1
|
Mancarella S, Gigante I, Pizzuto E, Serino G, Terzi A, Dituri F, Maiorano E, Vincenti L, De Bellis M, Ardito F, Calvisi DF, Giannelli G. Targeting cancer-associated fibroblasts/tumor cells cross-talk inhibits intrahepatic cholangiocarcinoma progression via cell-cycle arrest. J Exp Clin Cancer Res 2024; 43:286. [PMID: 39415286 PMCID: PMC11484308 DOI: 10.1186/s13046-024-03210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs), mainly responsible for the desmoplastic reaction hallmark of intrahepatic Cholangiocarcinoma (iCCA), likely have a role in tumor aggressiveness and resistance to therapy, although the molecular mechanisms involved are unknown. Aim of the study is to investigate how targeting hCAF/iCCA cross-talk with a Notch1 inhibitor, namely Crenigacestat, may affect cancer progression. METHODS We used different in vitro models in 2D and established new 3D hetero-spheroids with iCCA cells and human (h)CAFs. The results were confirmed in a xenograft model, and explanted tumoral tissues underwent transcriptomic and bioinformatic analysis. RESULTS hCAFs/iCCA cross-talk sustains increased migration of both KKU-M213 and KKU-M156 cells, while Crenigacestat significantly inhibits only the cross-talk stimulated migration. Hetero-spheroids grew larger than homo-spheroids, formed by only iCCA cells. Crenigacestat significantly reduced the invasion and growth of hetero- but not of homo-spheroids. In xenograft models, hCAFs/KKU-M213 tumors grew significantly larger than KKU-M213 tumors, but were significantly reduced in volume by Crenigacestat treatment, which also significantly decreased the fibrotic reaction. Ingenuity pathway analysis revealed that genes of hCAFs/KKU-M213 but not of KKU-M213 tumors increased tumor lesions, and that Crenigacestat treatment inhibited the modulated canonical pathways. Cell cycle checkpoints were the most notably modulated pathway and Crenigacestat reduced CCNE2 gene expression, consequently inducing cell cycle arrest. In hetero-spheroids, the number of cells increased in the G2/M cell cycle phase, while Crenigacestat significantly decreased cell numbers in the G2/M phase in hetero but not in homo-spheroids. CONCLUSIONS The hCAFs/iCCA cross-talk is a new target for reducing cancer progression with drugs such as Crenigacestat.
Collapse
Affiliation(s)
- Serena Mancarella
- National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Via Turi 27, Castellana Grotte, BA, 70013, Italy
| | - Isabella Gigante
- National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Via Turi 27, Castellana Grotte, BA, 70013, Italy
| | - Elena Pizzuto
- National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Via Turi 27, Castellana Grotte, BA, 70013, Italy
| | - Grazia Serino
- National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Via Turi 27, Castellana Grotte, BA, 70013, Italy
| | - Alberta Terzi
- National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Via Turi 27, Castellana Grotte, BA, 70013, Italy
| | - Francesco Dituri
- National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Via Turi 27, Castellana Grotte, BA, 70013, Italy
| | - Eugenio Maiorano
- National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Via Turi 27, Castellana Grotte, BA, 70013, Italy
| | - Leonardo Vincenti
- National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Via Turi 27, Castellana Grotte, BA, 70013, Italy
| | - Mario De Bellis
- Division of General and Hepatobiliary Surgery, Department of Surgery, Dentistry, Gynecology and Pediatrics, University of Verona, G.B. Rossi University Hospital, P.le L.A. Scuro 10, Verona, 37134, Italy
| | - Francesco Ardito
- Hepatobiliary Surgery Unit, Foundation "Policlinico Universitario A. Gemelli", IRCCS, Catholic University, Rome, Italy
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, 93053, Regensburg, Germany
| | - Gianluigi Giannelli
- National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Via Turi 27, Castellana Grotte, BA, 70013, Italy.
| |
Collapse
|
2
|
Amhis N, Carignan J, Tai LH. Transforming pancreaticobiliary cancer treatment: Exploring the frontiers of adoptive cell therapy and cancer vaccines. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200825. [PMID: 39006944 PMCID: PMC11246060 DOI: 10.1016/j.omton.2024.200825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Pancreaticobiliary cancer, encompassing malignancies of both the pancreatic and biliary tract, presents a formidable clinical challenge marked by a uniformly bleak prognosis. The asymptomatic nature of its early stages often leads to delayed detection, contributing to an unfavorable 5-year overall survival rate. Conventional treatment modalities have shown limited efficacy, underscoring the urgent need for alternative therapeutic approaches. In recent years, immunotherapy has emerged as a promising avenue in the fight against pancreaticobiliary cancer. Strategies such as therapeutic vaccines and the use of tumor-infiltrating lymphocytes have garnered attention for their potential to elicit more robust and durable responses. This review seeks to illuminate the landscape of emerging immunotherapeutic interventions, offering insights from both clinical and research perspectives. By deepening our understanding of pancreaticobiliary cancer and exploring innovative treatment modalities, we aim to catalyze improvements in patient outcomes and quality of life.
Collapse
Affiliation(s)
- Nawal Amhis
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
- Department of Surgery, Division of General Surgery, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Julie Carignan
- Centre de Recherche du CHUS, Sherbrooke, QC J1H 5N4, Canada
| | - Lee-Hwa Tai
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
- Centre de Recherche du CHUS, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
3
|
Liang J, Jiang S, Song J, Chen D, Weng S, Li S, Peng H, Liu Z, Zhang J, Chen Y, Rao S, Chen H, Zhang R, Liu H, Zhang L. Role of [ 18F]FAPI-04 in staging and therapeutic management of intrahepatic cholangiocarcinoma: prospective comparison with [ 18F]FDG PET/CT. EJNMMI Res 2024; 14:81. [PMID: 39256297 PMCID: PMC11387567 DOI: 10.1186/s13550-024-01145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Fluorine-18 fluorodeoxyglucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT) has some limitations in diagnosis of Intrahepatic cholangiocarcinoma (ICC). MATERIALS AND METHODS Patients with histologically confirmed ICC who underwent both [18F]FDG and 18F-labeled fibroblast-activation protein inhibitors ([18F]FAPI)-04 PET/CT were prospectively analyzed. The maximum standard uptake value (SUVmax), tumor-to-background ratio (TBR), metabolic tumor volume (MTV), total lesion glycolysis (TLG), [18F]FAPI-avid tumor volume (FTV), total lesion fibroblast activation protein expression (TLF) were compared between the two modalities by paired Wilcoxon signed-rank test and Mann-Whitney U test, and McNemar's test was used to assess the diagnostic accuracy between the two techniques. RESULTS In total, 23 patients with 389 lesions were included. Compared to [18F]FDG, [18F]F-FAPI-04 PET/CT demonstrated a higher detection rate for intrahepatic lesions (86.3% vs. 78.2% P = 0.040), lymph node metastases (85.2% vs. 68.2%, P = 0.007), peritoneal metastases (100% vs. 93.8%), and bone metastases (100% vs. 70.5%, P < 0.001). [18F]FAPI-04 PET showed higher SUVmax, TBR and greater tumor burden values than [18F]FDG PET in non-cholangitis intrahepatic lesions (SUVmax: 8.7 vs. 6.4, P < 0.001; TBR: 8.0 vs. 3.5, P < 0.001; FTV vs. MTV: 41.3 vs. 12.4, P < 0.001; TLF vs. TLG: 223.5 vs. 57.0, P < 0.001), lymph node metastases (SUVmax: 6.5 vs. 5.5, P = 0.042; TBR: 5.4 vs. 3.9, P < 0.001; FTV vs. MTV: 2.0 vs. 1.5, P = 0.026; TLF vs. TLG: 9.0 vs. 7.8 P = 0.024), and bone metastases (SUVmax: 9.7 vs. 5.25, P < 0.001; TBR: 10.8 vs. 3.0, P < 0.001; TLF vs. TLG: 9.8 vs. 4.2, P < 0.001). However, [18F]FDG showed higher radiotracer uptake (SUVmax: 14.7 vs. 8.4, P < 0.001; TBR: 7.4 vs. 2.8, P < 0.001) than [18F]FAPI-04 PET/CT for 6 patients with obstructive cholangitis. [18F]FAPI-04 PET/CT yielded a change in planned therapy in 6 of 23 (26.1%) patients compared with [18F]FDG. CONCLUSIONS [18F]FAPI-04 PET/CT had higher detection rate and radiotracer uptake than [18F]FDG PET/CT in intrahepatic lesions, lymph node metastases, and distant metastases, especially in bone. Therefore, [18F]FAPI-04 PET/CT may be a promising technique for diagnosis and staging of ICC. TRIAL REGISTRATION Clinical Trials, NCT05485792. Registered 1 August 2022, retrospectively registered, https//clinicaltrials.gov/study/NCT05485792?cond=NCT05485792&rank=1.
Collapse
Affiliation(s)
- Jiucen Liang
- Department of Nuclear Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, Guangdong, 510095, P.R. China
| | - Shuqin Jiang
- Department of Nuclear Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, Guangdong, 510095, P.R. China
| | - Jingjing Song
- Department of Pathology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, Guangdong, 510095, P.R. China
| | - Danyang Chen
- Tumor Research Institute, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, Guangdong, 510095, P.R. China
| | - Shaojuan Weng
- Tumor Research Institute, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, Guangdong, 510095, P.R. China
| | - Shuyi Li
- Department of Nuclear Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, Guangdong, 510095, P.R. China
| | - Hao Peng
- Department of Nuclear Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, Guangdong, 510095, P.R. China
| | - Zhidong Liu
- Department of Nuclear Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, Guangdong, 510095, P.R. China
| | - Jing Zhang
- Department of Nuclear Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, Guangdong, 510095, P.R. China
| | - Yuanlin Chen
- Department of Pathology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, Guangdong, 510095, P.R. China
| | - Songquan Rao
- Department of Nuclear Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, Guangdong, 510095, P.R. China
| | - Haipeng Chen
- Department of Nuclear Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, Guangdong, 510095, P.R. China
| | - Rusen Zhang
- Department of Nuclear Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, Guangdong, 510095, P.R. China.
| | - Hao Liu
- Tumor Research Institute, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, Guangdong, 510095, P.R. China.
| | - Linqi Zhang
- Department of Nuclear Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, Guangdong, 510095, P.R. China.
| |
Collapse
|
4
|
Dong ZR, Zhang MY, Qu LX, Zou J, Yang YH, Ma YL, Yang CC, Cao XL, Wang LY, Zhang XL, Li T. Spatial resolved transcriptomics reveals distinct cross-talk between cancer cells and tumor-associated macrophages in intrahepatic cholangiocarcinoma. Biomark Res 2024; 12:100. [PMID: 39256888 PMCID: PMC11389341 DOI: 10.1186/s40364-024-00648-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Multiple studies have shown that tumor-associated macrophages (TAMs) promote cancer initiation and progression. However, the reprogramming of macrophages in the tumor microenvironment (TME) and the cross-talk between TAMs and malignant subclones in intrahepatic cholangiocarcinoma (iCCA) has not been fully characterized, especially in a spatially resolved manner. Deciphering the spatial architecture of variable tissue cellular components in iCCA could contribute to the positional context of gene expression containing information pathological changes and cellular variability. METHODS Here, we applied spatial transcriptomics (ST) and digital spatial profiler (DSP) technologies with tumor sections from patients with iCCA. RESULTS The results reveal that spatial inter- and intra-tumor heterogeneities feature iCCA malignancy, and tumor subclones are mainly driven by physical proximity. Tumor cells with TME components shaped the intra-sectional heterogenetic spatial architecture. Macrophages are the most infiltrated TME component in iCCA. The protein trefoil factor 3 (TFF3) secreted by the malignant subclone can induce macrophages to reprogram to a tumor-promoting state, which in turn contributes to an immune-suppressive environment and boosts tumor progression. CONCLUSIONS In conclusion, our description of the iCCA ecosystem in a spatially resolved manner provides novel insights into the spatial features and the immune suppressive landscapes of TME for iCCA.
Collapse
Affiliation(s)
- Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250010, Shandong, China
| | - Meng-Ya Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ling-Xin Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jie Zou
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Yong-Heng Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yun-Long Ma
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250010, Shandong, China
| | - Chun-Cheng Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250010, Shandong, China
| | - Xue-Lei Cao
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250010, Shandong, China
| | - Li-Yuan Wang
- Department of Hepatology, Cheeloo Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xiao-Lu Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250010, Shandong, China.
| |
Collapse
|
5
|
Zheng J, Dou M, Wu Z, Zhang C, Yang B, Liu Z, Zhang M, Wang F. Combined single cell and spatial transcriptome analysis reveals hedgehog pathway-related genes as potential therapeutic targets for cervical cancer. Cancer Treat Res Commun 2024; 41:100841. [PMID: 39293140 DOI: 10.1016/j.ctarc.2024.100841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024]
Abstract
Cervical cancer (CC) remains one of the most common and deadly malignancies among women worldwide, with exceptionally high morbidity and mortality rates. The aberrant activation of the hedgehog pathway is intimately associated with tumor development and progression. Nevertheless, the potential therapeutic targets within the hedgehog pathway in CC have yet to be clearly identified. In this study, we conducted an in-depth investigation of hedgehog pathway-related genes in CC, integrating single-cell sequencing data and spatial transcriptomics. Utilizing a comprehensive scoring algorithm, we identified that myofibroblasts within CC tissue exhibit a highly enriched hedgehog pathway. Our analysis of the myofibroblast development process revealed that MYH9 plays a crucial role. Further exploration using spatial transcriptome data allowed us to delve into the role of MYH9 in myofibroblasts. We discovered that MYH9-negative and MYH9-positive myofibroblasts display distinct profiles. Validation using extensive transcriptome data demonstrated that a high infiltration of MYH9-positive myofibroblasts is a risk factor for CC patients, significantly impacting prognosis and immunotherapeutic efficacy. Our study provides unique insights into the relationship between CC and the hedgehog pathway, offering new directions for cancer treatment strategies.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Gynecology, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Miaomiao Dou
- Gansu University Traditional Chinese Medicine, Lanzhou, China
| | - Zhenzhen Wu
- Department of Gynecology, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Chunjie Zhang
- Department of Gynecology, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Bo Yang
- Department of Gynecology, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Zhijie Liu
- Department of Gynecology, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Min Zhang
- Department of Gynecology, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Fang Wang
- Department of Gynecology, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China.
| |
Collapse
|
6
|
Affὸ S, Sererols-Viñas L, Garcia-Vicién G, Cadamuro M, Chakraborty S, Sirica AE. Cancer-Associated Fibroblasts in Intrahepatic Cholangiocarcinoma: Insights into Origins, Heterogeneity, Lymphangiogenesis, and Peritoneal Metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2024:S0002-9440(24)00279-7. [PMID: 39117110 DOI: 10.1016/j.ajpath.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) denotes a rare, highly malignant, and heterogeneous class of primary liver adenocarcinomas exhibiting phenotypic characteristics of cholangiocyte differentiation. Among the distinctive pathological features of iCCA, one that differentiates the most common macroscopic subtype (eg, mass-forming type) of this hepatic tumor from conventional hepatocellular carcinoma, is a prominent desmoplastic reaction manifested as a dense fibro-collagenous-enriched tumor stroma. Cancer-associated fibroblasts (CAFs) represent the most abundant mesenchymal cell type in the desmoplastic reaction. Although the protumor effects of CAFs in iCCA have been increasingly recognized, more recent cell lineage tracing studies, advanced single-cell RNA sequencing, and expanded biomarker analyses have provided new awareness into their ontogeny, as well as underscored their biological complexity as reflected by the presence of multiple subtypes. In addition, evidence has been described to support CAFs' potential to display cancer-restrictive roles, including immunosuppression. However, CAFs also play important roles in facilitating metastasis, as exemplified by lymph node metastasis and peritoneal carcinomatosis, which are common in iCCA. Herein, the authors provide a timely appraisal of the origins and phenotypic and functional complexity of CAFs in iCCA, together with providing mechanistic insights into lymphangiogenesis and peritoneal metastasis relevant to this lethal human cancer.
