1
|
Teng HW, Wang TY, Lin CC, Tong ZJ, Cheng HW, Wang HT. Interferon Gamma Induces Higher Neutrophil Extracellular Traps Leading to Tumor-Killing Activity in Microsatellite Stable Colorectal Cancer. Mol Cancer Ther 2024; 23:1043-1056. [PMID: 38346939 DOI: 10.1158/1535-7163.mct-23-0744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 07/03/2024]
Abstract
Many patients with colorectal cancer do not respond to immune checkpoint blockade (ICB) therapy, highlighting the urgent need to understand tumor resistance mechanisms. Recently, the link between the IFNγ signaling pathway integrity and ICB resistance in the colorectal cancer tumor microenvironment has been revealed. The immunosuppressive microenvironment poses a significant challenge to antitumor immunity in colorectal cancer development. Tumor-associated neutrophils found in tumor tissues exhibit an immunosuppressive phenotype and are associated with colorectal cancer patient prognosis. Neutrophil extracellular traps (NET), DNA meshes containing cytotoxic enzymes released into the extracellular space, may be promising therapeutic targets in cancer. This study showed increased NETs in tumor tissues and peripheral neutrophils of high levels of microsatellite instability (MSI-H) patients with colorectal cancer compared with microsatellite stable (MSS) patients with colorectal cancer. IFNγ response genes were enriched in MSI-H patients with colorectal cancer compared with patients with MSS colorectal cancer. Co-culturing neutrophils with MSI-H colorectal cancer cell lines induced more NET formation and higher cellular apoptosis than MSS colorectal cancer cell lines. IFNγ treatment induced more NET formation and apoptosis in MSS colorectal cancer cell lines. Using subcutaneous or orthotopic CT-26 (MSS) tumor-bearing mice models, IFNγ reduced tumor size and enhanced PD-1 antibody-induced tumor-killing activity, accompanied by upregulated NETs and cellular apoptosis. These findings suggest that IFNγ could be a therapeutic strategy for MSS colorectal cancer.
Collapse
Affiliation(s)
- Hao-Wei Teng
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tean-Ya Wang
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Chi Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Zhen-Jie Tong
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiao-Wei Cheng
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiang-Tsui Wang
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Doctor degree program in Toxicology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Fan J, Zhu J, Zhu H, Xu H. Potential therapeutic targets in myeloid cell therapy for overcoming chemoresistance and immune suppression in gastrointestinal tumors. Crit Rev Oncol Hematol 2024; 198:104362. [PMID: 38614267 DOI: 10.1016/j.critrevonc.2024.104362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024] Open
Abstract
In the tumor microenvironment (TME), myeloid cells play a pivotal role. Myeloid-derived immunosuppressive cells, including tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs), are central components in shaping the immunosuppressive milieu of the tumor. Within the TME, a majority of TAMs assume an M2 phenotype, characterized by their pro-tumoral activity. These cells promote tumor cell growth, angiogenesis, invasion, and migration. In contrast, M1 macrophages, under appropriate activation conditions, exhibit cytotoxic capabilities against cancer cells. However, an excessive M1 response may lead to pro-tumoral inflammation. As a result, myeloid cells have emerged as crucial targets in cancer therapy. This review concentrates on gastrointestinal tumors, detailing methods for targeting macrophages to enhance tumor radiotherapy and immunotherapy sensitivity. We specifically delve into monocytes and tumor-associated macrophages' various functions, establishing an immunosuppressive microenvironment, promoting tumorigenic inflammation, and fostering neovascularization and stromal remodeling. Additionally, we examine combination therapeutic strategies.
Collapse
Affiliation(s)
- Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, PR China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, PR China
| | - He Zhu
- Department of Gastroenterology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, PR China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, PR China.
| |
Collapse
|
3
|
Zheng C, Xu X, Wu M, Xue L, Zhu J, Xia H, Ding S, Fu S, Wang X, Wang Y, He G, Liu X, Deng X. Neutrophils in triple-negative breast cancer: an underestimated player with increasingly recognized importance. Breast Cancer Res 2023; 25:88. [PMID: 37496019 PMCID: PMC10373263 DOI: 10.1186/s13058-023-01676-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/17/2023] [Indexed: 07/28/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer, with limited therapeutic options readily available. Immunotherapy such as immune checkpoint inhibition has been investigated in TNBC but still encounters low overall response. Neutrophils, the most abundant leukocytes in the body, are increasingly recognized as an active cancer-modulating entity. In the bloodstream, neutrophils escort circulating tumor cells to promote their survival and stimulate their proliferation and metastasis. In the tumor microenvironment, neutrophils modulate the immune milieu through polarization between the anti-tumor and the pro-tumor phenotypes. Through a comprehensive review of recently published literature, it is evident that neutrophils are an important player in TNBC immunobiology and can be used as an important prognostic marker of TNBC. Particularly, in their pro-tumor form, neutrophils facilitate TNBC metastasis through formation of neutrophil extracellular traps and the pre-metastatic niche. These findings will help advance the potential utilization of neutrophils as a therapeutic target in TNBC.
