1
|
Zhai C, Wang Y, Qi S, Yang M, Wu S. Ca 2+-calpains axis regulates Yki stability and activity in Drosophila. J Genet Genomics 2024; 51:1020-1029. [PMID: 38663479 DOI: 10.1016/j.jgg.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 06/01/2024]
Abstract
Yorkie (Yki) is a key effector of the Hippo pathway that activates the expression of targets by associating with the transcription factor Scalloped. Various upstream signals, such as cell polarity and mechanical cues, control transcriptional programs by regulating Yki activity. Searching for Yki regulatory factors has far-reaching significance for studying the Hippo pathway in development and human diseases. In this study, we identify Calpain-A (CalpA) and Calpain-B (CalpB), two calcium (Ca2+)-dependent modulatory proteases of the calpain family, as critical regulators of Yki in Drosophila that interact with Yki, respectively. Ca2+ induces Yki cleavage in a CalpA/CalpB-dependent manner, and the protease activity of CalpA/CalpB is pivotal for the cleavage. Furthermore, overexpression of CalpA or CalpB in Drosophila partially restores the large wing phenotype caused by Yki overexpression, and F98 of Yki is an important cleavage site by the Ca2+-calpains axis. Our study uncovers a unique mechanism whereby the Ca2+-calpain axis modulates Yki activity through protein cleavage.
Collapse
Affiliation(s)
- Chaojun Zhai
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunfeng Wang
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shenao Qi
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Muhan Yang
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shian Wu
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Al-Moadhen H, Lees JC, van der Werf JHJ, McGilchrist P. The Impact of Genetic and Non-Genetic Factors on Lamb Loin Shear Force. Animals (Basel) 2024; 14:2628. [PMID: 39335219 PMCID: PMC11428881 DOI: 10.3390/ani14182628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Shear force is commonly used to evaluate tenderness, one of the most crucial eating quality aspects of sheep meat. The effect size of various factors on tenderness is still unknown. Studies have suggested that both genetic and environmental factors contribute to the variation in meat tenderness, and there are possible interactions between these factors. An extensive data set (n = 23,696) was analyzed to examine genetic and non-genetic influences on the shear force at 5 days postmortem (SF5). SF5 was measured on lamb loins (Longissimus lumborum) taken from lambs reared over 12 years at eight sites across Australia. The results showed that all carcass traits had a significant (p < 0.001) impact on SF5, with the largest effect on SF5 associated with intramuscular fat (IMF %) (f = 1035). There was also a significant effect of sex, cold shortening at 18 °C, sire type and cohort on SF5 (p < 0.001), with a large variation observed between the minimum cohort at 15.9 ± 1.5 N and maximum at 51.2 ± 2.1 N. In conclusion, a complex matrix of production, processing and genetic factors impact lamb tenderness as measured by shear force. This experiment helps identify the size of the contribution of these factors towards lamb tenderness, enabling the sheep industry to enhance consumers' satisfaction.
Collapse
Affiliation(s)
- Hussein Al-Moadhen
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Jarrod C Lees
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
- School of Agriculture and Food Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Julius H J van der Werf
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Peter McGilchrist
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
3
|
Rasl J, Caslavsky J, Grusanovic J, Chvalova V, Kosla J, Adamec J, Grousl T, Klimova Z, Vomastek T. Depletion of calpain2 accelerates epithelial barrier establishment and reduces growth factor-induced cell scattering. Cell Signal 2024; 121:111295. [PMID: 38996955 DOI: 10.1016/j.cellsig.2024.111295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Calpain2 is a conventional member of the non-lysosomal calpain protease family that has been shown to affect the dynamics of focal and cell-cell adhesions by proteolyzing the components of adhesion complexes. Here, we inactivated calpain2 using CRISPR/Cas9 in epithelial MDCK cells. We show that depletion of calpain2 has multiple effects on cell morphology and function. Calpain2-depleted cells develop epithelial shape, however, they cover a smaller area, and cell clusters are more compact. Inactivation of calpain2 enhanced restoration of transepithelial electrical resistance after calcium switch, decreased cell migration, and delayed cell scattering induced by HGF/SF. In addition, calpain2 depletion prevented morphological changes induced by ERK2 overexpression. Interestingly, proteolysis of several calpain2 targets, including E-cadherin, β-catenin, talin, FAK, and paxillin, was not discernibly affected by calpain2 depletion. Taken together, these data suggest that calpain2 regulates the stability of cell-cell and cell-substratum adhesions indirectly without affecting the proteolysis of these adhesion complexes.
Collapse
Affiliation(s)
- Jan Rasl
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Josef Caslavsky
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Josipa Grusanovic
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vera Chvalova
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Kosla
- Laboratory of Viral and Cellular Genetics and Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Jiri Adamec
- Department of Interdisciplinary Oncology, Louisiana State University HSC School of Medicine, New Orleans, USA
| | - Tomas Grousl
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Zuzana Klimova
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic.
| | - Tomas Vomastek
- Laboratory of Cell Signalling Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic.
| |
Collapse
|
4
|
Wan H, Chen H, Liu J, Yang B, Zhang Y, Bai Y, Chen X, Wang J, Liu T, Zhang Y, Hua Q. PARP1 inhibition prevents oxidative stress in age-related hearing loss via PAR-Ca 2+-AIF axis in cochlear strial marginal cells. Free Radic Biol Med 2024; 220:222-235. [PMID: 38735540 DOI: 10.1016/j.freeradbiomed.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Studies have highlighted oxidative damage in the inner ear as a critical pathological basis for sensorineural hearing loss, especially the presbycusis. Poly(ADP-ribose) polymerase-1 (PARP1) activation responds to oxidative stress-induced DNA damage with pro-repair and pro-death effects resembling two sides of the same coin. PARP1-related cell death, known as parthanatos, whose underlying mechanisms are attractive research hotspots but remain to be clarified. In this study, we observed that aged rats showed stria vascularis degeneration and oxidative damage, and PARP1-dependent cell death was prominent in age-related cochlear disorganization and dysfunction. Based on oxidative stress model of primary cultured stria marginal cells (MCs), we revealed that upregulated PARP1 and PAR (Poly(ADP-ribose)) polymers are responsible for MCs oxidative death with high mitochondrial permeability transition pore (mPTP) opening and mitochondrial membrane potential (MMP) collapse, while inhibition of PARP1 ameliorated the adverse outcomes. Importantly, the PARylation of apoptosis-inducing factor (AIF) is essential for its conformational change and translocation, which subsequently causes DNA break and cell death. Concretely, the interaction of PAR and truncated AIF (tAIF) is the mainstream in the parthanatos pathway. We also found that the effects of AIF cleavage and release were achieved through calpain activity and mPTP opening, both of which could be regulated by PARP1 via mediation of mitochondria Ca2+ concentration. In conclusion, the PAR-Ca2+-tAIF signaling pathway in parthanatos contributes to the oxidative stress damage observed in MCs. Targeting PAR-Ca2+-tAIF might be a potential therapeutic strategy for the early intervention of presbycusis and other oxidative stress-associated sensorineural deafness.
Collapse
Affiliation(s)
- Huanzhi Wan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan, 430060, Hubei Province, China; The First Clinical School of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Huidong Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan, 430060, Hubei Province, China; The First Clinical School of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Jingchun Liu
- The First Clinical School of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Bingqian Yang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan, 430060, Hubei Province, China; The First Clinical School of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Yunlong Zhang
- Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan, 430060, Hubei Province, China; The First Clinical School of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Yutong Bai
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan, 430060, Hubei Province, China; The First Clinical School of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Xiaoying Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan, 430060, Hubei Province, China; The First Clinical School of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan, 430060, Hubei Province, China; The First Clinical School of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Tianyi Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan, 430060, Hubei Province, China.
| | - Yuanyuan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan, 430060, Hubei Province, China.
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
5
|
Spinelli S, Barbieri F, Averna M, Florio T, Pedrazzi M, Tremonti BF, Capraro M, De Tullio R. Expression of calpastatin hcast 3-25 and activity of the calpain/calpastatin system in human glioblastoma stem cells: possible involvement of hcast 3-25 in cell differentiation. Front Mol Biosci 2024; 11:1359956. [PMID: 39139809 PMCID: PMC11319182 DOI: 10.3389/fmolb.2024.1359956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/03/2024] [Indexed: 08/15/2024] Open
Abstract
Glioblastoma (GBM) is the most malignant brain tumor, characterized by cell heterogeneity comprising stem cells (GSCs) responsible for aggressiveness. The calpain/calpastatin (calp/cast) proteolytic system is involved in critical physiological processes and cancer progression. In this work we showed the expression profile of hcast 3-25 (a Type III calpastatin variant devoid of inhibitory units) and the members of the system in several patient-derived GSCs exploring the relationship between hcast 3-25 and activation/activity of calpains. Each GSC shows a peculiar calp/cast mRNA and protein expression pattern, and hcast 3-25 is the least expressed. Differentiation promotes upregulation of all the calp/cast system components except hcast 3-25 mRNA, which increased or decreased depending on individual GSC culture. Transfection of hcast 3-25-V5 into two selected GSCs indicated that hcast 3-25 effectively associates with calpains, supporting the digestion of selected calpain targets. Hcast 3-25 possibly affects the stem state promoting a differentiated, less aggressive phenotype.
Collapse
Affiliation(s)
- Sonia Spinelli
- IRCCS Istituto Giannina Gaslini, Laboratory of Molecular Nephrology, Genova, Italy
- Department of Experimental Medicine (DIMES), Section of Biochemistry, University of Genova, Genova, Italy
| | - Federica Barbieri
- Department of Internal Medicine (DIMI), Section of Pharmacology, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Monica Averna
- Department of Experimental Medicine (DIMES), Section of Biochemistry, University of Genova, Genova, Italy
| | - Tullio Florio
- Department of Internal Medicine (DIMI), Section of Pharmacology, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Marco Pedrazzi
- Department of Experimental Medicine (DIMES), Section of Biochemistry, University of Genova, Genova, Italy
| | - Beatrice F. Tremonti
- Department of Internal Medicine (DIMI), Section of Pharmacology, University of Genova, Genova, Italy
| | - Michela Capraro
- Department of Experimental Medicine (DIMES), Section of Biochemistry, University of Genova, Genova, Italy
| | - Roberta De Tullio
- Department of Experimental Medicine (DIMES), Section of Biochemistry, University of Genova, Genova, Italy
| |
Collapse
|
6
|
Hanitrarimalala V, Bednarska I, Murakami T, Papadakos KS, Blom AM. Intracellular cartilage oligomeric matrix protein augments breast cancer resistance to chemotherapy. Cell Death Dis 2024; 15:480. [PMID: 38965233 PMCID: PMC11224260 DOI: 10.1038/s41419-024-06872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Chemotherapy persists as the primary intervention for breast cancer, with chemoresistance posing the principal obstacle to successful treatment. Herein, we show that cartilage oligomeric matrix protein (COMP) expression leads to increased cancer cell survival and attenuated apoptosis under treatment with several chemotherapeutic drugs, anti-HER2 targeted treatment, and endocrine therapy in several breast cancer cell lines tested. The COMP-induced chemoresistance was independent of the breast cancer subtype. Extracellularly delivered recombinant COMP failed to rescue cells from apoptosis while endoplasmic reticulum (ER)-restricted COMP-KDEL conferred resistance to apoptosis, consistent with the localization of COMP in the ER, where it interacted with calpain. Calpain activation was reduced in COMP-expressing cells and maintained at a lower level of activation during treatment with epirubicin. Moreover, the downstream caspases of calpain, caspases -9, -7, and -3, exhibited significantly reduced activation in COMP-expressing cells under chemotherapy treatment. Chemotherapy, when combined with calpain activators, rendered the cells expressing COMP more chemosensitive. Also, the anti-apoptotic proteins phospho-Bcl2 and survivin were increased in COMP-expressing cells upon chemotherapy. Cells expressing a mutant COMP lacking thrombospondin repeats exhibited reduced chemoresistance compared to cells expressing full-length COMP. Evaluation of calcium levels in the ER, cytosol, and mitochondria revealed that COMP expression modulates intracellular calcium homeostasis. Furthermore, patients undergoing chemotherapy or endocrine therapy demonstrated significantly reduced overall survival time when tumors expressed high levels of COMP. This study identifies a novel role of COMP in chemoresistance and calpain inactivation in breast cancer, a discovery with potential implications for anti-cancer therapy.