Collapse
Affiliation(s)
- Silvia Affὸ
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Laura Sererols-Viñas
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gemma Garcia-Vicién
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Sanjukta Chakraborty
- Department of Medical Physiology, School of Medicine, Texas A&M Health Science Center, Bryan, Texas
| | - Alphonse E Sirica
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, Virginia.
| |
Collapse
|
7
|
Yan X, Hu Z, Li X, Liang J, Zheng J, Gong J, Hu K, Sui X, Li R. Systemic analysis of the prognostic significance and interaction network of miR-26b-3p in cholangiocarcinoma. Appl Biochem Biotechnol 2024; 196:4166-4187. [PMID: 37914963 DOI: 10.1007/s12010-023-04753-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
MicroRNAs (miRNAs) reportedly play significant roles in the progression of various cancers and hold huge potential as both diagnostic tools and therapeutic targets. Given the ongoing uncertainty surrounding the precise functions of several miRNAs in cholangiocarcinoma (CCA), this research undertakes a comprehensive analysis of CCA data sourced from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. The present study identified a novel miRNA, specifically miR-26b-3p, which exhibited prognostic value for individuals with CCA. Notably, miR-26b-3p was upregulated within CCA samples, with an inverse correlation established with patient prognosis (Hazard Ratio = 8.19, p = 0.018). Through a combination of functional enrichment analysis, analysis of the LncRNA-miR-26b-3p-mRNA interaction network, and validation by qRT PCR and western blotting, this study uncovered the potential of miR-26b-3p in potentiating the malignant progression of CCA via regulation of essential genes (including PSMD14, XAB2, SLC4A4) implicated in processes such as endoplasmic reticulum (ER) stress and responses to misfolded proteins. Our findings introduce novel and valuable insights that position miR-26b-3p-associated genes as promising biomarkers for the diagnosis and treatment of CCA.
Collapse
Affiliation(s)
- Xijing Yan
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
- Department of Breast and Thyroid Surgery, Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Zhongying Hu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xuejiao Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jinliang Liang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jiao Gong
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Kunpeng Hu
- Department of Breast and Thyroid Surgery, Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Xin Sui
- Surgical ICU, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Rong Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
8
|
Yan F, Mutembei B, Valerio T, Gunay G, Ha JH, Zhang Q, Wang C, Selvaraj Mercyshalinie ER, Alhajeri ZA, Zhang F, Dockery LE, Li X, Liu R, Dhanasekaran DN, Acar H, Chen WR, Tang Q. Optical coherence tomography for multicellular tumor spheroid category recognition and drug screening classification via multi-spatial-superficial-parameter and machine learning. BIOMEDICAL OPTICS EXPRESS 2024; 15:2014-2047. [PMID: 38633082 PMCID: PMC11019711 DOI: 10.1364/boe.514079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 04/19/2024]
Abstract
Optical coherence tomography (OCT) is an ideal imaging technique for noninvasive and longitudinal monitoring of multicellular tumor spheroids (MCTS). However, the internal structure features within MCTS from OCT images are still not fully utilized. In this study, we developed cross-statistical, cross-screening, and composite-hyperparameter feature processing methods in conjunction with 12 machine learning models to assess changes within the MCTS internal structure. Our results indicated that the effective features combined with supervised learning models successfully classify OVCAR-8 MCTS culturing with 5,000 and 50,000 cell numbers, MCTS with pancreatic tumor cells (Panc02-H7) culturing with the ratio of 0%, 33%, 50%, and 67% of fibroblasts, and OVCAR-4 MCTS treated by 2-methoxyestradiol, AZD1208, and R-ketorolac with concentrations of 1, 10, and 25 µM. This approach holds promise for obtaining multi-dimensional physiological and functional evaluations for using OCT and MCTS in anticancer studies.
Collapse
Affiliation(s)
- Feng Yan
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Bornface Mutembei
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Trisha Valerio
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Gokhan Gunay
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Ji-Hee Ha
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Qinghao Zhang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Chen Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | | | - Zaid A. Alhajeri
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Fan Zhang
- Department of Radiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Lauren E. Dockery
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Xinwei Li
- Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Ronghao Liu
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250100, China
| | - Danny N. Dhanasekaran
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Handan Acar
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), University of Oklahoma Norman, OK 73019, USA
| | - Wei R. Chen
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), University of Oklahoma Norman, OK 73019, USA
| | - Qinggong Tang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), University of Oklahoma Norman, OK 73019, USA
| |
Collapse
|
9
|
Yoo C, Hyung J, Chan SL. Recent Advances in Systemic Therapy for Advanced Intrahepatic Cholangiocarcinoma. Liver Cancer 2024; 13:119-135. [PMID: 38638168 PMCID: PMC11023692 DOI: 10.1159/000531458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/05/2023] [Indexed: 04/20/2024] Open
Abstract
Background The incidence of intrahepatic cholangiocarcinoma (IHCCA) is rising around the world. The disease is becoming a major global health issue. Conventionally, most patients with cholangiocarcinoma present with advanced disease and systemic therapy is the mainstay of treatment. This review discusses recent advances in systemic treatments for patients with IHCCA. Summary The addition of durvalumab to a gemcitabine plus cisplatin regimen has significantly improved overall survival in the phase 3 TOPAZ-1 trial and is currently recommended as a standard first-line treatment. The phase 3 ABC-06 and phase 2b NIFTY trials have shown the benefit of second-line fluoropyrimidine plus oxaliplatin, and fluoropyrimidine plus nanoliposomal irinotecan, respectively. They have provided a treatment option for patients without actionable alterations who progressed to first-line therapy. For patients with actionable genomic alterations, including FGFR2 rearrangement, IDH1 mutation, BRAF mutation, and ERBB2 amplification, targeted agents have shown encouraging efficacy in several phase 2-3 trials, and are recommended as subsequent treatments. Immune checkpoint inhibitors are being investigated for the treatment of previously treated patients, although only a small proportion of patients showed durable responses. Key Messages Recent advances in systemic treatments have improved clinical outcomes in patients with advanced IHCCA. However, most patients eventually show resistance to the treatment, and tumor progression occurs within a year. Indeed, there should be further efforts to improve the outcomes of patients with advanced IHCCA.
Collapse
Affiliation(s)
- Changhoon Yoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jaewon Hyung
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Stephen L. Chan
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| |
Collapse
|
10
|
Thongchot S, Ferraresi A, Vidoni C, Salwa A, Vallino L, Kittirat Y, Loilome W, Namwat N, Isidoro C. Preclinical evidence for preventive and curative effects of resveratrol on xenograft cholangiocarcinogenesis. Cancer Lett 2024; 582:216589. [PMID: 38097133 DOI: 10.1016/j.canlet.2023.216589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/11/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Cholangiocarcinoma (CCA), the malignant tumor of bile duct epithelial cells, is a relatively rare yet highly lethal cancer. In this work, we tested the ability of Resveratrol (RV) to prevent and cure CCA xenograft in nude mice and investigated molecular mechanisms underpinning such anticancer effect. Human CCA cells were xenografted in mice that were or not treated prior to or after to transplantation with RV. Tumor growth was monitored and analyzed for the markers of cell proliferation, apoptosis, and autophagy. TCGA was interrogated for the molecules possibly targeted by RV. RV could inhibit the growth of human CCA xenograft when administered after implantation and could reduce the growth or even impair the implantation of the tumors when administered prior the transplantation. RV inhibited CCA cell proliferation, induced apoptosis with autophagy, and strongly reduced the presence of CAFs and production of IL-6. Interrogation of CCA dataset in TCGA database revealed that the expression of IL-6 Receptor (IL-6R) inversely correlated with that of MAP-LC3 and BECLIN-1, and that low expression of IL-6R and of MIK67, two pathways downregulated by RV, associated with better survival of CCA patients. Our data demonstrate that RV elicits a strong preventive and curative anticancer effect in CCA by limiting the formation of CAFs and their release of IL-6, and this results in up-regulation of autophagy and apoptosis in the cancer cells. These findings support the clinical use of RV as a primary line of prevention in patients exposed at risk and as an adjuvant therapeutics in CCA patients.
Collapse
Affiliation(s)
- Suyanee Thongchot
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, 123 Mitraparp Highway, Khon Kaen, 40002, Thailand; Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy; Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand; Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Amreen Salwa
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Yingpinyapat Kittirat
- Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparp Highway, Khon Kaen, 40002, Thailand; Department of Medical Sciences, Regional Medical Sciences Center 2 Phitsanulok, Ministry of Public Health, Phitsanulok, Thailand
| | - Watcharin Loilome
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, 123 Mitraparp Highway, Khon Kaen, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparp Highway, Khon Kaen, 40002, Thailand
| | - Nisana Namwat
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, 123 Mitraparp Highway, Khon Kaen, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparp Highway, Khon Kaen, 40002, Thailand.
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy.
| |
Collapse
|
11
|
Corbella E, Fara C, Covarelli F, Porreca V, Palmisano B, Mignogna G, Corsi A, Riminucci M, Maras B, Mancone C. THBS1 and THBS2 Enhance the In Vitro Proliferation, Adhesion, Migration and Invasion of Intrahepatic Cholangiocarcinoma Cells. Int J Mol Sci 2024; 25:1782. [PMID: 38339060 PMCID: PMC10855656 DOI: 10.3390/ijms25031782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
In intrahepatic cholangiocarcinoma (iCCA), thrombospondin 1 (THBS1) and 2 (THBS2) are soluble mediators released in the tumor microenvironment (TME) that contribute to the metastatic spreading of iCCA cells via a lymphatic network by the trans-differentiation of vascular endothelial cells to a lymphatic-like phenotype. To study the direct role of THBS1 and THBS2 on the iCCA cells, well-established epithelial (HuCCT-1) and mesenchymal (CCLP1) iCCA cell lines were subjected to recombinant human THBS1 and THBS2 (rhTHBS1, rhTHBS2) for cellular function assays. Cell growth, cell adhesion, migration, and invasion were all enhanced in both CCLP1 and HuCCT-1 cells by the treatment with either rhTHBS1 or rhTHBS2, although they showed some variability in their intensity of speeding up cellular processes. rhTHBS2 was more intense in inducing invasiveness and in committing the HuCCT-1 cells to a mesenchymal-like phenotype and was therefore a stronger enhancer of the malignant behavior of iCCA cells compared to rhTHBS1. Our data extend the role of THBS1 and THBS2, which are not only able to hinder the vascular network and promote tumor-associated lymphangiogenesis but also exacerbate the malignant behavior of the iCCA cells.
Collapse
Affiliation(s)
- Eleonora Corbella
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (E.C.); (C.F.); (F.C.); (V.P.); (A.C.); (M.R.)
| | - Claudia Fara
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (E.C.); (C.F.); (F.C.); (V.P.); (A.C.); (M.R.)
| | - Francesca Covarelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (E.C.); (C.F.); (F.C.); (V.P.); (A.C.); (M.R.)
| | - Veronica Porreca
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (E.C.); (C.F.); (F.C.); (V.P.); (A.C.); (M.R.)
| | - Biagio Palmisano
- Department of Radiology, Oncology and Pathology, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy;
| | - Giuseppina Mignogna
- Department of Biochemistry Science, Sapienza University of Rome, Viale Regina Elena 332, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (E.C.); (C.F.); (F.C.); (V.P.); (A.C.); (M.R.)
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (E.C.); (C.F.); (F.C.); (V.P.); (A.C.); (M.R.)
| | - Bruno Maras
- Department of Biochemistry Science, Sapienza University of Rome, Viale Regina Elena 332, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Carmine Mancone
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (E.C.); (C.F.); (F.C.); (V.P.); (A.C.); (M.R.)
| |
Collapse
|
12
|
Li Z, Gao Q, Wu Y, Ma X, Wu F, Luan S, Chen S, Shao S, Shen Y, Zhang D, Feng F, Yuan L, Wei S. HBV infection effects prognosis and activates the immune response in intrahepatic cholangiocarcinoma. Hepatol Commun 2024; 8:e0360. [PMID: 38206204 PMCID: PMC10786594 DOI: 10.1097/hc9.0000000000000360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/08/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The impact of HBV infection on the prognosis of patients with intrahepatic cholangiocarcinoma (ICC) remains uncertain, and the underlying mechanism has not been elucidated. This study aims to explore the potential mechanism via clinical perspectives and immune features. METHODS We retrospectively reviewed 1308 patients with ICC treated surgically from January 2007 to January 2015. Then, we compared immune-related markers using immunohistochemistry staining to obtain the gene expression profile GSE107943 and related literature for preliminary bioinformatics analysis. Subsequently, we conducted a drug sensitivity assay to validate the role of TNFSF9 in the ICC organoid-autologous immune cell coculture system and in the patient-derived organoids-based xenograft platform. RESULTS The analysis revealed that tumors in patients without HBV infection exhibited greater size and a higher likelihood of lymphatic metastasis, tumor invasion, and relapse. After resection, HBV-infected patients had longer survival time than uninfected patients (p<0.01). Interestingly, the expression of immune-related markers in HBV-positive patients with ICC was higher than that in uninfected patients (p<0.01). The percentage of CD8+ T cells in HBV-positive tissue was higher than that without HBV infection (p<0.05). We screened 21 differentially expressed genes and investigated the function of TNFSF9 through bioinformatics analyses. The expression of TNFSF9 in ICC organoids with HBV infection was lower than that in organoids without HBV infection. The growth of HBV-negative ICC organoids was significantly inhibited by inhibiting the expression of TNFSF9 with a neutralizing antibody. Additionally, the growth rate was faster in HbsAg (-) ICC patient-derived organoids-based xenograft model than in HbsAg (+) group. CONCLUSIONS The activation of the immune response induced by HBV infection makes the prognosis of HBV-positive patients with ICC differ from that of uninfected patients.