Collapse
Affiliation(s)
- Chanjuan Zheng
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Xi Xu
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Muyao Wu
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Lian Xue
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Jianyu Zhu
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Department of Biochemistry and Molecular Biology, Jishou University, Jishou, Hunan, China
| | - Hongzhuo Xia
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Siyu Ding
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Shujun Fu
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Xinyu Wang
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Yian Wang
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Guangchun He
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Xia Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA.
| | - Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China.
| |
Collapse
|
4
|
Kasperkiewicz P. Peptidyl Activity-Based Probes for Imaging Serine Proteases. Front Chem 2021; 9:639410. [PMID: 33996745 PMCID: PMC8117214 DOI: 10.3389/fchem.2021.639410] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/15/2021] [Indexed: 01/12/2023] Open
Abstract
Proteases catalyze the hydrolysis of peptide bonds. Products of this breakdown mediate signaling in an enormous number of biological processes. Serine proteases constitute the most numerous group of proteases, accounting for 40%, and they are prevalent in many physiological functions, both normal and disease-related functions, making them one of the most important enzymes in humans. The activity of proteases is controlled at the expression level by posttranslational modifications and/or endogenous inhibitors. The study of serine proteases requires specific reagents not only for detecting their activity but also for their imaging. Such tools include inhibitors or substrate-related chemical molecules that allow the detection of proteolysis and visual observation of active enzymes, thus facilitating the characterization of the activity of proteases in the complex proteome. Peptidyl activity-based probes (ABPs) have been extensively studied recently, and this review describes the basic principles in the design of peptide-based imaging agents for serine proteases, provides examples of activity-based probe applications and critically discusses their strengths, weaknesses, challenges and limitations.
Collapse
Affiliation(s)
- Paulina Kasperkiewicz
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
5
|
Wang Y, Chen J, Yang L, Li J, Wu W, Huang M, Lin L, Su S. Tumor-Contacted Neutrophils Promote Metastasis by a CD90-TIMP-1 Juxtacrine-Paracrine Loop. Clin Cancer Res 2019; 25:1957-1969. [PMID: 30482778 DOI: 10.1158/1078-0432.ccr-18-2544] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/08/2018] [Accepted: 11/21/2018] [Indexed: 02/05/2023]
Abstract
PURPOSE The different prognostic values of tumor-infiltrating neutrophils (TIN) in different tissue compartments are unknown. In this study, we investigated their different prognostic roles and the underlying mechanism.Experimental Design: We evaluated CD66b+ neutrophils in primary tumors from 341 patients with breast cancer from Sun Yat-sen Memorial Hospital by IHC. The association between stromal and parenchymal neutrophil counts and clinical outcomes was assessed in a training set (170 samples), validated in an internal validation set (171 samples), and further confirmed in an external validation set (105 samples). In addition, we isolated TINs from clinical samples and screened the cytokine profile by antibody microarray. The interaction between neutrophils and tumor cells was investigated in transwell and 3D Matrigel coculture systems. The therapeutic potential of indicated cytokines was evaluated in tumor-bearing immunocompetent mice. RESULTS We observed that the neutrophils in tumor parenchyma, rather than those in stroma, were an independent poor prognostic factor in the training [HR = 5.00, 95% confidence interval (CI): 2.88-8.68, P < 0.001], internal validation (HR = 3.56, 95% CI: 2.07-6.14, P < 0.001), and external validation set (HR = 5.07, 95% CI: 2.27-11.33, P < 0.001). The mechanistic study revealed that neutrophils induced breast cancer epithelial-mesenchymal transition (EMT) via tissue inhibitor of matrix metalloprotease (TIMP-1). Reciprocally, breast cancer cells undergoing EMT enhanced neutrophils' TIMP-1 secretion by CD90 in a cell-contact manner. In vivo, TIMP-1 neutralization or CD90 blockade significantly reduced metastasis. More importantly, TIMP-1 and CD90 were positively correlated in breast cancer (r 2 = 0.6079; P < 0.001) and associated with poor prognosis of patients. CONCLUSIONS Our findings unravel a location-dictated interaction between tumor cells and neutrophils and provide a rationale for new antimetastasis treatments.
Collapse
Affiliation(s)
- Ying Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Linbin Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiaqian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ling Lin
- Department of Internal Medicine, The First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med 2017; 23:279-287. [PMID: 28267716 DOI: 10.1038/nm.4294] [Citation(s) in RCA: 794] [Impact Index Per Article: 113.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/25/2017] [Indexed: 12/12/2022]
Abstract
The production of neutrophil extracellular traps (NETs) is a process that enables neutrophils to help catch and kill bacteria. However, increasing evidence suggests that this process might also occur in noninfectious, sterile inflammation. In this Review, we describe the role of NETosis in autoimmunity, coagulation, acute injuries and cancer, and discuss NETs as potential therapeutic targets. Furthermore, we consider whether extracellular DNA is always detrimental in sterile inflammation and whether the source is always NETs.
Collapse
|