
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Taylor Kay
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Department of Biological Chemistry and Molecular Pharmcology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Hening Lin
- Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yingming Zhao
- The Ben May Department for Cancer Research, Chicago, Illinois 60637, United States
| | - John W R Schwabe
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Department of Biological Chemistry and Molecular Pharmcology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
9
|
Ai H, Peng S, Li JB. Chemical methods for studying the crosstalk between histone H2B ubiquitylation and H3 methylation. J Pept Sci 2021; 28:e3381. [PMID: 34811838 DOI: 10.1002/psc.3381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/19/2021] [Accepted: 11/03/2021] [Indexed: 11/06/2022]
Abstract
The reversible and dynamic post-translational modifications (PTMs) of histones in eukaryotic chromatin are intimately connected to cell development and gene function, and abnormal regulation of PTMs can result in cancer and neurodegenerative diseases. Specific combinations of these modifications are mediated by a series of chromatin proteins that write, erase, and read the "histone codes," but mechanistic studies of the precise biochemical and structural relationships between different sets of modifications and their effects on chromatin function constitute a unique challenge to canonical biochemical approaches. In the past decade, the development and application of chemical methods for investigating histone PTM crosstalks has received considerable attention in the field of chemical biology. In this review, taking the functional crosstalk between H2B ubiquitylation at Lys120 (H2BK120ub) and H3 methylation at Lys79 (H3K79me) as a typical example, we survey recent developments of different chemical methods, in particular, protein synthetic chemistry and protein-based chemical probes, for studying the mechanism of the functional crosstalks of histone PTMs.
Collapse
Affiliation(s)
- Huasong Ai
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Shuai Peng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
10
|
Giesler RJ, Spaltenstein P, Jacobsen MT, Xu W, Maqueda M, Kay MS. A glutamic acid-based traceless linker to address challenging chemical protein syntheses. Org Biomol Chem 2021; 19:8821-8829. [PMID: 34585207 PMCID: PMC8604549 DOI: 10.1039/d1ob01611c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Native chemical ligation (NCL) enables the total chemical synthesis of proteins. However, poor peptide segment solubility remains a frequently encountered challenge. Here we introduce a traceless linker that can be temporarily attached to Glu side chains to overcome this problem. This strategy employs a new tool, Fmoc-Glu(AlHx)-OH, which can be directly installed using standard Fmoc-based solid-phase peptide synthesis. The incorporated residue, Glu(AlHx), is stable to a wide range of chemical protein synthesis conditions and is removed through palladium-catalyzed transfer under aqueous conditions. General handling characteristics, such as efficient incorporation, stability and rapid removal were demonstrated through a model peptide modified with Glu(AlHx) and a Lys6 solubilizing tag. Glu(AlHx) was incorporated into a highly insoluble peptide segment during the total synthesis of the bacteriocin AS-48. This challenging peptide was successfully synthesized and folded, and it has comparable antimicrobial activity to the native AS-48. We anticipate widespread use of this easy-to-use, robust linker for the preparation of challenging synthetic peptides and proteins.
Collapse
Affiliation(s)
- Riley J Giesler
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, USA.
| | - Paul Spaltenstein
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, USA.
| | - Michael T Jacobsen
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, Palo Alto, CA 94304, USA
| | - Weiliang Xu
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, USA.
| | - Mercedes Maqueda
- Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain
| | - Michael S Kay
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, USA.
| |
Collapse
|
11
|
Laps S, Satish G, Brik A. Harnessing the power of transition metals in solid-phase peptide synthesis and key steps in the (semi)synthesis of proteins. Chem Soc Rev 2021; 50:2367-2387. [PMID: 33432943 DOI: 10.1039/d0cs01156h] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Peptides and proteins can be either synthesized using solid-phase peptide synthesis (SPPS) or by applying a combination of SPPS and ligation approaches to address fundamental questions related to human health and disease, among others. The demand for their production either by chemical or biological methods continues to raise significant interests from the synthetic community. In this context, transition metals such as Pd, Ag, Hg, Tl, Au, Zn, Ni, and Cu have also contributed to the field of peptide and protein synthesis such as in peptide conjugation, extending native chemical ligation (NCL), and for regioselective disulfide bonds formation. In this review, we highlight, summarize, and evaluate the use of various transition metals in the chemical synthesis of peptides and proteins with emphasis on recent developments in this exciting research area.