Collapse
Affiliation(s)
- Zhizhen Li
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Soochow University, Soochow, China
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Qingxiang Gao
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yingjun Wu
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Xiaoming Ma
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Soochow University, Soochow, China
| | - Fangyan Wu
- Shanghai OneTar Biomedicine Co., Ltd., Shanghai, China
| | - Siyu Luan
- Shanghai OneTar Biomedicine Co., Ltd., Shanghai, China
| | - Sunrui Chen
- Shanghai OneTar Biomedicine Co., Ltd., Shanghai, China
| | - Siyuan Shao
- Shanghai OneTar Biomedicine Co., Ltd., Shanghai, China
| | - Yang Shen
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Ding Zhang
- Department of Medical, 3D Medicines Inc., Shanghai, China
| | - Feiling Feng
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Lei Yuan
- Department of Hepatobiliary Surgery, Quzhou People's Hospital, Quzhou, Zhejiang, China
| | - Shaohua Wei
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Soochow University, Soochow, China
| |
Collapse
|
13
|
Chen Z, Kang F, Xie C, Liao C, Li G, Wu Y, Lin H, Zhu S, Hu J, Lin C, Huang Y, Tian Y, Huang L, Wang Z, Chen S. A Novel Trojan Horse Nanotherapy Strategy Targeting the cPKM-STMN1/TGFB1 Axis for Effective Treatment of Intrahepatic Cholangiocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303814. [PMID: 37789644 PMCID: PMC10646249 DOI: 10.1002/advs.202303814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/21/2023] [Indexed: 10/05/2023]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is characterized by its dense fibrotic microenvironment and highly malignant nature, which are associated with chemotherapy resistance and very poor prognosis. Although circRNAs have emerged as important regulators in cancer biology, their role in ICC remains largely unclear. Herein, a circular RNA, cPKM is identified, which is upregulated in ICC and associated with poor prognosis. Silencing cPKM in ICC cells reduces TGFB1 release and stromal fibrosis, inhibits STMN1 expression, and suppresses ICC growth and metastasis, moreover, it also leads to overcoming paclitaxel resistance. This is regulated by the interactions of cPKM with miR-199a-5p or IGF2BP2 and by the ability of cPKM to stabilize STMN1/TGFB1 mRNA. Based on these findings, a Trojan horse nanotherapy strategy with co-loading of siRNA against cPKM (si-cPKM) and paclitaxel (PTX) is developed. The siRNA/PTX co-loaded nanosystem (Trojan horse) efficiently penetrates tumor tissues, releases si-cPKM and paclitaxel (soldiers), promotes paclitaxel sensitization, and suppresses ICC proliferation and metastasis in vivo. Furthermore, it alleviates the fibrosis of ICC tumor stroma and reopens collapsed tumor vessels (opening the gates), thus enhancing the efficacy of the standard chemotherapy regimen (main force). This novel nanotherapy provides a promising new strategy for ICC treatment.
Collapse
Affiliation(s)
- Zhi‐Wen Chen
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
| | - Feng‐Ping Kang
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
| | - Cheng‐Ke Xie
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
| | - Cheng‐Yu Liao
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
| | - Ge Li
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary SurgeryFujian Medical University Union HospitalFuzhou350001China
| | - Yong‐Ding Wu
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
| | - Hong‐Yi Lin
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
| | - Shun‐Cang Zhu
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
| | - Jian‐Fei Hu
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
| | - Cai‐Feng Lin
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
- Department of Hepatobiliary SurgeryJinshan Branch of Fujian Provincial HospitalFuzhou350001China
| | - Yi Huang
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
- Center for Experimental Research in Clinical MedicineFujian Provincial HospitalFuzhou350001China
| | - Yi‐Feng Tian
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
- Department of Hepatopancreatobiliary SurgeryFujian Provincial HospitalFuzhou350001China
| | - Long Huang
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
- Department of Hepatopancreatobiliary SurgeryFujian Provincial HospitalFuzhou350001China
| | - Zu‐Wei Wang
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
- Department of Hepatopancreatobiliary SurgeryFujian Provincial HospitalFuzhou350001China
| | - Shi Chen
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
- Department of Hepatopancreatobiliary SurgeryFujian Provincial HospitalFuzhou350001China
| |
Collapse
|
14
|
Eguchi S, Yamada D, Kobayashi S, Sasaki K, Iwagami Y, Tomimaru Y, Noda T, Takahashi H, Asaoka T, Tanemura M, Doki Y, Eguchi H. Automated Analysis for the Prevalence of Cancer-Associated Fibroblasts in Resected Specimens of Intrahepatic Cholangiocarcinoma is a Simple and Reliable Evaluation System. Ann Surg Oncol 2023; 30:5420-5428. [PMID: 37222943 DOI: 10.1245/s10434-023-13633-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/24/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (iCCA) has a high recurrence rate and poor prognosis, and chemotherapy options are limited. The prevalence of cancer-associated fibroblasts (CAFs) in iCCA has recently emerged as a prognostic marker and therapeutic target. A method to quantify the expression of CAFs is needed; however, a simple and reliable quantification method has not yet been established. OBJECTIVE The aim of this study was to establish a simple and reliable method of quantifying CAFs. METHODS A total of 71 patients with iCCA who underwent curative resection from November 2006 to October 2020 in our hospital were investigated. Immunohistochemistry for alpha-smooth muscle actin (α-SMA) was performed and α-SMA-positive cells were quantified by an automated analysis system (new method) and visually counted (conventional method). The times required for measurement and the prognosis were compared. RESULTS The results of the quantification of CAFs by the new method were significantly correlated with the results by the conventional method, and the time required for measurement was significantly shorter with the new method. Patients with high-intensity CAFs showed a significantly poorer prognosis in terms of overall survival (OS) and the cumulative hepatic recurrence rate. In addition, high α-SMA levels were a significant risk factor for OS in multivariate analysis. CONCLUSIONS This new method may contribute to the management of patients with iCCA, not only for the prediction of prognosis of patients with iCCA, but also for the indication of targeted therapy against CAFs.
Collapse
Affiliation(s)
- Satoshi Eguchi
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Daisaku Yamada
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shogo Kobayashi
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Kazuki Sasaki
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshifumi Iwagami
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshito Tomimaru
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takehiro Noda
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hidenori Takahashi
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tadafumi Asaoka
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- The Department of Gastroenterological Surgery, Osaka Police Hospital, Tennoji, Osaka, Japan
| | - Masahiro Tanemura
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- The Department of Gastroenterological Surgery, Rinku General Medical Center, Izumisano, Osaka, Japan
| | - Yuichiro Doki
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hidetoshi Eguchi
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
15
|
Zhang M, Fang Y, Fu X, Liu J, Liu Y, Zhu Z, Ni Y, Yao M, Pan Q, Cao W, Li Z, Dong C. Cancer-associated fibroblasts nurture LGR5 marked liver tumor-initiating cells and promote their tumor formation, growth, and metastasis. Cancer Med 2023; 12:18032-18049. [PMID: 37578396 PMCID: PMC10524013 DOI: 10.1002/cam4.6408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/27/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND & AIMS In liver cancer, leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) compartment represents an important tumor-initiating cell (TIC) population and served as a potential therapeutic target. Cancer-associated fibroblasts (CAFs) is a critical part of the tumor microenvironment, heavily influenced TIC function and fate. However, deeply investigations have been hindered by the lack of accurate preclinical models to investigate the interaction between CAFs and TIC. Organoids model have achieved major advancements as a precious research model for recapitulating the morphological aspects of organs, and thus also serving as a candidate model to investigate the mutual interaction between different cell types. Consequently, this study aimed to construct a three-dimensional (3D) co-culture organoid model of primary LGR5-expressing tumor stem cells from primary murine liver tumors with CAFs to investigate the impact of CAFs on LGR5 marked TICs in liver cancer. MATERIALS AND METHODS First, both of the transgenic LGR5-diphtheria toxin receptor (DTR)-GFP knock-in mice and transgenic Rosa26-mT mice developed primary liver tumors by diethylnitrosamine (DEN) administration. Tumor organoids and CAFs were generated from those primary liver cancer separately. Second, LGR5-expressing TICs organoid with CAFs were established ex vivo based on cell-cell contact or trans-well co-culture system, and the mutual influence between those two types of cells was further investigated. Subsequently, immunodeficient mouse-based xenograft model was further adopted to evaluate the influence of CAFs to LGR5 tumor stem cell, tumor formation, and metastasis. RESULTS The co-culture organoid model composed of murine liver tumor LGR5+ tumor-initiating cells and CAFs in 3D co-culture was successfully established, with the intention to investigate their mutual interaction. The existence of CAFs upon engrafting tumor organoids resulted in dramatic higher number of LGR5+ cells in the neoplasia when compared with engrafting tumor organoids alone. Furthermore, ex vivo culture of isolated LGR5+ cells from tumors of co-engrafted mice formed significantly larger size of organoids than mono-engrafted. Our results also indicated significantly larger size and number of formed organoids, when LGR5+ cells co-cultured with CAF in both cell-cell contact and paracrine signaling in vitro, comparing to LGR5+ cells alone. Furthermore, we found that specific knockout of LGR5 expressing cells suppressed CAF-mediated promotion of tumor formation, growth, and metastasis in the experimental mice model. CONCLUSIONS Altogether, in a 3D co-culture type of murine liver LGR5+ cells and cancer-associated fibroblasts, we have demonstrated robust effects of CAFs in the promotion of LGR5 marked liver TICs. We also further revealed the influence of tumor microenvironment on stem cell-related therapy, suggesting the possibility of combing CAF-targeted and tumor stem cell targeted therapy in treating liver cancer.
Collapse
Affiliation(s)
- Mingna Zhang
- Department of OncologyPostgraduate Training Base of Jinzhou Medical University, Shanghai East HospitalShanghaiChina
| | - Yiqiao Fang
- Department of Thyroid and Parathyroid Surgery, West China HospitalSichuan UniversityChengduSichuanChina
- Laboratory of Thyroid and Parathyroid Diseases, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduSichuanChina
| | - Xia Fu
- Department of Outpatients, West China HospitalSichuan UniversityChengduSichuanChina
| | - Jiaye Liu
- Department of Thyroid and Parathyroid Surgery, West China HospitalSichuan UniversityChengduSichuanChina
- Laboratory of Thyroid and Parathyroid Diseases, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yang Liu
- Department of Obsterics and Gynecology, Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Zhounan Zhu
- Department of OncologyShanghai East Hospital, Tongji University School of Medicine, Tongji UniversityShanghaiPeople's Republic of China
| | - Yinyun Ni
- Department of Respiratory and Critical Care Medicine, National Clinic al Research Center for Geriatrics, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease‐related Molecular Network, West China Hospital, West China School of MedicineSichuan UniversityChengduSichuanChina
| | - Menglin Yao
- Department of Respiratory and Critical Care Medicine, National Clinic al Research Center for Geriatrics, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease‐related Molecular Network, West China Hospital, West China School of MedicineSichuan UniversityChengduSichuanChina
| | - Qiuwei Pan
- Department of Gastroenterology and HepatologyErasmus Medical CenterRotterdamthe Netherlands
| | - Wanlu Cao
- Department of OncologyShanghai East Hospital, Tongji University School of Medicine, Tongji UniversityShanghaiPeople's Republic of China
| | - Zhihui Li
- Department of Thyroid and Parathyroid Surgery, West China HospitalSichuan UniversityChengduSichuanChina
- Laboratory of Thyroid and Parathyroid Diseases, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduSichuanChina
| | - Chunyan Dong
- Department of OncologyPostgraduate Training Base of Jinzhou Medical University, Shanghai East HospitalShanghaiChina
- Department of Oncology, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and EngineeringEast Hospital Affiliated to Tongji University, Tongji University School of Medicine, Tongji UniversityShanghaiPeople's Republic of China
| |
Collapse
|
16
|
Eguchi S, Yamada D, Kobayashi S, Sasaki K, Iwagami Y, Tomimaru Y, Noda T, Takahashi H, Asaoka T, Tanemura M, Doki Y, Eguchi H. ASO Author Reflections: A New Reliable Method of Evaluating Cancer-Associated Fibroblasts in Resected Specimen of Intrahepatic Cholangiocarcinoma. Ann Surg Oncol 2023; 30:5429-5430. [PMID: 37273026 DOI: 10.1245/s10434-023-13671-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023]
Affiliation(s)
- Satoshi Eguchi
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Daisaku Yamada
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shogo Kobayashi
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Kazuki Sasaki
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshifumi Iwagami
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshito Tomimaru
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takehiro Noda
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidenori Takahashi
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tadafumi Asaoka
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
- The Department of Gastroenterological Surgery, Osaka Police Hospital, Osaka, Japan
| | - Masahiro Tanemura
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
- The Department of Gastroenterological Surgery, Rinku General Medical Center, Osaka, Japan
| | - Yuichiro Doki
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidetoshi Eguchi
- The Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
17
|
Knipper K, Lyu SI, Quaas A, Bruns CJ, Schmidt T. Cancer-Associated Fibroblast Heterogeneity and Its Influence on the Extracellular Matrix and the Tumor Microenvironment. Int J Mol Sci 2023; 24:13482. [PMID: 37686288 PMCID: PMC10487587 DOI: 10.3390/ijms241713482] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The tumor microenvironment comprises multiple cell types, like cancer cells, endothelial cells, fibroblasts, and immune cells. In recent years, there have been massive research efforts focusing not only on cancer cells, but also on other cell types of the tumor microenvironment, thereby aiming to expand and determine novel treatment options. Fibroblasts represent a heterogenous cell family consisting of numerous subtypes, which can alter immune cell fractions, facilitate or inhibit tumor growth, build pre-metastatic niches, or stabilize vessels. These effects can be achieved through cell-cell interactions, which form the extracellular matrix, or via the secretion of cytokines or chemokines. The pro- or antitumorigenic fibroblast phenotypes show variability not only among different cancer entities, but also among intraindividual sites, including primary tumors or metastatic lesions. Commonly prescribed for arterial hypertension, the inhibitors of the renin-angiotensin system have recently been described as having an inhibitory effect on fibroblasts. This inhibition leads to modified immune cell fractions and increased tissue stiffness, thereby contributing to overcoming therapy resistance and ultimately inhibiting tumor growth. However, it is important to note that the inhibition of fibroblasts can also have the opposite effect, potentially resulting in increased tumor growth. We aim to summarize the latest state of research regarding fibroblast heterogeneity and its intricate impact on the tumor microenvironment and extracellular matrix. Specifically, we focus on highlighting recent advancements in the comprehension of intraindividual heterogeneity and therapy options within this context.
Collapse
Affiliation(s)
- Karl Knipper
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (K.K.); (C.J.B.)
| | - Su Ir Lyu
- Institute of Pathology, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (S.I.L.); (A.Q.)
| | - Alexander Quaas
- Institute of Pathology, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (S.I.L.); (A.Q.)
| | - Christiane J. Bruns
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (K.K.); (C.J.B.)
| | - Thomas Schmidt
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (K.K.); (C.J.B.)
| |
Collapse
|
18
|
Arçay Öztürk A, Flamen P. FAP-targeted PET imaging in gastrointestinal malignancies: a comprehensive review. Cancer Imaging 2023; 23:79. [PMID: 37608378 PMCID: PMC10463504 DOI: 10.1186/s40644-023-00598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023] Open
Abstract
F18-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) plays a crucial role in tumour diagnosis, staging, and therapy response evaluation of various cancer types and has been a standard imaging modality used in clinical oncology practice for many years. However, it has certain limitations in evaluating some particular gastrointestinal cancer types due to low FDG-avidity or interphering physiological background activity. Fibroblast activation protein (FAP), a protein of the tumour microenvironment, is overexpressed in a wide range of cancers which makes it an attractive target for both tumour imaging and therapy. Recently, FAP-targeted radiopharmaceuticals are widely used in clinical research and achieved great results in tumour imaging. Considering the limitations of FDG PET/CT and the lack of physiological FAP-targeted tracer uptake in liver and intestinal loops, gastrointestinal cancers are among the most promising indications of FAP-targeted imaging. Herein, we present a comprehensive review of FAP-targeted imaging in gastrointestinal cancers in order to clarify the current and potential future role of this class of molecules in gastrointestinal oncology.