Collapse
Affiliation(s)
| | - Izabela Bednarska
- Department of Translational Medicine, Lund University, Malmö, S-214 28, Sweden
| | - Takashi Murakami
- Department of Microbiology, Saitama Medical University, Saitama, 350-0495, Japan
| | | | - Anna M Blom
- Department of Translational Medicine, Lund University, Malmö, S-214 28, Sweden
| |
Collapse
|
7
|
Xie S, Sun Y, Zhao X, Xiao Y, Zhou F, Lin L, Wang W, Lin B, Wang Z, Fang Z, Wang L, Zhang Y. An update of the molecular mechanisms underlying anthracycline induced cardiotoxicity. Front Pharmacol 2024; 15:1406247. [PMID: 38989148 PMCID: PMC11234178 DOI: 10.3389/fphar.2024.1406247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Anthracycline drugs mainly include doxorubicin, epirubicin, pirarubicin, and aclamycin, which are widely used to treat a variety of malignant tumors, such as breast cancer, gastrointestinal tumors, lymphoma, etc. With the accumulation of anthracycline drugs in the body, they can induce serious heart damage, limiting their clinical application. The mechanism by which anthracycline drugs cause cardiotoxicity is not yet clear. This review provides an overview of the different types of cardiac damage induced by anthracycline-class drugs and delves into the molecular mechanisms behind these injuries. Cardiac damage primarily involves alterations in myocardial cell function and pathological cell death, encompassing mitochondrial dysfunction, topoisomerase inhibition, disruptions in iron ion metabolism, myofibril degradation, and oxidative stress. Mechanisms of uptake and transport in anthracycline-induced cardiotoxicity are emphasized, as well as the role and breakthroughs of iPSC in cardiotoxicity studies. Selected novel cardioprotective therapies and mechanisms are updated. Mechanisms and protective strategies associated with anthracycline cardiotoxicity in animal experiments are examined, and the definition of drug damage in humans and animal models is discussed. Understanding these molecular mechanisms is of paramount importance in mitigating anthracycline-induced cardiac toxicity and guiding the development of safer approaches in cancer treatment.
Collapse
Affiliation(s)
- Sicong Xie
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuwei Sun
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuan Zhao
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiqun Xiao
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei Zhou
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liang Lin
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Wang
- College of Electronic and Optical Engineering and College of Flexible Electronics, Future Technology, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Bin Lin
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People's Hospital, Huzhou, China
| | - Zun Wang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zixuan Fang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Wang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People's Hospital, Huzhou, China
| |
Collapse
|
8
|
Slapak EJ, El Mandili M, Ten Brink MS, Kros A, Bijlsma MF, Spek CA. CAPN2-responsive mesoporous silica nanoparticles: A promising nanocarrier for targeted therapy of pancreatic cancer. Cancer Lett 2024; 590:216845. [PMID: 38589004 DOI: 10.1016/j.canlet.2024.216845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/29/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
Pancreatic adenocarcinoma (PDAC) is highly resistant to conventional chemotherapeutic interventions, resulting in exceptionally low survival rates. The limited efficacy can in part be attributed to dose limitations and treatment cessation urged by toxicity of currently used chemotherapy. The advent of targeted delivery strategies has kindled hope for circumventing off-target toxicity. We have previously reported a PDAC-specific mesoporous silica nanoparticle (MSN) containing a protease linker responsive to ADAM9, a PDAC-enriched extracellularly deposited protease. Upon loading with paclitaxel these ADAM9-MSNs reduced side effects both in vitro and in vivo, however, disappointing antitumor efficacy was observed in vivo. Here, we propose that an efficient uptake of MSNs by tumor cells might underlie the lack of antitumor efficacy of MSNs functionalized with linker responsive to extracellular proteases. Harnessing this premise to improve antitumor efficacy, we performed an in silico analysis to identify PDAC-enriched intracellular proteases. We report the identification of BACE2, CAPN2 and DPP3 as PDAC enriched intracellular proteases, and report the synthesis of BACE2-, CAPN2- and DPP3-responsive MSNs. Extensive preclinical assessments revealed that paclitaxel-loaded CAPN2- and DPP3-MSNs exhibit high PDAC specificity in vitro as opposed to free paclitaxel. The administration of paclitaxel-loaded CAPN2- and DPP3-MSNs in vivo confirmed the reduction of leukopenia and induced no organ damage. Promisingly, in two mouse models CAPN2-MSNs reduced tumor growth at least as efficiently as free paclitaxel. Taken together, our results pose CAPN2-MSNs as a promising nanocarrier for the targeted delivery of chemotherapeutics in PDAC.
Collapse
Affiliation(s)
- Etienne J Slapak
- Amsterdam UMC Location University of Amsterdam, Center of Experimental and Molecular Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands.
| | - Mouad El Mandili
- Amsterdam UMC Location University of Amsterdam, Center of Experimental and Molecular Medicine, Meibergdreef 9, Amsterdam, the Netherlands.
| | - Marieke S Ten Brink
- Amsterdam UMC Location University of Amsterdam, Center of Experimental and Molecular Medicine, Meibergdreef 9, Amsterdam, the Netherlands.
| | - Alexander Kros
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands.
| | - Maarten F Bijlsma
- Amsterdam UMC Location University of Amsterdam, Center of Experimental and Molecular Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands.
| | - C Arnold Spek
- Amsterdam UMC Location University of Amsterdam, Center of Experimental and Molecular Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Ghosh N, De S, Pramanik NR, Sil PC. Multifaceted antineoplastic curative potency of novel water-soluble methylimidazole-based oxidovanadium (IV) complex against triple negative mammary carcinoma. Cell Signal 2024; 117:111089. [PMID: 38331012 DOI: 10.1016/j.cellsig.2024.111089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/02/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
A bunch of complexes harboring vanadium as metal centers have been reported to exhibit a wide array of antineoplastic properties that come under non‑platinum metallodrug series and emerge to offer alternative therapeutic strategies from the mechanistic behaviors of platinum-drugs. Though antineoplastic activities of vanado-complexes have been documented against several animal and xenografted human cancers, the definite mechanism of action is yet to unveil. In present study, a novel water soluble 1-methylimidazole substituted mononuclear dipicolinic acid based oxidovanadium (IV) complex (OVMI) has been evaluated for its antineoplastic properties in breast carcinoma both in vitro and in vivo. OVMI has been reported to generate cytotoxicity in human triple negative breast carcinoma cells, MDA-MB-231 as well as in mouse 4T1 cells by priming them for apoptosis. ROS-mediated, mitochondria-dependent as well as ER-stress-evoked apoptotic death seemed to be main operational hub guiding the cytotoxicity of OVMI in vitro. Moreover, OVMI has been noticed to elicit antimetastatic effect in vitro. Therapeutic application of OVMI has been extended on 4T1-based mammary tumor of female Balb/c mice, where it has been found to reduce tumor size, volume and restore general tissue architecture successfully to a great extent. Apart from that, OVMI has been documented to limit 4T1-based secondary pulmonary metastasis along with being non-toxic and biocompatible in vivo.
Collapse
Affiliation(s)
- Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Samhita De
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | | | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
10
|
Liu L, Matsumoto M, Watanabe-Matsui M, Nakagawa T, Nagasawa Y, Pang J, Callens BKK, Muto A, Ochiai K, Takekawa H, Alam M, Nishizawa H, Shirouzu M, Shima H, Nakayama K, Igarashi K. TANK Binding Kinase 1 Promotes BACH1 Degradation through Both Phosphorylation-Dependent and -Independent Mechanisms without Relying on Heme and FBXO22. Int J Mol Sci 2024; 25:4141. [PMID: 38673728 PMCID: PMC11050367 DOI: 10.3390/ijms25084141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
BTB and CNC homology 1 (BACH1) represses the expression of genes involved in the metabolism of iron, heme and reactive oxygen species. While BACH1 is rapidly degraded when it is bound to heme, it remains unclear how BACH1 degradation is regulated under other conditions. We found that FBXO22, a ubiquitin ligase previously reported to promote BACH1 degradation, polyubiquitinated BACH1 only in the presence of heme in a highly purified reconstitution assay. In parallel to this regulatory mechanism, TANK binding kinase 1 (TBK1), a protein kinase that activates innate immune response and regulates iron metabolism via ferritinophagy, was found to promote BACH1 degradation when overexpressed in 293T cells. While TBK1 phosphorylated BACH1 at multiple serine and threonine residues, BACH1 degradation was observed with not only the wild-type TBK1 but also catalytically impaired TBK1. The BACH1 degradation in response to catalytically impaired TBK1 was not dependent on FBXO22 but involved both autophagy-lysosome and ubiquitin-proteasome pathways judging from its suppression by using inhibitors of lysosome and proteasome. Chemical inhibition of TBK1 in hepatoma Hepa1 cells showed that TBK1 was not required for the heme-induced BACH1 degradation. Its inhibition in Namalwa B lymphoma cells increased endogenous BACH1 protein. These results suggest that TBK1 promotes BACH1 degradation in parallel to the FBXO22- and heme-dependent pathway, placing BACH1 as a downstream effector of TBK1 in iron metabolism or innate immune response.
Collapse
Affiliation(s)
- Liang Liu
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan (H.T.); (M.A.)
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan (H.T.); (M.A.)
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan
| | - Miki Watanabe-Matsui
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan
| | - Tadashi Nakagawa
- Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan; (T.N.); (K.N.)
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0884, Japan
| | - Yuko Nagasawa
- Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan; (T.N.); (K.N.)
| | - Jingyao Pang
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan (H.T.); (M.A.)
| | - Bert K. K. Callens
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan (H.T.); (M.A.)
- Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 GT Maastricht, The Netherlands
| | - Akihiko Muto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan (H.T.); (M.A.)
| | - Kyoko Ochiai
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan (H.T.); (M.A.)
| | - Hirotaka Takekawa
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan (H.T.); (M.A.)
| | - Mahabub Alam
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan (H.T.); (M.A.)
- Department of Animal Science and Nutrition, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram 4225, Bangladesh
| | - Hironari Nishizawa
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan (H.T.); (M.A.)
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama 305-0074, Japan
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan (H.T.); (M.A.)
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan; (T.N.); (K.N.)
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan (H.T.); (M.A.)
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan
| |
Collapse
|
11
|
Niu X, Wang J, Liu J, Yu Q, Ci M. 17β-Estradiol promotes metastasis in triple-negative breast cancer through the Calpain/YAP/β-catenin signaling axis. PLoS One 2024; 19:e0298184. [PMID: 38547301 PMCID: PMC10977805 DOI: 10.1371/journal.pone.0298184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/20/2024] [Indexed: 04/02/2024] Open
Abstract
β-catenin is an important regulator of malignant progression. 17β-Estradiol (E2), an important sex hormone in women, promotes the growth and metastasis of triple-negative breast cancer (TNBC). However, whether β-catenin is involved in E2-induced metastasis of TNBC remains unknown. In this study, we show that E2 induces the proliferation, migration, invasion, and metastasis of TNBC cells. E2 induces β-catenin protein expression and nuclear translocation, thereby regulating the expression of target genes such as Cyclin D1 and MMP-9. The inhibition of β-catenin reversed the E2-induced cell malignant behaviors. Additionally, E2 activated Calpain by increasing intracellular Ca2+ levels and reducing calpastatin levels. When Calpain was inhibited, E2 did not induce the proliferation, migration, invasion, or metastasis of TNBC cells. In addition, E2 promoted translocation of YAP into the nucleus by inhibiting its phosphorylation. Calpain inhibition reversed the E2-induced YAP dephosphorylation. Inhibition of YAP transcriptional activity reversed the effects of E2 on the proliferation, migration, invasion, and β-catenin of TNBC cells. In conclusion, we demonstrated that E2 induced metastasis-related behaviors in TNBC cells and this effect was mediated through the Calpain/YAP/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xuemei Niu
- Department of oncology, Weihai Central Hospital, Weihai, China
| | - Jianan Wang
- Department of oncology, Weihai Central Hospital, Weihai, China
| | - Jinguang Liu
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong, China
| | - Qinglong Yu
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong, China
| | - Mingwei Ci
- Department of oncology, Weihai Central Hospital, Weihai, China
| |
Collapse
|
12
|
Demko V, Belova T, Messerer M, Hvidsten TR, Perroud PF, Ako AE, Johansen W, Mayer KFX, Olsen OA, Lang D. Regulation of developmental gatekeeping and cell fate transition by the calpain protease DEK1 in Physcomitrium patens. Commun Biol 2024; 7:261. [PMID: 38438476 PMCID: PMC10912778 DOI: 10.1038/s42003-024-05933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
Calpains are cysteine proteases that control cell fate transitions whose loss of function causes severe, pleiotropic phenotypes in eukaryotes. Although mainly considered as modulatory proteases, human calpain targets are directed to the N-end rule degradation pathway. Several such targets are transcription factors, hinting at a gene-regulatory role. Here, we analyze the gene-regulatory networks of the moss Physcomitrium patens and characterize the regulons that are misregulated in mutants of the calpain DEFECTIVE KERNEL1 (DEK1). Predicted cleavage patterns of the regulatory hierarchies in five DEK1-controlled subnetworks are consistent with a pleiotropic and regulatory role during cell fate transitions targeting multiple functions. Network structure suggests DEK1-gated sequential transitions between cell fates in 2D-to-3D development. Our method combines comprehensive phenotyping, transcriptomics and data science to dissect phenotypic traits, and our model explains the protease function as a switch gatekeeping cell fate transitions potentially also beyond plant development.
Collapse
Affiliation(s)
- Viktor Demko
- Department of Plant Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 84104, Bratislava, Slovakia
- Plant Science and Biodiversity Center, Slovak Academy of Sciences, Dubravska cesta 9, 84104, Bratislava, Slovakia
| | - Tatiana Belova
- Department of Plant Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
- Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | - Maxim Messerer
- Plant Genome and Systems Biology, Helmholtz Center Munich-Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Torgeir R Hvidsten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Pierre-François Perroud
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Ako Eugene Ako
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata 31, 2318, Hamar, Norway
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Southwell, Nottinghamshire, NG25 0QF, UK
| | - Wenche Johansen
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata 31, 2318, Hamar, Norway
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Center Munich-Research Center for Environmental Health, 85764, Neuherberg, Germany
- School of Life Sciences, Technical University Munich, 85354, Freising, Germany
| | - Odd-Arne Olsen
- Department of Plant Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Daniel Lang
- Plant Genome and Systems Biology, Helmholtz Center Munich-Research Center for Environmental Health, 85764, Neuherberg, Germany.
