1
|
Islam MR, Rauf A, Akash S, Trisha SI, Nasim AH, Akter M, Dhar PS, Ogaly HA, Hemeg HA, Wilairatana P, Thiruvengadam M. Targeted therapies of curcumin focus on its therapeutic benefits in cancers and human health: Molecular signaling pathway-based approaches and future perspectives. Biomed Pharmacother 2024; 170:116034. [PMID: 38141282 DOI: 10.1016/j.biopha.2023.116034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023] Open
Abstract
The curry powder spices turmeric (Curcuma longa L.), which contains curcumin (diferuloylmethane), an orange-yellow chemical. Polyphenols are the most commonly used sources of curcumin. It combats oxidative stress and inflammation in diseases, such as hyperlipidemia, metabolic syndrome, arthritis, and depression. Most of these benefits are due to their anti-inflammatory and antioxidant properties. Curcumin consumption leads to decreased bioavailability, resulting in limited absorption, quick metabolism, and quick excretion, which hinders health improvement. Numerous factors can increase its bioavailability. Piperine enhances bioavailability when combined with curcumin in a complex. When combined with other enhancing agents, curcumin has a wide spectrum of health benefits. This review evaluates the therapeutic potential of curcumin with a specific emphasis on its approach based on molecular signaling pathways. This study investigated its influence on the progression of cancer, inflammation, and many health-related mechanisms, such as cell proliferation, apoptosis, and metastasis. Curcumin has a significant potential for the prevention and treatment of various diseases. Curcumin modulates several biochemical pathways and targets involved in cancer growth. Despite its limited tissue accumulation and bioavailability when administered orally, curcumin has proven useful. This review provides an in-depth analysis of curcumin's therapeutic applications, its molecular signaling pathway-based approach, and its potential for precision medicine in cancer and human health.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Sadiya Islam Trisha
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Akram Hossain Nasim
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Hanan A Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul 05029, Republic of Korea; Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India.
| |
Collapse
|
2
|
Ayoup MS, Wahby Y, Abdel-Hamid H, Abu-Serie MM, Ramadan S, Barakat A, Teleb M, Ismail MMF. Reinvestigation of Passerini and Ugi scaffolds as multistep apoptotic inducers via dual modulation of caspase 3/7 and P53-MDM2 signaling for halting breast cancer. RSC Adv 2023; 13:27722-27737. [PMID: 37736568 PMCID: PMC10509784 DOI: 10.1039/d3ra04029a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
Selective induction of breast cancer apoptosis is viewed as the mainstay of various ongoing oncology drug discovery programs. Passerini scaffolds have been recently exploited as selective apoptosis inducers via a caspase 3/7 dependent pathway. Herein, the optimized Passerini caspase activators were manipulated to synergistically induce P53-dependent apoptosis via modulating the closely related P53-MDM2 signaling axis. The adopted design rationale and synthetic routes relied on mimicking the general thematic features of lead MDM2 inhibitors incorporating multiple aromatic rings. Accordingly, the cyclization of representative Passerini derivatives and related Ugi compounds into the corresponding diphenylimidazolidine and spiro derivative was performed, resembling the nutlin-based and spiro MDM-2 inhibitors, respectively. The study was also extended to explore the apoptotic induction capacity of the scaffold after simplification and modifications. MTT assay on MCF-7 and MDA-MB231 breast cancer cells compared to normal fibroblasts (WI-38) revealed their promising cytotoxic activities. The flexible Ugi derivatives 3 and 4, cyclic analog 8, Passerini adduct 12, and the thiosemicarbazide derivative 17 were identified as the study hits regarding cytotoxic potency and selectivity, being over 10-folds more potent (IC50 = 0.065-0.096 μM) and safer (SI = 4.4-18.7) than doxorubicin (IC50 = 0.478 μM, SI = 0.569) on MCF-7 cells. They promoted apoptosis induction via caspase 3/7 activation (3.1-4.1 folds) and P53 induction (up to 4 folds). Further apoptosis studies revealed that these compounds enhanced gene expression of BAX by 2 folds and suppressed Bcl-2 expression by 4.29-7.75 folds in the treated MCF-7 cells. Docking simulations displayed their plausible binding modes with the molecular targets and highlighted their structural determinants of activities for further optimization studies. Finally, in silico prediction of the entire library was computationally performed, showing that most of them could be envisioned as drug-like candidates.
Collapse
Affiliation(s)
- Mohammed Salah Ayoup
- Chemistry Department, Faculty of Science, Alexandria University P. O. Box 426 Alexandria 21321 Egypt
| | - Yasmin Wahby
- Chemistry Department, Faculty of Science, Alexandria University P. O. Box 426 Alexandria 21321 Egypt
| | - Hamida Abdel-Hamid
- Chemistry Department, Faculty of Science, Alexandria University P. O. Box 426 Alexandria 21321 Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City) Egypt
| | - Sherif Ramadan
- Chemistry Department, Michigan State University East Lansing MI 48824 USA
- Department of Chemistry, Benha University Benha Egypt
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt
| | - Magda M F Ismail
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 11754 Egypt
| |
Collapse
|
3
|
Buczyńska A, Sidorkiewicz I, Kościuszko M, Adamska A, Siewko K, Dzięcioł J, Szumowski P, Myśliwiec J, Szelachowska M, Popławska-Kita A, Krętowski A. Clinical significance of oxidative stress markers as angioinvasion and metastasis indicators in papillary thyroid cancer. Sci Rep 2023; 13:13711. [PMID: 37608150 PMCID: PMC10444813 DOI: 10.1038/s41598-023-40898-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023] Open
Abstract
Angioinvasion remains the important prognostic feature in papillary thyroid cancer (PTC) patients. Literature data indicates several markers that may be associated with oxidative stress and/or angioinvasion. Therefore, we assessed the utility of selected parameters in angioinvasion and metastasis screening in serum of PTC patients. Serum antioxidant capacity (TAC) and sirtuin 3 (SIRT3) levels were decreased (all p < 0.05) and both DNA/RNA oxidative stress damage products (DNA/RNA OSDP) and malondialdehyde (MDA) levels were increased in PTC patients with angioinvasion and metastasis (study group) when compared with PTC patients without these features (all p < 0.01). The highest screening utility in differentiation between angioinvasion and metastasis presence and absence in PTC patients was presented for DNA/RNA OSDP (AUC = 0.71), SIRT3 (AUC = 0.70), and TAC (AUC = 0.67) (all p < 0.05). Our study suggests that peripheral concentration of oxidative stress markers could be useful as angioinvasion and metastasis indicator in PTC patients.
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, 15-276, Białystok, Poland.
| | - Iwona Sidorkiewicz
- Clinical Research Support Centre, Medical University of Bialystok, Ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Maria Kościuszko
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276, Białystok, Poland
| | - Agnieszka Adamska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276, Białystok, Poland
| | - Katarzyna Siewko
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276, Białystok, Poland
| | - Janusz Dzięcioł
- Department of Human Anatomy, Medical University of Bialystok, 15-276, Białystok, Poland
| | - Piotr Szumowski
- Nuclear Medicine, Medical University of Bialystok, 15-276, Białystok, Poland
| | - Janusz Myśliwiec
- Nuclear Medicine, Medical University of Bialystok, 15-276, Białystok, Poland
| | - Małgorzata Szelachowska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276, Białystok, Poland
| | - Anna Popławska-Kita
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276, Białystok, Poland.
| | - Adam Krętowski
- Clinical Research Centre, Medical University of Bialystok, 15-276, Białystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276, Białystok, Poland
| |
Collapse
|
4
|
Rahmé R, Braun T, Manfredi JJ, Fenaux P. TP53 Alterations in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Biomedicines 2023; 11:biomedicines11041152. [PMID: 37189770 DOI: 10.3390/biomedicines11041152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
TP53 mutations are less frequent in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) than in solid tumors, except in secondary and therapy-related MDS/AMLs, and in cases with complex monosomal karyotype. As in solid tumors, missense mutations predominate, with the same hotspot mutated codons (particularly codons 175, 248, 273). As TP53-mutated MDS/AMLs are generally associated with complex chromosomal abnormalities, it is not always clear when TP53 mutations occur in the pathophysiological process. It is also uncertain in these MDS/AML cases, which often have inactivation of both TP53 alleles, if the missense mutation is only deleterious through the absence of a functional p53 protein, or through a potential dominant-negative effect, or finally a gain-of-function effect of mutant p53, as demonstrated in some solid tumors. Understanding when TP53 mutations occur in the disease course and how they are deleterious would help to design new treatments for those patients who generally show poor response to all therapeutic approaches.