Collapse
Affiliation(s)
- Ayça Arçay Öztürk
- Department of Nuclear Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| | - Patrick Flamen
- Department of Nuclear Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
19
|
MUG CCArly: A Novel Autologous 3D Cholangiocarcinoma Model Presents an Increased Angiogenic Potential. Cancers (Basel) 2023; 15:cancers15061757. [PMID: 36980644 PMCID: PMC10046314 DOI: 10.3390/cancers15061757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Cholangiocarcinoma (CCA) are characterized by their desmoplastic and hypervascularized tumor microenvironment (TME), which is mainly composed of tumor cells and cancer-associated fibroblasts (CAFs). CAFs play a pivotal role in general and CCA tumor progression, angiogenesis, metastasis, and the development of treatment resistance. To our knowledge, no continuous human in vivo-like co-culture model is available for research. Therefore, we aimed to establish a new model system (called MUG CCArly) that mimics the desmoplastic microenvironment typically seen in CCA. Proteomic data comparing the new CCA tumor cell line with our co-culture tumor model (CCTM) indicated a higher gene expression correlation of the CCTM with physiological CCA characteristics. A pro-angiogenic TME that is typically observed in CCA could also be better simulated in the CCTM group. Further analysis of secreted proteins revealed CAFs to be the main source of these angiogenic factors. Our CCTM MUG CCArly represents a new, reproducible, and easy-to-handle 3D CCA model for preclinical studies focusing on CCA-stromal crosstalk, tumor angiogenesis, and invasion, as well as the immunosuppressive microenvironment and the involvement of CAFs in the way that drug resistance develops.
Collapse
|
20
|
Vita F, Olaizola I, Amato F, Rae C, Marco S, Banales JM, Braconi C. Heterogeneity of Cholangiocarcinoma Immune Biology. Cells 2023; 12:cells12060846. [PMID: 36980187 PMCID: PMC10047186 DOI: 10.3390/cells12060846] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Cholangiocarcinomas (CCAs) are aggressive tumors arising along the biliary tract epithelium, whose incidence and mortality are increasing. CCAs are highly desmoplastic cancers characterized by a dense tumor microenvironment (TME), in which each single component plays a fundamental role in shaping CCA initiation, progression and resistance to therapies. The crosstalk between cancer cells and TME can affect the recruitment, infiltration and differentiation of immune cells. According to the stage of the disease and to intra- and inter-patient heterogeneity, TME may contribute to either protumoral or antitumoral activities. Therefore, a better understanding of the effect of each immune cell subtype may open the path to new personalized immune therapeutic strategies for the management of CCA. In this review, we describe the role of immune cells in CCA initiation and progression, and their crosstalk with both cancer-associated fibroblasts (CAFs) and the cancer-stem-cell-like (CSC) niche.
Collapse
Affiliation(s)
- Francesca Vita
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; (F.V.); (F.A.); (C.R.); (S.M.)
- Department of Oncology, University of Turin, 10043 Turin, Italy
| | - Irene Olaizola
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute–Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (I.O.); (J.M.B.)
| | - Francesco Amato
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; (F.V.); (F.A.); (C.R.); (S.M.)
| | - Colin Rae
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; (F.V.); (F.A.); (C.R.); (S.M.)
| | - Sergi Marco
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; (F.V.); (F.A.); (C.R.); (S.M.)
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute–Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (I.O.); (J.M.B.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, “Instituto de Salud Carlos III”), 28029 Madrid, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
| | - Chiara Braconi
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; (F.V.); (F.A.); (C.R.); (S.M.)
- Beatson West of Scotland Cancer Centre, Glasgow G12 0YN, UK
- Correspondence:
| |
Collapse
|
21
|
Li J, Wu X, Ni X, Li Y, Xu L, Hao X, Zhao W, Zhu X, Yin X. Angiotensin receptor blockers retard the progression and fibrosis via inhibiting the viability of AGTR1+ CAFs in intrahepatic cholangiocarcinoma. Clin Transl Med 2023; 13:e1213. [PMID: 36855786 PMCID: PMC9975461 DOI: 10.1002/ctm2.1213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (iCCA) is a highly lethal malignancy characterized by massive fibrosis and has ineffective adjuvant therapies. Here, we demonstrate the potential of angiotensin receptor blockers (ARBs) in targeting iCCA. METHODS Masson's trichrome staining was used to assess the effect of ARBs in iCCA specimens, CCK8 and gel contraction assays in vitro and in xenograft models in vivo. RNA-seq and ATAC-seq were used for mechanistic investigations. RESULTS Patients with iCCA who were administered ARBs had a better prognosis and a lower proportion of tumour stroma, indicating alleviated fibrosis. The presence of AGTR1, the ARBs receptor, is associated with a poor prognosis of iCCA and is highly expressed in tumour tissues and cancer-associated fibroblasts (CAFs). The ARBs strongly attenuated the viability of AGTR1+ CAFs in vitro and retarded tumour progression and fibrosis in xenograft models of co-cultured CAFs and iCCA cells. Still, they did not have a significant effect on AGTR1- CAFs. Moreover, ARBs decreased the secretion of AGTR1+ CAF-derived MFAP5 via the Hippo pathway, weakened the interaction between CAFs and iCCA cells, and impaired the aggressiveness of iCCA cells by attenuating the activation of the Notch1 pathway in iCCA cells. CONCLUSIONS ARBs exhibit anti-fibrotic function by inhibiting the viability of AGTR1+ CAFs. These findings support using ARBs as a novel therapeutic option for targeting iCCA.
Collapse
Affiliation(s)
- Jian‐Hui Li
- Department of Pancreato‐Biliary SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xiao Wu
- Department of Pancreato‐Biliary SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xuhao Ni
- Department of Pancreato‐Biliary SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Ya‐Xiong Li
- Department of Pancreato‐Biliary SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Long Xu
- Key Laboratory of Stem Cells and Tissue EngineeringSun Yat‐sen UniversityMinistry of EducationGuangzhouGuangdongChina
| | - Xiao‐Yi Hao
- Lau Luen Hung Private Medical CenterUnit 3 (Surgery)The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Wei Zhao
- Department of Physiology, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Xiao‐Xu Zhu
- Department of Pancreato‐Biliary SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xiao‐Yu Yin
- Department of Pancreato‐Biliary SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
22
|
van Tienderen GS, Rosmark O, Lieshout R, Willemse J, de Weijer F, Elowsson Rendin L, Westergren-Thorsson G, Doukas M, Groot Koerkamp B, van Royen ME, van der Laan LJ, Verstegen MM. Extracellular matrix drives tumor organoids toward desmoplastic matrix deposition and mesenchymal transition. Acta Biomater 2023; 158:115-131. [PMID: 36427688 DOI: 10.1016/j.actbio.2022.11.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/31/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
Patient-derived tumor organoids have been established as promising tools for in vitro modelling of multiple tumors, including cholangiocarcinoma (CCA). However, organoids are commonly cultured in basement membrane extract (BME) which does not recapitulate the intricacies of the extracellular matrix (ECM). We combined CCA organoids (CCAOs) with native tumor and liver scaffolds, obtained by decellularization, to effectuate a model to study the interaction between epithelial tumor cells and their surrounding ECM. Decellularization resulted in removal of cells while preserving ECM structure and retaining important characteristics of the tissue origin, including stiffness and presence of desmoplasia. The transcriptome of CCAOs in a tumor scaffold much more resembled that of patient-paired CCA tissue in vivo compared to CCAOs cultured in BME or liver scaffolds. This was accompanied by an increase in chemoresistance to clinically-relevant chemotherapeutics. CCAOs in decellularized scaffolds revealed environment-dependent proliferation dynamics, driven by the occurrence of epithelial-mesenchymal transition. Furthermore, CCAOs initiated an environment-specific desmoplastic reaction by increasing production of multiple collagen types. In conclusion, convergence of organoid-based models with native ECM scaffolds will lead to better understanding of the in vivo tumor environment. STATEMENT OF SIGNIFICANCE: The extracellular matrix (ECM) influences various facets of tumor behavior. Understanding the exact role of the ECM in controlling tumor cell fate is pertinent to understand tumor progression and develop novel therapeutics. This is particularly the case for cholangiocarcinoma (CCA), whereby the ECM displays a distinct tumor environment, characterized by desmoplasia. However, current models to study the interaction between epithelial tumor cells and the environment are lacking. We have developed a fully patient-derived model encompassing CCA organoids (CCAOs) and human decellularized tumor and tumor-free liver ECM. The tumor ECM induced recapitulation of various aspects of CCA, including migration dynamics, transcriptome and proteome profiles, and chemoresistance. Lastly, we uncover that epithelial tumor cells contribute to matrix deposition, and that this phenomenon is dependent on the level of desmoplasia already present.
Collapse
Affiliation(s)
- Gilles S van Tienderen
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Oskar Rosmark
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ruby Lieshout
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jorke Willemse
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Floor de Weijer
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Linda Elowsson Rendin
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Michail Doukas
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Martin E van Royen
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Luc Jw van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Monique Ma Verstegen
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
23
|
Li S, Lu R, Shu L, Chen Y, Zhao J, Dai J, Huang Q, Li X, Meng W, Long F, Li Y, Fan C, Zhou Z, Mo X. An integrated map of fibroblastic populations in human colon mucosa and cancer tissues. Commun Biol 2022; 5:1326. [PMID: 36463319 PMCID: PMC9719516 DOI: 10.1038/s42003-022-04298-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Fibroblasts and myofibroblasts are major mesenchymal cells in the lamina propria of colon mucosa and in colon cancer tissues. Detailed insight into the highly specific populations of fibroblasts and myofibroblasts is required to understand the integrity and homeostasis of human colon mucosa and colon cancer. Based on gene expression profiles of single cells, we identified fibroblast populations that produce extracellular matrix components, Wnt ligand- and BMP-secreting fibroblasts, chemokine- and chemokine ligand-generating fibroblasts, highly activated fibroblasts, immune-modulating fibroblasts, epithelial cell-modulating myofibroblasts, stimuli-responsive myofibroblasts, proliferating myofibroblasts, fibroblast-like myofibroblasts, matrix producing myofibroblasts, and contractile myofibroblasts in human colon mucosa. In colon cancer tissue, the compositions of fibroblasts and myofibroblasts were highly altered, as were the expressing patterns of genes including BMPs, Wnt ligands, chemokines, chemokine ligands, growth factors and extracellular matrix components in fibroblasts and myofibroblasts. Our work expands the working atlas of fibroblasts and myofibroblasts and provides a framework for interrogating the complexity of stromal cells in human healthy colon mucosa and colon cancer tissues.
Collapse
Affiliation(s)
- Siying Li
- grid.13291.380000 0001 0807 1581Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ran Lu
- grid.13291.380000 0001 0807 1581Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China ,grid.13291.380000 0001 0807 1581Department of Public Health Laboratory Sciences, West China Fourth Hospital, West China School of Public Health, Sichuan University, Chengdu, China ,grid.13291.380000 0001 0807 1581Department of Urology and Pelvic Surgery, West China Fourth Hospital, West China School of Public Health, Sichuan University, Chengdu, China
| | - Linjuan Shu
- grid.13291.380000 0001 0807 1581Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yulin Chen
- grid.13291.380000 0001 0807 1581Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Zhao
- grid.13291.380000 0001 0807 1581Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Junlong Dai
- grid.13291.380000 0001 0807 1581Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qiaorong Huang
- grid.13291.380000 0001 0807 1581Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xue Li
- grid.13291.380000 0001 0807 1581Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wentong Meng
- grid.13291.380000 0001 0807 1581Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Feiwu Long
- grid.13291.380000 0001 0807 1581Department of Gastrointestinal, Bariatric and Metabolic Surgery, Research Center for Nutrition, Metabolism & Food Safety, West China-PUMC C.C. Chen Institute of Health, West China Fourth Hospital, West China School of Public Health, Sichuan University, Chengdu, China
| | - Yuan Li
- grid.13291.380000 0001 0807 1581Institute of Digestive Surgery and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanwen Fan
- grid.13291.380000 0001 0807 1581Department of Gastrointestinal, Bariatric and Metabolic Surgery, Research Center for Nutrition, Metabolism & Food Safety, West China-PUMC C.C. Chen Institute of Health, West China Fourth Hospital, West China School of Public Health, Sichuan University, Chengdu, China ,grid.13291.380000 0001 0807 1581Institute of Digestive Surgery and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zongguang Zhou
- grid.13291.380000 0001 0807 1581Institute of Digestive Surgery and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xianming Mo
- grid.13291.380000 0001 0807 1581Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Wang Y, Strazzabosco M, Madoff DC. Locoregional Therapy in the Management of Intrahepatic Cholangiocarcinoma: Is There Sufficient Evidence to Guide Current Clinical Practice? Curr Oncol Rep 2022; 24:1741-1750. [PMID: 36255606 PMCID: PMC10878124 DOI: 10.1007/s11912-022-01338-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Intrahepatic cholangiocarcinoma (iCCA) carries a dismal prognosis and, despite increasing incidence, still lacks effective treatments. In this scenario, locoregional therapies (LRT) are gaining interest as they may be effective at local tumor control and complementary to surgical and non-surgical approaches. In this article, we will review the evolving role of LRT performed by interventional radiologists in the management of iCCA. RECENT FINDINGS Accumulating retrospective evidence indicates that ablative therapies and transarterial embolizations are of benefit for iCCA with unresectable disease, demonstrating promising safety profiles and prolonged or comparable survival outcomes compared to systemic therapy and surgery. Additionally, for surgical candidates, portal ± hepatic venous embolization can improve the safety of hepatectomy by inducing preoperative hypertrophy of the non-involved liver lobe. LRTs are playing an increasingly important role in the multimodal treatment of iCCA from various perspectives with reduced toxicity relative to traditional treatments. To expand the scope of applications for LRTs in this setting, future prospective randomized studies are needed to confirm their efficacy and advantage.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Radiology and Biomedical Imaging, Section of Interventional Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Mario Strazzabosco
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA
| | - David C Madoff
- Department of Radiology and Biomedical Imaging, Section of Interventional Radiology, Yale School of Medicine, New Haven, CT, USA.
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
25
|
Mancarella S, Gigante I, Serino G, Pizzuto E, Dituri F, Valentini MF, Wang J, Chen X, Armentano R, Calvisi DF, Giannelli G. Crenigacestat blocking notch pathway reduces liver fibrosis in the surrounding ecosystem of intrahepatic CCA viaTGF-β inhibition. J Exp Clin Cancer Res 2022; 41:331. [PMID: 36443822 PMCID: PMC9703776 DOI: 10.1186/s13046-022-02536-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (iCCA) is a highly malignant tumor characterized by an intensive desmoplastic reaction due to the exaggerated presence of the extracellular (ECM) matrix components. Liver fibroblasts close to the tumor, activated by transforming growth factor (TGF)-β1 and expressing high levels of α-smooth muscle actin (α-SMA), become cancer-associated fibroblasts (CAFs). CAFs are deputed to produce and secrete ECM components and crosstalk with cancer cells favoring tumor progression and resistance to therapy. Overexpression of Notch signaling is implicated in CCA development and growth. The study aimed to determine the effectiveness of the Notch inhibitor, Crenigacestat, on the surrounding microenvironment of iCCA. METHODS We investigated Crenigacestat's effectiveness in a PDX model of iCCA and human primary culture of CAFs isolated from patients with iCCA. RESULTS In silico analysis of transcriptomic profiling from PDX iCCA tissues treated with Crenigacestat highlighted "liver fibrosis" as one of the most modulated pathways. In the iCCA PDX model, Crenigacestat treatment significantly (p < 0.001) reduced peritumoral liver fibrosis. Similar results were obtained in a hydrodynamic model of iCCA. Bioinformatic prediction of the upstream regulators related to liver fibrosis in the iCCA PDX treated with Crenigacestat revealed the involvement of the TGF-β1 pathway as a master regulator gene showing a robust connection between TGF-β1 and Notch pathways. Consistently, drug treatment significantly (p < 0.05) reduced TGF-β1 mRNA and protein levels in tumoral tissue. In PDX tissues, Crenigacestat remarkably inhibited TGF-β signaling and extracellular matrix protein gene expression and reduced α-SMA expression. Furthermore, Crenigacestat synergistically increased Gemcitabine effectiveness in the iCCA PDX model. In 31 iCCA patients, TGF-β1 and α-SMA were upregulated in the tumoral compared with peritumoral tissues. In freshly isolated CAFs from patients with iCCA, Crenigacestat significantly (p < 0.001) inhibited Notch signaling, TGF-β1 secretion, and Smad-2 activation. Consequently, Crenigacestat also inactivated CAFs reducing (p < 0.001) α-SMA expression. Finally, CAFs treated with Crenigacestat produced less (p < 005) ECM components such as fibronectin, collagen 1A1, and collagen 1A2. CONCLUSIONS Notch signaling inhibition reduces the peritumoral desmoplastic reaction in iCCA, blocking the TGF-β1 canonical pathway.