- Bundeswehr Institute of Microbiology, Microbial Genomics and Bioforensics, 80937, Munich, Germany.
| |
Collapse
|
13
|
Müller T, Reichlmeir M, Hau AC, Wittig I, Schulte D. The neuronal transcription factor MEIS2 is a calpain-2 protease target. J Cell Sci 2024; 137:jcs261482. [PMID: 38305737 PMCID: PMC10941658 DOI: 10.1242/jcs.261482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024] Open
Abstract
Tight control over transcription factor activity is necessary for a sensible balance between cellular proliferation and differentiation in the embryo and during tissue homeostasis by adult stem cells, but mechanistic details have remained incomplete. The homeodomain transcription factor MEIS2 is an important regulator of neurogenesis in the ventricular-subventricular zone (V-SVZ) adult stem cell niche in mice. We here identify MEIS2 as direct target of the intracellular protease calpain-2 (composed of the catalytic subunit CAPN2 and the regulatory subunit CAPNS1). Phosphorylation at conserved serine and/or threonine residues, or dimerization with PBX1, reduced the sensitivity of MEIS2 towards cleavage by calpain-2. In the adult V-SVZ, calpain-2 activity is high in stem and progenitor cells, but rapidly declines during neuronal differentiation, which is accompanied by increased stability of MEIS2 full-length protein. In accordance with this, blocking calpain-2 activity in stem and progenitor cells, or overexpression of a cleavage-insensitive form of MEIS2, increased the production of neurons, whereas overexpression of a catalytically active CAPN2 reduced it. Collectively, our results support a key role for calpain-2 in controlling the output of adult V-SVZ neural stem and progenitor cells through cleavage of the neuronal fate determinant MEIS2.
Collapse
Affiliation(s)
- Tanja Müller
- Goethe University, Faculty of Medicine, University Hospital Frankfurt, Institute of Neurology (Edinger Institute), 60528 Frankfurt, Germany
- Goethe University, University Hospital Frankfurt, Dr. Senckenberg Institute of Neurooncology and Institute of Neurology (Edinger Institute), Frankfurt Cancer Institute (FCI), University Cancer Center Frankfurt (UCT), MSNZ Junior Group Translational Neurooncology, 60528 Frankfurt, Germany
- Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), Luxembourg Centre of Neuropathology (LCNP), 1445 Luxembourg, Luxembourg
| | - Marina Reichlmeir
- Goethe University, Faculty of Medicine, University Hospital Frankfurt, Institute of Neurology (Edinger Institute), 60528 Frankfurt, Germany
| | - Ann-Christin Hau
- Goethe University, University Hospital Frankfurt, Dr. Senckenberg Institute of Neurooncology and Institute of Neurology (Edinger Institute), Frankfurt Cancer Institute (FCI), University Cancer Center Frankfurt (UCT), MSNZ Junior Group Translational Neurooncology, 60528 Frankfurt, Germany
| | - Ilka Wittig
- Goethe University, Faculty of Medicine, Institute for Cardiovascular Physiology, Functional Proteomics, 60590, Frankfurt, Germany
| | - Dorothea Schulte
- Goethe University, Faculty of Medicine, University Hospital Frankfurt, Institute of Neurology (Edinger Institute), 60528 Frankfurt, Germany
| |
Collapse
|
14
|
Vitali E, Franceschini B, Milana F, Soldani C, Polidoro MA, Carriero R, Kunderfranco P, Trivellin G, Costa G, Milardi G, Di Tommaso L, Torzilli G, Lleo A, Lania AG, Donadon M. Filamin A is involved in human intrahepatic cholangiocarcinoma aggressiveness and progression. Liver Int 2024; 44:518-531. [PMID: 38010911 DOI: 10.1111/liv.15800] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/19/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND & AIMS Intrahepatic cholangiocarcinoma (iCCA) is a primary liver tumour, characterized by poor prognosis and lack of effective therapy. The cytoskeleton protein Filamin A (FLNA) is involved in cancer progression and metastasis, including primary liver cancer. FLNA is cleaved by calpain, producing a 90 kDa fragment (FLNACT ) that can translocate to the nucleus and inhibit gene transcription. We herein aim to define the role of FLNA and its cleavage in iCCA carcinogenesis. METHODS & RESULTS We evaluated the expression and localization of FLNA and FLNACT in liver samples from iCCA patients (n = 82) revealing that FLNA expression was independently correlated with disease-free survival. Primary tumour cells isolated from resected iCCA patients expressed both FLNA and FLNACT , and bulk RNA sequencing revealed a significant enrichment of cell proliferation and cell motility pathways in iCCAs with high FLNA expression. Further, we defined the impact of FLNA and FLNACT on the proliferation and migration of primary iCCA cells (n = 3) and HuCCT1 cell line using silencing and Calpeptin, a calpain inhibitor. We observed that FLNA silencing decreased cell proliferation and migration and Calpeptin was able to reduce FLNACT expression in both the HuCCT1 and iCCA cells (p < .05 vs. control). Moreover, Calpeptin 100 μM decreased HuCCT1 and primary iCCA cell proliferation (p <.00001 vs. control) and migration (p < .05 vs. control). CONCLUSIONS These findings demonstrate that FLNA is involved in human iCCA progression and calpeptin strongly decreased FLNACT expression, reducing cell proliferation and migration.
Collapse
Affiliation(s)
- Eleonora Vitali
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Barbara Franceschini
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Flavio Milana
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Cristiana Soldani
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Michela A Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Roberta Carriero
- Bioinformatics Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | - Giampaolo Trivellin
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Guido Costa
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giulia Milardi
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Luca Di Tommaso
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Pathology Department, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Guido Torzilli
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Andrea G Lania
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Matteo Donadon
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
- Department of General Surgery, University Maggiore Hospital, Novara, Italy
| |
Collapse
|
15
|
Bartholow T, Burroughs PW, Elledge SK, Byrnes JR, Kirkemo LL, Garda V, Leung KK, Wells JA. Photoproximity Labeling from Single Catalyst Sites Allows Calibration and Increased Resolution for Carbene Labeling of Protein Partners In Vitro and on Cells. ACS CENTRAL SCIENCE 2024; 10:199-208. [PMID: 38292613 PMCID: PMC10823516 DOI: 10.1021/acscentsci.3c01473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 02/01/2024]
Abstract
The cell surface proteome (surfaceome) plays a pivotal role in virtually all extracellular biology, and yet we are only beginning to understand the protein complexes formed in this crowded environment. Recently, a high-resolution approach (μMap) was described that utilizes multiple iridium-photocatalysts attached to a secondary antibody, directed to a primary antibody of a protein of interest, to identify proximal neighbors by light-activated conversion of a biotin-diazirine to a highly reactive carbene followed by LC/MS (Geri, J. B.; Oakley, J. V.; Reyes-Robles, T.; Wang, T.; McCarver, S. J.; White, C. H.; Rodriguez-Rivera, F. P.; Parker, D. L.; Hett, E. C.; Fadeyi, O. O.; Oslund, R. C.; MacMillan, D. W. C. Science2020, 367, 1091-1097). Here we calibrated the spatial resolution for carbene labeling using site-specific conjugation of a single photocatalyst to a primary antibody drug, trastuzumab (Traz), in complex with its structurally well-characterized oncogene target, HER2. We observed relatively uniform carbene labeling across all amino acids, and a maximum distance of ∼110 Å from the fixed photocatalyst. When targeting HER2 overexpression cells, we identified 20 highly enriched HER2 neighbors, compared to a nonspecific membrane tethered catalyst. These studies identify new HER2 interactors and calibrate the radius of carbene photoprobe labeling for the surfaceome.
Collapse
Affiliation(s)
- Thomas
G. Bartholow
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Paul W.W. Burroughs
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Susanna K. Elledge
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - James R. Byrnes
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Lisa L. Kirkemo
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Virginia Garda
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Kevin K. Leung
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - James A. Wells
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
- Department
of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
16
|
Baghy K, Ladányi A, Reszegi A, Kovalszky I. Insights into the Tumor Microenvironment-Components, Functions and Therapeutics. Int J Mol Sci 2023; 24:17536. [PMID: 38139365 PMCID: PMC10743805 DOI: 10.3390/ijms242417536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/25/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Similarly to our healthy organs, the tumor tissue also constitutes an ecosystem. This implies that stromal cells acquire an altered phenotype in tandem with tumor cells, thereby promoting tumor survival. Cancer cells are fueled by abnormal blood vessels, allowing them to develop and proliferate. Tumor-associated fibroblasts adapt their cytokine and chemokine production to the needs of tumor cells and alter the peritumoral stroma by generating more collagen, thereby stiffening the matrix; these processes promote epithelial-mesenchymal transition and tumor cell invasion. Chronic inflammation and the mobilization of pro-tumorigenic inflammatory cells further facilitate tumor expansion. All of these events can impede the effective administration of tumor treatment; so, the successful inhibition of tumorous matrix remodeling could further enhance the success of antitumor therapy. Over the last decade, significant progress has been made with the introduction of novel immunotherapy that targets the inhibitory mechanisms of T cell activation. However, extensive research is also being conducted on the stromal components and other cell types of the tumor microenvironment (TME) that may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Kornélia Baghy
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| | - Andrea Ladányi
- Department of Surgical and Molecular Pathology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary;
| | - Andrea Reszegi
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, 1091 Budapest, Hungary
| | - Ilona Kovalszky
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| |
Collapse
|
17
|
Gautam N, Wojciech L, Yap J, Chua YL, Ding EM, Sim DC, Tan AS, Ahl PJ, Prasad M, Tung DW, Connolly JE, Adriani G, Brzostek J, Gascoigne NR. Themis controls T cell activation, effector functions, and metabolism of peripheral CD8 + T cells. Life Sci Alliance 2023; 6:e202302156. [PMID: 37739454 PMCID: PMC10517225 DOI: 10.26508/lsa.202302156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023] Open
Abstract
Themis is important in regulating positive selection of thymocytes during T cell development, but its role in peripheral T cells is less understood. Here, we investigated T cell activation and its sequelae using a tamoxifen-mediated, acute Themis deletion mouse model. We find that proliferation, effector functions including anti-tumor killing, and up-regulation of energy metabolism are severely compromised. This study reveals the phenomenon of peripheral adaptation to loss of Themis, by demonstrating direct TCR-induced defects after acute deletion of Themis that were not evident in peripheral T cells chronically deprived of Themis in dLck-Cre deletion model. Peripheral adaptation to long-term loss was compared using chronic versus acute tamoxifen-mediated deletion and with the (chronic) dLck-Cre deletion model. We found that upon chronic tamoxifen-mediated Themis deletion, there was modulation in the gene expression profile for both TCR and cytokine signaling pathways. This profile overlapped with (chronic) dLck-Cre deletion model. Hence, we found that peripheral adaptation induced changes to both TCR and cytokine signaling modules. Our data highlight the importance of Themis in the activation of CD8+ T cells.
Collapse
Affiliation(s)
- Namrata Gautam
- https://ror.org/01tgyzw49 Translational Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- https://ror.org/01tgyzw49 Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lukasz Wojciech
- https://ror.org/01tgyzw49 Translational Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- https://ror.org/01tgyzw49 Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jiawei Yap
- https://ror.org/01tgyzw49 Translational Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- https://ror.org/01tgyzw49 Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yen Leong Chua
- https://ror.org/01tgyzw49 Translational Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- https://ror.org/01tgyzw49 Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Eyan Mw Ding
- https://ror.org/01tgyzw49 Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Don Cn Sim
- https://ror.org/01tgyzw49 Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Alrina Sm Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Patricia J Ahl
- https://ror.org/01tgyzw49 Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Mukul Prasad
- https://ror.org/01tgyzw49 Translational Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- https://ror.org/01tgyzw49 Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Desmond Wh Tung
- https://ror.org/01tgyzw49 Translational Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- https://ror.org/01tgyzw49 Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - John E Connolly
- https://ror.org/01tgyzw49 Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Giulia Adriani
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- https://ror.org/01tgyzw49 Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Joanna Brzostek
- https://ror.org/01tgyzw49 Translational Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- https://ror.org/01tgyzw49 Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nicholas Rj Gascoigne
- https://ror.org/01tgyzw49 Translational Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- https://ror.org/01tgyzw49 Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- https://ror.org/01tgyzw49 Translational Cancer Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
18
|
Tatar C, Avci CB, Acikgoz E, Oktem G. Doxorubicin-induced senescence promotes resistance to cell death by modulating genes associated with apoptotic and necrotic pathways in prostate cancer DU145 CD133 +/CD44 + cells. Biochem Biophys Res Commun 2023; 680:194-210. [PMID: 37748252 DOI: 10.1016/j.bbrc.2023.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Cancer stem cells (CSCs) are the most important cause of cancer treatment failure. Traditional cancer treatments, such as chemotherapy and radiotherapy, damage healthy cells alongside malignant cells, leading to severe adverse effects. Therefore, inducing cellular senescence without triggering apoptosis, which further damages healthy cells, may be an alternative strategy. However, there is insufficient knowledge regarding senescence induction in CSCs that show resistance to treatment and stemness properties. The present study aims to elucidate the effects of senescence induction on proliferation, cell cycle, and apoptosis in prostate CSCs and non-CSCs. Prostate CSCs were isolated from DU145 cancer cells using the FACS method. Subsequently, senescence induction was performed in RWPE-1, DU145, prostate CSCs, and non-CSCs by using different concentrations of Doxorubicin (DOX). Cellular senescence was detected using the senescence markers SA-β-gal, Ki67, and senescence-associated heterochromatin foci (SAHF). The effects of senescence on cell cycle and apoptosis were evaluated using the Muse Cell Analyzer, and genes in signaling pathways associated with the apoptotic/necrotic pathway were analyzed by real-time PCR. Prostate CSCs were isolated with 95.6 ± 1.4% purity according to CD133+/CD44+ characteristics, and spheroid formation belonging to stem cells was observed. After DOX-induced senescence, we observed morphological changes, SA-β-gal positivity, SAHF, and the lack of Ki67 in senescent cells. Furthermore; we detected G2/M cell cycle arrest and downregulation of various apoptosis-related genes in senescent prostate CSCs. Our results showed that DOX is a potent inducer of senescence for prostate CSCs, inhibits proliferation by arresting the cell cycle, and senescent prostate CSCs develop resistance to apoptosis.