Collapse
Affiliation(s)
- Ramy Rahmé
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institut de Recherche Saint Louis (IRSL), INSERM U1131, Université Paris Cité, 75010 Paris, France
- Ecole Doctorale Hématologie-Oncogenèse-Biothérapies, Université Paris Cité, 75010 Paris, France
- Clinical Hematology Department, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Sorbonne Paris Nord, 93000 Bobigny, France
| | - Thorsten Braun
- Clinical Hematology Department, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Sorbonne Paris Nord, 93000 Bobigny, France
| | - James J Manfredi
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pierre Fenaux
- Senior Hematology Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, 75010 Paris, France
| |
Collapse
|
5
|
Barakat A, Alshahrani S, Mohammed Al-Majid A, Saleh Alamary A, Haukka M, Abu-Serie MM, Dömling A, Mazyed EA, Badria FA, El-Senduny FF. Novel spirooxindole based benzimidazole scaffold: In vitro, nanoformulation and in vivo studies on anticancer and antimetastatic activity of breast adenocarcinoma. Bioorg Chem 2022; 129:106124. [PMID: 36174446 DOI: 10.1016/j.bioorg.2022.106124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 12/29/2022]
Abstract
The present work provided in vitro anticancer investigation of novel spirooxindole based benzimidazole scaffold SP1 and its nanoformulation with in vivo evaluation of anticancer and antimetastatic activity as potential drug for breast adenocarcinoma. The synthesized compound SP1 exhibited potent growth inhibitory efficacy against four types of human cancer (breast, prostate, colon and lung) cell lines with IC50 = 2.4, 3.4, 7.24 and 7.81 µM and selectivity index 5.79, 4.08, 1.93 and 1.78 respectively. Flow cytometric analysis illustrated that SP1 exhibited high apoptotic effect on all tested cancer cell lines (38.22-52.3 %). The mode of action of this promising compound was declared by its ability to upregulate the gene expression of p21 (2.29-3.91 folds) with suppressing cyclin D (1.9-8.93 folds) and NF-κB (1.26-1.44 fold) in the treated cancer cells. Also, it enhanced the protein expression of apoptotic marker p53 and moderate binding affinity for MDM2 (KD;7.94 μM). Notwithstanding these promising impressive findings, its selectivity against cancer cell lines and safety on normal cells were improved by nanoformulation. Therefore, SP1 was formulated as ultra-flexible niosomal nanovesicles (transethoniosomes). The ultra-deformability is attributable to the synergism between ethanol and edge activators in improving the flexibility of the nanovesicular membrane. F8 exhibited high deformability index (DI) of (23.48 ± 1.4). It was found that % SP1 released from the optimized transethoniosomal formula (F8) after 12 h (Q12h) was 84.17 ± 1.29 % and its entrapment efficiency (%EE) was 76.48 ± 1.44 %. Based upon the very encouraging and promising in vitro results, an in vivo study was carried out in female Balb/c mice weighing (15-25 g). SP1 did halt the proliferation of breast cancer cells as well as suppressed the metastasis in other organs like liver, lung and heart.
Collapse
Affiliation(s)
- Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Saeed Alshahrani
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah Mohammed Al-Majid
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah Saleh Alamary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Eman A Mazyed
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kaferelsheikh University, Kaferelsheikh P.O. Box 33516, Egypt
| | - Farid A Badria
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Fardous F El-Senduny
- Department of Chemistry, Faculty of Science, Mansura University, Mansura 35516, Egypt
| |
Collapse
|
6
|
Kim NY, Jung YY, Yang MH, Um JY, Sethi G, Ahn KS. Isoimperatorin down-regulates epithelial mesenchymal transition through modulating NF-κB signaling and CXCR4 expression in colorectal and hepatocellular carcinoma cells. Cell Signal 2022; 99:110433. [DOI: 10.1016/j.cellsig.2022.110433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/17/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
|
7
|
Someșan A, Vieriu S, Crăciun A, Silvestru C, Chiroi P, Nutu A, Jurj A, Lajos R, Berindan‐Neagoe I, Varga RA. C
,
O
‐Chelated organotin(IV) derivatives as potential anticancer agents: Synthesis, characterization, and cytotoxic activity. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Adrian‐Alexandru Someșan
- Supramolecular Organic and Organometallic Chemistry Centre, Department of Chemistry and Chemical Engineering Babeș‐Bolyai University Cluj‐Napoca Romania
| | - Sabina‐Mădălina Vieriu
- Supramolecular Organic and Organometallic Chemistry Centre, Department of Chemistry and Chemical Engineering Babeș‐Bolyai University Cluj‐Napoca Romania
| | - Alexandru Crăciun
- Supramolecular Organic and Organometallic Chemistry Centre, Department of Chemistry and Chemical Engineering Babeș‐Bolyai University Cluj‐Napoca Romania
| | - Cristian Silvestru
- Supramolecular Organic and Organometallic Chemistry Centre, Department of Chemistry and Chemical Engineering Babeș‐Bolyai University Cluj‐Napoca Romania
| | - Paul Chiroi
- Research Center for Functional Genomics, Biomedicine and Translational Medicine Iuliu Hatieganu University of Medicine and Pharmacy Cluj‐Napoca Romania
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine Iuliu Hatieganu University of Medicine and Pharmacy Cluj‐Napoca Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine Iuliu Hatieganu University of Medicine and Pharmacy Cluj‐Napoca Romania
| | - Raduly Lajos
- Research Center for Functional Genomics, Biomedicine and Translational Medicine Iuliu Hatieganu University of Medicine and Pharmacy Cluj‐Napoca Romania
| | - Ioana Berindan‐Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine Iuliu Hatieganu University of Medicine and Pharmacy Cluj‐Napoca Romania
| | - Richard A. Varga
- Supramolecular Organic and Organometallic Chemistry Centre, Department of Chemistry and Chemical Engineering Babeș‐Bolyai University Cluj‐Napoca Romania
| |
Collapse
|
8
|
He M, Fan M, Peng Z, Wang G. An overview of hydroxypyranone and hydroxypyridinone as privileged scaffolds for novel drug discovery. Eur J Med Chem 2021; 221:113546. [PMID: 34023737 DOI: 10.1016/j.ejmech.2021.113546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/20/2021] [Accepted: 05/09/2021] [Indexed: 01/07/2023]
Abstract
Hydroxypyranone and hydroxypyridinone are important oxygen-containing or nitrogen-containing heterocyclic nucleus and attracted increasing attention in medicinal chemistry and drug discovery over the past decade. Previous literature reports revealed that hydroxypyranone and hydroxypyridinone derivatives exhibit a wide range of pharmacological activities such as antibacterial, antifungal, antiviral, anticancer, anti-inflammatory, antioxidant, anticonvulsant, and anti-diabetic activities. In this review, we systematically summarized the literature reported biological activities of hydroxypyranone and hydroxypyridinone derivatives. In particular, we focus on their biological activity, structure-activity relationship (SAR), mechanism of action, and interaction mechanisms with the target. The collected information is expected to provide rational guidance for the development of clinically useful agents from these pharmacophores.
Collapse
Affiliation(s)
- Min He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Meiyan Fan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China.
| |
Collapse
|
9
|
Carrà G, Lingua MF, Maffeo B, Taulli R, Morotti A. P53 vs NF-κB: the role of nuclear factor-kappa B in the regulation of p53 activity and vice versa. Cell Mol Life Sci 2020; 77:4449-4458. [PMID: 32322927 PMCID: PMC11104960 DOI: 10.1007/s00018-020-03524-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/06/2020] [Accepted: 04/06/2020] [Indexed: 12/18/2022]
Abstract
The onco-suppressor p53 is a transcription factor that regulates a wide spectrum of genes involved in various cellular functions including apoptosis, cell cycle arrest, senescence, autophagy, DNA repair and angiogenesis. p53 and NF-κB generally have opposing effects in cancer cells. While p53 activity is associated with apoptosis induction, the stimulation of NF-κB has been demonstrated to promote resistance to programmed cell death. Although the transcription factor NF-κB family is considered as the master regulator of cancer development and maintenance, it has been mainly studied in relation to its ability to regulate p53. This has revealed the importance of the crosstalk between NF-κB, p53 and other crucial cell signaling pathways. This review analyzes the various mechanisms by which NF-κB regulates the activity of p53 and the role of p53 on NF-κB activity.
Collapse
Affiliation(s)
- Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy.
| | | | - Beatrice Maffeo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Riccardo Taulli
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy.
| |
Collapse
|
10
|
Small-molecule MDM2/X inhibitors and PROTAC degraders for cancer therapy: advances and perspectives. Acta Pharm Sin B 2020; 10:1253-1278. [PMID: 32874827 PMCID: PMC7452049 DOI: 10.1016/j.apsb.2020.01.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/31/2019] [Accepted: 12/26/2019] [Indexed: 12/26/2022] Open
Abstract
Blocking the MDM2/X–P53 protein–protein interaction has been widely recognized as an attractive therapeutic strategy for the treatment of cancers. Numerous small-molecule MDM2 inhibitors have been reported since the release of the structure of the MDM2–P53 interaction in 1996, SAR405838, NVP-CGM097, MK-8242, RG7112, RG7388, DS-3032b, and AMG232 currently undergo clinical evaluation for cancer therapy. This review is intended to provide a comprehensive and updated overview of MDM2 inhibitors and proteolysis targeting chimera (PROTAC) degraders with a particular focus on how these inhibitors or degraders are identified from starting points, strategies employed, structure–activity relationship (SAR) studies, binding modes or co-crystal structures, biochemical data, mechanistic studies, and preclinical/clinical studies. Moreover, we briefly discuss the challenges of designing MDM2/X inhibitors for cancer therapy such as dual MDM2/X inhibition, acquired resistance and toxicity of P53 activation as well as future directions.
Collapse
|
11
|
Devi J, Yadav J, Kumar D, Jindal DK, Basu B. Synthesis, spectral analysis and
in vitro
cytotoxicity of diorganotin (IV) complexes derived from indole‐3‐butyric hydrazide. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5815] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jai Devi
- Department of Chemistry Guru Jambheshwar University of Science and Technology Hisar Haryana 125001 India
| | - Jyoti Yadav
- Department of Chemistry Guru Jambheshwar University of Science and Technology Hisar Haryana 125001 India
| | - Deepak Kumar
- School of Pharmaceutical Sciences Shoolini University Solan 173212 India
| | - Deepak Kumar Jindal
- Department of Pharmaceutical Sciences Guru Jambheshwar University of Science and Technology Hisar Haryana 125001 India
| | - Biswarup Basu
- Department of Neuroendocrinology & Experimental Hematology Chittaranjan National Cancer Institute Kolkata 700026 India
| |
Collapse
|
12
|
Agupitan AD, Neeson P, Williams S, Howitt J, Haupt S, Haupt Y. P53: A Guardian of Immunity Becomes Its Saboteur through Mutation. Int J Mol Sci 2020; 21:E3452. [PMID: 32414156 PMCID: PMC7278985 DOI: 10.3390/ijms21103452] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Awareness of the importance of immunity in controlling cancer development triggered research into the impact of its key oncogenic drivers on the immune response, as well as their value as targets for immunotherapy. At the heart of tumour suppression is p53, which was discovered in the context of viral infection and now emerges as a significant player in normal and cancer immunity. Wild-type p53 (wt p53) plays fundamental roles in cancer immunity and inflammation. Mutations in p53 not only cripple wt p53 immune functions but also sinisterly subvert the immune function through its neomorphic gain-of-functions (GOFs). The prevalence of mutant p53 across different types of human cancers, which are associated with inflammatory and immune dysfunction, further implicates mutant p53 in modulating cancer immunity, thereby promoting tumorigenesis, metastasis and invasion. In this review, we discuss several mutant p53 immune GOFs in the context of the established roles of wt p53 in regulating and responding to tumour-associated inflammation, and regulating innate and adaptive immunity. We discuss the capacity of mutant p53 to alter the tumour milieu to support immune dysfunction, modulate toll-like receptor (TLR) signalling pathways to disrupt innate immunity and subvert cell-mediated immunity in favour of immune privilege and survival. Furthermore, we expose the potential and challenges associated with mutant p53 as a cancer immunotherapy target and underscore existing therapies that may benefit from inquiry into cancer p53 status.