Collapse
Affiliation(s)
- Serena Mancarella
- grid.489101.50000 0001 0162 6994National Institute of Gastroenterology “S. De Bellis” Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA Italy
| | - Isabella Gigante
- grid.489101.50000 0001 0162 6994National Institute of Gastroenterology “S. De Bellis” Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA Italy
| | - Grazia Serino
- grid.489101.50000 0001 0162 6994National Institute of Gastroenterology “S. De Bellis” Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA Italy
| | - Elena Pizzuto
- grid.489101.50000 0001 0162 6994National Institute of Gastroenterology “S. De Bellis” Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA Italy
| | - Francesco Dituri
- grid.489101.50000 0001 0162 6994National Institute of Gastroenterology “S. De Bellis” Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA Italy
| | - Maria F. Valentini
- grid.7644.10000 0001 0120 3326Department of Emergency and Organ Transplant, University of Bari Medical School, Bari, Italy
| | - Jingxiao Wang
- grid.266102.10000 0001 2297 6811Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94143 USA
| | - Xin Chen
- grid.266102.10000 0001 2297 6811Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94143 USA
| | - Raffaele Armentano
- grid.489101.50000 0001 0162 6994National Institute of Gastroenterology “S. De Bellis” Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA Italy
| | - Diego F. Calvisi
- grid.7727.50000 0001 2190 5763Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
| | - Gianluigi Giannelli
- grid.489101.50000 0001 0162 6994National Institute of Gastroenterology “S. De Bellis” Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA Italy
| |
Collapse
|
26
|
Montori M, Scorzoni C, Argenziano ME, Balducci D, De Blasio F, Martini F, Buono T, Benedetti A, Marzioni M, Maroni L. Cancer-Associated Fibroblasts in Cholangiocarcinoma: Current Knowledge and Possible Implications for Therapy. J Clin Med 2022; 11:6498. [PMID: 36362726 PMCID: PMC9654416 DOI: 10.3390/jcm11216498] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 01/02/2024] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive neoplasia with an increasing incidence and mortality. It is characterized by a strong desmoplastic stroma surrounding cancer cells. Cancer-associated fibroblasts (CAFs) are the main cell type of CCA stroma and they have an important role in modulating cancer microenvironments. CAFs originate from multiple lines of cells and mainly consist of fibroblasts and alpha-smooth muscle actin (α-SMA) positive myofibroblast-like cells. The continuous cross-talking between CCA cells and desmoplastic stroma is permitted by CAF biochemical signals, which modulate a number of pathways. Stromal cell-derived factor-1 expression increases CAF recruitment to the tumor reactive stroma and influences apoptotic pathways. The Bcl-2 family protein enhances susceptibility to CAF apoptosis and PDGFRβ induces fibroblast migration and stimulates tumor lymphangiogenesis. Many factors related to CAFs may influence CCA prognosis. For instance, a better prognosis is associated with IL-33 expression and low stromal IL-6 (whose secretion is stimulated by microRNA). In contrast, a worst prognosis is given by the expression of PDGF-D, podoplanin, SDF-1, α-SMA high expression, and periostin. The maturity phenotype has a prognostic relevance too. New therapeutic strategies involving CAFs are currently under study. Promising results are obtained with anti-PlGF therapy, nintedanib (BIBF1120), navitoclax, IPI-926, resveratrol, and controlled hyperthermia.
Collapse
Affiliation(s)
- Michele Montori
- Clinic of Gastroenterology, Hepatology, and Emergency Digestive Endoscopy, Università Politecnica delle Marche, 60126 Ancona, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gu S, Jiang M, Zhang B. Microcystin-LR in Primary Liver Cancers: An Overview. Toxins (Basel) 2022; 14:toxins14100715. [PMID: 36287983 PMCID: PMC9611980 DOI: 10.3390/toxins14100715] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/29/2022] [Accepted: 10/17/2022] [Indexed: 12/01/2022] Open
Abstract
The cyanobacterial blooms produced by eutrophic water bodies have become a serious environmental issue around the world. After cellular lysing or algaecide treatment, microcystins (MCs), which are regarded as the most frequently encountered cyanobacterial toxins in fresh water, are released into water. Among all the variants of MCs, MC-LR has been widely studied due to its severe hepatotoxicity. Since 1992, various studies have identified the important roles of MC-LR in the origin and progression of primary liver cancers (PLCs), although few reviews have focused on it. Therefore, this review aims to summarize the major achievements and shortcomings observed in the past few years. Based on the available literature, the mechanisms of how MC-LR induces or promotes PLCs are elucidated in this review. This review aims to enhance our understanding of the role that MC-LR plays in PLCs and provides a rational approach for future applications.
Collapse
Affiliation(s)
- Shen Gu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Translational Medicine Research Center, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Correspondence: ; Tel.: +86-0571-56007664
| | - Mingxuemei Jiang
- Institute of Scientific and Technical Information of Zhejiang Province, Hangzhou 310001, China
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Translational Medicine Research Center, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
28
|
Kast RE, Alfieri A, Assi HI, Burns TC, Elyamany AM, Gonzalez-Cao M, Karpel-Massler G, Marosi C, Salacz ME, Sardi I, Van Vlierberghe P, Zaghloul MS, Halatsch ME. MDACT: A New Principle of Adjunctive Cancer Treatment Using Combinations of Multiple Repurposed Drugs, with an Example Regimen. Cancers (Basel) 2022; 14:2563. [PMID: 35626167 PMCID: PMC9140192 DOI: 10.3390/cancers14102563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
In part one of this two-part paper, we present eight principles that we believe must be considered for more effective treatment of the currently incurable cancers. These are addressed by multidrug adjunctive cancer treatment (MDACT), which uses multiple repurposed non-oncology drugs, not primarily to kill malignant cells, but rather to reduce the malignant cells' growth drives. Previous multidrug regimens have used MDACT principles, e.g., the CUSP9v3 glioblastoma treatment. MDACT is an amalgam of (1) the principle that to be effective in stopping a chain of events leading to an undesired outcome, one must break more than one link; (2) the principle of Palmer et al. of achieving fractional cancer cell killing via multiple drugs with independent mechanisms of action; (3) the principle of shaping versus decisive operations, both being required for successful cancer treatment; (4) an idea adapted from Chow et al., of using multiple cytotoxic medicines at low doses; (5) the idea behind CUSP9v3, using many non-oncology CNS-penetrant drugs from general medical practice, repurposed to block tumor survival paths; (6) the concept from chess that every move creates weaknesses and strengths; (7) the principle of mass-by adding force to a given effort, the chances of achieving the goal increase; and (8) the principle of blocking parallel signaling pathways. Part two gives an example MDACT regimen, gMDACT, which uses six repurposed drugs-celecoxib, dapsone, disulfiram, itraconazole, pyrimethamine, and telmisartan-to interfere with growth-driving elements common to cholangiocarcinoma, colon adenocarcinoma, glioblastoma, and non-small-cell lung cancer. gMDACT is another example of-not a replacement for-previous multidrug regimens already in clinical use, such as CUSP9v3. MDACT regimens are designed as adjuvants to be used with cytotoxic drugs.
Collapse
Affiliation(s)
| | - Alex Alfieri
- Department of Neurosurgery, Cantonal Hospital of Winterthur, 8400 Winterthur, Switzerland; (A.A.); (M.-E.H.)
| | - Hazem I. Assi
- Naef K. Basile Cancer Center, American University of Beirut, Beirut 1100, Lebanon;
| | - Terry C. Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA;
| | - Ashraf M. Elyamany
- Oncology Unit, Hemato-Oncology Department, SECI Assiut University Egypt/King Saud Medical City, Riyadh 7790, Saudi Arabia;
| | - Maria Gonzalez-Cao
- Translational Cancer Research Unit, Dexeus University Hospital, 08028 Barcelona, Spain;
| | | | - Christine Marosi
- Clinical Division of Medical Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Michael E. Salacz
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA;
| | - Iacopo Sardi
- Department of Pediatric Oncology, Meyer Children’s Hospital, Viale Pieraccini 24, 50139 Florence, Italy;
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium;
| | - Mohamed S. Zaghloul
- Children’s Cancer Hospital & National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Marc-Eric Halatsch
- Department of Neurosurgery, Cantonal Hospital of Winterthur, 8400 Winterthur, Switzerland; (A.A.); (M.-E.H.)
| |
Collapse
|
29
|
Siripongsatian D, Promteangtrong C, Kunawudhi A, Kiatkittikul P, Boonkawin N, Chinnanthachai C, Jantarato A, Chotipanich C. Comparisons of Quantitative Parameters of Ga-68-Labelled Fibroblast Activating Protein Inhibitor (FAPI) PET/CT and [ 18F]F-FDG PET/CT in Patients with Liver Malignancies. Mol Imaging Biol 2022; 24:818-829. [PMID: 35486293 PMCID: PMC9053129 DOI: 10.1007/s11307-022-01732-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 01/01/2023]
Abstract
Purpose To compare quantitative parameters and tumour detection rates of [68 Ga]Ga-FAPI PET/CT with those of dedicated liver PET/MRI and 18F-FDG PET in patients with liver malignancies. Procedures Twenty-seven patients (29 imaging studies) with diagnosed or suspected liver malignancies who underwent [68 Ga]Ga-FAPI-46 PET/CT, liver PET/MRI, and [18F]FDG PET/CT between September 2020 and June 2021 were retrospectively analysed. MRI findings were used as the reference standard for diagnosis. Results The 27 patients had a median age of 68 years (interquartile range: 60–74 years; 21 men). Primary intrahepatic tumours were reported in 13 patients (15 imaging studies) with cholangiocarcinoma (CCA) and in 14 patients with hepatocellular carcinoma (HCC). All intrahepatic lesions detectable on MRI were also detected on [68 Ga]Ga-FAPI-46 PET/CT giving a sensitivity of 100% (19/19), whereas the sensitivity of [18F]FDG PET/CT was 58% (11/19). All intrahepatic lesions were detected on [68 Ga]Ga-FAPI-46 PET/CT, on which they showed higher activity (median SUVmax: 15.61 vs. 5.17; P < .001) and higher target-to-background ratio (TBR; median, 15.90 vs. 1.69, P < .001) than on [18F]FDG, especially in patients with CCA (median TBR, 21.08 vs. 1.47, respectively; P < .001). The uptake positivity rate in regional node metastasis was 100% (12/12) on [68 Ga]Ga-FAPI-46 PET/CT compared with 58% (7/12) on [18F]FDG PET/CT. All patients with distant metastasis (100%, 14/14) were detected on both [18F]FDG and [68 Ga]Ga-FAPI-46 PET/CT imaging, although more distant metastatic lesions were detected on [68 Ga]Ga-FAPI-46 PET/CT than on [18F]FDG (96% (42/44) vs. 89% (39/44), respectively). Conclusion [68 Ga]Ga-FAPI PET/CT with dedicated liver PET/MRI shows potential for superior detection of hepatic malignancy compared with [18F]FDG PET/CT or MRI alone. Supplementary Information The online version contains supplementary material available at 10.1007/s11307-022-01732-2.
Collapse
Affiliation(s)
- Dheeratama Siripongsatian
- National Cyclotron and PET Centre Building, Chulabhorn Hospital, 54 Kamphangpetch 6 Road, Talad Bangkhen, Laksi, Bangkok, 10210, Thailand.
| | - Chetsadaporn Promteangtrong
- National Cyclotron and PET Centre Building, Chulabhorn Hospital, 54 Kamphangpetch 6 Road, Talad Bangkhen, Laksi, Bangkok, 10210, Thailand
| | - Anchisa Kunawudhi
- National Cyclotron and PET Centre Building, Chulabhorn Hospital, 54 Kamphangpetch 6 Road, Talad Bangkhen, Laksi, Bangkok, 10210, Thailand
| | - Peerapon Kiatkittikul
- National Cyclotron and PET Centre Building, Chulabhorn Hospital, 54 Kamphangpetch 6 Road, Talad Bangkhen, Laksi, Bangkok, 10210, Thailand
| | - Natphimol Boonkawin
- National Cyclotron and PET Centre Building, Chulabhorn Hospital, 54 Kamphangpetch 6 Road, Talad Bangkhen, Laksi, Bangkok, 10210, Thailand
| | - Chatchawarin Chinnanthachai
- National Cyclotron and PET Centre Building, Chulabhorn Hospital, 54 Kamphangpetch 6 Road, Talad Bangkhen, Laksi, Bangkok, 10210, Thailand
| | - Attapon Jantarato
- National Cyclotron and PET Centre Building, Chulabhorn Hospital, 54 Kamphangpetch 6 Road, Talad Bangkhen, Laksi, Bangkok, 10210, Thailand
| | - Chanisa Chotipanich
- National Cyclotron and PET Centre Building, Chulabhorn Hospital, 54 Kamphangpetch 6 Road, Talad Bangkhen, Laksi, Bangkok, 10210, Thailand
| |
Collapse
|
30
|
Bête Noire of Chemotherapy and Targeted Therapy: CAF-Mediated Resistance. Cancers (Basel) 2022; 14:cancers14061519. [PMID: 35326670 PMCID: PMC8946545 DOI: 10.3390/cancers14061519] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Tumor cells struggle to survive following treatment. The struggle ends in either of two ways. The drug combination used for the treatment blocks the proliferation of tumor cells and initiates apoptosis of cells, which is a win for the patient, or tumor cells resist the effect of the drug combination used for the treatment and continue to evade the effect of anti-tumor drugs, which is a bête noire of therapy. Cancer-associated fibroblasts are the most abundant non-transformed element of the microenvironment in solid tumors. Tumor cells play a direct role in establishing the cancer-associated fibroblasts’ population in its microenvironment. Since cancer-associated fibroblasts are activated by tumor cells, cancer-associated fibroblasts show unconditional servitude to tumor cells in their effort to resist treatment. Thus, cancer-associated fibroblasts, as the critical or indispensable component of resistance to the treatment, are one of the most logical targets within tumors that eventually progress despite therapy. We evaluate the participatory role of cancer-associated fibroblasts in the development of drug resistance in solid tumors. In the future, we will establish the specific mode of action of cancer-associated fibroblasts in solid tumors, paving the way for cancer-associated-fibroblast-inclusive personalized therapy. Abstract In tumor cells’ struggle for survival following therapy, they resist treatment. Resistance to therapy is the outcome of well-planned, highly efficient adaptive strategies initiated and utilized by these transformed tumor cells. Cancer cells undergo several reprogramming events towards adapting this opportunistic behavior, leading them to gain specific survival advantages. The strategy involves changes within the transformed tumors cells as well as in their neighboring non-transformed extra-tumoral support system, the tumor microenvironment (TME). Cancer-Associated Fibroblasts (CAFs) are one of the components of the TME that is used by tumor cells to achieve resistance to therapy. CAFs are diverse in origin and are the most abundant non-transformed element of the microenvironment in solid tumors. Cells of an established tumor initially play a direct role in the establishment of the CAF population for its own microenvironment. Like their origin, CAFs are also diverse in their functions in catering to the pro-tumor microenvironment. Once instituted, CAFs interact in unison with both tumor cells and all other components of the TME towards the progression of the disease and the worst outcome. One of the many functions of CAFs in influencing the outcome of the disease is their participation in the development of resistance to treatment. CAFs resist therapy in solid tumors. A tumor–CAF relationship is initiated by tumor cells to exploit host stroma in favor of tumor progression. CAFs in concert with tumor cells and other components of the TME are abettors of resistance to treatment. Thus, this liaison between CAFs and tumor cells is a bête noire of therapy. Here, we portray a comprehensive picture of the modes and functions of CAFs in conjunction with their role in orchestrating the development of resistance to different chemotherapies and targeted therapies in solid tumors. We investigate the various functions of CAFs in various solid tumors in light of their dialogue with tumor cells and the two components of the TME, the immune component, and the vascular component. Acknowledgment of the irrefutable role of CAFs in the development of treatment resistance will impact our future strategies and ability to design improved therapies inclusive of CAFs. Finally, we discuss the future implications of this understanding from a therapeutic standpoint and in light of currently ongoing and completed CAF-based NIH clinical trials.