Collapse
Affiliation(s)
- Cansu Tatar
- Department of Stem Cell, Institute of Health Science, Ege University, 35100, Izmir, Turkey.
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey.
| | - Eda Acikgoz
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, 65080, Turkey.
| | - Gulperi Oktem
- Department of Stem Cell, Institute of Health Science, Ege University, 35100, Izmir, Turkey; Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey.
| |
Collapse
|
19
|
Vasan R, Yadav J, Aiyappa‐Maudsley R, Deen S, Storr SJ, Martin SG. High BMP7 expression is associated with poor prognosis in ovarian cancer. J Cell Mol Med 2023; 27:3378-3387. [PMID: 37688374 PMCID: PMC10623526 DOI: 10.1111/jcmm.17951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Bone Morphogenetic Protein 7 (BMP7) is an extracellular signalling protein that belongs to the transforming growth factor-β (TGF- β) superfamily. Previous transcriptomic data suggested that BMP7 expression may be disrupted in ovarian carcinoma and may play an important role in the aggressiveness of the disease. However, the protein expression in patient tumours has not been well studied. The current study aimed to assess BMP7 protein expression in a large cohort of ovarian carcinoma patient tumour samples to establish its associations with different clinical endpoints. Ovarian carcinoma tissue samples from 575 patients who underwent surgery for different subtypes of ovarian cancer were used. BMP7 protein expression was analysed by immunohistochemistry using tissue microarray and full face tumour sections. High BMP7 expression is associated with aggressive ovarian cancer clinicopathological variables including advanced FIGO stage, high grade, residual disease and poor overall survival. Elevated cytoplasmic and nuclear BMP7 expression was significantly associated with advanced FIGO stage, high tumour grade, presence of residual tumours and high-grade serous carcinomas (p = 0.001, 0.005, 0.004, <0.001 and p < 0.001, <0.001, 0.002, 0.001 respectively). Increased cytoplasmic and nuclear BMP7 expression was also significantly associated with an adverse overall survival (p = 0.001 and 0.046 respectively). The study highlights the potential of BMP7 as a prognostic tool and as a potential novel target for ovarian cancer therapies to limit disease progression.
Collapse
Affiliation(s)
- Richa Vasan
- Nottingham Breast Cancer Research Centre, School of MedicineUniversity of Nottingham Biodiscovery InstituteNottinghamUK
- Present address:
School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Jahnavi Yadav
- Nottingham Breast Cancer Research Centre, School of MedicineUniversity of Nottingham Biodiscovery InstituteNottinghamUK
| | - Radhika Aiyappa‐Maudsley
- Nottingham Breast Cancer Research Centre, School of MedicineUniversity of Nottingham Biodiscovery InstituteNottinghamUK
- Present address:
School of medicineUniversity of LeedsLeedsUK
| | - Suha Deen
- Department of Pathology, Queen's Medical CentreNottingham University Hospitals NHS TrustNottinghamUK
| | - Sarah J. Storr
- Nottingham Breast Cancer Research Centre, School of MedicineUniversity of Nottingham Biodiscovery InstituteNottinghamUK
| | - Stewart G. Martin
- Nottingham Breast Cancer Research Centre, School of MedicineUniversity of Nottingham Biodiscovery InstituteNottinghamUK
| |
Collapse
|
20
|
Cheng D, Wang J, Yao M, Cox CD. Joining forces: crosstalk between mechanosensitive PIEZO1 ion channels and integrin-mediated focal adhesions. Biochem Soc Trans 2023; 51:1897-1906. [PMID: 37772664 DOI: 10.1042/bst20230042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023]
Abstract
Both integrin-mediated focal adhesions (FAs) and mechanosensitive ion channels such as PIEZO1 are critical in mechanotransduction processes that influence cell differentiation, development, and cancer. Ample evidence now exists for regulatory crosstalk between FAs and PIEZO1 channels with the molecular mechanisms underlying this process remaining unclear. However, an emerging picture is developing based on spatial crosstalk between FAs and PIEZO1 revealing a synergistic model involving the cytoskeleton, extracellular matrix (ECM) and calcium-dependent signaling. Already cell type, cell contractility, integrin subtypes and ECM composition have been shown to regulate this crosstalk, implying a highly fine-tuned relationship between these two major mechanosensing systems. In this review, we summarize the latest advances in this area, highlight the physiological implications of this crosstalk and identify gaps in our knowledge that will improve our understanding of cellular mechanosensing.
Collapse
Affiliation(s)
- Delfine Cheng
- The Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Kensington, NSW 2052, Australia
| | - Junfan Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mingxi Yao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
| | - Charles D Cox
- The Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Kensington, NSW 2052, Australia
| |
Collapse
|
21
|
Hua T, Robitaille M, Roberts-Thomson SJ, Monteith GR. The intersection between cysteine proteases, Ca 2+ signalling and cancer cell apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119532. [PMID: 37393017 DOI: 10.1016/j.bbamcr.2023.119532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Apoptosis is a highly complex and regulated cell death pathway that safeguards the physiological balance between life and death. Over the past decade, the role of Ca2+ signalling in apoptosis and the mechanisms involved have become clearer. The initiation and execution of apoptosis is coordinated by three distinct groups of cysteines proteases: the caspase, calpain and cathepsin families. Beyond its physiological importance, the ability to evade apoptosis is a prominent hallmark of cancer cells. In this review, we will explore the involvement of Ca2+ in the regulation of caspase, calpain and cathepsin activity, and how the actions of these cysteine proteases alter intracellular Ca2+ handling during apoptosis. We will also explore how apoptosis resistance can be achieved in cancer cells through deregulation of cysteine proteases and remodelling of the Ca2+ signalling toolkit.
Collapse
Affiliation(s)
- Trinh Hua
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Mélanie Robitaille
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | | | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
22
|
Xiao Z, Wei X, Li M, Yang K, Chen R, Su Y, Yu Z, Liang Y, Ge J. Myeloid-specific deletion of Capns1 attenuates myocardial infarction injury via restoring mitochondrial function and inhibiting inflammasome activation. J Mol Cell Cardiol 2023; 183:54-66. [PMID: 37689005 DOI: 10.1016/j.yjmcc.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND Mitochondrial dysfunction of macrophage-mediated inflammatory response plays a key pathophysiological process in myocardial infarction (MI). Calpains are a well-known family of calcium-dependent cysteine proteases that regulate a variety of processes, including cell adhesion, proliferation, and migration, as well as mitochondrial function and inflammation. CAPNS1, the common regulatory subunit of calpain-1 and 2, is essential for the stabilization and activity of the catalytic subunit. Emerging studies suggest that calpains may serve as key mediators in mitochondria and NLRP3 inflammasome. This study investigated the role of myeloid cell calpains in MI. METHODS MI models were constructed using myeloid-specific Capns1 knockout mice. Cardiac function, cardiac fibrosis, and inflammatory infiltration were investigated. In vitro, bone marrow-derived macrophages (BMDMs) were isolated from mice. Mitochondrial function and NLRP3 activation were assessed in BMDMs under LPS stimulation. ATP5A1 knockdown and Capns1 knock-out mice were subjected to MI to investigate their roles in MI injury. RESULTS Ablation of calpain activities by Capns1 deletion improved the cardiac function, reduced infarct size, and alleviated cardiac fibrosis in mice subjected to MI. Mechanistically, Capns1 knockout reduced the cleavage of ATP5A1 and restored the mitochondria function thus inhibiting the inflammasome activation. ATP5A1 knockdown antagonized the protective effect of Capns1 mKO and aggravated MI injury. CONCLUSION This study demonstrated that Capns1 depletion in macrophages mitigates MI injury via maintaining mitochondrial homeostasis and inactivating the NLRP3 inflammasome signaling pathway. This study may offer novel insights into MI injury treatment.
Collapse
Affiliation(s)
- Zilong Xiao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Xiang Wei
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Minghui Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Kun Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Ruizhen Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Yangang Su
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Ziqing Yu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Yixiu Liang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| |
Collapse
|
23
|
García-Trevijano ER, Ortiz-Zapater E, Gimeno A, Viña JR, Zaragozá R. Calpains, the proteases of two faces controlling the epithelial homeostasis in mammary gland. Front Cell Dev Biol 2023; 11:1249317. [PMID: 37795261 PMCID: PMC10546029 DOI: 10.3389/fcell.2023.1249317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023] Open
Abstract
Calpain-1 and calpain-2 are calcium-dependent Cys-proteases ubiquitously expressed in mammalian tissues with a processive, rather than degradative activity. They are crucial for physiological mammary gland homeostasis as well as for breast cancer progression. A growing number of evidences indicate that their pleiotropic functions depend on the cell type, tissue and biological context where they are expressed or dysregulated. This review considers these standpoints to cover the paradoxical role of calpain-1 and -2 in the mammary tissue either, under the physiological conditions of the postlactational mammary gland regression or the pathological context of breast cancer. The role of both calpains will be examined and discussed in both conditions, followed by a brief snapshot on the present and future challenges for calpains, the two-gateway proteases towards tissue homeostasis or tumor development.
Collapse
Affiliation(s)
- Elena R. García-Trevijano
- Department of Biochemistry and Molecular Biology, Universitat de Valencia, Valencia, Spain
- INLIVA Biomedical Research Institute, Valencia, Spain
| | - Elena Ortiz-Zapater
- Department of Biochemistry and Molecular Biology, Universitat de Valencia, Valencia, Spain
- INLIVA Biomedical Research Institute, Valencia, Spain
| | - Amparo Gimeno
- Department of Anatomy and Human Embryology, Universitat de Valencia, Valencia, Spain
| | - Juan R. Viña
- Department of Biochemistry and Molecular Biology, Universitat de Valencia, Valencia, Spain
- INLIVA Biomedical Research Institute, Valencia, Spain
| | - Rosa Zaragozá
- INLIVA Biomedical Research Institute, Valencia, Spain
- Department of Anatomy and Human Embryology, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
24
|
Dong X, Zang C, Sun Y, Zhang S, Liu C, Qian J. Hydroxyapatite nanoparticles induced calcium overload-initiated cancer cell-specific apoptosis through inhibition of PMCA and activation of calpain. J Mater Chem B 2023; 11:7609-7622. [PMID: 37403708 DOI: 10.1039/d3tb00542a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Hydroxyapatite nanoparticles (HAPNs) have been reported to specifically induce apoptosis and sustained elevation of intracellular Ca2+ concentration ([Ca2+]i) in cancer cells. However, it remains unclear whether calcium overload, the abnormal intracellular accumulation of Ca2+, is the intrinsic cause of cell apoptosis, how HAPNs specifically evoke calcium overload in cancer cells, and which potential pathways were involved in apoptosis initiation in response to calcium overload. In this study, using various cancer and normal cells, we observed a positive correlation between the degree of increased [Ca2+]i and the specific toxicity of HAPNs. Moreover, chelating intracellular Ca2+ with BAPTA-AM inhibited HAPN-induced calcium overload and apoptosis, thus demonstrating that calcium overload was the main cause of HAPN-induced cytotoxicity in cancer cells. Notably, the dissolution of particles outside the cells did not affect cell viability or [Ca2+]i. In contrast, internalized HAPNs dissolved more readily in cancer cells than in normal cells and inhibited the activity of plasma membrane calcium-ATPase solely in cancer cells to prevent extrusion of excessive Ca2+, hence leading to calcium overload in tumor cells. Upon exposure to HAPNs, the Ca2+-sensitive cysteine protease calpain was activated and then cleaved the BH3-only protein Bid. Consequently, cytochrome c was released, and caspase-9 and -3 were activated, leading to mitochondrial apoptosis. However, these effects were alleviated by the calpain inhibitor calpeptin, confirming the involvement of calpain in HANP-induced apoptosis. Therefore, our results demonstrated that calcium overload induced by HAPNs caused cancer cell-specific apoptosis by inhibiting PMCA and activating calpain in tumor cells and thus may contribute to a more comprehensive understanding of biological effects of this nanomaterial and facilitate the development of calcium overload cancer therapy.