Collapse
Affiliation(s)
- Arjelle Decasa Agupitan
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
| | - Paul Neeson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia
| | - Scott Williams
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia;
| | - Jason Howitt
- School of Health Sciences, Swinburne University, Melbourne 3122, Victoria, Australia;
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Sue Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
| | - Ygal Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
- Department of Clinical Pathology, University of Melbourne, Parkville 3010, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800, Victoria, Australia
| |
Collapse
|
13
|
Li W, Peng X, Lang J, Xu C. Targeting Mouse Double Minute 2: Current Concepts in DNA Damage Repair and Therapeutic Approaches in Cancer. Front Pharmacol 2020; 11:631. [PMID: 32477121 PMCID: PMC7232544 DOI: 10.3389/fphar.2020.00631] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/21/2020] [Indexed: 01/14/2023] Open
Abstract
Defects in DNA damage repair may cause genome instability and cancer development. The tumor suppressor gene p53 regulates cell cycle arrest to allow time for DNA repair. The oncoprotein mouse double minute 2 (MDM2) promotes cell survival, proliferation, invasion, and therapeutic resistance in many types of cancer. The major role of MDM2 is to inhibit p53 activity and promote its degradation. In this review, we describe the influence of MDM2 on genomic instability, the role of MDM2 on releasing p53 and binding DNA repair proteins to inhibit repair, and the regulation network of MDM2 including its transcriptional modifications, protein stability, and localization following DNA damage in genome integrity maintenance and in MDM2-p53 axis control. We also discuss p53-dependent and p53 independent oncogenic function of MDM2 and the outcomes of clinical trials that have been used with clinical inhibitors targeting p53-MDM2 to treat certain cancers.
Collapse
Affiliation(s)
- Wen Li
- Cancer Clinical Research Center & Integrative Cancer Center, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinhao Peng
- Cancer Clinical Research Center & Integrative Cancer Center, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinyi Lang
- Cancer Clinical Research Center & Integrative Cancer Center, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuan Xu
- Cancer Clinical Research Center & Integrative Cancer Center, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
14
|
Saeidi J, Motaghipur R, Sepehrian A, Mohtashami M, Forooghi Nia F, Ghasemi A. Dietary fats promote inflammation in Wistar rats as well as induce proliferation, invasion of SKOV3 ovarian cancer cells. J Food Biochem 2020; 44:e13177. [PMID: 32157714 DOI: 10.1111/jfbc.13177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/22/2020] [Accepted: 01/30/2020] [Indexed: 11/30/2022]
Abstract
The role of high fat diet (HFD) in ovarian cancer and its underlying mechanisms are poorly known. In current investigation, we investigated inflammatory and oncogenic effect of dietary fats in female Wistar rats and ovarian cancer cell line (SKOV3). The ELISA kits were used for adipokines and inflammatory factors analyses in sera collected from rats fed with high fat diet (SR-HFD). Cell growth, proliferation, apoptosis, migration, and invasion were measured in SKOV3 cells treated with the SR-HFD and FA mix. IL6, IL1β, TNFα, NF-kβ, and p53 expression were measured in cells incubated with the mentioned treatments. Leptin and inflammatory factors increased, while adiponectin decreased in SR-HFD. Moreover, FA mix significantly induced proliferation, migration, and invasion, promoted the expression of inflammatory factors and NF-κB and inhibited apoptosis markers in SKOV3 cells. Taken together, our findings revealed that diet might be a crucial factor in ovarian cancer progression through altering the inflammatory factors. PRACTICAL APPLICATIONS: The HFD-mediated obesity promotes cancer progression in various tissues. This study highlights the progression of inflammation in female Wistar rats and the growth of ovarian cancer cells by dietary fats. Thus, dietary factors can be considered as key factors for the prevention of ovarian cancer.
Collapse
Affiliation(s)
- Jafar Saeidi
- Department of Physiology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Reza Motaghipur
- Department of Genetic, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Atefe Sepehrian
- Department of Genetic, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Mahnaz Mohtashami
- Department of Biology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Fatemeh Forooghi Nia
- Department of Biology, School of Basic Science, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Ahmad Ghasemi
- Non-communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.,Department of Basic Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
15
|
Freund RRA, Gobrecht P, Fischer D, Arndt HD. Advances in chemistry and bioactivity of parthenolide. Nat Prod Rep 2020; 37:541-565. [DOI: 10.1039/c9np00049f] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
(−)-Parthenolide is a germacrane sesquiterpene lactone, available in ample amounts from the traditional medical plant feverfew (Tanacetum parthenium).
Collapse
Affiliation(s)
- Robert R. A. Freund
- Institut für Organische Chemie und Makromolekulare Chemie
- Friedrich-Schiller-Universität
- D-07743 Jena
- Germany
| | - Philipp Gobrecht
- Lehrstuhl für Zellphysiologie
- Ruhr-Universität Bochum
- D-44780 Bochum
- Germany
| | - Dietmar Fischer
- Lehrstuhl für Zellphysiologie
- Ruhr-Universität Bochum
- D-44780 Bochum
- Germany
| | - Hans-Dieter Arndt
- Institut für Organische Chemie und Makromolekulare Chemie
- Friedrich-Schiller-Universität
- D-07743 Jena
- Germany
| |
Collapse
|
16
|
Paez‐Ribes M, González‐Gualda E, Doherty GJ, Muñoz‐Espín D. Targeting senescent cells in translational medicine. EMBO Mol Med 2019; 11:e10234. [PMID: 31746100 PMCID: PMC6895604 DOI: 10.15252/emmm.201810234] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
Organismal ageing is a complex process driving progressive impairment of functionality and regenerative potential of tissues. Cellular senescence is a state of stable cell cycle arrest occurring in response to damage and stress and is considered a hallmark of ageing. Senescent cells accumulate in multiple organs during ageing, contribute to tissue dysfunction and give rise to pathological manifestations. Senescence is therefore a defining feature of a variety of human age-related disorders, including cancer, and targeted elimination of these cells has recently emerged as a promising therapeutic approach to ameliorate tissue damage and promote repair and regeneration. In addition, in vivo identification of senescent cells has significant potential for early diagnosis of multiple pathologies. Here, we review existing senolytics, small molecules and drug delivery tools used in preclinical therapeutic strategies involving cellular senescence, as well as probes to trace senescent cells. We also review the clinical research landscape in senescence and discuss how identifying and targeting cellular senescence might positively affect pathological and ageing processes.
Collapse
Affiliation(s)
- Marta Paez‐Ribes
- Department of OncologyCRUK Cambridge Centre Early Detection ProgrammeHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Estela González‐Gualda
- Department of OncologyCRUK Cambridge Centre Early Detection ProgrammeHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Gary J Doherty
- Department of OncologyCambridge University Hospitals NHS Foundation TrustCambridge Biomedical CampusCambridgeUK
| | - Daniel Muñoz‐Espín
- Department of OncologyCRUK Cambridge Centre Early Detection ProgrammeHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| |
Collapse
|
17
|
Barbosa K, Li S, Adams PD, Deshpande AJ. The role of TP53 in acute myeloid leukemia: Challenges and opportunities. Genes Chromosomes Cancer 2019; 58:875-888. [DOI: 10.1002/gcc.22796] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Karina Barbosa
- Tumor Initiation and Maintenance Program Sanford Burnham Prebys Medical Discovery Institute La Jolla California
| | - Sha Li
- Tumor Initiation and Maintenance Program Sanford Burnham Prebys Medical Discovery Institute La Jolla California
| | - Peter D. Adams
- Tumor Initiation and Maintenance Program Sanford Burnham Prebys Medical Discovery Institute La Jolla California
| | - Aniruddha J. Deshpande
- Tumor Initiation and Maintenance Program Sanford Burnham Prebys Medical Discovery Institute La Jolla California
| |
Collapse
|
18
|
Anti-survivin effect of the small molecule inhibitor YM155 in RCC cells is mediated by time-dependent inhibition of the NF-κB pathway. Sci Rep 2018; 8:10289. [PMID: 29980758 PMCID: PMC6035265 DOI: 10.1038/s41598-018-28213-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/19/2018] [Indexed: 01/24/2023] Open
Abstract
Constitutive activation of the NF-κB signaling cascade is associated with tumourigenesis and poor prognosis in many human cancers including RCC. YM155, a small molecule inhibitor of survivin, was previously shown to potently inhibit the viability of immortalized and patient derived renal cell carcinoma (RCC) cell lines. Here we investigated the role of NF-κB signaling to the anti-cancer properties of YM155 in RCC786.0 cells. YM155 diminished nuclear levels of p65 and phosphorylated p65 and attenuated the transcriptional competencies of the p65/p50 heterodimers. Accordingly, we found that YM155 diminished the transcription of NF-κB target gene survivin. Events that led to the interception of the nuclear translocation of p65/p50 were the activation of the deubiquinating enzyme CYLD by YM155, which led to the inhibition of IKKβ, stabilization of IκBα and retention of NF-κB heterodimers in the cytosol. Importantly, the suppressive effects of YM155 were time-dependent and observed at the 24 h time point, and not earlier. TNF-α, a stimulator of NF-κB signaling did not affect its inhibitory properties. The ability of YM155 to intercept a major transcriptional pathway like NF-κB, would have important ramifications on the pharmacodynamics effects elicited by this unusual molecule.