Collapse
|
31
|
Cadamuro M, Strazzabosco M. Inflammatory pathways and cholangiocarcinoma risk mechanisms and prevention. Adv Cancer Res 2022; 156:39-73. [PMID: 35961707 PMCID: PMC10916841 DOI: 10.1016/bs.acr.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cholangiocarcinoma (CCA), a neoplasm burdened by a poor prognosis and currently lacking adequate therapeutic treatments, can originate at different levels of the biliary tree, in the intrahepatic, hilar, or extrahepatic area. The main risk factors for the development of CCA are the presence of chronic cholangiopathies of various etiology. To date, the most studied prodromal diseases of CCA are primary sclerosing cholangitis, Caroli's disease and fluke infestations, but other conditions, such as metabolic syndrome, nonalcoholic fatty liver disease and obesity, are emerging as associated with an increased risk of CCA development. In this review, we focused on the analysis of the pro-inflammatory mechanisms that induce the development of CCA and on the role of cells of the immune response in cholangiocarcinogenesis. In very recent times, these cellular mechanisms have been the subject of emerging studies aimed at verifying how the modulation of the inflammatory and immunological responses can have a therapeutic significance and how these can be used as therapeutic targets.
Collapse
Affiliation(s)
| | - Mario Strazzabosco
- Liver Center, Department of Internal Medicine, Yale University, New Haven, CT, United States.
| |
Collapse
|
32
|
Yang T, Ma L, Hou H, Gao F, Tao W. FAPI PET/CT in the Diagnosis of Abdominal and Pelvic Tumors. Front Oncol 2022; 11:797960. [PMID: 35059319 PMCID: PMC8763785 DOI: 10.3389/fonc.2021.797960] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
Positron emission tomography/computed tomography (PET/CT) with 18F-fluorodeoxyglucose (18F-FDG) is currently a standard imaging examination used in clinical practice, and plays an essential role in preoperative systemic evaluation and tumor staging in patients with tumors. However, 18F-FDG PET/CT has certain limitations in imaging of some tumors, like gastric mucus adenocarcinoma, highly differentiated hepatocellular carcinoma, renal cell carcinoma, and peritoneal metastasis. Therefore, to search for new tumor diagnosis methods has always been an important topic in radiographic imaging research. Fibroblast activation protein (FAP) is highly expressed in many epithelial carcinomas, and various isotope-labelled fibroblast activation protein inhibitors (FAPI) show lower uptake in the brain and abdominal tissues than in tumor, thus achieving high image contrast and good tumor delineation. In addition to primary tumors, FAPI PET/CT is better than FDG PET/CT for detecting lymph nodes and metastases. Additionally, the highly selective tumor uptake of FAPI may open up new application areas for the non-invasive characterization, staging of tumors, as well as monitoring tumor treatment efficacy. This review focuses on the recent research progress of FAPI PET/CT in the application to abdominal and pelvic tumors, with the aim of providing new insights for diagnostic strategies for tumor patients, especially those with metastases.
Collapse
Affiliation(s)
- Tianshuo Yang
- Department of Nuclear Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Long Ma
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Haodong Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Weijing Tao
- Department of Nuclear Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| |
Collapse
|
33
|
Matricellular proteins in intrahepatic cholangiocarcinoma. Adv Cancer Res 2022; 156:249-281. [DOI: 10.1016/bs.acr.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Ravichandra A, Bhattacharjee S, Affò S. Cancer-associated fibroblasts in intrahepatic cholangiocarcinoma progression and therapeutic resistance. Adv Cancer Res 2022; 156:201-226. [DOI: 10.1016/bs.acr.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Aoki T, Nishida N, Kudo M. Current Perspectives on the Immunosuppressive Niche and Role of Fibrosis in Hepatocellular Carcinoma and the Development of Antitumor Immunity. J Histochem Cytochem 2022; 70:53-81. [PMID: 34751050 PMCID: PMC8721576 DOI: 10.1369/00221554211056853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Immune checkpoint inhibitors have become the mainstay of treatment for hepatocellular carcinoma (HCC). However, they are ineffective in some cases. Previous studies have reported that genetic alterations in oncogenic pathways such as Wnt/β-catenin are the important triggers in HCC for primary refractoriness. T-cell exhaustion has been reported in various tumors and is likely to play a prominent role in the emergence of HCC due to chronic inflammation and cirrhosis-associated immune dysfunction. Immunosuppressive cells including regulatory T-cells and tumor-associated macrophages infiltrating the tumor are associated with hyperprogressive disease in the early stages of immune checkpoint inhibitor treatment. In addition, stellate cells and tumor-associated fibroblasts create an abundant desmoplastic environment by producing extracellular matrix. This strongly contributes to epithelial to mesenchymal transition via signaling activities including transforming growth factor beta, Wnt/β-catenin, and Hippo pathway. The abundant desmoplastic environment has been demonstrated in pancreatic ductal adenocarcinoma and cholangiocarcinoma to suppress cytotoxic T-cell infiltration, PD-L1 expression, and neoantigen expression, resulting in a highly immunosuppressive niche. It is possible that a similar immunosuppressive environment is created in HCC with advanced fibrosis in the background liver. Although sufficient understanding is required for the establishment of immune therapies of HCC, further investigations are still required in this field.
Collapse
Affiliation(s)
- Tomoko Aoki
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Naoshi Nishida
- Naoshi Nishida, Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, 377-2 Ohno-higashi, Osaka-Sayama 589-8511, Japan. E-mail:
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| |
Collapse
|
36
|
Patient-derived functional organoids as a personalized approach for drug screening against hepatobiliary cancers. Adv Cancer Res 2022; 156:319-341. [DOI: 10.1016/bs.acr.2022.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Lobe C, Vallette M, Arbelaiz A, Gonzalez-Sanchez E, Izquierdo L, Pellat A, Guedj N, Louis C, Paradis V, Banales JM, Coulouarn C, Housset C, Vaquero J, Fouassier L. Zinc Finger E-Box Binding Homeobox 1 Promotes Cholangiocarcinoma Progression Through Tumor Dedifferentiation and Tumor-Stroma Paracrine Signaling. Hepatology 2021; 74:3194-3212. [PMID: 34297412 DOI: 10.1002/hep.32069] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 06/29/2021] [Accepted: 07/11/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Zinc finger E-box binding homeobox 1 (ZEB1) is a transcription factor that promotes metastatic and stem cell features, which has been associated with poor prognosis in cholangiocarcinoma (CCA), a desmoplastic cancer enriched in cancer-associated fibroblasts (CAFs). We aimed to define ZEB1 regulatory functions in malignant and stromal compartments of CCA. APPROACH AND RESULTS Bioinformatic and immunohistochemical analyses were performed to determine correlations between ZEB1 and markers of progressiveness in human intrahepatic CCA (iCCA). Gain-of-function and loss-of-function models were generated in CCA cells and liver myofibroblasts as a model of CAFs. Conditioned media (CM) was used to unravel tumor-stroma interplay. In vivo experiments were performed using a xenograft CCA model. ZEB1 expression in tumor cells of human iCCA was associated with undifferentiated tumor and vascular invasion. In vitro, ZEB1 promoted epithelial-mesenchymal transition and stemness in tumor cells, leading to cell migration and spheroid formation. In vivo, ZEB1-overexpressing CCA cells formed larger tumors with more abundant stroma. Expression of cellular communication network factor 2 (CCN2, encoding connective tissue growth factor [CTGF]) was increased in tumor cells from ZEB1-overexpressing xenografts and correlated with ZEB1 expression in human tumors. In vitro, CM from ZEB1-overexpressing tumor cells or recombinant CTGF induced myofibroblast proliferation. ZEB1 was also expressed by CAFs in human CCA, and its expression correlated with CCN2 in myofibroblasts and CCA stroma. In mice, cotransplantation of CCA cells with ZEB1-depleted myofibroblasts reduced CCA progressiveness compared to CCA cells/ZEB1-expressing myofibroblasts. Furthermore, ZEB1 controls the expression of paracrine signals (i.e., HGF and IL6) in tumor cells and myofibroblasts. CONCLUSIONS ZEB1 plays a key role in CCA progression by regulating tumor cell-CAF crosstalk, leading to tumor dedifferentiation and CAF activation.
Collapse
Affiliation(s)
- Cindy Lobe
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Paris, France
| | - Marie Vallette
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Paris, France
| | - Ander Arbelaiz
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Paris, France
| | - Ester Gonzalez-Sanchez
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Paris, France.,TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute, Barcelona, Spain.,National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Izquierdo
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.,Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country, San Sebastián, Spain
| | - Anna Pellat
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Paris, France
| | - Nathalie Guedj
- Service d'Anatomie Pathologique Hôpital Beaujon, Clichy, France
| | - Corentin Louis
- INSERM, UMR 1149, Centre de Recherche sur l'Inflammation, Paris, France
| | - Valérie Paradis
- Service d'Anatomie Pathologique Hôpital Beaujon, Clichy, France.,INSERM, UMR 1149, Centre de Recherche sur l'Inflammation, Paris, France
| | - Jesus M Banales
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.,Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | | | - Chantal Housset
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Paris, France.,Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, ERN Rare-Liver, Paris, France
| | - Javier Vaquero
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Paris, France.,TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute, Barcelona, Spain.,National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.,LPP, Sorbonne Université, CNRS, Ecole Polytechnique, Université Paris-Sud, Observatoire de Paris, Université Paris-Saclay, PSL Research University, Paris, France
| | - Laura Fouassier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Paris, France
| |
Collapse
|
38
|
Li Q, Che F, Wei Y, Jiang HY, Zhang Y, Song B. Role of noninvasive imaging in the evaluation of intrahepatic cholangiocarcinoma: from diagnosis and prognosis to treatment response. Expert Rev Gastroenterol Hepatol 2021; 15:1267-1279. [PMID: 34452581 DOI: 10.1080/17474124.2021.1974294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Intrahepatic cholangiocarcinoma is the second most common liver cancer. Desmoplastic stroma may be revealed as distinctive histopathologic findings favoring intrahepatic cholangiocarcinoma. Meanwhile, a range of imaging manifestations is often accompanied with rich desmoplastic stroma in intrahepatic cholangiocarcinoma, which can indicate large bile duct ICC, and a higher level of cancer-associated fibroblasts with poor prognosis and weak treatment response. AREAS COVERED We provide a comprehensive review of current state-of-the-art and recent advances in the imaging evaluation for diagnosis, staging, prognosis and treatment response of intrahepatic cholangiocarcinoma. In addition, we discuss precursor lesions, cells of origin, molecular mutation, which would cause the different histological classification. Moreover, histological classification and tumor microenvironment, which are related to the proportion of desmoplastic stroma with many imaging manifestations, would be also discussed. EXPERT OPINION The diagnosis, prognosis, treatment response of intrahepatic cholangiocarcinoma may be revealed as the presence and the proportion of desmoplastic stroma with a range of imaging manifestations. With the utility of radiomics and artificial intelligence, imaging is helpful for ICC evaluation. Multicentre, large-scale, prospective studies with external validation are in need to develop comprehensive prediction models based on clinical data, imaging findings, genetic parameters, molecular, metabolic, and immune biomarkers.
Collapse
Affiliation(s)
- Qian Li
- Department of Radiology, Sichuan University West China Hospital, Chengdu, China
| | - Feng Che
- Department of Radiology, Sichuan University West China Hospital, Chengdu, China
| | - Yi Wei
- Department of Radiology, Sichuan University West China Hospital, Chengdu, China
| | - Han-Yu Jiang
- Department of Radiology, Sichuan University West China Hospital, Chengdu, China
| | - Yun Zhang
- Department of Radiology, Sichuan University West China Hospital, Chengdu, China
| | - Bin Song
- Department of Radiology, Sichuan University West China Hospital, Chengdu, China
| |
Collapse
|
39
|
Affo S, Nair A, Brundu F, Ravichandra A, Bhattacharjee S, Matsuda M, Chin L, Filliol A, Wen W, Song X, Decker A, Worley J, Caviglia JM, Yu L, Yin D, Saito Y, Savage T, Wells RG, Mack M, Zender L, Arpaia N, Remotti HE, Rabadan R, Sims P, Leblond AL, Weber A, Riener MO, Stockwell BR, Gaublomme J, Llovet JM, Kalluri R, Michalopoulos GK, Seki E, Sia D, Chen X, Califano A, Schwabe RF. Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations. Cancer Cell 2021; 39:866-882.e11. [PMID: 33930309 PMCID: PMC8241235 DOI: 10.1016/j.ccell.2021.03.012] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/26/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022]
Abstract
Cancer-associated fibroblasts (CAF) are a poorly characterized cell population in the context of liver cancer. Our study investigates CAF functions in intrahepatic cholangiocarcinoma (ICC), a highly desmoplastic liver tumor. Genetic tracing, single-cell RNA sequencing, and ligand-receptor analyses uncovered hepatic stellate cells (HSC) as the main source of CAF and HSC-derived CAF as the dominant population interacting with tumor cells. In mice, CAF promotes ICC progression, as revealed by HSC-selective CAF depletion. In patients, a high panCAF signature is associated with decreased survival and increased recurrence. Single-cell RNA sequencing segregates CAF into inflammatory and growth factor-enriched (iCAF) and myofibroblastic (myCAF) subpopulations, displaying distinct ligand-receptor interactions. myCAF-expressed hyaluronan synthase 2, but not type I collagen, promotes ICC. iCAF-expressed hepatocyte growth factor enhances ICC growth via tumor-expressed MET, thus directly linking CAF to tumor cells. In summary, our data demonstrate promotion of desmoplastic ICC growth by therapeutically targetable CAF subtype-specific mediators, but not by type I collagen.