Collapse
Affiliation(s)
- Xiulin Dong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Chunyu Zang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Yi Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Shuiquan Zhang
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Changsheng Liu
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jiangchao Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| |
Collapse
|
25
|
Kasamatsu H, Chino T, Hasegawa T, Utsunomiya N, Utsunomiya A, Yamada M, Oyama N, Hasegawa M. A cysteine proteinase inhibitor ALLN alleviates bleomycin-induced skin and lung fibrosis. Arthritis Res Ther 2023; 25:156. [PMID: 37626391 PMCID: PMC10463804 DOI: 10.1186/s13075-023-03130-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Systemic sclerosis (SSc) is a connective tissue disease that is characterized by fibrosis in the skin and internal organs, such as the lungs. Activated differentiation of progenitor cells, which are mainly resident fibroblasts, into myofibroblasts is considered a key mechanism underlying the overproduction of extracellular matrix and the resultant tissue fibrosis in SSc. Calpains are members of the Ca2+-dependent cysteine protease family, whose enzymatic activities participate in signal transduction and tissue remodeling, potentially contributing to fibrosis in various organs. However, the roles of calpain in the pathogenesis of SSc remain unknown. This study aimed to examine the anti-fibrotic properties of N-acetyl-Leu-Leu-norleucinal (ALLN), one of the cysteine proteinase inhibitors that primarily inhibit calpain, in vitro and in vivo, to optimally translate into the therapeutic utility in human SSc. METHODS Normal human dermal and lung fibroblasts pretreated with ALLN were stimulated with recombinant transforming growth factor beta 1 (TGF-β1), followed by assessment of TGF-β1/Smad signaling and fibrogenic molecules. RESULTS ALLN treatment significantly inhibited TGF-β1-induced phosphorylation and nuclear transport of Smad2/3 in skin and lung fibroblasts. TGF-β1-dependent increases in α-smooth muscle actin (αSMA), collagen type I, fibronectin 1, and some mesenchymal transcription markers were attenuated by ALLN. Moreover, our findings suggest that ALLN inhibits TGF-β1-induced mesenchymal transition in human lung epithelial cells. Consistent with these in vitro findings, administering ALLN (3 mg/kg/day) three times a week intraperitoneally remarkably suppressed the development of skin and lung fibrosis in a SSc mouse model induced by daily subcutaneous bleomycin injection. The number of skin- and lung-infiltrating CD3+ T cells decreased in ALLN-treated mice compared with that in control-treated mice. Phosphorylation of Smad3 and/or an increase in αSMA-positive myofibroblasts was significantly inhibited by ALLN treatment on the skin and lungs. However, no adverse effects were observed. CONCLUSIONS Our results prove that calpains can be a novel therapeutic target for skin and lung fibrosis in SSc, considering its inhibitor ALLN.
Collapse
Affiliation(s)
- Hiroshi Kasamatsu
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Takenao Chino
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Takumi Hasegawa
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Natsuko Utsunomiya
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Akira Utsunomiya
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Masami Yamada
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Noritaka Oyama
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Minoru Hasegawa
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan.
| |
Collapse
|
26
|
Bartholow TG, Burroughs P, Elledge SK, Byrnes JR, Kirkemo LL, Garda V, Leung KK, Wells JA. Site-specific proximity labeling at single residue resolution for identification of protein partners in vitro and on cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550738. [PMID: 37546992 PMCID: PMC10402114 DOI: 10.1101/2023.07.27.550738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The cell surface proteome, or surfaceome, is encoded by more than 4000 genes, but we are only beginning to understand the complexes they form. Rapid proximity labeling around specific membrane targets allows for capturing weak and transient interactions expected in the crowded and dynamic environment of the surfaceome. Recently, a high-resolution approach called μMap has been described (Geri, J. B., Oakley, J. V., Reyes-Robles, T., Wang, T., McCarver, S. J., White, C. H., Rodriguez-Rivera, F. P., Parker, D. L., Hett, E. C., Fadeyi, O. O., Oslund, R. C., and MacMillan, D. W. C. (2020) Science 367 , 1091-1097) in which an iridium (Ir)-based photocatalyst is attached to a specific antibody to target labeling of neighbors utilizing light-activated generation of carbenes from diazirine compounds via Dexter Energy Transfer (DET). Here we studied and optimized the spatial resolution for the method using an oncoprotein complex between the antibody drug, trastuzumab (Traz), and its target HER2. A set of eight single site-specific Ir-catalytic centers were engineered into Traz to study intra- and inter-molecular labeling in vitro and on cells by mass spectrometry. From this structurally well-characterized complex we observed a maximum distance of ∼110 Å for labeling. Labeling occurred almost uniformly over the full range of amino acids, unlike the residue specific labeling of other techniques. To examine on cell labeling that is specific to HER2 as opposed to simply being on the membrane, we compared the labeling patterns for the eight Traz-catalyst species to random labeling of membrane proteins using a metabolically integrated fatty acid catalyst. Our results identified 20 high confidence HER2 neighbors, many novel, that were more than 6-fold enriched compared to the non-specific membrane tethered catalyst. These studies define distance labeling parameters from single-site catalysts placed directly on the membrane target of interest, and more accurately compare to non-specific labeling to identify membrane complexes with higher confidence.
Collapse
|
27
|
Liu X, Jiang L, Zhang W, Zhang J, Luan X, Zhan Y, Wang T, Da J, Liu L, Zhang S, Guo Y, Zhang K, Wang Z, Miao N, Xie X, Liu P, Li Y, Jin H, Zhang B. Fam20c regulates the calpain proteolysis system through phosphorylating Calpasatatin to maintain cell homeostasis. J Transl Med 2023; 21:417. [PMID: 37370126 DOI: 10.1186/s12967-023-04275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The family with sequence similarity 20-member C (FAM20C) kinase, a Golgi casein kinase, which is responsible for phosphorylating the majority of the extracellular phosphoproteins within S-x-E/pS motifs, and is fundamentally associated with multiple biological processes to maintain cell proliferation, biomineralization, migration, adhesion, and phosphate homeostasis. In dissecting how FAM20C regulates downstream molecules and potential mechanisms, however, there are multiple target molecules of FAM20C, particularly many phenomena remain elusive, such as changes in cell-autonomous behaviors, incompatibility in genotypes and phenotypes, and others. METHODS Here, assay for transposase-accessible chromatin using sequencing (ATAC-seq), RNA sequencing (RNA-seq), proteomics, and phosphoproteomics were performed in Fam20c-dificient osteoblasts and to facilitate an integrated analysis and determine the impact of chromatin accessibility, genomic expression, protein alterations, signaling pathway, and post translational modifcations. RESULTS By combining ATAC-seq and RNA-seq, we identified TCF4 and Wnt signaling pathway as the key regulators in Fam20c-dificient cells. Further, we showed Calpastatin/Calpain proteolysis system as a novel target axis for FAM20C to regulate cell migration and F-actin cytoskeleton by integrated analysis of proteomics and phosphoproteomics. Furthermore, Calpastatin/Calpain proteolysis system could negatively regulate the Wnt signaling pathway. CONCLUSION These observations implied that Fam20c knockout osteoblasts would cause cell homeostatic imbalance, involving changes in multiple signaling pathways in the conduction system.
Collapse
Affiliation(s)
- Xinpeng Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Lili Jiang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pediatric Dentistry, School of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenxuan Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiahui Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Stomatology and Dental Hygiene, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xinrui Luan
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuanbo Zhan
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tuo Wang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Junlong Da
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lixue Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shujian Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuyao Guo
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kai Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Zhiping Wang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Nan Miao
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaohua Xie
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peihong Liu
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Li
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Han Jin
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Bin Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- Heilongjiang Academy of Medical Sciences, Harbin, China.
| |
Collapse
|
28
|
Hill C, Dellar ER, Baena‐Lopez LA. Caspases help to spread the message via extracellular vesicles. FEBS J 2023; 290:1954-1972. [PMID: 35246932 PMCID: PMC10952732 DOI: 10.1111/febs.16418] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 11/27/2022]
Abstract
Cell-cell communication is an essential aspect of multicellular life, key for coordinating cell proliferation, growth, and death in response to environmental changes. Whilst caspases are well-known for facilitating apoptotic and pyroptotic cell death, several recent investigations are uncovering new roles for these enzymes in biological scenarios requiring long-range intercellular signalling mediated by extracellular vesicles (EVs). EVs are small membrane-bound nanoparticles released from cells that may carry and deliver cargo between distant cells, thus helping to coordinate their behaviour. Intriguingly, there is emerging evidence indicating a key contribution of caspases in the biogenesis of EVs, the selection of their cargo content, and EV uptake/function in recipient cells. Here, we discuss the latest findings supporting the interplay between caspases and EVs, and the biological relevance of this molecular convergence for cellular signalling, principally in non-apoptotic scenarios.
Collapse
Affiliation(s)
- Claire Hill
- Sir William Dunn School of PathologyUniversity of OxfordUK
| | - Elizabeth R. Dellar
- Sir William Dunn School of PathologyUniversity of OxfordUK
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordUK
| | | |
Collapse
|
29
|
Dong Y, Yan J, Yang M, Xu W, Hu Z, Paquet-Durand F, Jiao K. Inherited Retinal Degeneration: Towards the Development of a Combination Therapy Targeting Histone Deacetylase, Poly (ADP-Ribose) Polymerase, and Calpain. Biomolecules 2023; 13:biom13040581. [PMID: 37189329 DOI: 10.3390/biom13040581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Inherited retinal degeneration (IRD) represents a diverse group of gene mutation-induced blinding diseases. In IRD, the loss of photoreceptors is often connected to excessive activation of histone-deacetylase (HDAC), poly-ADP-ribose-polymerase (PARP), and calpain-type proteases (calpain). Moreover, the inhibition of either HDACs, PARPs, or calpains has previously shown promise in preventing photoreceptor cell death, although the relationship between these enzyme groups remains unclear. To explore this further, organotypic retinal explant cultures derived from wild-type mice and rd1 mice as a model for IRD were treated with different combinations of inhibitors specific for HDAC, PARP, and calpain. The outcomes were assessed using in situ activity assays for HDAC, PARP, and calpain, immunostaining for activated calpain-2, and the TUNEL assay for cell death detection. We confirmed that inhibition of either HDAC, PARP, or calpain reduced rd1 mouse photoreceptor degeneration, with the HDAC inhibitor Vorinostat (SAHA) being most effective. Calpain activity was reduced by inhibition of both HDAC and PARP whereas PARP activity was only reduced by HDAC inhibition. Unexpectedly, combined treatment with either PARP and calpain inhibitors or HDAC and calpain inhibitors did not produce synergistic rescue of photoreceptors. Together, these results indicate that in rd1 photoreceptors, HDAC, PARP, and calpain are part of the same degenerative pathway and are activated in a sequence that begins with HDAC and ends with calpain.
Collapse
|
30
|
Stillger MN, Chen CY, Lai ZW, Li M, Schäfer A, Pagenstecher A, Nimsky C, Bartsch JW, Schilling O. Changes in calpain-2 expression during glioblastoma progression predisposes tumor cells to temozolomide resistance by minimizing DNA damage and p53-dependent apoptosis. Cancer Cell Int 2023; 23:49. [PMID: 36932402 PMCID: PMC10022304 DOI: 10.1186/s12935-023-02889-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/04/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is characterized by an unfavorable prognosis for patients affected. During standard-of-care chemotherapy using temozolomide (TMZ), tumors acquire resistance thereby causing tumor recurrence. Thus, deciphering essential molecular pathways causing TMZ resistance are of high therapeutic relevance. METHODS Mass spectrometry based proteomics were used to study the GBM proteome. Immunohistochemistry staining of human GBM tissue for either calpain-1 or -2 was performed to locate expression of proteases. In vitro cell based assays were used to measure cell viability and survival of primary patient-derived GBM cells and established GBM cell lines after TMZ ± calpain inhibitor administration. shRNA expression knockdowns of either calpain-1 or calpain-2 were generated to study TMZ sensitivity of the specific subunits. The Comet assay and ɣH2AX signal measurements were performed in order to assess the DNA damage amount and recognition. Finally, quantitative real-time PCR of target proteins was applied to differentiate between transcriptional and post-translational regulation. RESULTS Calcium-dependent calpain proteases, in particular calpain-2, are more abundant in glioblastoma compared to normal brain and increased in patient-matched initial and recurrent glioblastomas. On the cellular level, pharmacological calpain inhibition increased the sensitivities of primary glioblastoma cells towards TMZ. A genetic knockdown of calpain-2 in U251 cells led to increased caspase-3 cleavage and sensitivity to neocarzinostatin, which rapidly induces DNA strand breakage. We hypothesize that calpain-2 causes desensitization of tumor cells against TMZ by preventing strong DNA damage and subsequent apoptosis via post-translational TP53 inhibition. Indeed, proteomic comparison of U251 control vs. U251 calpain-2 knockdown cells highlights perturbed levels of numerous proteins involved in DNA damage response and downstream pathways affecting TP53 and NF-κB signaling. TP53 showed increased protein abundance, but no transcriptional regulation. CONCLUSION TMZ-induced cell death in the presence of calpain-2 expression appears to favor DNA repair and promote cell survival. We conclude from our experiments that calpain-2 expression represents a proteomic mode that is associated with higher resistance via "priming" GBM cells to TMZ chemotherapy. Thus, calpain-2 could serve as a prognostic factor for GBM outcome.