Collapse
|
19
|
|
20
|
Curcumin ameliorates the in vitro efficacy of carfilzomib in human multiple myeloma U266 cells targeting p53 and NF-κB pathways. Toxicol In Vitro 2017; 47:186-194. [PMID: 29223572 DOI: 10.1016/j.tiv.2017.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022]
Abstract
Multiple myeloma (MM) is a malignant B-cell neoplasm with accumulation of malignant plasma cells in bone marrow. Pharmacological therapy improves response frequency even if with various associated toxicities. Herein, we investigated if combination of curcumin with carfilzomib (CFZ) can induce a better cytotoxic effect on in vitro cultured U266 cells. Cell viability data showed that curcumin significantly ameliorates CFZ cytotoxic effect. Furthermore, curcumin alone did not affect proteasome at the tested dose, confirming the involvement of different mechanisms in the observed effects. U266 cells exposure to curcumin or CFZ increased reactive species (RS) levels, although their production did not appear further potentiated following drugs combination. Interestingly, NF-κB nuclear accumulation was reduced by treatment with CFZ or curcumin, and was more deeply decreased in cells treated with CFZ-curcumin combinations, very likely due to the different mechanisms through which they target NF-κB. Our results confirmed the induction of p53/p21 axis and G0/G1 cell cycle arrest in anticancer activities of both drugs, an effect more pronounced for the CFZ-curcumin tested combinations. Furthermore, curcumin addition enhanced CFZ proapoptotic effect. These findings evidence that curcumin can ameliorate CFZ efficacy, and lead us to hypothesize that this effect might be useful to optimize CFZ therapy in MM patients.
Collapse
|
21
|
Huang XQ, Camba J, Gu LS, Bergeron BE, Ricucci D, Pashley DH, Tay FR, Niu LN. Mechanism of bioactive molecular extraction from mineralized dentin by calcium hydroxide and tricalcium silicate cement. Dent Mater 2017; 34:317-330. [PMID: 29179973 DOI: 10.1016/j.dental.2017.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/10/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The objective of the present study was to elucidate the mechanism of bioactive molecule extraction from mineralized dentin by calcium hydroxide (Ca(OH)2) and tricalcium silicate cements (TSC). METHODS AND RESULTS Transmission electron microscopy was used to provide evidence for collagen degradation in dentin surfaces covered with Ca(OH)2 or a set, hydrated TSC for 1-3 months. A one micron thick collagen degradation zone was observed on the dentin surface. Fourier transform-infrared spectroscopy was used to identify increases in apatite/collagen ratio in dentin exposed to Ca(OH)2. Using three-point bending, dentin exposed to Ca(OH)2 exhibited significant reduction in flexural strength. Using size exclusion chromatography, it was found that the small size of the hydroxyl ions derived from Ca(OH)2 enabled those ions to infiltrate the intrafibrillar compartment of mineralized collagen and degrade the collagen fibrils without affecting the apatite minerals. Using ELISA, TGF-β1 was found to be extracted from dentin covered with Ca(OH)2 for 3 months. Unlike acids that dissolve the mineral component of dentin to release bioactive molecules, alkaline materials such as Ca(OH)2 or TSC released growth factors such as TGF-β1 via collagen degradation. SIGNIFICANCE The bioactive molecule extraction capacities of Ca(OH)2 and TSC render these dental materials excellent for pulp capping and endodontic regeneration. These highly desirable properties, however, appear to be intertwined with the untoward effect of degradation of the collagen matrix within mineralized dentin, resulting in reduced flexural strength.
Collapse
Affiliation(s)
- Xue-Qing Huang
- Department of Prosthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, PR China
| | - John Camba
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Li-Sha Gu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Brian E Bergeron
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | | | - David H Pashley
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Franklin R Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
22
|
Prokocimer M, Molchadsky A, Rotter V. Dysfunctional diversity of p53 proteins in adult acute myeloid leukemia: projections on diagnostic workup and therapy. Blood 2017; 130:699-712. [PMID: 28607134 PMCID: PMC5659817 DOI: 10.1182/blood-2017-02-763086] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/06/2017] [Indexed: 12/13/2022] Open
Abstract
The heterogeneous nature of acute myeloid leukemia (AML) and its poor prognosis necessitate therapeutic improvement. Current advances in AML research yield important insights regarding AML genetic, epigenetic, evolutional, and clinical diversity, all in which dysfunctional p53 plays a key role. As p53 is central to hematopoietic stem cell functions, its aberrations affect AML evolution, biology, and therapy response and usually predict poor prognosis. While in human solid tumors TP53 is mutated in more than half of cases, TP53 mutations occur in less than one tenth of de novo AML cases. Nevertheless, wild-type (wt) p53 dysfunction due to nonmutational p53 abnormalities appears to be rather frequent in various AML entities, bearing, presumably, a greater impact than is currently appreciated. Hereby, we advocate assessment of adult AML with respect to coexisting p53 alterations. Accordingly, we focus not only on the effects of mutant p53 oncogenic gain of function but also on the mechanisms underlying nonmutational wtp53 inactivation, which might be of therapeutic relevance. Patient-specific TP53 genotyping with functional evaluation of p53 protein may contribute significantly to the precise assessment of p53 status in AML, thus leading to the tailoring of a rationalized and precision p53-based therapy. The resolution of the mechanisms underlying p53 dysfunction will better address the p53-targeted therapies that are currently considered for AML. Additionally, a suggested novel algorithm for p53-based diagnostic workup in AML is presented, aiming at facilitating the p53-based therapeutic choices.
Collapse
MESH Headings
- Adult
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- DNA Damage/drug effects
- Gene Expression Regulation, Leukemic/drug effects
- Genomic Instability/drug effects
- Hematopoiesis/drug effects
- Humans
- Karyopherins/genetics
- Karyopherins/metabolism
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Molecular Targeted Therapy/methods
- Mutation/drug effects
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Nucleophosmin
- Protein Interaction Maps/drug effects
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Signal Transduction/drug effects
- Translocation, Genetic
- Tumor Suppressor Protein p53/analysis
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
- Exportin 1 Protein
Collapse
Affiliation(s)
- Miron Prokocimer
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; and
| | - Alina Molchadsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
23
|
Shoaib M, Shah I, Ali N, Adhikari A, Tahir MN, Shah SWA, Ishtiaq S, Khan J, Khan S, Umer MN. Sesquiterpene lactone! a promising antioxidant, anticancer and moderate antinociceptive agent from Artemisia macrocephala jacquem. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:27. [PMID: 28061778 PMCID: PMC5219761 DOI: 10.1186/s12906-016-1517-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/14/2016] [Indexed: 01/13/2023]
Abstract
Background Sesquiterpene lactones (STLs) make a diverse and huge group of bio-active constituents that have been isolated from several plant families. However, the greatest numbers are present in Asteraceae family having more than 3000 different reported structures. Recently several researchers have reported that STLs have significant antioxidant and anticancer potentials. Methods To investigate the antioxidant, anticancer and antinociceptive potentials of STLs, gravity column chromatography technique was used for isolation from the biologically rich chloroform fraction of Artemisia macrocephala Jacquem. The antioxidant activity of the isolated STLs was determined by DPPH and ABTS free radical scavenging activity, anticancer activity was determined on 3 T3, HeLa and MCF-7 cells by MTT assay while the antinociceptive activity was determined through acetic acid induced writhings, tail immersion method and formalin induced nociception method. Results The results showed that the STLs of Artemisia macrocephala possesses promising antioxidant activity and also it decreased the viability of 3 T3, HeLa and MCF-7 cells and mild to moderate antinociceptive activity. Conclusion Sesquiterpenes lactones (STLs) are widely present in numerous genera of the family Asteraceae (compositae). They are described as the active constituents used in traditional medicine for the treatment of various diseases. The present study reveals the significant potentials of STL and may be used as an alternative for the management of cancer. Anyhow, the isolated compound is having no prominent antinociceptive potentials. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1517-y) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Gulia R, Sharma R, Bhattacharyya S. A Critical Role for Ubiquitination in the Endocytosis of Glutamate Receptors. J Biol Chem 2016; 292:1426-1437. [PMID: 28011638 DOI: 10.1074/jbc.m116.752105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/13/2016] [Indexed: 11/06/2022] Open
Abstract
Group I metabotropic glutamate receptors (mGluRs) play important roles in various neuronal processes and elicit changes in synaptic efficacy through AMPA receptor (AMPAR) endocytosis. Trafficking of mGluRs plays an important role in controlling the precise localization of these receptors at specific region of the cell; it also regulates the activity of these receptors. Despite this obvious significance, we know very little about the cellular mechanisms that control the trafficking of group I mGluRs. We show here that ligand-mediated internalization of group I mGluRs is ubiquitination-dependent. A lysine residue (Lys1112) at the C-terminal tail of mGluR1 (a member of the group I mGluR family) plays crucial role in this process. Our data suggest that Lys63-linked polyubiquitination is involved in the ligand-mediated endocytosis of mGluR1. We also show here that the mGluR1 internalization is dependent on a specific E3 ubiquitin ligase, Siah-1A. Furthermore, acute knockdown of Siah-1A enhances the mGluR-mediated AMPAR endocytosis. These studies reveal a novel function of ubiquitination in the regulation of group I mGluRs, as well as its role in mGluR-dependent AMPAR endocytosis.