Collapse
Affiliation(s)
- Shay Laps
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel.
| | - Gandhesiri Satish
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel.
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel.
| |
Collapse
|
12
|
Kouno M, Kuwamura N, Konno T. Interconversion between square-planar palladium(ii) and octahedral palladium(iv) centres in a sulfur-bridged trinuclear structure. Chem Commun (Camb) 2021; 57:1336-1339. [DOI: 10.1039/d0cc07490j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Coordination of six thiolato groups from two RhIII metalloligands stabilizes an octahedral PdIV centre, which is interconvertible with a square-planar PdII centre retaining the RhPdRh trinuclear structure.
Collapse
Affiliation(s)
- Masahiro Kouno
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Naoto Kuwamura
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Takumi Konno
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| |
Collapse
|
13
|
Abstract
Abstract
Site-specific protein conjugation is a critical step in the generation of unique protein analogs for a range of basic research and therapeutic developments. Protein transformations must target a precise residue in the presence of a plethora of functional groups to obtain a well-characterized homogeneous product. Competing reactive residues on natural proteins render rapid and selective conjugation a challenging task. Organometallic reagents have recently emerged as a powerful strategy to achieve site-specific labeling of a diverse set of biopolymers, due to advances in water-soluble ligand design, high reaction rate, and selectivity. The thiophilic nature of various transition metals, especially soft metals, makes cysteine an ideal target for these reagents. The distinctive reactivity and selectivity of organometallic-based reactions, along with the unique reactivity and abundancy of cysteine within the human proteome, provide a powerful platform to modify native proteins in aqueous media. These reactions often provide the modified proteins with a stable linkage made from irreversible cross-coupling steps. Additionally, transition metal reagents have recently been applied for the decaging of cysteine residues in the context of chemical protein synthesis. Orthogonal cysteine protecting groups and functional tags are often necessary for the synthesis of challenging proteins, and organometallic reagents are powerful tools for selective, rapid, and water-compatible removal of those moieties. This review examines transition metal-based reactions of cysteine residues for the synthesis and modification of natural peptides and proteins.
Collapse
Affiliation(s)
- Muhammad Jbara
- Massachusetts Institute of Technology , Department of Chemistry , 77 Massachusetts Avenue , Cambridge , MA , 02139, USA
| |
Collapse
|
14
|
Zheng Y, Wu F, Ling S, Li JB, Tian C. Total chemical synthesis of bivalently modified H3 by improved three-segment native chemical ligation. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.09.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Naruse N, Kobayashi D, Ohkawachi K, Shigenaga A, Otaka A. Copper-Mediated Deprotection of Thiazolidine and Selenazolidine Derivatives Applied to Native Chemical Ligation. J Org Chem 2019; 85:1425-1433. [PMID: 31592642 DOI: 10.1021/acs.joc.9b02388] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cupric sulfate efficiently opens thiazolidine and selenazolidine rings, producing a protected N-terminal cysteine or selenocysteine derivative without the use of inert gas or solvent. This is a clear advantage over methods that use water-soluble palladium salts, which fail to react with the selenazolidine ring. This copper-mediated reaction proceeds with monovalent or divalent copper ions, and disulfide bond formation followed by ring-opening promotes the process. This copper-mediated reaction, which is compatible with the standard native chemical ligation conditions, was applied to the synthesis of the 77-mer CXCL14 protein.
Collapse
Affiliation(s)
- Naoto Naruse
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences , Tokushima University , Tokushima 770-8505 , Japan
| | - Daishiro Kobayashi
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences , Tokushima University , Tokushima 770-8505 , Japan
| | - Kento Ohkawachi
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences , Tokushima University , Tokushima 770-8505 , Japan
| | - Akira Shigenaga
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences , Tokushima University , Tokushima 770-8505 , Japan
| | - Akira Otaka
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences , Tokushima University , Tokushima 770-8505 , Japan
| |
Collapse
|
16
|
Kamo N, Hayashi G, Okamoto A. Chemical Synthesis of Cys-Containing Protein via Chemoselective Deprotection with Different Palladium Complexes. Org Lett 2019; 21:8378-8382. [PMID: 31560553 DOI: 10.1021/acs.orglett.9b03152] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report selective removals of N-terminal and internal Cys protecting groups using different palladium complexes to facilitate the efficient chemical protein synthesis. Utilizing the orthogonal deprotection pairs, we accomplished chemical synthesis of histone H3 containing trimethylated Lys through the combination of Pd(0)-mediated Alloc deprotection for one-pot multiple peptide ligation and Pd(II)Cl2-mediated Acm deprotection to recover native Cys residues after desulfurization.