Collapse
Affiliation(s)
- Maren Nicole Stillger
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Chia-Yi Chen
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Zon Weng Lai
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, MA, USA
| | - Mujia Li
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Agnes Schäfer
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany
| | - Axel Pagenstecher
- Institute of Neuropathology, Philipps-University, Marburg, Germany.,Center for Mind, Brain and Behavior, CMBB, Marburg University, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, CMBB, Marburg University, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany
| | - Jörg Walter Bartsch
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany. .,Center for Mind, Brain and Behavior, CMBB, Marburg University, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany. .,Philipps-University Marburg, Laboratory, Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033, Marburg, Germany.
| | - Oliver Schilling
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
31
|
Liu S, Li Y, Hong Y, Wang M, Zhang H, Ma J, Qu K, Huang G, Lu TJ. Mechanotherapy in oncology: Targeting nuclear mechanics and mechanotransduction. Adv Drug Deliv Rev 2023; 194:114722. [PMID: 36738968 DOI: 10.1016/j.addr.2023.114722] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/23/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Mechanotherapy is proposed as a new option for cancer treatment. Increasing evidence suggests that characteristic differences are present in the nuclear mechanics and mechanotransduction of cancer cells compared with those of normal cells. Recent advances in understanding nuclear mechanics and mechanotransduction provide not only further insights into the process of malignant transformation but also useful references for developing new therapeutic approaches. Herein, we present an overview of the alterations of nuclear mechanics and mechanotransduction in cancer cells and highlight their implications in cancer mechanotherapy.
Collapse
Affiliation(s)
- Shaobao Liu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics, Nanjing 210016, PR China
| | - Yuan Li
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuan Hong
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; National Science Foundation Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA
| | - Ming Wang
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hao Zhang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics, Nanjing 210016, PR China
| | - Jinlu Ma
- Department of Radiation Oncology, the First Affiliated Hospital, Xian Jiaotong University, Xi'an 710061, PR China
| | - Kai Qu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Xian Jiaotong University, Xi'an 710061, PR China
| | - Guoyou Huang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, PR China.
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics, Nanjing 210016, PR China.
| |
Collapse
|
32
|
Williams JN, Irwin M, Li Y, Kambrath AV, Mattingly BT, Patel S, Kittaka M, Collins RN, Clough NA, Doud EH, Mosley AL, Bellido T, Bruzzaniti A, Plotkin LI, Trinidad JC, Thompson WR, Bonewald LF, Sankar U. Osteocyte-Derived CaMKK2 Regulates Osteoclasts and Bone Mass in a Sex-Dependent Manner through Secreted Calpastatin. Int J Mol Sci 2023; 24:4718. [PMID: 36902150 PMCID: PMC10003151 DOI: 10.3390/ijms24054718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Calcium/calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) regulates bone remodeling through its effects on osteoblasts and osteoclasts. However, its role in osteocytes, the most abundant bone cell type and the master regulator of bone remodeling, remains unknown. Here we report that the conditional deletion of CaMKK2 from osteocytes using Dentine matrix protein 1 (Dmp1)-8kb-Cre mice led to enhanced bone mass only in female mice owing to a suppression of osteoclasts. Conditioned media isolated from female CaMKK2-deficient osteocytes inhibited osteoclast formation and function in in vitro assays, indicating a role for osteocyte-secreted factors. Proteomics analysis revealed significantly higher levels of extracellular calpastatin, a specific inhibitor of calcium-dependent cysteine proteases calpains, in female CaMKK2 null osteocyte conditioned media, compared to media from female control osteocytes. Further, exogenously added non-cell permeable recombinant calpastatin domain I elicited a marked, dose-dependent inhibition of female wild-type osteoclasts and depletion of calpastatin from female CaMKK2-deficient osteocyte conditioned media reversed the inhibition of matrix resorption by osteoclasts. Our findings reveal a novel role for extracellular calpastatin in regulating female osteoclast function and unravel a novel CaMKK2-mediated paracrine mechanism of osteoclast regulation by female osteocytes.
Collapse
Affiliation(s)
- Justin N. Williams
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mavis Irwin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yong Li
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anuradha Valiya Kambrath
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brett T. Mattingly
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sheel Patel
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, IN 46022, USA
| | - Mizuho Kittaka
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, USA
| | - Rebecca N. Collins
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nicholas A. Clough
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Teresita Bellido
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Angela Bruzzaniti
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, USA
| | - Lilian I. Plotkin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jonathan C. Trinidad
- Department of Chemistry, Biological Mass Spectrometry Facility, Indiana University, Bloomington, IN 47405, USA
| | - William R. Thompson
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Physical Therapy, School of Health and Human Sciences, Indianapolis, IN 46202, USA
| | - Lynda F. Bonewald
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Uma Sankar
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
33
|
Kaji T, Kuroishi T, Bando K, Takahashi M, Sugawara S. N-acetyl cysteine inhibits IL-1α release from murine keratinocytes induced by 2-hydroxyethyl methacrylate. J Toxicol Sci 2023; 48:557-569. [PMID: 37778984 DOI: 10.2131/jts.48.557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The hydrophilic compound 2-hydroxyethyl methacrylate (HEMA) is a major component of dental bonding materials, and it enhances the binding of resin-composites to biomolecules. However, HEMA is a well-known contact sensitizer. We reported previously that intradermal injection of HEMA induces the production of IL-1 locally in the skin. Keratinocytes are the first barrier against chemical insults and constitutively express IL-1α. In this study, we analyzed whether HEMA induces the production of inflammatory cytokines from murine keratinocyte cell line Pam212 cells. We demonstrated that HEMA induced the release of 17-kDa mature IL-1α and caused cytotoxicity. The activity of calpain, an IL-1α processing enzyme, was significantly higher in HEMA-treated cells. The thiol-containing antioxidant N-acetyl cysteine (NAC) inhibited HEMA-induced IL-1α release but not cytotoxicity. NAC inhibited intracellular calpain activity and reactive oxygen species (ROS) production induced by HEMA. NAC post-treatment also inhibited IL-1α release and intracellular ROS production induced by HEMA. Furthermore, HEMA-induced in vivo inflammation also inhibited by NAC. NAC inhibited polymerization of HEMA through adduct formation via sulfide bonds between the thiol group of NAC and the reactive double bond of HEMA. HEMA-induced IL-1α release and cytotoxicity were also inhibited if HEMA and NAC were pre-incubated before adding to the cells. These results suggested that NAC inhibited IL-1α release through decreases in intracellular ROS and the adduct formation with HEMA. We concluded that HEMA induces IL-1α release from skin keratinocytes, and NAC may be a promising candidate as a therapeutic agent against inflammation induced by HEMA.
Collapse
Affiliation(s)
- Takahiro Kaji
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry
| | - Toshinobu Kuroishi
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry
| | - Kanan Bando
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry
| | - Masatoshi Takahashi
- Division of Dental Biomaterials, Tohoku University Graduate School of Dentistry
| | - Shunji Sugawara
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry
| |
Collapse
|
34
|
Kim JW, Moon SW, Mo HY, Son HJ, Choi EJ, Yoo NJ, Ann CH, Lee SH. Concurrent inactivating mutations and expression losses of RGS2, HNF1A, and CAPN12 candidate tumor suppressor genes in colon cancers. Pathol Res Pract 2023; 241:154288. [PMID: 36566600 DOI: 10.1016/j.prp.2022.154288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Microsatellite instability-high (MSI-H) colorectal cancer (CRC) is different from microsatellite stable (MSS) CRC concerning biological, and clinical features. In MSI-H CRCs, defects of mismatch repair genes produce increased mutation accumulation in repetitive DNA sequences. To see whether candidate tumor suppressor genes (TSGs) are altered in MSI-H CRC, we studied frameshift mutation and protein expression of candidate TSGs of RGS2, HNF1A, HNF1B, CAPN12, RCBTB2, ATE1, PKNOX1, and USP19. We found frameshift mutations of RGS2 in 5 (5%), HNF1A in 6 (6%), HNF1B in 2 (2%), CAPN12 in 3 (3%), RCBTB2 in 4 (4%), ATE1 in 2 (2%), PKNOX1 in 2 (2%), and USP19 in 2 (2%) MSI-H CRCs. However, we found no such mutations in MSS CRCs. RCBTB2, CAPN12, HNF1A, and HNF1B frameshift mutations revealed the regional difference in the same tumors. In addition, we identified loss of RGS2, HNF1A, and CAPN12 protein expression irrespective of MSI phenotype in 13-29% of CRCs. The results indicate that many TSGs harbor concurrent inactivating mutations and protein loss in MSI-H CRCs with intratumoral mutational heterogeneity, and that MSS CRCs are altered by protein losses. These alterations could contribute to CRC development and underlying mechanisms and consequences of the TSG alterations remain to be clarified.
Collapse
Affiliation(s)
- Jae Woong Kim
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Seong Won Moon
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Ha Yoon Mo
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Hyun Ji Son
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Eun Ji Choi
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Nam Jin Yoo
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Chang Hyeok Ann
- Departments of General Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea.
| | - Sug Hyung Lee
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea.
| |
Collapse
|
35
|
Shields NJ, Peyroux EM, Campbell K, Mehta S, Woolley AG, Counoupas C, Neumann S, Young SL. Calpains Released from Necrotic Tumor Cells Enhance Antigen Cross-Presentation to Activate CD8 +T Cells In Vitro. THE JOURNAL OF IMMUNOLOGY 2022; 209:1635-1651. [DOI: 10.4049/jimmunol.2100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
|
36
|
Zhong X, Xu S, Wang Q, Peng L, Wang F, He T, Liu C, Ni S, He Z. CAPN8 involves with exhausted, inflamed, and desert immune microenvironment to influence the metastasis of thyroid cancer. Front Immunol 2022; 13:1013049. [PMID: 36389799 PMCID: PMC9647051 DOI: 10.3389/fimmu.2022.1013049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/29/2022] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Thyroid cancer (THCA) is the most prevalent malignant disease of the endocrine system, in which 5-year survival can attain about 95%, but patients with metastasis have a poor prognosis. Very little is known about the role of CAPN8 in the metastasis of THCA. In particular, the effect of CAPN8 on the tumor immune microenvironment (TIME) and immunotherapy response is unclear. MATERIAL AND METHODS Multiome datasets and multiple cohorts were acquired for analysis. Firstly, the expression and the prognostic value of CAPN8 were explored in public datasets and in vitro tumor tissues. Then, hierarchical clustering analysis was performed to identify the immune subtypes of THCA according to the expression of CAPN8 and the activities of related pathways. Subsequent analyses explored the different patterns of TIME, genetic alteration, DNA replication stress, drug sensitivity, and immunotherapy response among the three immune phenotypes. Finally, five individual cohorts of thyroid cancer were utilized to test the robustness and extrapolation of the three immune clusters. RESULTS CAPN8 was found to be a significant risk factor for THCA with a markedly elevated level of mRNA and protein in tumor tissues. This potential oncogene could induce the activation of epithelial-mesenchymal transition and E2F-targeted pathways. Three subtypes were identified for THCA, including immune exhausted, inflamed, and immune desert phenotypes. The exhausted type was characterized by a markedly increased expression of inhibitory receptors and infiltration of immune cells but was much more likely to respond to immunotherapy. The immune desert type was resistant to common chemotherapeutics with extensive genomic mutation and copy number variance. CONCLUSION The present study firstly explored the role of CAPN8 in the metastasis of THCA from the aspects of TIME. Three immune subtypes were identified with quite different patterns of prognosis, immunotherapy response, and drug sensitivity, providing novel insights for the treatment of THCA and helping understand the cross-talk between CAPN8 and tumor immune microenvironment.
Collapse
Affiliation(s)
- Xiang Zhong
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Shu Xu
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Quhui Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Long Peng
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Feiran Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Tianyi He
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Changyue Liu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Sujie Ni
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Zhixian He
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
37
|
Activation of Host Cellular Signaling and Mechanism of Enterovirus 71 Viral Proteins Associated with Hand, Foot and Mouth Disease. Viruses 2022; 14:v14102190. [PMID: 36298746 PMCID: PMC9609926 DOI: 10.3390/v14102190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Enteroviruses are members of the Picornaviridae family consisting of human enterovirus groups A, B, C, and D as well as nonhuman enteroviruses. Human enterovirus type 71 (EV71) has emerged as a major cause of viral encephalitis, known as hand, foot, and mouth disease (HFMD), in children worldwide, especially in the Asia-Pacific region. EV71 and coxsackievirus A16 are the two viruses responsible for HFMD which are members of group A enteroviruses. The identified EV71 receptors provide useful information for understanding viral replication and tissue tropism. Host factors interact with the internal ribosome entry site (IRES) of EV71 to regulate viral translation. However, the specific molecular features of the respective viral genome that determine virulence remain unclear. Although a vaccine is currently approved, there is no effective therapy for treating EV71-infected patients. Therefore, understanding the host-pathogen interaction could provide knowledge in viral pathogenesis and further benefits to anti-viral therapy development. The aim of this study was to investigate the latest findings about the interaction of viral ligands with the host receptors as well as the activation of immunerelated signaling pathways for innate immunity and the involvement of different cytokines and chemokines during host-pathogen interaction. The study also examined the roles of viral proteins, mainly 2A and 3C protease, interferons production and their inhibitory effects.