Collapse
Affiliation(s)
- Ravinder Gulia
- From the Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, PO 140306, Punjab, India
| | - Rohan Sharma
- From the Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, PO 140306, Punjab, India
| | - Samarjit Bhattacharyya
- From the Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, PO 140306, Punjab, India
| |
Collapse
|
25
|
Chen H, Huang Y, Huang J, Lin L, Wei G. Gigantol attenuates the proliferation of human liver cancer HepG2 cells through the PI3K/Akt/NF-κB signaling pathway. Oncol Rep 2016; 37:865-870. [DOI: 10.3892/or.2016.5299] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/28/2016] [Indexed: 11/06/2022] Open
|
26
|
Ningegowda R, Shivananju NS, Rajendran P, Basappa, Rangappa KS, Chinnathambi A, Li F, Achar RR, Shanmugam MK, Bist P, Alharbi SA, Lim LHK, Sethi G, Priya BS. A novel 4,6-disubstituted-1,2,4-triazolo-1,3,4-thiadiazole derivative inhibits tumor cell invasion and potentiates the apoptotic effect of TNFα by abrogating NF-κB activation cascade. Apoptosis 2016; 22:145-157. [DOI: 10.1007/s10495-016-1312-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
27
|
Gudkov AV, Komarova EA. p53 and the Carcinogenicity of Chronic Inflammation. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026161. [PMID: 27549311 DOI: 10.1101/cshperspect.a026161] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic inflammation is a major cancer predisposition factor. Constitutive activation of the inflammation-driving NF-κB pathway commonly observed in cancer or developed in normal tissues because of persistent infections or endogenous tissue irritating factors, including products of secretion by senescent cells accumulating with age, markedly represses p53 functions. In its turn, p53 acts as a suppressor of inflammation helping to keep it within safe limits. The antagonistic relationship between p53 and NF-κB is controlled by multiple mechanisms and reflects cardinal differences in organismal responses to intrinsic and extrinsic cell stresses driven by these two transcription factors, respectively. This provides an opportunity for developing drugs to treat diseases associated with inappropriate activity of either p53 or NF-κB through targeting the opposing pathway. Several drug candidates of this kind are currently in clinical testing. These include anticancer small molecules capable of simultaneous suppression of p53 and activation of NF-κB and NF-κB-activating biologics that counteract p53-mediated pathologies associated with systemic genotoxic stresses such as acute radiation syndrome and side effects of cancer treatment.
Collapse
Affiliation(s)
- Andrei V Gudkov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Elena A Komarova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263
| |
Collapse
|
28
|
Khurana A, Roy D, Kalogera E, Mondal S, Wen X, He X, Dowdy S, Shridhar V. Quinacrine promotes autophagic cell death and chemosensitivity in ovarian cancer and attenuates tumor growth. Oncotarget 2016; 6:36354-69. [PMID: 26497553 PMCID: PMC4742182 DOI: 10.18632/oncotarget.5632] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022] Open
Abstract
A promising new strategy for cancer therapy is to target the autophagic pathway. In the current study, we demonstrate that the antimalarial drug Quinacrine (QC) reduces cell viability and promotes chemotherapy-induced cell death in an autophagy-dependent manner more extensively in chemoresistant cells compared to their isogenic chemosensitive control cells as quantified by the Chou-Talalay methodology. Our preliminary data, in vitro and in vivo, indicate that QC induces autophagy by downregulating p62/SQSTM1 to sensitize chemoresistant cells to autophagic- and caspase-mediated cell death in a p53-independent manner. QC promotes autophagosome accumulation and enhances autophagic flux by clearance of p62 in chemoresistant ovarain cancer (OvCa) cell lines to a greater extent compared to their chemosensitive controls. Notably, p62 levels were elevated in chemoresistant OvCa cell lines and knockdown of p62 in these cells resulted in a greater response to QC treatment. Bafilomycin A, an autophagy inhibitor, restored p62 levels and reversed QC-mediated cell death and thus chemosensitization. Importantly, our in vivo data shows that QC alone and in combination with carboplatin suppresses tumor growth and ascites in the highly chemoresistant HeyA8MDR OvCa model compared to carboplatin treatment alone. Collectively, our preclinical data suggest that QC in combination with carboplatin can be an effective treatment for patients with chemoresistant OvCa.
Collapse
Affiliation(s)
- Ashwani Khurana
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Debarshi Roy
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Eleftheria Kalogera
- Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Susmita Mondal
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Xuyang Wen
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Xiaoping He
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Sean Dowdy
- Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Viji Shridhar
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
29
|
de Lera AR, Ganesan A. Epigenetic polypharmacology: from combination therapy to multitargeted drugs. Clin Epigenetics 2016; 8:105. [PMID: 27752293 PMCID: PMC5062873 DOI: 10.1186/s13148-016-0271-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/21/2016] [Indexed: 12/20/2022] Open
Abstract
The modern drug discovery process has largely focused its attention in the so-called magic bullets, single chemical entities that exhibit high selectivity and potency for a particular target. This approach was based on the assumption that the deregulation of a protein was causally linked to a disease state, and the pharmacological intervention through inhibition of the deregulated target was able to restore normal cell function. However, the use of cocktails or multicomponent drugs to address several targets simultaneously is also popular to treat multifactorial diseases such as cancer and neurological disorders. We review the state of the art with such combinations that have an epigenetic target as one of their mechanisms of action. Epigenetic drug discovery is a rapidly advancing field, and drugs targeting epigenetic enzymes are in the clinic for the treatment of hematological cancers. Approved and experimental epigenetic drugs are undergoing clinical trials in combination with other therapeutic agents via fused or linked pharmacophores in order to benefit from synergistic effects of polypharmacology. In addition, ligands are being discovered which, as single chemical entities, are able to modulate multiple epigenetic targets simultaneously (multitarget epigenetic drugs). These multiple ligands should in principle have a lower risk of drug-drug interactions and drug resistance compared to cocktails or multicomponent drugs. This new generation may rival the so-called magic bullets in the treatment of diseases that arise as a consequence of the deregulation of multiple signaling pathways provided the challenge of optimization of the activities shown by the pharmacophores with the different targets is addressed.
Collapse
Affiliation(s)
- Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, CINBIO and IIS Galicia Sur, 36310 Vigo, Spain
| | - A Ganesan
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| |
Collapse
|
30
|
Kwon M, Jang H, Kim EH, Roh JL. Efficacy of poly (ADP-ribose) polymerase inhibitor olaparib against head and neck cancer cells: Predictions of drug sensitivity based on PAR-p53-NF-κB interactions. Cell Cycle 2016; 15:3105-3114. [PMID: 27686740 DOI: 10.1080/15384101.2016.1235104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) is a key molecule in the DNA damage response (DDR), which is a major target of both chemotherapies and radiotherapies. PARP inhibitors therefore comprise a promising class of anticancer therapeutics. In this study, we evaluated the efficacy of the PARP inhibitor olaparib, and also sought to identify the mechanism and predictive marker associated with olaparib sensitivity in head and neck cancer (HNC) cells. A total of 15 HNC cell lines, including AMC HNC cells, were tested. AMC-HN3 and HN4 exhibited stronger responses to olaparib. Among cisplatin-resistant cell lines, only AMC HN9-cisR cells were significantly suppressed by olaparib. We found that basal poly (ADP-ribose) (PAR) levels, but not PARP-1 levels, correlated with olaparib sensitivity. AMC-HN3 and HN4 cells exhibited higher basal levels of NF-κB that decreased significantly after olaparib treatment. In contrast, apoptotic proteins were intrinsically expressed in AMC-HN9-cisR cells. As interference with p53 expression led to NF-κB reactivation, we concluded that elevated basal PAR and NF-κB levels are predictive of olaparib responsiveness in HNC cells; in addition, olaparib inhibits HNC cells via PAR-p53-NF-κB interactions.
Collapse
Affiliation(s)
- Minsu Kwon
- a Department of Otorhinolaryngology , Gyeongsang National University Changwon Hospital, Gyeongsang National University School of Medicine , Changwon , Republic of Korea
| | - Hyejin Jang
- b Department of Otolaryngology , Asan Medical Center, University of Ulsan College of Medicine , Seoul , Republic of Korea
| | - Eun Hye Kim
- b Department of Otolaryngology , Asan Medical Center, University of Ulsan College of Medicine , Seoul , Republic of Korea
| | - Jong-Lyel Roh
- b Department of Otolaryngology , Asan Medical Center, University of Ulsan College of Medicine , Seoul , Republic of Korea
| |
Collapse
|
31
|
Maria VL, Amorim MJB, Bebianno MJ, Dondero F. Transcriptomic effects of the non-steroidal anti-inflammatory drug Ibuprofen in the marine bivalve Mytilus galloprovincialis Lam. MARINE ENVIRONMENTAL RESEARCH 2016; 119:31-39. [PMID: 27209120 DOI: 10.1016/j.marenvres.2016.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
The transcriptomic effects of Ibuprofen (IBU) in the digestive gland tissue of Mytilus galloprovincialis Lam. specimens exposed at low environmental concentrations (250 ng L(-1)) are presented. Using a 1.7 K feature cDNA microarray along with linear models and empirical Bayes statistical methods 225 differentially expressed genes were identified in mussels treated with IBU across a 15-day period. Transcriptional dynamics were typical of an adaptive response with a peak of gene expression change at day-7 (177 features, representing about 11% of sequences available for analysis) and an almost full recovery at the end of the exposure period. Functional genomics by means of Gene Ontology term analysis unraveled typical mussel stress responses i.e. aminoglycan (chitin) metabolic processes but also more specific effects such as the regulation of NF-κB transcription factor activity.