Collapse
Affiliation(s)
- Naoki Kamo
- Department of Chemistry and Biotechnology, Graduate School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Gosuke Hayashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan.,Department of Biomolecular Engineering, Graduate School of Engineering , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603 , Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan.,Research Center for Advanced Science and Technology , The University of Tokyo , 4-6-1 Komaba , Meguro-ku, Tokyo 153-8904 , Japan
| |
Collapse
|
17
|
Kulkarni SS, Watson EE, Premdjee B, Conde-Frieboes KW, Payne RJ. Diselenide–selenoester ligation for chemical protein synthesis. Nat Protoc 2019; 14:2229-2257. [DOI: 10.1038/s41596-019-0180-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/16/2019] [Indexed: 01/30/2023]
|
18
|
Yanase M, Nakatsu K, Cardos CJ, Konda Y, Hayashi G, Okamoto A. Cysteinylprolyl imide (CPI) peptide: a highly reactive and easily accessible crypto-thioester for chemical protein synthesis. Chem Sci 2019; 10:5967-5975. [PMID: 31360403 PMCID: PMC6566460 DOI: 10.1039/c9sc00646j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/09/2019] [Indexed: 12/21/2022] Open
Abstract
A new crypto-thioester, cysteinylprolyl imide (CPI) peptide, offers a practical synthetic pathway and reliable reaction rate to be successfully applied to chemical protein synthesis.
Native chemical ligation (NCL) between the C-terminal peptide thioester and the N-terminal cysteinyl-peptide revolutionized the field of chemical protein synthesis. The difficulty of direct synthesis of the peptide thioester in the Fmoc method has prompted the development of crypto-thioesters that can be efficiently converted into thioesters. Cysteinylprolyl ester (CPE), which is an N–S acyl shift-driven crypto-thioester that relies on an intramolecular O–N acyl shift to displace the amide-thioester equilibrium, enabled trans-thioesterification and subsequent NCL in one pot. However, the utility of CPE is limited because of the moderate thioesterification rates and the synthetic complexity introduced by the ester group. Herein, we develop a new crypto-thioester, cysteinylprolyl imide (CPI), which replaces the alcohol leaving group of CPE with other leaving groups such as benzimidazolidinone, oxazolidinone, and pyrrolidinone. CPI peptides were efficiently synthesized by using standard Fmoc solid-phase peptide synthesis (SPPS) and subsequent on-resin imide formation. Screening of the several imide structures indicated that methyloxazolidinone-t-leucine (MeOxd-Tle) showed faster conversion into thioester and higher stability against hydrolysis under NCL conditions. Finally, by using CPMeOxd-Tle peptides, we demonstrated the chemical synthesis of affibody via N-to-C sequential, three-segment ligation and histone H2A.Z via convergent four-segment ligation. This facile and straightforward method is expected to be broadly applicable to chemical protein synthesis.
Collapse
Affiliation(s)
- Masafumi Yanase
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Koki Nakatsu
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Charlane Joy Cardos
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Yoshiki Konda
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Gosuke Hayashi
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan . .,Department of Biomolecular Engineering , Graduate School of Engineering , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8603 , Japan .