Collapse
|
38
|
Calpains in cyanobacteria and the origin of calpains. Sci Rep 2022; 12:13872. [PMID: 35974045 PMCID: PMC9380684 DOI: 10.1038/s41598-022-18228-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Calpains are cysteine proteases involved in many cellular processes. They are an ancient and large superfamily of enzymes responsible for the cleavage and irreversible modification of a large variety of substrates. They have been intensively studied in humans and other mammals, but information about calpains in bacteria is scarce. Calpains have not been found among Archaea to date. In this study, we have investigated the presence of calpains in selected cyanobacterial species using in silico analyses. We show that calpains defined by possessing CysPC core domain are present in cyanobacterial genera Anabaena, Aphanizomenon, Calothrix, Chamaesiphon, Fischerella, Microcystis, Scytonema and Trichormus. Based on in silico protein interaction analysis, we have predicted putative interaction partners for identified cyanobacterial calpains. The phylogenetic analysis including cyanobacterial, other bacterial and eukaryotic calpains divided bacterial and eukaryotic calpains into two separate monophyletic clusters. We propose two possible evolutionary scenarios to explain this tree topology: (1) the eukaryotic ancestor or an archaeal ancestor of eukaryotes obtained calpain gene from an unknown bacterial donor, or alternatively (2) calpain gene had been already present in the last common universal ancestor and subsequently lost by the ancestor of Archaea, but retained by the ancestor of Bacteria and by the ancestor of Eukarya. Both scenarios would require multiple independent losses of calpain genes in various bacteria and eukaryotes.
Collapse
|
39
|
Masilamani AP, Schulzki R, Yuan S, Haase IV, Kling E, Dewes F, Andrieux G, Börries M, Schnell O, Heiland DH, Schilling O, Ferrarese R, Carro MS. Calpain-mediated cleavage generates a ZBTB18 N-terminal product that regulates HIF1A signaling and glioblastoma metabolism. iScience 2022; 25:104625. [PMID: 35800763 PMCID: PMC9253709 DOI: 10.1016/j.isci.2022.104625] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022] Open
Abstract
Proteolytic cleavage is an important post-translational mechanism to increase protein variability and functionality. In cancer, this process can be deregulated to shut off tumor-suppressive functions. Here, we report that in glioblastoma (GBM), the tumor suppressor ZBTB18 is targeted for protein cleavage by the intracellular protease calpain. The N-terminal (Nte) ZBTB18 cleaved fragment localizes to the cytoplasm and thus, is unable to exert the gene expression repressive function of the uncleaved protein. Mass spectrometry (MS) analysis indicates that the Nte ZBTB18 short form (SF) interacts with C-terminal (Cte) binding proteins 1 and 2 (CTBP1/2), which appear to be involved in HIF1A signaling activation. In fact, we show that the new ZBTB18 product activates HIF1A-regulated genes, which in turn lead to increased lipid uptake, lipid droplets (LD) accumulation, and enhanced metabolic activity. We propose that calpain-mediated ZBTB18 cleavage represents a new mechanism to counteract ZBTB18 tumor suppression and increase tumor-promoting functions in GBM cells.
Collapse
Affiliation(s)
- Anie P. Masilamani
- Department of Neurosurgery, Medical Center – University of Freiburg, Freiburg, Germany
| | - Rana Schulzki
- Department of Neurosurgery, Medical Center – University of Freiburg, Freiburg, Germany
| | - Shuai Yuan
- Department of Neurosurgery, Medical Center – University of Freiburg, Freiburg, Germany
| | - Ira V. Haase
- Department of Neurosurgery, Medical Center – University of Freiburg, Freiburg, Germany
| | - Eva Kling
- Department of Neurosurgery, Medical Center – University of Freiburg, Freiburg, Germany
| | - Franziska Dewes
- Department of Neurosurgery, Medical Center – University of Freiburg, Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, Freiburg, Germany
| | - Melanie Börries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, Freiburg, Germany
| | - Oliver Schnell
- Department of Neurosurgery, Medical Center – University of Freiburg, Freiburg, Germany
| | - Dieter H. Heiland
- Department of Neurosurgery, Medical Center – University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, Freiburg, Germany
| | - Oliver Schilling
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, Freiburg, Germany
- Institute of Clinical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roberto Ferrarese
- Department of Neurosurgery, Medical Center – University of Freiburg, Freiburg, Germany
| | - Maria S. Carro
- Department of Neurosurgery, Medical Center – University of Freiburg, Freiburg, Germany
| |
Collapse
|
40
|
Yeoh WJ, Vu VP, Krebs P. IL-33 biology in cancer: An update and future perspectives. Cytokine 2022; 157:155961. [PMID: 35843125 DOI: 10.1016/j.cyto.2022.155961] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/03/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022]
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 family of cytokines that is constitutively expressed in the nucleus of epithelial, endothelial and fibroblast-like cells. Upon cell stress, damage or necrosis, IL-33 is released into the cytoplasm to exert its prime role as an alarmin by binding to its specific receptor moiety, ST2. IL-33 exhibits pleiotropic function in inflammatory diseases and particularly in cancer. IL-33 may play a dual role as both a pro-tumorigenic and anti-tumorigenic cytokine, dependent on tumor and cellular context, expression levels, bioactivity and the nature of the inflammatory environment. In this review, we discuss the differential contribution of IL-33 to malignant or inflammatory conditions, its multifaceted effects on the tumor microenvironment, while providing possible explanations for the discrepant findings described in the literature. Additionally, we examine the emerging and divergent functions of IL-33 in the nucleus, and aspects of IL-33 biology that are currently under-addressed.
Collapse
Affiliation(s)
- Wen Jie Yeoh
- Institute of Pathology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Vivian P Vu
- Institute of Pathology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland.
| |
Collapse
|
41
|
Li RY, Zheng ZY, Li ZM, Heng JH, Zheng YQ, Deng DX, Xu XE, Liao LD, Lin W, Xu HY, Huang HC, Li EM, Xu LY. Cisplatin-induced pyroptosis is mediated via the CAPN1/CAPN2-BAK/BAX-caspase-9-caspase-3-GSDME axis in esophageal cancer. Chem Biol Interact 2022; 361:109967. [PMID: 35525317 DOI: 10.1016/j.cbi.2022.109967] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/15/2022] [Accepted: 04/29/2022] [Indexed: 02/05/2023]
Abstract
Esophageal cancer is the seventh most common cancer globally. Chemotherapy resistance remains a significant challenge in the treatment of esophageal cancer patients. Cisplatin can damage tumor cells by inducing pyroptosis. However, the underlying molecular mechanisms remain unclear. In this work, we aim to investigate pyroptosis-dependent molecular mechanisms underlying cisplatin sensitivity and find potential biomarkers to predict response to cisplatin-based chemotherapy for esophageal cancer patients. Pyroptosis-associated proteins were screened via proteomics for esophageal cancer (n = 124) and bioinformatics analysis. We observed that high calpain-1 (CAPN1) and calpain-2 (CAPN2) expression were associated with favorable clinical outcomes and prolonged survival in esophageal cancer patients. We employed immunohistochemistry to evaluate the expression of CAPN1 and CAPN2 in pretreatment tumor biopsies from 108 patients with esophageal cancer who received concurrent chemoradiotherapy (CCRT). These results suggested that esophageal cancer patients with high expression of both CAPN1 and CAPN2 are likely to experience a complete response to CCRT and have significantly better survival. Western blotting, LDH release, calpain activity and cell viability assays indicated that cisplatin could activate calpain activity, while calpain inhibition or knockout suppressed cisplatin-induced pyroptosis. Mechanistically, we uncovered a novel mechanism whereby cisplatin induced pyroptosis via activation of a CAPN1/CAPN2-BAK/BAX-caspase-9-caspase-3-GSDME signaling axis in esophageal cancer cells. Collectively, this study is the first to explore the effects of calpain on cisplatin-induced pyroptosis in esophageal cancer cells. Further, our findings also imply that the combination of CAPN1 and CAPN2 could be considered as a promising biomarker of cisplatin sensitivity and prognosis in patients with esophageal cancer, providing a possibility to guide individualized treatment.
Collapse
Affiliation(s)
- Rong-Yao Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Zhen-Yuan Zheng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Zhi-Mao Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Jing-Hua Heng
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Ya-Qi Zheng
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Dan-Xia Deng
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xiu-E Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Lian-Di Liao
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Wan Lin
- Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Hong-Yao Xu
- Department of Radiation Oncology, Shantou Central Hospital, Shantou, 515041, China
| | - He-Cheng Huang
- Department of Radiation Oncology, Shantou Central Hospital, Shantou, 515041, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Li-Yan Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| |
Collapse
|
42
|
Genus Nocardiopsis: A Prolific Producer of Natural Products. Mar Drugs 2022; 20:md20060374. [PMID: 35736177 PMCID: PMC9231205 DOI: 10.3390/md20060374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Actinomycetes are currently one of the major sources of bioactive secondary metabolites used for medicine development. Accumulating evidence has shown that Nocardiopsis, a key class of actinomycetes, has the ability to produce novel bioactive natural products. This review covers the sources, distribution, bioactivities, biosynthesis, and structural characteristics of compounds isolated from Nocardiopsis in the period between March 2018 and 2021. Our results reveal that 67% of Nocardiopsis-derived natural products are reported for the first time, and 73% of them are isolated from marine Nocardiopsis. The chemical structures of the Nocardiopsis-derived compounds have diverse skeletons, concentrating on the categories of polyketides, peptides, terphenyls, and alkaloids. Almost 50% of the natural products isolated from Nocardiopsis have been discovered to display various bioactivities. These results fully demonstrate the great potential of the genus Nocardiopsis to produce novel bioactive secondary metabolites that may serve as a structural foundation for the development of novel drugs.
Collapse
|
43
|
Juibari AD, Rezadoost MH, Soleimani M. The key role of Calpain in COVID-19 as a therapeutic strategy. Inflammopharmacology 2022; 30:1479-1491. [PMID: 35635676 PMCID: PMC9149670 DOI: 10.1007/s10787-022-01002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/24/2022] [Indexed: 12/02/2022]
Abstract
COVID-19 is one of the viral diseases that has caused many deaths and financial losses to humans. Using the available information, this virus appears to activate the host cell-death mechanism through Calpain activation. Calpain inhibition can stop its downstream cascade reactions that cause cell death. Given the main roles of Calpain in the entry and pathogenicity of the SARS-CoV-2, its inhibition can be effective in controlling the COVID-19. This review describes how the virus activates Calpain by altering calcium flow. When Calpain was activated, the virus can enter the target cell. Subsequently, many complications of the disease, such as inflammation, cytokine storm and pulmonary fibrosis, are caused by virus-activated Calpain function. Calpain inhibitors appear to be a potential drug to control the disease and prevent death from COVID-19.
Collapse
Affiliation(s)
- Aref Doozandeh Juibari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| |
Collapse
|
44
|
Peng X, Yang R, Song J, Wang X, Dong W. Calpain2 Upregulation Regulates EMT-Mediated Pancreatic Cancer Metastasis via the Wnt/β-Catenin Signaling Pathway. Front Med (Lausanne) 2022; 9:783592. [PMID: 35707527 PMCID: PMC9189366 DOI: 10.3389/fmed.2022.783592] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Calpains2 (CAPN2) is a calcium-dependent, non-lysosomal cysteine protease that plays critical roles in normal cellular functions and pathological processes, including tumorigenesis, cancer progression, and metastasis. However, the role and underlying regulatory mechanisms of CAPN2 in pancreatic cancer (PC) are still unknown. We found that CAPN2 is highly expressed in PC tissues and associated with poor PC prognosis by using The Cancer Genome Atlas (TCGA) datasets, Gene Expression Omnibus (GEO) datasets, and PC tissue arrays. CAPN2 downregulation significantly inhibited cell proliferation, migration, and invasion and regulated Wnt/β-catenin signaling pathway-mediated epithelial-mesenchymal transition (EMT) in PC cells. Our findings highlight the significance of CAPN2 in tumor regression and, thus, indicate that CAPN2 could be a promising target for PC treatment.