Collapse
Affiliation(s)
- Silvia Affo
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Ajay Nair
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Francesco Brundu
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | | | - Michitaka Matsuda
- Department of Medicine, Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90024, USA
| | - LiKang Chin
- Department of Medicine, Penn Physical Sciences in Oncology Center PSOC@Penn, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aveline Filliol
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Wen Wen
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Xinhua Song
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94158, USA
| | - Aubrianna Decker
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Jeremy Worley
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Lexing Yu
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Deqi Yin
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Yoshinobu Saito
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Thomas Savage
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Rebecca G Wells
- Department of Medicine, Penn Physical Sciences in Oncology Center PSOC@Penn, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lars Zender
- Department of Medical Oncology and Pneumology, University Hospital Tuebingen, 72076 Tuebingen, Germany; German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; iFIT Cluster of Excellence EXC 2180, University of Tuebingen, 72076 Tuebingen, Germany
| | - Nicholas Arpaia
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Helen E Remotti
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter Sims
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Anne-Laure Leblond
- Department for Pathology and Molecular Pathology, Zürich University Hospital, 8091 Zürich, Switzerland
| | - Achim Weber
- Department for Pathology and Molecular Pathology, Zürich University Hospital, 8091 Zürich, Switzerland
| | - Marc-Oliver Riener
- Department for Pathology and Molecular Pathology, Zürich University Hospital, 8091 Zürich, Switzerland
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Jellert Gaublomme
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Josep M Llovet
- Liver Cancer Translational Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; Mount Sinai Liver Cancer Program, Divisions of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Ekihiro Seki
- Department of Medicine, Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90024, USA
| | - Daniela Sia
- Mount Sinai Liver Cancer Program, Divisions of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94158, USA
| | - Andrea Califano
- Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA; Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA; Institute of Human Nutrition, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
40
|
Zhou M, Wang C, Lu S, Xu Y, Li Z, Jiang H, Ma Y. Tumor-associated macrophages in cholangiocarcinoma: complex interplay and potential therapeutic target. EBioMedicine 2021; 67:103375. [PMID: 33993051 PMCID: PMC8134032 DOI: 10.1016/j.ebiom.2021.103375] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive and multifactorial malignancy of the biliary tract. The carcinogenesis of CCA is associated with genomic and epigenetic abnormalities, as well as environmental effects. However, early clinical diagnosis and reliable treatment strategies of CCA remain unsatisfactory. Multiple compartments of the tumor microenvironment significantly affect the progression of CCA. Tumor-associated macrophages (TAMs) are a type of plastic immune cells that are recruited and activated in the CCA microenvironment, especially at the tumor invasive front and perivascular sites. TAMs create a favorable environment that benefits CCA growth by closely interacting with CCA cells and other stromal cells via releasing multiple protumor factors. In addition, TAMs exert immunosuppressive and antichemotherapeutic effects, thus intensifying the malignancy. Targeting TAMs may provide an improved understanding of, and novel therapeutic approaches for, CCA. This review focuses on revealing the interplay between TAMs and CCA.
Collapse
Affiliation(s)
- Menghua Zhou
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Minimal Invasive Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Chaoqun Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Minimal Invasive Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Shounan Lu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Minimal Invasive Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yanan Xu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Minimal Invasive Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Zihao Li
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Minimal Invasive Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Hongchi Jiang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Minimal Invasive Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Yong Ma
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Minimal Invasive Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
41
|
Hepatobiliary morbidities detected by ultrasonography in Opisthorchis viverrini-infected patients before and after praziquantel treatment: a five-year follow up study. Acta Trop 2021; 217:105853. [PMID: 33548204 DOI: 10.1016/j.actatropica.2021.105853] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022]
Abstract
Infection of the liver fluke, Opisthorchis viverrini (OV) is an important public health problem in northeast Thailand and adjacent countries, where people have a habit of eating raw or undercooked fish. A community case-control study was carried out with 8,936 participants from 89 villages, in Khon Kaen province, Thailand. There were 3,359 OV-infected participants all of whom underwent ultrasonography of upper abdomen for the evaluation of hepatobiliary morbidity. The participants with advanced periductal fibrosis (APF) by ultrasound (n = 785) were invited to undergo annual follow-up ultrasonography for five years after praziquantel treatment. The sonographer was blinded with respect to status of OV infection at each visit. The study findings revealed variability in the study population profile of the hepatobiliary morbidities before and after praziquantel treatment over the follow up interval. At the end of the study, 32 (30.8%) out of 104 participants showed no relapse of APF whereas, by contrast, 39 (37.5%) participants showed relapse or persistent APF since the outset of the study (≥ two consecutive visits). The APF in most follow-up visits was significantly associated with male sex, with intrahepatic duct stones, with the width of the gallbladder "pre" minus "post" fatty meal, and with the ratio of left lobe of the liver to aorta. Five cases of suspected cholangiocarcinoma were observed over the five years of follow-up. This long-term ultrasound follow-up study demonstrates a significant incidence of persistent APF in over one-third of opisthorchiasis cases after praziquantel treatment, findings that support the prospect of ongoing cholangiocarcinogenesis long after successful elimination of liver fluke infection among the population.
Collapse
|
42
|
The Emerging Role of Immunotherapy in Intrahepatic Cholangiocarcinoma. Vaccines (Basel) 2021; 9:vaccines9050422. [PMID: 33922362 PMCID: PMC8146949 DOI: 10.3390/vaccines9050422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022] Open
Abstract
Biliary tract cancer, and intrahepatic cholangiocarcinoma (iCC) in particular, represents a rather uncommon, highly aggressive malignancy with unfavorable prognosis. Therapeutic options remain scarce, with platinum-based chemotherapy is being considered as the gold standard for the management of advanced disease. Comprehensive molecular profiling of tumor tissue biopsies, utilizing multi-omics approaches, enabled the identification of iCC’s intratumor heterogeneity and paved the way for the introduction of novel targeted therapies under the scope of precision medicine. Yet, the unmet need for optimal care of patients with chemo-refractory disease or without targetable mutations still exists. Immunotherapy has provided a paradigm shift in cancer care over the past decade. Currently, immunotherapeutic strategies for the management of iCC are under intense research. Intrinsic factors of the tumor, including programmed death-ligand 1 (PD-L1) expression and mismatch repair (MMR) status, are simply the tip of the proverbial iceberg with regard to resistance to immunotherapy. Acknowledging the significance of the tumor microenvironment (TME) in both cancer growth and drug response, we broadly discuss about its diverse immune components. We further review the emerging role of immunotherapy in this rare disease, summarizing the results of completed and ongoing phase I–III clinical trials, expounding current challenges and future directions.
Collapse
|
43
|
Prognostic impact of tumor microvessels in intrahepatic cholangiocarcinoma: association with tumor-infiltrating lymphocytes. Mod Pathol 2021; 34:798-807. [PMID: 33077921 DOI: 10.1038/s41379-020-00702-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
Tumor microvessel density (MVD) is a prognostic factor for patients with intrahepatic cholangiocarcinoma (ICC). Tumor-infiltrating lymphocytes (TILs) are also key components of the tumor microenvironment that play important roles in ICC progression. This study aimed to clarify the relationships between the MVD and immune status and prognosis in patients with ICC. Immunohistochemical staining for cluster of differentiation 34 (CD34), cluster of differentiation 8 (CD8), forkhead box protein P3 (Foxp3), and programmed death-ligand 1 (PD-L1) was performed. The relationships between the MVD and clinicopathological characteristics and outcomes were analyzed. Additionally, the correlations between the MVD, CD8+ and Foxp3+ TIL counts, and PD-L1 expression were evaluated. One hundred ICC patients were classified into high (n = 50) and low (n = 50) MVD groups. The serum platelet and carbohydrate antigen 19-9 levels were higher in the low MVD group than in the high MVD group (P = 0.017 and P = 0.008, respectively). The low MVD group showed a significantly larger tumor size (P = 0.016), more frequent microvascular invasion (P = 0.001), and a higher rate of intrahepatic (P = 0.023) and lymph node (P < 0.001) metastasis than the high MVD group. Moreover, the MVD showed a high positive correlation with CD8+ TILs (r = 0.754, P < 0.001) and a negative correlation with Foxp3+ TILs (r = -0.302, P = 0.003). In contrast, no significant correlation was observed between the MVD and PD-L1 expression in cancer cells (P = 0.817). Patients with low MVDs had a significantly worse prognosis than those with high MVDs. Furthermore, multivariable analyses revealed that a low MVD influenced recurrence-free survival. A decreased intratumoral MVD might predict ICC patient outcomes. Tumor microvessels might be associated with ICC progression, possibly by altering TIL recruitment.
Collapse
|
44
|
Fabris L, Sato K, Alpini G, Strazzabosco M. The Tumor Microenvironment in Cholangiocarcinoma Progression. Hepatology 2021; 73 Suppl 1:75-85. [PMID: 32500550 PMCID: PMC7714713 DOI: 10.1002/hep.31410] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/07/2020] [Accepted: 05/16/2020] [Indexed: 12/15/2022]
Abstract
Cholangiocarcinoma (CCA) is an aggressive and heterogeneous malignancy of the biliary tree. A typical hallmark of CCA is that cancer cells are embedded into a dense stroma containing fibrogenic cells, lymphatics and a variety of immune cells. Functional roles of the reactive tumor stroma are not fully elucidated; however, recent studies suggest that the tumor microenvironment plays a key role in the progression and invasiveness of CCA. CCA cells exchange autocrine/paracrine signals with other cancer cells and the infiltrating cell types that populate the microenvironment. This crosstalk is under the control of signals mediated by various cytokines, chemokines, and growth factors. In addition, extracellular vesicles (EVs), exosomes and microvesicles, containing cargo mediators, such as proteins and RNAs, play a key role in cell-to-cell communication, and particularly in epigenetic regulation thanks to their content in miRNAs. Both cytokine- and EV-mediated communications between CCA cells and other liver cells provide a potential novel target for the management of CCA. This review summarizes current understandings of the tumor microenvironment and intercellular communications in CCA and their role in tumor progression.
Collapse
Affiliation(s)
- Luca Fabris
- Department of Molecular Medicine, University of Padua, Padua, Italy,Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Keisaku Sato
- Hepatology and Gastroenterology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Gianfranco Alpini
- Hepatology and Gastroenterology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN,Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Mario Strazzabosco
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT,Correspondence: Mario Strazzabosco MD, PhD, Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA,
| |
Collapse
|
45
|
Sirica AE, Strazzabosco M, Cadamuro M. Intrahepatic cholangiocarcinoma: Morpho-molecular pathology, tumor reactive microenvironment, and malignant progression. Adv Cancer Res 2020; 149:321-387. [PMID: 33579427 PMCID: PMC8800451 DOI: 10.1016/bs.acr.2020.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a relatively rare, but highly lethal and biologically complex primary biliary epithelial cancer arising within liver. After hepatocellular carcinoma, iCCA is the second most common primary liver cancer, accounting for approximately 10-20% of all primary hepatic malignancies. Over the last 10-20 years, iCCA has become the focus of increasing concern largely due to its rising incidence and high mortality rates in various parts of the world, including the United States. The challenges posed by iCCA are daunting and despite recent progress in the standard of care and management options for iCCA, the prognosis for this cancer continues to be dismal. In an effort to provide a framework for advancing our understanding of iCCA malignant aggressiveness and therapy resistance, this review will highlight key etiological, biological, molecular, and microenvironmental factors hindering more effective management of this hepatobiliary cancer. Particular focus will be on critically reviewing the cell origins and morpho-molecular heterogeneity of iCCAs, providing mechanistic insights into high risk fibroinflammatory cholangiopathies associated with iCCA development, and notably discussing the deleterious role played by the tumor reactive desmoplastic stroma in regulating iCCA malignant progression, lymphangiogenesis, and tumor immunobiology.
Collapse
Affiliation(s)
- Alphonse E Sirica
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| | - Mario Strazzabosco
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, United States
| | | |
Collapse
|
46
|
Job S, Rapoud D, Dos Santos A, Gonzalez P, Desterke C, Pascal G, Elarouci N, Ayadi M, Adam R, Azoulay D, Castaing D, Vibert E, Cherqui D, Samuel D, Sa Cuhna A, Marchio A, Pineau P, Guettier C, de Reyniès A, Faivre J. Identification of Four Immune Subtypes Characterized by Distinct Composition and Functions of Tumor Microenvironment in Intrahepatic Cholangiocarcinoma. Hepatology 2020; 72:965-981. [PMID: 31875970 PMCID: PMC7589418 DOI: 10.1002/hep.31092] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Intrahepatic cholangiocarcinoma (ICC) is a severe malignant tumor in which the standard therapies are mostly ineffective. The biological significance of the desmoplastic tumor microenvironment (TME) of ICC has been stressed but was insufficiently taken into account in the search for classifications of ICC adapted to clinical trial design. We investigated the heterogeneous tumor stroma composition and built a TME-based classification of ICC tumors that detects potentially targetable ICC subtypes. APPROACH AND RESULTS We established the bulk gene expression profiles of 78 ICCs. Epithelial and stromal compartments of 23 ICCs were laser microdissected. We quantified 14 gene expression signatures of the TME and those of 3 functional indicators (liver activity, inflammation, immune resistance). The cell population abundances were quantified using the microenvironment cell population-counter package and compared with immunohistochemistry. We performed an unsupervised TME-based classification of 198 ICCs (training set) and 368 ICCs (validation set). We determined immune response and signaling features of the different immune subtypes by functional annotations. We showed that a set of 198 ICCs could be classified into 4 TME-based subtypes related to distinct immune escape mechanisms and patient outcomes. The validity of these immune subtypes was confirmed over an independent set of 368 ICCs and by immunohistochemical analysis of 64 ICC tissue samples. About 45% of ICCs displayed an immune desert phenotype. The other subtypes differed in nature (lymphoid, myeloid, mesenchymal) and abundance of tumor-infiltrating cells. The inflamed subtype (11%) presented a massive T lymphocyte infiltration, an activation of inflammatory and immune checkpoint pathways, and was associated with the longest patient survival. CONCLUSION We showed the existence of an inflamed ICC subtype, which is potentially treatable with checkpoint blockade immunotherapy.