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan . .,Research Center for Advanced Science and Technology , The University of Tokyo , 4-6-1 Komaba, Meguro-ku , Tokyo 153-8904 , Japan
| |
Collapse
|
19
|
Agouridas V, El Mahdi O, Diemer V, Cargoët M, Monbaliu JCM, Melnyk O. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chem Rev 2019; 119:7328-7443. [DOI: 10.1021/acs.chemrev.8b00712] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vangelis Agouridas
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ouafâa El Mahdi
- Faculté Polydisciplinaire de Taza, University Sidi Mohamed Ben Abdellah, BP 1223 Taza Gare, Morocco
| | - Vincent Diemer
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Marine Cargoët
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis, Department of Chemistry, University of Liège, Building B6a, Room 3/16a, Sart-Tilman, B-4000 Liège, Belgium
| | - Oleg Melnyk
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
20
|
Jbara M, Maity SK, Brik A. Examining Several Strategies for the Chemical Synthesis of Phosphorylated Histone H3 Reveals the Effectiveness of the Convergent Approach. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Muhammad Jbara
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; 3200008 Haifa Israel
| | - Suman Kumar Maity
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; 3200008 Haifa Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; 3200008 Haifa Israel
| |
Collapse
|
21
|
Laps S, Sun H, Kamnesky G, Brik A. Palladium‐Mediated Direct Disulfide Bond Formation in Proteins Containing S‐Acetamidomethyl‐cysteine under Aqueous Conditions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Shay Laps
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Hao Sun
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Guy Kamnesky
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Ashraf Brik
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| |
Collapse
|
22
|
Laps S, Sun H, Kamnesky G, Brik A. Palladium‐Mediated Direct Disulfide Bond Formation in Proteins Containing S‐Acetamidomethyl‐cysteine under Aqueous Conditions. Angew Chem Int Ed Engl 2019; 58:5729-5733. [DOI: 10.1002/anie.201900988] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Shay Laps
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Hao Sun
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Guy Kamnesky
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Ashraf Brik
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| |
Collapse
|
23
|
Diverse fate of ubiquitin chain moieties: The proximal is degraded with the target, and the distal protects the proximal from removal and recycles. Proc Natl Acad Sci U S A 2019; 116:7805-7812. [PMID: 30867293 DOI: 10.1073/pnas.1822148116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the enigmas in the ubiquitin (Ub) field is the requirement for a poly-Ub chain as a proteasomal targeting signal. The canonical chain appears to be longer than the distance between the two Ub-binding proteasomal receptors. Furthermore, genetic manipulation has shown that one receptor subunit is sufficient, which suggests that a single Ub can serve as a degradation signal. To shed light on this mystery, we chemically synthesized tetra-Ub, di-Ub (K48-based), and mono-Ub adducts of HA-α-globin, where the distal or proximal Ub moieties were tagged differentially with either Myc or Flag. When incubated in a crude cell extract, the distal Ub moiety in the tetra-Ub adduct was mostly removed by deubiquitinating enzymes (DUBs) and reconjugated to other substrates in the extract. In contrast, the proximal moiety was most likely degraded with the substrate. The efficacy of degradation was proportionate to the chain length; while tetra-Ub globin was an efficient substrate, with mono-Ub globin, we observed rapid removal of the Ub moiety with almost no degradation of the free globin. Taken together, these findings suggest that the proximal moieties are necessary for securing the association of the substrate with the proteasome along the proteolytic process, whereas the distal moieties are important in protecting the proximal moieties from premature deubiquitination. Interestingly, when the same experiment was carried out using purified 26S proteasome, mono- and tetra-Ub globin were similarly degraded, highlighting the roles of the entire repertoire of cellular DUBs in regulating the degradation of proteasomal substrates.