Collapse
Affiliation(s)
- Vera L Maria
- CIMA, Faculty of Science and Technology, University of Algarve, 8005-139 Faro, Portugal; CESAM, Department of Biology, University of Aveiro, 3830-169 Aveiro, Portugal
| | - Mónica J B Amorim
- CESAM, Department of Biology, University of Aveiro, 3830-169 Aveiro, Portugal
| | - Maria João Bebianno
- CIMA, Faculty of Science and Technology, University of Algarve, 8005-139 Faro, Portugal
| | - Francesco Dondero
- Department of Science and Technological Innovation (DISIT), Università del Piemonte Orientale Amedeo Avogadro, 15121 Alessandria, Italy.
| |
Collapse
|
32
|
Design and synthesis of ring C opened analogues of α-santonin as potential anticancer agents. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1633-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
33
|
Al-Asbahy WM, Usman M, Arjmand F, Shamsi M, Tabassum S. A dinuclear copper(II) complex with piperazine bridge ligand as a potential anticancer agent: DFT computation and biological evaluation. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.02.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Li Y, Deng H, Lv L, Zhang C, Qian L, Xiao J, Zhao W, Liu Q, Zhang D, Wang Y, Yan J, Zhang H, He Y, Zhu J. The miR-193a-3p-regulated ING5 gene activates the DNA damage response pathway and inhibits multi-chemoresistance in bladder cancer. Oncotarget 2016; 6:10195-206. [PMID: 25991669 PMCID: PMC4496349 DOI: 10.18632/oncotarget.3555] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 12/21/2022] Open
Abstract
As the major barrier to curative cancer chemotherapy, chemoresistance presents a formidable challenge to both cancer researchers and clinicians. We have previously shown that the bladder cancer (BCa) cell line 5637 is significantly more sensitive to the cytoxicity of five chemotherapeutic agents than H-bc cells. Using an RNA-seq-based omic analysis and validation at both the mRNA and protein levels, we found that the inhibitor of growth 5 (ING5) gene was upregulated in 5637 cells compared with H-bc cells, indicating that it has an inhibitory role in BCa chemoresistance. siRNA-mediated inhibition of ING5 increased the chemoresistance and inhibited the DNA damage response pathway in 5637 cells. Conversely, forced expression of EGFP-ING5 decreased the chemoresistance of and activated the DNA damage response pathway in H-bc cells. We also showed that ING5 gene expression is inhibited by miR-193a-3p and is instrumental in miR-193a-3p's role in activating BCa chemoresistance. Our results demonstrate both the role and mechanism of inhibition of BCa chemoresistance by ING5.
Collapse
Affiliation(s)
- Yang Li
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, Anhui, China
| | - Hui Deng
- Cancer Epigenetics Program, Anhui Cancer Hospital, Hefei, Anhui, China
| | - Lei Lv
- Cancer Epigenetics Program, Anhui Cancer Hospital, Hefei, Anhui, China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Liting Qian
- Department of Radiotherapy, Anhui Cancer Hospital, Hefei, Anhui, China
| | - Jun Xiao
- Department of Urology, Anhui Provincial Hospital, Hefei, Anhui, China
| | - Weidong Zhao
- Department of Gynecologic Cancer, Anhui Cancer Hospital, Hefei, Anhui, China
| | - Qi Liu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Daming Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yingwei Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jun Yan
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Hongyu Zhang
- Cancer Epigenetics Program, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yinghua He
- Cancer Epigenetics Program, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jingde Zhu
- Cancer Epigenetics Program, Anhui Cancer Hospital, Hefei, Anhui, China.,Cancer Epigenetics Program, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
35
|
Yousuf I, Arjmand F, Tabassum S, Toupet L, Khan RA, Siddiqui MA. Mechanistic insights into a novel chromone-appended Cu(II) anticancer drug entity: in vitro binding profile with DNA/RNA substrates and cytotoxic activity against MCF-7 and HepG2 cancer cells. Dalton Trans 2016; 44:10330-42. [PMID: 25970097 DOI: 10.1039/c5dt00770d] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new chromone-appended Cu(ii) drug entity () was designed and synthesized as a potential anticancer chemotherapeutic agent. The structural elucidation was carried out thoroughly by elemental analysis, FT-IR, EPR, ESI-MS and single crystal X-ray crystallography. Complex resulted from the in situ methoxylation reaction of the 3-formylchromone ligand and its subsequent complexation with the copper nitrate salt in a 2 : 1 ratio, respectively. crystallized in the monoclinic P21/c space group possessing the lattice parameters, a = 8.75 Å, b = 5.07 Å, c = 26.22 Å, α = γ = 90°, β = 96.3° per unit cell. Furthermore, in vitro interaction studies of with ct-DNA and tRNA were carried out which suggested more avid binding propensity towards the RNA target via intercalative mode, which was reflected from its Kb, K and Ksv values. The gel electrophoretic mobility assay was carried out on the pBR322 plasmid DNA substrate, to ascertain the cleaving ability and the mechanistic pathway in the presence of additives, and the results revealed the efficient cleaving ability of via the oxidative pathway. In vitro cell growth inhibition via the MTT assay was carried out to evaluate the cytotoxicity of complex and IC50 values were found to be in the range of 5-10 μg mL(-1) in HepG2 and MCF-7 cancer cell lines, which were found to be much lower than the IC50 values of previously reported similar Cu(ii) complexes. Additionally, in the presence of , reactive oxygen species (ROS) and thiobarbituric acid reactive substance (TBARS) levels in the tested cancer cell lines increased significantly, coupled with reduced glutathione (GSH) levels. Thus, our results suggested that ROS plays an important role in cell apoptosis induced by the Cu(ii) complex and validates its potential to act as a robust anticancer drug entity.
Collapse
Affiliation(s)
- Imtiyaz Yousuf
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | | | | | | | | | | |
Collapse
|
36
|
Upadhyay A, Amanullah A, Chhangani D, Joshi V, Mishra R, Mishra A. Ibuprofen Induces Mitochondrial-Mediated Apoptosis Through Proteasomal Dysfunction. Mol Neurobiol 2015; 53:6968-6981. [DOI: 10.1007/s12035-015-9603-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/01/2015] [Indexed: 01/04/2023]
|
37
|
Mica Nanoparticle, STB-HO Eliminates the Human Breast Carcinoma Cells by Regulating the Interaction of Tumor with its Immune Microenvironment. Sci Rep 2015; 5:17515. [PMID: 26631982 PMCID: PMC4668362 DOI: 10.1038/srep17515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/29/2015] [Indexed: 11/09/2022] Open
Abstract
Mica, an aluminosilicate mineral, has been proven to possess anti-tumor and immunostimulatory effects. However, its efficacy and mechanisms in treating various types of tumor are less verified and the mechanistic link between anti-tumor and immunostimulatory effects has not been elucidated. We sought to investigate the therapeutic effect of STB-HO (mica nanoparticles) against one of the most prevalent cancers, the breast cancer. STB-HO was orally administered into MCF-7 xenograft model or directly added to culture media and tumor growth was monitored. STB-HO administration exhibited significant suppressive effects on the growth of MCF-7 cells in vivo, whereas STB-HO did not affect the proliferation and apoptosis of MCF-7 cells in vitro. To address this discrepancy between in vivo and in vitro results, we investigated the effects of STB-HO treatment on the interaction of MCF-7 cells with macrophages, dendritic cells (DCs) and natural killer (NK) cells, which constitute the cellular composition of tumor microenvironment. Importantly, STB-HO not only increased the susceptibility of MCF-7 cells to immune cells, but also stimulated the immunocytes to eliminate cancer cells. In conclusion, our study highlights the possible role of STB-HO in the suppression of MCF-7 cell growth via the regulation of interactions between tumor cells and anti-tumor immune cells.
Collapse
|
38
|
Zhao X, Jiang K, Liang B, Huang X. Anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-κB/p53-apoptosis signaling pathway. Oncol Rep 2015; 35:669-75. [PMID: 26718026 PMCID: PMC4689487 DOI: 10.3892/or.2015.4455] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/23/2015] [Indexed: 12/29/2022] Open
Abstract
Xanthohumol may prevent and cure diabetes and atherosis, have oxidation resistance and antiviral function as well as anticancer effect preventing cancer cell metastasis. We investigate whether the anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-κB/p53-apoptosis signaling pathway. Human liver cancer HepG2 cell were treated with 10, 20, 30 and 40 µM xanthohumol for 48 h. The present study showed that the anticancer effect of xanthohumol was effective in inhibiting proliferation and inducing apoptosis of human liver cancer HepG2 cells. Furthermore, the caspase-3 activity of human liver cancer HepG2 cells was increased by xanthohumol. In addition, 48-h treatment with xanthohumol suppressed NF-κB expression and promoted p53, cleaved PARP, AIF and cytochrome c expression and downregulated XIAP and Bcl-2/Bax expression in human liver cancer HepG2 cells. Therefore, the anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through the NF-κB/p53-apoptosis signaling pathway.
Collapse
Affiliation(s)
- Xiangqian Zhao
- Hospital and Institute of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Kai Jiang
- Hospital and Institute of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Bin Liang
- Hospital and Institute of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiaoqiang Huang
- Hospital and Institute of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
39
|
Bisio A, Zámborszky J, Zaccara S, Lion M, Tebaldi T, Sharma V, Raimondi I, Alessandrini F, Ciribilli Y, Inga A. Cooperative interactions between p53 and NFκB enhance cell plasticity. Oncotarget 2015; 5:12111-25. [PMID: 25401416 PMCID: PMC4322992 DOI: 10.18632/oncotarget.2545] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/01/2014] [Indexed: 12/31/2022] Open
Abstract
The p53 and NFκB sequence-specific transcription factors play crucial roles in cell proliferation and survival with critical, even if typically opposite, effects on cancer progression. To investigate a possible crosstalk between p53 and NFκB driven by chemotherapy-induced responses in the context of an inflammatory microenvironment, we performed a proof of concept study using MCF7 cells. Transcriptome analyses upon single or combined treatments with doxorubicin (Doxo, 1.5μM) and the NFκB inducer TNF-alpha (TNF⍺, 5ng/ml) revealed 432 up-regulated (log2 FC> 2), and 390 repressed genes (log2 FC< -2) for the Doxo+TNF⍺ treatment. 239 up-regulated and 161 repressed genes were synergistically regulated by the double treatment. Annotation and pathway analyses of Doxo+TNF⍺ selectively up-regulated genes indicated strong enrichment for cell migration terms. A panel of genes was examined by qPCR coupled to p53 activation by Doxo, 5-Fluoruracil and Nutlin-3a, or to p53 or NFκB inhibition. Transcriptome data were confirmed for 12 of 15 selected genes and seven (PLK3, LAMP3, ETV7, UNC5B, NTN1, DUSP5, SNAI1) were synergistically up-regulated after Doxo+TNF⍺ and dependent both on p53 and NFκB. Migration assays consistently showed an increase in motility for MCF7 cells upon Doxo+TNF⍺. A signature of 29 Doxo+TNF⍺ highly synergistic genes exhibited prognostic value for luminal breast cancer patients, with adverse outcome correlating with higher relative expression. We propose that the crosstalk between p53 and NFκB can lead to the activation of specific gene expression programs that may impact on cancer phenotypes and potentially modify the efficacy of cancer therapy.
