1
|
Gonçalves MP, Farah R, Bikorimana JP, Abusarah J, EL-Hachem N, Saad W, Talbot S, Stanga D, Beaudoin S, Plouffe S, Rafei M. A1-reprogrammed mesenchymal stromal cells prime potent antitumoral responses. iScience 2024; 27:109248. [PMID: 38433914 PMCID: PMC10907831 DOI: 10.1016/j.isci.2024.109248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) have been modified via genetic or pharmacological engineering into potent antigen-presenting cells-like capable of priming responding CD8 T cells. In this study, our screening of a variant library of Accum molecule revealed a molecule (A1) capable of eliciting antigen cross-presentation properties in MSCs. A1-reprogrammed MSCs (ARM) exhibited improved soluble antigen uptake and processing. Our comprehensive analysis, encompassing cross-presentation assays and molecular profiling, among other cellular investigations, elucidated A1's impact on endosomal escape, reactive oxygen species production, and cytokine secretion. By evaluating ARM-based cellular vaccine in mouse models of lymphoma and melanoma, we observe significant therapeutic potency, particularly in allogeneic setting and in combination with anti-PD-1 immune checkpoint inhibitor. Overall, this study introduces a strong target for developing an antigen-adaptable vaccination platform, capable of synergizing with immune checkpoint blockers to trigger tumor regression, supporting further investigation of ARMs as an effective and versatile anti-cancer vaccine.
Collapse
Affiliation(s)
| | - Roudy Farah
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Jean-Pierre Bikorimana
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Jamilah Abusarah
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| | - Nehme EL-Hachem
- Pediatric Hematology-Oncology Division, Centre Hospitalier Universitaire Sainte-Justine Research Centre, Montreal, QC, Canada
| | - Wael Saad
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| | - Sebastien Talbot
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Daniela Stanga
- Defence Therapeutics Inc., Research and Development branch, Montreal, QC, Canada
| | - Simon Beaudoin
- Defence Therapeutics Inc., Research and Development branch, Montreal, QC, Canada
| | - Sebastien Plouffe
- Defence Therapeutics Inc., Research and Development branch, Montreal, QC, Canada
| | - Moutih Rafei
- Molecular Biology Program, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
2
|
Vouche M, Degrez T, Bouazza F, Delatte P, Galdon MG, Hendlisz A, Flamen P, Donckier V. Sequential tumor-directed and lobar radioembolization before major hepatectomy for hepatocellular carcinoma. World J Hepatol 2017; 9:1372-1377. [PMID: 29359022 PMCID: PMC5756728 DOI: 10.4254/wjh.v9.i36.1372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/20/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023] Open
Abstract
Preoperative radioembolization may improve the resectability of liver tumor by inducing tumor shrinkage, atrophy of the embolized liver and compensatory hypertrophy of non-embolized liver. We describe the case of a cirrhotic Child-Pugh A patient with a segment IV hepatocellular carcinoma requiring a left hepatectomy. Preoperative angiography demonstrated 2 separated left hepatic arteries, for segment IV and segments II-III. This anatomic variant allowed sequential radioembolizations, delivering high-dose 90Yttrium (160 Gy) to the tumor, followed 28 d later by lower dose (120 Gy) to segments II-III. After 3 mo, significant tumor response and atrophy of the future resected liver were obtained, allowing uneventful left hepatectomy. This case illustrates that, when anatomic disposition permits it, sequential radioembolizations, delivering different 90Yttrium doses to the tumor and the future resected liver, could represent a new strategy to prepare major hepatectomy in cirrhotic patients, allowing optimal tumoricidal effect while reducing the toxicity of the global procedure.
Collapse
Affiliation(s)
- Michael Vouche
- Department of Radiology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels 1000, Belgium
| | - Thierry Degrez
- Department of Gastroenterology, CHR Sambre et Meuse, Namur 5000, Belgium
| | - Fikri Bouazza
- Department of Abdominal Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels 1000, Belgium
| | - Philippe Delatte
- Department of Radiology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels 1000, Belgium
| | - Maria Gomez Galdon
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels 1000, Belgium
| | - Alain Hendlisz
- Department of Digestive Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels 1000, Belgium
| | - Patrick Flamen
- Department of Nuclear Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels 1000, Belgium
| | - Vincent Donckier
- Department of Abdominal Surgery, Institut Jules Bordet, Centre de Chirurgie Hépato-Biliaire de l’ULB (CCHB-ULB), Université Libre de Bruxelles, Brussels1000, Belgium
| |
Collapse
|