Collapse
|
24
|
Kamo N, Hayashi G, Okamoto A. Corrigendum: Triple Function of 4-Mercaptophenylacetic Acid Promotes One-Pot Multiple Peptide Ligation. Angew Chem Int Ed Engl 2019; 58:1540. [PMID: 30694014 DOI: 10.1002/anie.201814304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Kamo N, Hayashi G, Okamoto A. Berichtigung: Triple Function of 4‐Mercaptophenylacetic Acid Promotes One‐Pot Multiple Peptide Ligation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Recent advances in the chemical synthesis and semi-synthesis of poly-ubiquitin-based proteins and probes. Sci China Chem 2019. [DOI: 10.1007/s11426-018-9401-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Ai H, Guo Y, Sun D, Liu S, Qi Y, Guo J, Qu Q, Gong Q, Zhao S, Li J, Liu L. Examination of the Deubiquitylation Site Selectivity of USP51 by Using Chemically Synthesized Ubiquitylated Histones. Chembiochem 2018; 20:221-229. [PMID: 30192049 DOI: 10.1002/cbic.201800432] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Indexed: 12/25/2022]
Abstract
Histone ubiquitylation and deubiquitylation processes and the mechanisms of their regulation are closely relevant to the field of epigenetics. Recently, the deubiquitylating enzyme USP51 was reported to selectively cleave ubiquitylation on histone H2A at K13 or K15 (i.e., H2AK13Ub and H2AK15Ub), but not at K119 (i.e., H2AK119Ub), in nucleosomes in vivo. To elucidate the mechanism for the selectivity of USP51, we constructed structurally well-defined in vitro protein systems with a ubiquitin modification at precise sites. A total chemical protein synthesis procedure was developed, wherein hydrazide-based native chemical ligation was used to efficiently generate five ubiquitylated histones (H2AK13Ub, H2AK15Ub, H2AK119Ub, H2BK34Ub, and H2BK120Ub). These synthetic ubiquitylated histones were assembled into nucleosomes and subjected to in vitro USP51 deubiquitylation assays. Surprisingly, USP51 did not show preference between H2AK13/15Ub and H2AK119Ub, in contrast to previous in vivo observations. Accordingly, an understanding of the selectivity of USP51 may require consideration of other factors, such as alternative pre-existing histone modifications, competitive reader proteins, or different nucleosome quality among the in vivo extraction nucleosome and the in vitro reconstitution one. Further experiments established that USP51 in vitro could deubiquitylate a nucleosome carrying H2BK120Ub, but not H2BK34Ub. Molecular dynamics simulations suggested that USP51-catalyzed hydrolysis of ubiquitylated nucleosomes was affected by steric hindrance of the isopeptide bond.
Collapse
Affiliation(s)
- Huasong Ai
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Yu Guo
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, P.R. China.,Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
| | - Demeng Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Sanling Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Yunkun Qi
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Jing Guo
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Qian Qu
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Qingyue Gong
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Suwen Zhao
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, P.R. China
| | - Jiabin Li
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
28
|
Jbara M, Laps S, Morgan M, Kamnesky G, Mann G, Wolberger C, Brik A. Palladium prompted on-demand cysteine chemistry for the synthesis of challenging and uniquely modified proteins. Nat Commun 2018; 9:3154. [PMID: 30089783 PMCID: PMC6082840 DOI: 10.1038/s41467-018-05628-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/16/2018] [Indexed: 01/12/2023] Open
Abstract
Organic chemistry allows for the modification and chemical preparation of protein analogues for various studies. The thiolate side chain of the Cys residue has been a key functionality in these ventures. In order to generate complex molecular targets, there is a particular need to incorporate orthogonal protecting groups of the thiolated amino acids to control the directionality of synthesis and modification site. Here, we demonstrate the tuning of palladium chemoselectivity in aqueous medium for on-demand deprotection of several Cys-protecting groups that are useful in protein synthesis and modification. These tools allow the preparation of highly complex analogues as we demonstrate in the synthesis of the copper storage protein and selectively modified peptides with multiple Cys residues. We also report the synthesis of an activity-based probe comprising ubiquitinated histone H2A and its incorporation into nucleosomes and demonstrate its reactivity with deubiquitinating enzyme to generate a covalent nucleosome-enzyme complex.
Collapse
Affiliation(s)
- Muhammad Jbara
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Shay Laps
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Michael Morgan
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205-2185, USA
| | - Guy Kamnesky
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Guy Mann
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205-2185, USA
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel.