Collapse
Affiliation(s)
- Alessandra Bisio
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, 38123, Italy
| | - Judit Zámborszky
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, 38123, Italy. Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Sara Zaccara
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, 38123, Italy
| | - Mattia Lion
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, 38123, Italy. Department of Genetics, Massachusetts General Hospital, Boston, MA, USA
| | - Toma Tebaldi
- Laboratory of Translational Genomics, Centre for Integrative Biology, CIBIO, University of Trento, Trento, 38123, Italy
| | - Vasundhara Sharma
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, 38123, Italy
| | - Ivan Raimondi
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, 38123, Italy
| | - Federica Alessandrini
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, 38123, Italy
| | - Yari Ciribilli
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, 38123, Italy
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, 38123, Italy
| |
Collapse
|
40
|
Zhuang C, Sheng C, Shin WS, Wu Y, Li J, Yao J, Dong G, Zhang W, Sham YY, Miao Z, Zhang W. A novel drug discovery strategy: mechanistic investigation of an enantiomeric antitumor agent targeting dual p53 and NF-κB pathways. Oncotarget 2015; 5:10830-9. [PMID: 25350970 PMCID: PMC4279413 DOI: 10.18632/oncotarget.2521] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/24/2014] [Indexed: 01/02/2023] Open
Abstract
The p53 and nuclear factor κB (NF-κB) pathways play crucial roles in human cancer development. Simultaneous targeting of both pathways is an attractive therapeutic strategy against cancer. In this study, we report an antitumor molecule that bears a pyrrolo[3,4-c]pyrazole scaffold and functions as an enantiomeric inhibitor against both the p53-MDM2 interaction and the NF-κB activation. It is a first-in-class enantiomeric inhibitor with dual efficacy for cancer therapy. Synergistic effect was observed in vitro and in vivo. Docking and molecular dynamics simulation studies further provided insights into the nature of stereoselectivity.
Collapse
Affiliation(s)
- Chunlin Zhuang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China. Research Center for Marine Drugs, School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Woo Shik Shin
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, 55455, Minnesota
| | - Yuelin Wu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Jin Li
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Jianzhong Yao
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Guoqiang Dong
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Wen Zhang
- Research Center for Marine Drugs, School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Yuk Yin Sham
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, 55455, Minnesota
| | - Zhenyuan Miao
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Wannian Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| |
Collapse
|
41
|
Abstract
Deregulated inflammatory response plays a pivotal role in the initiation, development and progression of tumours. Potential molecular mechanism(s) that drive the establishment of an inflammatory-tumour microenvironment is not entirely understood owing to the complex cross-talk between pro-inflammatory and tumorigenic mediators such as cytokines, chemokines, oncogenes, enzymes, transcription factors and immune cells. These molecular mediators are critical linchpins between inflammation and cancer, and their activation and/or deactivation are influenced by both extrinsic (i.e. environmental and lifestyle) and intrinsic (i.e. hereditary) factors. At present, the research pertaining to inflammation-associated cancers is accumulating at an exponential rate. Interest stems from hope that new therapeutic strategies against molecular mediators can be identified to assist in cancer treatment and patient management. The present review outlines the various molecular and cellular inflammatory mediators responsible for tumour initiation, progression and development, and discusses the critical role of chronic inflammation in tumorigenesis.
Collapse
|
42
|
Zhou J, Ching YQ, Chng WJ. Aberrant nuclear factor-kappa B activity in acute myeloid leukemia: from molecular pathogenesis to therapeutic target. Oncotarget 2015; 6:5490-500. [PMID: 25823927 PMCID: PMC4467382 DOI: 10.18632/oncotarget.3545] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/15/2015] [Indexed: 02/07/2023] Open
Abstract
The overall survival of patients with acute myeloid leukemia (AML) has not been improved significantly over the last decade. Molecularly targeted agents hold promise to change the therapeutic landscape in AML. The nuclear factor kappa B (NF-κB) controls a plethora of biological process through switching on and off its long list of target genes. In AML, constitutive NF-κB has been detected in 40% of cases and its aberrant activity enable leukemia cells to evade apoptosis and stimulate proliferation. These facts suggest that NF-κB signaling pathway plays a fundamental role in the development of AML and it represents an attractive target for the intervention of AML. This review summarizes our current knowledge of NF-κB signaling transduction including canonical and non-canonical NF-κB pathways. Then we specifically highlight what factors contribute to the aberrant activation of NF-κB activity in AML, followed by an overview of 8 important clinical trials of the first FDA approved proteasome inhibitor, Bortezomib (Velcade), which is a NF-κB inhibitor too, in combination with other therapeutic agents in patients with AML. Finally, this review discusses the future directions of NF-κB inhibitor in treatment of AML, especially in targeting leukemia stem cells (LSCs).
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Ying Qing Ching
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), Singapore, Republic of Singapore
| |
Collapse
|
43
|
The multifaceted role of curcumin in cancer prevention and treatment. Molecules 2015; 20:2728-69. [PMID: 25665066 PMCID: PMC6272781 DOI: 10.3390/molecules20022728] [Citation(s) in RCA: 305] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/30/2015] [Indexed: 02/07/2023] Open
Abstract
Despite significant advances in treatment modalities over the last decade, neither the incidence of the disease nor the mortality due to cancer has altered in the last thirty years. Available anti-cancer drugs exhibit limited efficacy, associated with severe side effects, and are also expensive. Thus identification of pharmacological agents that do not have these disadvantages is required. Curcumin, a polyphenolic compound derived from turmeric (Curcumin longa), is one such agent that has been extensively studied over the last three to four decades for its potential anti-inflammatory and/or anti-cancer effects. Curcumin has been found to suppress initiation, progression, and metastasis of a variety of tumors. These anti-cancer effects are predominantly mediated through its negative regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other oncogenic molecules. It also abrogates proliferation of cancer cells by arresting them at different phases of the cell cycle and/or by inducing their apoptosis. The current review focuses on the diverse molecular targets modulated by curcumin that contribute to its efficacy against various human cancers.
Collapse
|
44
|
Katsori AM, Palagani A, Bougarne N, Hadjipavlou-Litina D, Haegeman G, Vanden Berghe W. Inhibition of the NF-κB signaling pathway by a novel heterocyclic curcumin analogue. Molecules 2015; 20:863-78. [PMID: 25580684 PMCID: PMC6272537 DOI: 10.3390/molecules20010863] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/16/2014] [Indexed: 01/24/2023] Open
Abstract
In this study a series of curcumin analogues were evaluated for their ability to inhibit the activation of NF-κΒ, a transcription factor at the crossroads of cancer-inflammation. Our novel curcumin analogue BAT3 was identified to be the most potent NF-κB inhibitor and EMSA assays clearly showed inhibition of NF-κB/DNA-binding in the presence of BAT3, in agreement with reporter gene results. Immunofluorescence experiments demonstrated that BAT3 did not seem to prevent nuclear p65 translocation, so our novel analogue may interfere with NF-κB/DNA-binding or transactivation, independently of IKK2 regulation and NF-κB-translocation. Gene expression studies on endogenous NF-κB target genes revealed that BAT3 significantly inhibited TNF-dependent transcription of IL6, MCP1 and A20 genes, whereas an NF-κB independent target gene heme oxygenase-1 remained unaffected. In conclusion, we demonstrate that BAT3 seems to inhibit different cancer-related inflammatory targets in the NF-κB signaling pathway through a different mechanism in comparison to similar analogues, previously reported.
Collapse
Affiliation(s)
- Anna-Maria Katsori
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Ajay Palagani
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Wilrijk 2610, Belgium.
| | - Nadia Bougarne
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Physiology, University of Ghent, Ghent 9000, Belgium.
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Guy Haegeman
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Physiology, University of Ghent, Ghent 9000, Belgium.
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Wilrijk 2610, Belgium.
| |
Collapse
|
45
|
Yadav S, Yousuf I, Usman M, Ahmad M, Arjmand F, Tabassum S. Synthesis and spectroscopic characterization of diorganotin( iv) complexes of N′-(4-hydroxypent-3-en-2-ylidene)isonicotinohydrazide: chemotherapeutic potential validation by in vitro interaction studies with DNA/HSA, DFT, molecular docking and cytotoxic activity. RSC Adv 2015; 5:50673-50690. [DOI: 10.1039/c5ra06953j] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
A diorganotin(iv) hydrazide complex as a potential cancer chemotherapeutic agent targeting DNA using the carrier protein HSA.
Collapse
Affiliation(s)
- Shipra Yadav
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Imtiyaz Yousuf
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Mohammad Usman
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Musheer Ahmad
- Department of Applied Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Farukh Arjmand
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Sartaj Tabassum
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| |
Collapse
|
46
|
Han X, Wang J, Shen Y, Zhang N, Wang S, Yao J, Shi Y. CRM1 as a new therapeutic target for non-Hodgkin lymphoma. Leuk Res 2015; 39:38-46. [PMID: 25466285 DOI: 10.1016/j.leukres.2014.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 08/13/2014] [Accepted: 10/09/2014] [Indexed: 11/30/2022]
Abstract
The chromosomal region maintenance 1 (CRM1) may serve as a novel target for cancer treatment. Here, we investigated the anti non-Hodgkin lymphoma (NHL) activity of two novel CRM1 inhibitors (KPT-185 and KPT-276) in vitro and in vivo. KPT-185 displayed potent antiproliferative properties and induced cell-cycle arrest and apoptosis in several NHL cell lines and patients' tumor cells. The antitumor activity mainly consisted of inducing caspase cleavage and downregulating the expression of antiapoptotic proteins such as CRM1, nuclear factor-κB, and survivin. Furthermore, oral administration of KPT-276 significantly suppressed tumor growth in mice with Jeko-1 xenograft without any major toxic effects.