Collapse
Affiliation(s)
- Sylvie Job
- Programme Cartes d’Identité des TumeursLigue Nationale Contre le CancerParisFrance
| | - Delphine Rapoud
- Hepatobiliary CentreINSERM, U1193, Paul‐Brousse University HospitalVillejuifFrance,Faculté de Médecine du Kremlin BicetreUniversity Paris‐Sud, Université Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Alexandre Dos Santos
- Hepatobiliary CentreINSERM, U1193, Paul‐Brousse University HospitalVillejuifFrance,Faculté de Médecine du Kremlin BicetreUniversity Paris‐Sud, Université Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Patrick Gonzalez
- Hepatobiliary CentreINSERM, U1193, Paul‐Brousse University HospitalVillejuifFrance,Faculté de Médecine du Kremlin BicetreUniversity Paris‐Sud, Université Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Christophe Desterke
- Faculté de Médecine du Kremlin BicetreUniversity Paris‐Sud, Université Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Gérard Pascal
- Hepatobiliary CentreINSERM, U1193, Paul‐Brousse University HospitalVillejuifFrance,Faculté de Médecine du Kremlin BicetreUniversity Paris‐Sud, Université Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Nabila Elarouci
- Programme Cartes d’Identité des TumeursLigue Nationale Contre le CancerParisFrance
| | - Mira Ayadi
- Programme Cartes d’Identité des TumeursLigue Nationale Contre le CancerParisFrance
| | - René Adam
- Hepatobiliary CentreINSERM, U1193, Paul‐Brousse University HospitalVillejuifFrance,Faculté de Médecine du Kremlin BicetreUniversity Paris‐Sud, Université Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Daniel Azoulay
- Hepatobiliary CentreINSERM, U1193, Paul‐Brousse University HospitalVillejuifFrance,Faculté de Médecine du Kremlin BicetreUniversity Paris‐Sud, Université Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Denis Castaing
- Hepatobiliary CentreINSERM, U1193, Paul‐Brousse University HospitalVillejuifFrance,Faculté de Médecine du Kremlin BicetreUniversity Paris‐Sud, Université Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Eric Vibert
- Hepatobiliary CentreINSERM, U1193, Paul‐Brousse University HospitalVillejuifFrance,Faculté de Médecine du Kremlin BicetreUniversity Paris‐Sud, Université Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Daniel Cherqui
- Hepatobiliary CentreINSERM, U1193, Paul‐Brousse University HospitalVillejuifFrance,Faculté de Médecine du Kremlin BicetreUniversity Paris‐Sud, Université Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Didier Samuel
- Hepatobiliary CentreINSERM, U1193, Paul‐Brousse University HospitalVillejuifFrance,Faculté de Médecine du Kremlin BicetreUniversity Paris‐Sud, Université Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Antonio Sa Cuhna
- Hepatobiliary CentreINSERM, U1193, Paul‐Brousse University HospitalVillejuifFrance,Faculté de Médecine du Kremlin BicetreUniversity Paris‐Sud, Université Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Agnès Marchio
- Unité ‘Organisation Nucléaire et Oncogenèse’, INSERM U993Institut PasteurParisFrance
| | - Pascal Pineau
- Unité ‘Organisation Nucléaire et Oncogenèse’, INSERM U993Institut PasteurParisFrance
| | - Catherine Guettier
- Hepatobiliary CentreINSERM, U1193, Paul‐Brousse University HospitalVillejuifFrance,Faculté de Médecine du Kremlin BicetreUniversity Paris‐Sud, Université Paris‐SaclayLe Kremlin‐BicêtreFrance,Pathology DepartmentAssistance Publique‐Hôpitaux de Paris (AP‐HP)Kremlin‐Bicêtre HospitalLe Kremlin‐BicêtreFrance
| | - Aurélien de Reyniès
- Programme Cartes d’Identité des TumeursLigue Nationale Contre le CancerParisFrance
| | - Jamila Faivre
- Hepatobiliary CentreINSERM, U1193, Paul‐Brousse University HospitalVillejuifFrance,Faculté de Médecine du Kremlin BicetreUniversity Paris‐Sud, Université Paris‐SaclayLe Kremlin‐BicêtreFrance,Pôle de Biologie MédicaleLaboratoire d’Onco‐HématologiePaul‐Brousse University HospitalAssistance Publique‐Hôpitaux de Paris (AP‐HP)VillejuifFrance
| |
Collapse
|
47
|
Caligiuri A, Pastore M, Lori G, Raggi C, Di Maira G, Marra F, Gentilini A. Role of Chemokines in the Biology of Cholangiocarcinoma. Cancers (Basel) 2020; 12:cancers12082215. [PMID: 32784743 PMCID: PMC7463556 DOI: 10.3390/cancers12082215] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA), a heterogeneous tumor with poor prognosis, can arise at any level in the biliary tree. It may derive from epithelial cells in the biliary tracts and peribiliary glands and possibly from progenitor cells or even hepatocytes. Several risk factors are responsible for CCA onset, however an inflammatory milieu nearby the biliary tree represents the most common condition favoring CCA development. Chemokines play a key role in driving the immunological response upon liver injury and may sustain tumor initiation and development. Chemokine receptor-dependent pathways influence the interplay among various cellular components, resulting in remodeling of the hepatic microenvironment towards a pro-inflammatory, pro-fibrogenic, pro-angiogenic and pre-neoplastic setting. Moreover, once tumor develops, chemokine signaling may influence its progression. Here we review the role of chemokines in the regulation of CCA development and progression, and the modulation of angiogenesis, metastasis and immune control. The potential role of chemokines and their receptors as possible biomarkers and/or therapeutic targets for hepatobiliary cancer is also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Fabio Marra
- Correspondence: (F.M.); (A.G.); Tel.: +39-055-2758095 or +39-055-2758498 or +39-055-2758499 (F.M.); +39-055-2751801 (A.G.)
| | - Alessandra Gentilini
- Correspondence: (F.M.); (A.G.); Tel.: +39-055-2758095 or +39-055-2758498 or +39-055-2758499 (F.M.); +39-055-2751801 (A.G.)
| |
Collapse
|
48
|
Malenica I, Donadon M, Lleo A. Molecular and Immunological Characterization of Biliary Tract Cancers: A Paradigm Shift Towards a Personalized Medicine. Cancers (Basel) 2020; 12:E2190. [PMID: 32781527 PMCID: PMC7464597 DOI: 10.3390/cancers12082190] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
Biliary tract cancers (BTCs) are a group of rare cancers that account for up to 3-5% of cancer patients worldwide. BTCs include cholangiocarcinoma (CCA), gallbladder cancer (GBC), and ampulla of Vater cancer (AVC). They are frequently diagnosed at an advanced stage when the disease is often found disseminated. A late diagnosis highly compromises surgery, the only potentially curative option. Current treatment regimens include a combination of chemotherapeutic drugs gemcitabine with cisplatin that have a limited efficiency since more than 50% of patients relapse in the first year. More recently, an inhibitor of fibroblast growth factor receptor 2 (FGFR2) was approved as a second-line treatment, based on the promising results from the NCT02924376 clinical trial. However, novel secondary treatment options are urgently needed. Recent molecular characterization of CCA and GBC highlighted the molecular heterogeneity, etiology, and epidemiology in BTC development and lead to the classification of the extrahepatic CCA into four types: metabolic, proliferating, mesenchymal, and immune type. Differences in the immune infiltration and tumor microenvironment (TME) have been described as well, showing that only a small subset of BTCs could be classified as an immune "hot" and targeted with the immunotherapeutic drugs. This recent evidence has opened a way to new clinical trials for BTCs, and new drug approvals are highly expected by the medical community.
Collapse
Affiliation(s)
- Ines Malenica
- Hepatobiliary Immunopathology Unit, Humanitas Clinical and Research Center-IRCCS, 20090 Pieve Emanuele, Italy;
| | - Matteo Donadon
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy;
- Department of Biomedical Science, Humanitas University, 20089 Rozzano, Italy
| | - Ana Lleo
- Department of Biomedical Science, Humanitas University, 20089 Rozzano, Italy
- Internal Medicine and Hepatology Unit, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy
| |
Collapse
|
49
|
Montal R, Sia D, Montironi C, Leow WQ, Esteban-Fabró R, Pinyol R, Torres-Martin M, Bassaganyas L, Moeini A, Peix J, Cabellos L, Maeda M, Villacorta-Martin C, Tabrizian P, Rodriguez-Carunchio L, Castellano G, Sempoux C, Minguez B, Pawlik TM, Labgaa I, Roberts LR, Sole M, Fiel MI, Thung S, Fuster J, Roayaie S, Villanueva A, Schwartz M, Llovet JM. Molecular classification and therapeutic targets in extrahepatic cholangiocarcinoma. J Hepatol 2020; 73:315-327. [PMID: 32173382 PMCID: PMC8418904 DOI: 10.1016/j.jhep.2020.03.008] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Cholangiocarcinoma (CCA), a deadly malignancy of the bile ducts, can be classified based on its anatomical location into either intrahepatic (iCCA) or extrahepatic (eCCA), each with different pathogenesis and clinical management. There is limited understanding of the molecular landscape of eCCA and no targeted therapy with clinical efficacy has been approved. We aimed to provide a molecular classification of eCCA and identify potential targets for molecular therapies. METHODS An integrative genomic analysis of an international multicenter cohort of 189 eCCA cases was conducted. Genomic analysis included whole-genome expression, targeted DNA-sequencing and immunohistochemistry. Molecular findings were validated in an external set of 181 biliary tract tumors from the ICGC. RESULTS KRAS (36.7%), TP53 (34.7%), ARID1A (14%) and SMAD4 (10.7%) were the most prevalent mutations, with ∼25% of tumors having a putative actionable genomic alteration according to OncoKB. Transcriptome-based unsupervised clustering helped us define 4 molecular classes of eCCA. Tumors classified within the Metabolic class (19%) showed a hepatocyte-like phenotype with activation of the transcription factor HNF4A and enrichment in gene signatures related to bile acid metabolism. The Proliferation class (23%), more common in patients with distal CCA, was characterized by enrichment of MYC targets, ERBB2 mutations/amplifications and activation of mTOR signaling. The Mesenchymal class (47%) was defined by signatures of epithelial-mesenchymal transition, aberrant TGFβ signaling and poor overall survival. Finally, tumors in the Immune class (11%) had a higher lymphocyte infiltration, overexpression of PD-1/PD-L1 and molecular features associated with a better response to immune checkpoint inhibitors. CONCLUSION An integrative molecular characterization identified distinct subclasses of eCCA. Genomic traits of each class provide the rationale for exploring patient stratification and novel therapeutic approaches. LAY SUMMARY Targeted therapies have not been approved for the treatment of extrahepatic cholangiocarcinoma. We performed a multi-platform molecular characterization of this tumor in a cohort of 189 patients. These analyses revealed 4 novel transcriptome-based molecular classes of extrahepatic cholangiocarcinoma and identified ∼25% of tumors with actionable genomic alterations, which has potential prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Robert Montal
- Translational Research in Hepatic Oncology, Liver Unit, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Catalonia, Spain; Gastrointestinal Unit, Medical Oncology Department, ICMHO, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Daniela Sia
- Liver Cancer Program, Divisions of Liver Diseases, Pathology Department and RM Transplant Institute, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carla Montironi
- Translational Research in Hepatic Oncology, Liver Unit, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Catalonia, Spain
| | - Wei Q Leow
- Liver Cancer Program, Divisions of Liver Diseases, Pathology Department and RM Transplant Institute, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Anatomical Pathology, Singapore General Hospital, Duke-NUS Medical School, Singapore
| | - Roger Esteban-Fabró
- Translational Research in Hepatic Oncology, Liver Unit, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Catalonia, Spain
| | - Roser Pinyol
- Translational Research in Hepatic Oncology, Liver Unit, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Catalonia, Spain
| | - Miguel Torres-Martin
- Liver Cancer Program, Divisions of Liver Diseases, Pathology Department and RM Transplant Institute, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Laia Bassaganyas
- Translational Research in Hepatic Oncology, Liver Unit, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Catalonia, Spain
| | - Agrin Moeini
- Translational Research in Hepatic Oncology, Liver Unit, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Catalonia, Spain
| | - Judit Peix
- Translational Research in Hepatic Oncology, Liver Unit, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Catalonia, Spain
| | - Laia Cabellos
- Translational Research in Hepatic Oncology, Liver Unit, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Catalonia, Spain
| | - Miho Maeda
- Liver Cancer Program, Divisions of Liver Diseases, Pathology Department and RM Transplant Institute, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carlos Villacorta-Martin
- Liver Cancer Program, Divisions of Liver Diseases, Pathology Department and RM Transplant Institute, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Parissa Tabrizian
- Liver Cancer Program, Divisions of Liver Diseases, Pathology Department and RM Transplant Institute, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Christine Sempoux
- Service of Clinical Pathology, Institute of Pathology, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | - Beatriz Minguez
- Liver Unit, Department of Internal Medicine, Vall d'Hebron University Hospital, Vall d'Hebron Institut of Research, Center for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Autonomous University of Barcelona, Barcelona, Spain
| | - Timothy M Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Ismail Labgaa
- Department of Visceral Surgery, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Manel Sole
- Pathology Department, IDIBAPS-Hospital Clinic Barcelona, University of Barcelona, Catalonia, Spain
| | - Maria I Fiel
- Liver Cancer Program, Divisions of Liver Diseases, Pathology Department and RM Transplant Institute, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Swan Thung
- Liver Cancer Program, Divisions of Liver Diseases, Pathology Department and RM Transplant Institute, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Josep Fuster
- Hepatobiliary and Pancreatic Surgery Department, IDIBAPS-Hospital Clinic Barcelona, University of Barcelona, Catalonia, Spain
| | - Sasan Roayaie
- Department of Surgery, White Plains Hospital, White Plains, New York, USA; Division of Hepatobiliary Surgery, Lenox Hill Hospital, New York, New York, USA
| | - Augusto Villanueva
- Liver Cancer Program, Divisions of Liver Diseases, Pathology Department and RM Transplant Institute, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Myron Schwartz
- Liver Cancer Program, Divisions of Liver Diseases, Pathology Department and RM Transplant Institute, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Josep M Llovet
- Translational Research in Hepatic Oncology, Liver Unit, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Catalonia, Spain; Liver Cancer Program, Divisions of Liver Diseases, Pathology Department and RM Transplant Institute, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|
50
|
Zhang JX, Li P, Chen Z, Lin H, Cai Z, Liao W, Pan Z. Impact of liver fibrosis score on prognosis after common therapies for intrahepatic cholangiocarcinoma: a propensity score matching analysis. BMC Cancer 2020; 20:556. [PMID: 32539768 PMCID: PMC7296657 DOI: 10.1186/s12885-020-07051-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Liver fibrosis or cirrhosis is associated with the dismal prognosis of hepatocellular carcinoma (HCC), and it might also be involved in intrahepatic cholangiocarcinoma (ICC). The effect of hepatic fibrosis on the survival of ICC patients is still unclear. This study aims to explore whether liver fibrosis impacts the overall survival (OS) and disease-specific survival (DSS) of ICC patients. METHODS Data of 729 eligible ICC patients receiving different therapies from the Surveillance, Epidemiology, and End Results database (2004-2015) were analyzed. Unmatched, propensity score-matched, and propensity score-weighted cohorts were used to investigate the relationships of different fibrosis scores (low fibrosis score vs. high fibrosis score) and survival. A Cox regression and Kaplan-Meier curves were used to explore the influence of fibrosis score on patients' survival. Stratified analyses based on treatment modality were conducted to compare the survival difference in ICC patients with different fibrosis scores. RESULTS Before matching, the one-, three-, and five-year OS were 50.9, 28.0, and 16.1% in the low fibrosis score group (n = 465) and 39.3, 20.1, and 8.0% in the high fibrosis score group (n = 264) (P < 0.001), respectively. After propensity score matching, the one-, three-, and five-year OS were 45.0, 26.0, and 10.2% in the low fibrosis score group and 36.0, 8.1, and 2.3% in the high fibrosis score group (P = 0.008), respectively. The multivariate Cox regression results showed that a high fibrosis score was an independent risk factor of OS. Additionally, patients with high fibrosis scores achieved low DSS after matching (P = 0.032). The survival benefits of the low fibrosis score group were consistent across treatment cohorts. CONCLUSIONS High fibrosis scores were associated with poor clinical outcomes of ICC patients receiving different common therapies.
Collapse
Affiliation(s)
- Jian Xi Zhang
- Department of hepatobiliary surgery, Xiamen Hospital, Beijing University of Chinese Medicine, Xiamen, Fujian, China
| | - Peipei Li
- Department of hepatobiliary surgery, Xiamen Hospital, Beijing University of Chinese Medicine, Xiamen, Fujian, China
| | - Zhibin Chen
- Department of hepatobiliary surgery, Xiamen Hospital, Beijing University of Chinese Medicine, Xiamen, Fujian, China
| | - Huogui Lin
- Department of General Surgery, Xiamen Haicang Hospital, 89 Haiyu Road, Haicang District, Xiamen, Fujian, China
| | - Zhezhen Cai
- Department of General Surgery, Xiamen Haicang Hospital, 89 Haiyu Road, Haicang District, Xiamen, Fujian, China
| | - Weijia Liao
- Department of General Surgery, Xiamen Haicang Hospital, 89 Haiyu Road, Haicang District, Xiamen, Fujian, China
| | - Zirong Pan
- Department of General Surgery, Xiamen Haicang Hospital, 89 Haiyu Road, Haicang District, Xiamen, Fujian, China.
| |
Collapse
|