| |
Collapse
|
29
|
Nadal S, Raj R, Mohammed S, Davis BG. Synthetic post-translational modification of histones. Curr Opin Chem Biol 2018; 45:35-47. [DOI: 10.1016/j.cbpa.2018.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/17/2018] [Accepted: 02/10/2018] [Indexed: 12/14/2022]
|
30
|
Leonen CJA, Upadhyay E, Chatterjee C. Studies of biochemical crosstalk in chromatin with semisynthetic histones. Curr Opin Chem Biol 2018; 45:27-34. [PMID: 29494828 DOI: 10.1016/j.cbpa.2018.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/08/2018] [Accepted: 02/11/2018] [Indexed: 01/26/2023]
Abstract
Reversible post-translational modifications of histone proteins in eukaryotic chromatin are closely tied to gene function and cellular development. Specific combinations of histone modifications, or marks, are implicated in distinct DNA-templated processes mediated by a range of chromatin-associated enzymes that install, erase and interpret the histone code. Mechanistic studies of the precise biochemical relationship between sets of marks and their effects on chromatin function are significantly complicated by the dynamic nature and heterogeneity of marks in cellular chromatin. Protein semisynthesis is a chemical technique that enables the piecewise assembly of uniformly and site-specifically modified histones in quantities sufficient for biophysical and biochemical analyses. Recent pioneering efforts in semisynthesis have yielded access to histones site-specifically modified by entire proteins, such as ubiquitin (Ub) and the small ubiquitin-like modifier (SUMO). Herein, we highlight key studies of biochemical crosstalk involving Ub and SUMO in chromatin that were enabled by histone semisynthesis.
Collapse
Affiliation(s)
| | - Esha Upadhyay
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Champak Chatterjee
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
31
|
Jbara M, Sun H, Kamnesky G, Brik A. Chemical chromatin ubiquitylation. Curr Opin Chem Biol 2018; 45:18-26. [PMID: 29459258 DOI: 10.1016/j.cbpa.2018.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/28/2018] [Accepted: 02/04/2018] [Indexed: 12/01/2022]
Abstract
Histone modifications dynamically regulate chromatin structure and function, thereby mediating many processes that require access to DNA. Chemical protein synthesis has emerged as a powerful approach for generating homogeneously modified histone analogues in workable amounts for subsequent incorporation into nucleosome arrays for biochemical, functional and structural studies. This short review focuses on the strength of total chemical protein synthesis and semisynthetic approaches to generate ubiquitylated histones in their native or non-native forms and the utility of these analogues to decode the role of ubiquitylation in epigenetics.
Collapse
Affiliation(s)
- Muhammad Jbara
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Hao Sun
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Guy Kamnesky
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel.
| |
Collapse
|
32
|
Qi YK, Ai HS, Li YM, Yan B. Total Chemical Synthesis of Modified Histones. Front Chem 2018; 6:19. [PMID: 29473034 PMCID: PMC5810247 DOI: 10.3389/fchem.2018.00019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/23/2018] [Indexed: 01/04/2023] Open
Abstract
In the post-genome era, epigenetics has received increasing attentions in recent years. The post-translational modifications (PTMs) of four core histones play central roles in epigenetic regulation of eukaryotic genome by either directly altering the biophysical properties of nucleosomes or by recruiting other effector proteins. In order to study the biological functions and structural mechanisms of these histone PTMs, an obligatory step is to prepare a sufficient amount of homogeneously modified histones. This task cannot be fully accomplished either by recombinant technology or enzymatic modification. In this context, synthetic chemists have developed novel protein synthetic tools and state-of-the-art chemical ligation strategies for the preparation of homologous modified histones. In this review, we summarize the recent advances in the preparation of modified histones, focusing on the total chemical synthesis strategies. The importance and potential of synthetic chemistry for the study of histone code will be also discussed.
Collapse
Affiliation(s)
- Yun-Kun Qi
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China
| | - Hua-Song Ai
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Yi-Ming Li
- Department of Pharmacy, School of Biological and Medical Engineering, Hefei University of Technology, Hefei, China
| | - Baihui Yan
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
33
|
Jbara M, Eid E, Brik A. Palladium mediated deallylation in fully aqueous conditions for native chemical ligation at aspartic and glutamic acid sites. Org Biomol Chem 2018; 16:4061-4064. [DOI: 10.1039/c8ob00890f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An efficient native chemical ligation approach at Asp and Glu sites is reported applying a hydrazide precursor, as a peptide thioester, and allyl protection at the side chain of Asp and Glu.
Collapse
Affiliation(s)
- Muhammad Jbara
- Schulich Faculty of Chemistry
- Technion-Israel Institute of Technology Haifa
- Israel
| | - Emad Eid
- Schulich Faculty of Chemistry
- Technion-Israel Institute of Technology Haifa
- Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry
- Technion-Israel Institute of Technology Haifa
- Israel
| |
Collapse
|