Collapse
Affiliation(s)
- Xiaohong Han
- Department of Medical Oncology, Cancer Institute/Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing 100021, China
| | - Jianfei Wang
- Department of Medical Oncology, Cancer Institute/Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing 100021, China
| | - Yinchen Shen
- Department of Medical Oncology, Cancer Institute/Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing 100021, China
| | - Ningning Zhang
- Department of Medical Oncology, Cancer Institute/Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing 100021, China
| | - Shuai Wang
- Department of Medical Oncology, Cancer Institute/Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing 100021, China
| | - Jiarui Yao
- Department of Medical Oncology, Cancer Institute/Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing 100021, China
| | - Yuankai Shi
- Department of Medical Oncology, Cancer Institute/Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing 100021, China.
| |
Collapse
|
47
|
Iannetti A, Ledoux AC, Tudhope SJ, Sellier H, Zhao B, Mowla S, Moore A, Hummerich H, Gewurz BE, Cockell SJ, Jat PS, Willmore E, Perkins ND. Regulation of p53 and Rb links the alternative NF-κB pathway to EZH2 expression and cell senescence. PLoS Genet 2014; 10:e1004642. [PMID: 25255445 PMCID: PMC4177746 DOI: 10.1371/journal.pgen.1004642] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/28/2014] [Indexed: 11/18/2022] Open
Abstract
There are two major pathways leading to induction of NF-κB subunits. The classical (or canonical) pathway typically leads to the induction of RelA or c-Rel containing complexes, and involves the degradation of IκBα in a manner dependent on IκB kinase (IKK) β and the IKK regulatory subunit NEMO. The alternative (or non-canonical) pathway, involves the inducible processing of p100 to p52, leading to the induction of NF-κB2(p52)/RelB containing complexes, and is dependent on IKKα and NF-κB inducing kinase (NIK). Here we demonstrate that in primary human fibroblasts, the alternative NF-κB pathway subunits NF-κB2 and RelB have multiple, but distinct, effects on the expression of key regulators of the cell cycle, reactive oxygen species (ROS) generation and protein stability. Specifically, following siRNA knockdown, quantitative PCR, western blot analyses and chromatin immunoprecipitation (ChIP) show that NF-κB2 regulates the expression of CDK4 and CDK6, while RelB, through the regulation of genes such as PSMA5 and ANAPC1, regulates the stability of p21WAF1 and the tumour suppressor p53. These combine to regulate the activity of the retinoblastoma protein, Rb, leading to induction of polycomb protein EZH2 expression. Moreover, our ChIP analysis demonstrates that EZH2 is also a direct NF-κB target gene. Microarray analysis revealed that in fibroblasts, EZH2 antagonizes a subset of p53 target genes previously associated with the senescent cell phenotype, including DEK and RacGAP1. We show that this pathway provides the major route of crosstalk between the alternative NF-κB pathway and p53, a consequence of which is to suppress cell senescence. Importantly, we find that activation of NF-κB also induces EZH2 expression in CD40L stimulated cells from Chronic Lymphocytic Leukemia patients. We therefore propose that this pathway provides a mechanism through which microenvironment induced NF-κB can inhibit tumor suppressor function and promote tumorigenesis. Although the classical NF-κB pathway is frequently associated with the induction of cellular senescence and the senescence associated secretory phenotype (SASP), the role of the alternative NF-κB pathway, which is frequently activated in hematological malignancies as well as some solid tumors, has not been defined. We therefore investigated the role of the alternative NF-κB pathway in this process. Here we report that NF-κB2 and RelB, the effectors of the alternative NF-κB pathway, suppress senescence through inhibition of p53 activity. Using primary human fibroblasts, we demonstrate that this is accomplished through NF-κB2/RelB dependent control of a previously unknown pathway, incorporating regulation of CDK4 and 6 expression as well as regulators of p21WAF1 and p53 protein stability. Loss of NF-κB2/RelB results in suppression of retinoblastoma (Rb) tumour suppressor phosphorylation, which in turn leads to inhibition of EZH2 expression and de-repression of p53 activity. Interestingly, we find that CD40 ligand stimulation of cells from Chronic Lymphocytic Leukemia patients, which strongly induces the alternative NF-κB pathway, also induces EZH2 expression. We propose that the alternative NF-κB pathway can promote tumorigenesis through suppression of p53 dependent senescence, a process that may have relevance to cancer cells retaining wild type p53.
Collapse
Affiliation(s)
- Alessio Iannetti
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Adeline C. Ledoux
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Susan J. Tudhope
- Northern Institute for Cancer Research, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Hélène Sellier
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Bo Zhao
- Division of Infectious Disease, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Sophia Mowla
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Adam Moore
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Holger Hummerich
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Benjamin E. Gewurz
- Division of Infectious Disease, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Simon J. Cockell
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Parmjit S. Jat
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Elaine Willmore
- Northern Institute for Cancer Research, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Neil D. Perkins
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
48
|
Kim H, Lee SH, Lee MN, Oh GT, Choi KC, Choi EY. p53 regulates the transcription of the anti-inflammatory molecule developmental endothelial locus-1 (Del-1). Oncotarget 2014; 4:1976-85. [PMID: 24192518 PMCID: PMC3875763 DOI: 10.18632/oncotarget.1318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Developmental endothelial locus-1 (Del-1) is an endothelium-derived anti-inflammatory molecule that is downregulated by inflammatory stimuli. Little is known about the molecular mechanisms by which Del-1 transcription is regulated. In the present study, a DNA sequence upstream of the Del-1 gene was analyzed and putative p53 response elements (p53REs) were identified. An approximately 2 kb fragment upstream of the translation start site displayed the highest Del-1 transcriptional activity, and the transcriptional activity of this fragment was enhanced by overexpression of p53. Chemical activation of endogenous p53 elevated the levels of Del-1 mRNA. Site-directed mutagenesis of CATG in the consensus sequences of the 2 kb fragment to TATA significantly reduced the transcription of Del-1. Chromatin immunoprecipitation revealed recruitment of p53 to the p53REs of the Del-1 promoter, resulting in increased Del-1 transcription. Finally, primary endothelial cells isolated from mice with reduced levels of p53 showed a decrease in Del-1 mRNA compared to wild-type endothelial cells. Moreover, Del-1 reciprocally enhanced p53 expression in primary endothelial cells. Thus, these findings suggest that Del-1 is a novel transcriptional target gene of p53.
Collapse
Affiliation(s)
- Hyesoon Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
49
|
Kim M, Blum AB, Haslinger ML, Donahue MJ, Fisher DT, Skitzki JJ, Park IY. Quinacrine for extremity melanoma in a mouse model of isolated limb perfusion (ILP). Surg Today 2014; 45:355-62. [PMID: 24998594 DOI: 10.1007/s00595-014-0952-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 02/03/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE Quinacrine is a relatively non-toxic drug, once given almost exclusively for malaria. However, recent studies show that quinacrine can suppress nuclear factor-κB (NF-κB), and activate p53 signaling. We investigated the anti-cancer effect of quinacrine, using a novel mouse model of isolated limb perfusion (ILP) for extremity melanoma. METHOD Female C57BL/6 mice (22-25 g) were injected with B16 melanoma cells (1 × 10(5)) subcutaneously in the distal thigh. After 7 days of tumor establishment, mice were perfused with either PBS, melphalan (90 µg), or quinacrine (3.5 and 4.5 mg) through the superficial femoral artery for 30 min at either 37 or 42 °C in a non-oxygenated circuit. We analyzed morbidity, toxicity, tumor apoptosis, and responses. RESULTS Melanoma cell death following in vitro exposure to quinacrine was dose and time dependent. A significant decrease in mean tumor volume was observed after perfusion with low-dose and high-dose quinacrine (both P = 0.002) at 37 °C as well as after perfusion with low-dose quinacrine (P = 0.0008) at 42 °C. CONCLUSION Quinacrine has demonstrable efficacy against melanoma cells in vitro and in a clinically relevant model of ILP. Further studies to evaluate the optimal conditions for quinacrine usage are warranted.
Collapse
Affiliation(s)
- Minhyung Kim
- Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA,
| | | | | | | | | | | | | |
Collapse
|
50
|
An J, Wang X, Guo P, Zhong Y, Zhang X, Yu Z. Hexabromocyclododecane and polychlorinated biphenyls increase resistance of hepatocellular carcinoma cells to cisplatin through the phosphatidylinositol 3-kinase/protein kinase B pathway. Toxicol Lett 2014; 229:265-72. [PMID: 24960055 DOI: 10.1016/j.toxlet.2014.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/15/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers in China with high mortality, high chemotherapy resistance incidence, and poor prognosis. This study aimed to investigate the influence of polychlorinated biphenyls (PCBs) and hexabromocyclododecane (HBCD) on chemoresistance of HCC cells (HepG2, MHCC97H, and MHCC97L) to cisplatin and to explore the potential molecular mechanism. Cell viability, DNA damage, the expression level and activity of nuclear factor-κB (NF-κB), p53/Mdm4, and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway were measured. The results showed that HBCD and PCBs could significantly reduce the chemosensitivity of HCC cells to cisplatin, increasing the cell viability and decreasing DNA damage. Moreover, HBCD and PCBs could induce the transcriptional activity of NF-κb and suppress the p53 expression in HepG2 and MHCC97H cells. In MHCC97L cells, however, opposite changes for NF-κB protein expression, NF-κB transcriptional activity, and p53/Mdm4 expression were observed after HBCD and PCBs exposure. Further investigation revealed that HBCD and PCBs exposure significantly increased the expression level of p-Akt and mammalian target of rapamycin (mTOR) in HepG2 and MHCC97H cells, but reduced that in MHCC97L cells. PI3K inhibitor LY294002 could relieve the influence of HBCD and PCBs on chemoresistance in HepG2 and MHCC97H cells. Taken together, HBCD and PCBs at low concentrations could increase the resistance of HCC cells to cisplatin through modulation on NF-κB pathway activation and p53 function, which is associated with the activity of PI3K/Akt pathway.
Collapse
Affiliation(s)
- Jing An
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China.
| | - Xiu Wang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
| | - Panpan Guo
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
| | - Yufang Zhong
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
| | - Xinyu Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| |
Collapse
|