Collapse
Affiliation(s)
- Xiulan Peng
- Department of Oncology, The Second Affiliated Hospital of Jianghan University, Wuhan, China
- *Correspondence: Xiulan Peng
| | - Rui Yang
- Department of Vascular Surgery, The Second Affiliated Hospital of Jianghan University, Wuhan, China
| | - Jia Song
- Departments of Institute, The Third Affiliated Teaching Hospital of Xinjiang Medical University, Affiliated Cancer Hospital, Ürümqi, China
| | - Xia Wang
- Department of Pharmacy, The Second Affiliated Hospital of Jianghan University, Wuhan, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Weiguo Dong
| |
Collapse
|
45
|
Abstract
INTRODUCTION Calpain-1 and calpain-2 are prototypical classical isoforms of the calpain family of calcium-activated cysteine proteases. Their substrate proteins participate in a wide range of cellular processes, including transcription, survival, proliferation, apoptosis, migration, and invasion. Dysregulated calpain activity has been implicated in tumorigenesis, suggesting that calpains may be promising therapeutic targets. AREAS COVERED This review covers clinical and basic research studies implicating calpain-1 and calpain-2 expression and activity in tumorigenesis and metastasis. We highlight isoform specific functions and provide an overview of substrates and cancer-related signalling pathways affected by calpain-mediated proteolytic cleavage. We also discuss efforts to develop clinically relevant calpain specific inhibitors and spotlight the challenges facing inhibitor development. EXPERT OPINION Rationale for targeting calpain-1 and calpain-2 in cancer is supported by pre-clinical and clinical studies demonstrating that calpain inhibition has the potential to attenuate carcinogenesis and block metastasis of aggressive tumors. The wide range of substrates and cleavage products, paired with inconsistencies in model systems, underscores the need for more complete understanding of physiological substrates and how calpain cleavage alters their function in cellular processes. The development of isoform specific calpain inhibitors remains an important goal with therapeutic potential in cancer and other diseases.
Collapse
Affiliation(s)
- Ivan Shapovalov
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| | - Danielle Harper
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| |
Collapse
|
46
|
Miao Z, Miao Z, Teng X, Xu S. Chlorpyrifos triggers epithelioma papulosum cyprini cell pyroptosis via miR-124-3p/CAPN1 axis. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127318. [PMID: 34879549 DOI: 10.1016/j.jhazmat.2021.127318] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/08/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Chlorpyrifos (CPF), a widely used organophosphorus pesticide has caused water pollution, threatening aquatic organisms. MicroRNAs (miRNAs) highly conserved noncoding RNAs, that regulate various cell death processes, including pyroptosis. To investigate the effect of CPF exposure on epithelioma papulosum cyprini (EPC) cell pyroptosis and the role of the miR-124-3p/CAPN1 axis, we established miR-124 overexpression and inhibition EPC cell models of CPF exposure. The target of the miR-124-3p/CAPN1 axis was primarily confirmed by the double luciferase reporter assay. Pyroptosis was demonstrated to occur in CPF-exposed EPC cells and was accompanied by mitochondrial membrane potential depletion, ROS level elevation and pyroptotic indicator expression upregulation. PD150606 was supplied as a CAPN1 inhibitor, alleviating CPF-induced mitochondrial dysfunction, and alleviating the increased expression of NLRP3, CASP1, IL1β and GSDMD. In conclusion, CPF induces pyroptosis by regulating the miR-124-3p/CAPN1 axis. This study enriches the cytotoxicity study of CPF, and provides new theoretical fundamentals for exploration of miRNA and its target protein response to water contaminants.
Collapse
Affiliation(s)
- Zhiying Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zhiruo Miao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
47
|
Te Boekhorst V, Jiang L, Mählen M, Meerlo M, Dunkel G, Durst FC, Yang Y, Levine H, Burgering BMT, Friedl P. Calpain-2 regulates hypoxia/HIF-induced plasticity toward amoeboid cancer cell migration and metastasis. Curr Biol 2022; 32:412-427.e8. [PMID: 34883047 PMCID: PMC10439789 DOI: 10.1016/j.cub.2021.11.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 07/05/2021] [Accepted: 11/16/2021] [Indexed: 12/29/2022]
Abstract
Hypoxia, through hypoxia inducible factor (HIF), drives cancer cell invasion and metastatic progression in various cancer types. In epithelial cancer, hypoxia induces the transition to amoeboid cancer cell dissemination, yet the molecular mechanisms, relevance for metastasis, and effective intervention to combat hypoxia-induced amoeboid reprogramming remain unclear. Here, we identify calpain-2 as a key regulator and anti-metastasis target of hypoxia-induced transition from collective to amoeboid dissemination of breast and head and neck (HN) carcinoma cells. Hypoxia-induced amoeboid dissemination occurred through low extracellular matrix (ECM)-adhesive, predominantly bleb-based amoeboid movement, which was maintained by a low-oxidative and -glycolytic energy metabolism ("eco-mode"). Hypoxia induced calpain-2-mediated amoeboid conversion by deactivating β1 integrins through enzymatic cleavage of the focal adhesion adaptor protein talin-1. Consequently, targeted downregulation or pharmacological inhibition of calpain-2 restored talin-1 integrity and β1 integrin engagement and reverted amoeboid to elongated phenotypes under hypoxia. Calpain-2 activity was required for hypoxia-induced amoeboid conversion in the orthotopic mouse dermis and upregulated in invasive HN tumor xenografts in vivo, and attenuation of calpain activity prevented hypoxia-induced metastasis to the lungs. This identifies the calpain-2/talin-1/β1 integrin axis as a druggable mechanosignaling program that conserves energy yet enables metastatic dissemination that can be reverted by interfering with calpain activity.
Collapse
Affiliation(s)
- Veronika Te Boekhorst
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Cell Biology, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Liying Jiang
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marius Mählen
- Department of Cell Biology, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Maaike Meerlo
- Department of Molecular Cancer Research, Center for Molecular Medicine, UMC Utrecht, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Gina Dunkel
- Department of Cell Biology, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Franziska C Durst
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yanjun Yang
- Center for Theoretical Biological Physics, Department of Applied Physics, Rice University, Houston, TX 77005, USA; Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Department of Applied Physics, Rice University, Houston, TX 77005, USA; Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Boudewijn M T Burgering
- Department of Molecular Cancer Research, Center for Molecular Medicine, UMC Utrecht, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands; Cancer Genomics Center, 3584 CG Utrecht, the Netherlands
| | - Peter Friedl
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Cell Biology, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands; Cancer Genomics Center, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
48
|
Mitochondrial calpain-1 activates NLRP3 inflammasome by cleaving ATP5A1 and inducing mitochondrial ROS in CVB3-induced myocarditis. Basic Res Cardiol 2022; 117:40. [PMID: 35997820 PMCID: PMC9399059 DOI: 10.1007/s00395-022-00948-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 01/31/2023]
Abstract
Treatment options for myocarditis are currently limited. Inhibition of calpains has been shown to prevent Coxsackievirus B3 (CVB3)-induced cardiac injuries, but the underlying mechanism of action of calpains has not been elucidated. We investigated whether NOD-, LRR-, and pyrin domain-containing 3 (NLRP3) inflammasome participated in CVB3-induced myocarditis, and investigated the effects of calpain-1 on CVB3-induced cardiac injury. NLRP3 inflammasome was activated in CVB3-infected hearts, evidenced by elevated protein levels of NLRP3, N-terminal domain of Gasdermin D, and cleaved caspase-1, and the increased co-localization of NLRP3 and apoptosis-associated speck-like protein. The intraperitoneal administration of MCC950, a selective inhibitor of the NLRP3 inflammasome, led to decreased levels of serum creatine kinase-MB, cardiac troponin I, lactate dehydrogenase, interleukin-18, interleukin-1β, prevention of the infiltration of inflammatory cells, and improvement of cardiac function under CVB3 infection. Transgenic mice overexpressing the endogenous calpain inhibitor calpastatin (Tg-CAST mice) exhibited not only decreased apoptosis, inflammation, fibrosis, and enhanced cardiac function but also inhibition of NLRP3 inflammasome and pyroptosis. The selective inhibition of calpain-1 using PD151746 protected cardiomyocytes in vitro from CVB3 infection by downregulating NLRP3 inflammasome and, thus, preserved cell viability. Mechanistically, we showed that mitochondrial dysfunction preceded inflammatory response after CVB3 treatment and elimination of mitochondrial reactive oxygen species (ROS) using mitochondria-targeted antioxidants (mito-TEMPO) recapitalized the phenotype observed in Tg-CAST mice. Furthermore, the promotion or inhibition of calpain-1 activation in vitro regulated the mitochondrial respiration chain. Mito-TEMPO reversed calpain-1-mediated NLRP3 inflammation activation and cell death. We also found that mitochondrial calpain-1, which was increased after CVB3 stimulation, activated the NLRP3 inflammasome and resulted in cell death. Furthermore, ATP synthase-α (ATP5A1) was revealed to be the cleaving target of calpain-1 after CVB3 treatment. Downregulating ATP5A1 using ATP5A1-small interfering RNA impaired mitochondrial function, decreased cell viability, and induced NLRP3 inflammasome activation. In conclusion, CVB3 infection induced calpain-1 accumulation in mitochondria, and led to subsequent ATP5A1 cleavage, mitochondrial ROS overproduction, and impaired mitochondrial function, eventually causing NLRP3 inflammasome activation and inducing pyroptosis. Therefore, our findings established the role of calpain in viral myocarditis and unveiled its underlying mechanism of its action. Calpain appears as a promising target for the treatment of viral myocarditis.
Collapse
|
49
|
Hernández-Nava E, Montaño LF, Rendón-Huerta EP. Transcriptional and Epigenetic Bioinformatic Analysis of Claudin-9 Regulation in Gastric Cancer. JOURNAL OF ONCOLOGY 2021; 2021:5936905. [PMID: 39296813 PMCID: PMC11410435 DOI: 10.1155/2021/5936905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 09/21/2024]
Abstract
Gastric cancer is a heterogeneous disease that represents 5% to 10% of all new cancer cases worldwide. Advances in histological diagnosis and the discovery of new genes have admitted new genomic classifications. Nevertheless, the bioinformatic analysis of gastric cancer databases has favored the detection of specific differentially expressed genes with biological significance. Claudins, a family of proteins involved in tight junction physiology, have emerged as the key regulators of cellular processes, such as growth, proliferation, and migration, associated with cancer progression. The expression of Claudin-9 in the gastric cancer tissue has been linked to poor prognosis, however, its transcriptional and epigenetic regulations demand a more comprehensive analysis. Using the neural network promoter prediction, TransFact, Uniprot-KB, Expasy-SOPMA, protein data bank, proteomics DB, Interpro, BioGRID, String, and the FASTA protein sequence databases and software, we found the following: (1) the promoter sequence has an unconventional structure, including different transcriptional regulation elements distributed throughout it, (2) GATA 4, GATA 6, and KLF5 are the key regulators of Claudin-9 expression, (3) Oct1, NF-κB, AP-1, c-Ets-1, and HNF-3β have the higher binding affinity to the CLDN9 promoter, (4) Claudin-9 interacts with cell differentiation and development proteins, (5) CLDN9 is highly methylated, and (6) Claudin-9 expression is associated with poor survival. In conclusion, Claudin-9 is a protein that should be considered a diagnostic marker as its gene promoter region binds to the transcription factors associated with the deregulation of cell control, enhanced cell proliferation, and metastasis.
Collapse
Affiliation(s)
- Elizabeth Hernández-Nava
- Laboratorio Inmunobiología, Departamento Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Luis F Montaño
- Laboratorio Inmunobiología, Departamento Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Erika P Rendón-Huerta
- Laboratorio Inmunobiología, Departamento Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico City, Mexico
| |
Collapse
|
50
|
Ventura E, Iannuzzi CA, Pentimalli F, Giordano A, Morrione A. RBL1/p107 Expression Levels Are Modulated by Multiple Signaling Pathways. Cancers (Basel) 2021; 13:cancers13195025. [PMID: 34638509 PMCID: PMC8507926 DOI: 10.3390/cancers13195025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 11/16/2022] Open
Abstract
The members of the retinoblastoma (RB) protein family, RB1/p105, retinoblastoma-like (RBL)1/p107 and RBL2/p130 are critical modulators of the cell cycle and their dysregulation has been associated with tumor initiation and progression. The activity of RB proteins is regulated by numerous pathways including oncogenic signaling, but the molecular mechanisms of these functional interactions are not fully defined. We previously demonstrated that RBL2/p130 is a direct target of AKT and it is a key mediator of the apoptotic process induced by AKT inhibition. Here we demonstrated that RBL1/p107 levels are only minorly modulated by the AKT signaling pathway. In contrast, we discovered that RBL1/p107 levels are regulated by multiple pathways linked directly or indirectly to Ca2+-dependent signaling. Inhibition of the multifunctional calcium/calmodulin-dependent kinases (CaMKs) significantly reduced RBL1/p107 expression levels and phosphorylation, increased RBL1/p107 nuclear localization and led to cell cycle arrest in G0/G1. Targeting the Ca2+-dependent endopeptidase calpain stabilized RBL1/p107 levels and counteracted the reduction of RBL1/p107 levels associated with CaMKs inhibition. Thus, these novel observations suggest a complex regulation of RBL1/p107 expression involving different components of signaling pathways controlled by Ca2+ levels, including CaMKs and calpain, pointing out a significant difference with the mechanisms modulating the close family member RBL2/p130.
Collapse
Affiliation(s)
- Elisa Ventura
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.V.); (A.G.)
| | - Carmelina Antonella Iannuzzi
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, I-80131 Napoli, Italy; (C.A.I.); (F.P.)
| | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, I-80131 Napoli, Italy; (C.A.I.); (F.P.)
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.V.); (A.G.)
- Department of Medical Biotechnologies, University of Siena, I-53100 Siena, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.V.); (A.G.)
- Correspondence: ; Tel.: +215-204-2450
| |
Collapse
|