1
|
Guo K, Feng X, Xu L, Li C, Ma Y, Peng M. Within- and between-subject biological variation estimates for the enumeration of lymphocyte deep immunophenotyping and monocyte subsets. Clin Chem Lab Med 2024; 62:2265-2286. [PMID: 38815136 DOI: 10.1515/cclm-2024-0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/05/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVES This study aimed to deliver biological variation (BV) estimates for 25 types of lymphocyte subpopulations subjected to deep immunophenotyping (memory T/B cells, regulatory T cells, etc.) and classical, intermediate, and nonclassical monocyte subsets based on the full spectrum flow cytometry (FS-FCM) and a Biological Variation Data Critical Appraisal Checklist (BIVAC) design. METHODS Samples were collected biweekly from 60 healthy Chinese adults over 10 consecutive two-week periods. Each sample was measured in duplicate within a single run for lymphocyte deep immunophenotyping and monocyte subset determination using FS-FCM, including the percentage (%) and absolute count (cells/μL). After trend adjustment, a Bayesian model was applied to deliver the within-subject BV (CVI) and between-subject BV (CVG) estimates with 95 % credibility intervals. RESULTS Enumeration (% and cells/μL) for 25 types of lymphocyte deep immunophenotyping and three types of monocyte subset percentages showed considerable variability in terms of CVI and CVG. CVI ranged from 4.23 to 47.47 %. Additionally, CVG ranged between 10.32 and 101.30 %, except for CD4+ effector memory T cells re-expressing CD45RA. No significant differences were found between males and females for CVI and CVG estimates. Nevertheless, the CVGs of PD-1+ T cells (%) may be higher in females than males. Based on the desired analytical performance specification, the maximum allowable imprecision immune parameter was the CD8+PD-1+ T cell (cells/μL), with 23.7 %. CONCLUSIONS This is the first study delivering BV estimates for 25 types of lymphocyte subpopulations subjected to deep immunophenotyping, along with classical, intermediate, and nonclassical monocyte subsets, using FS-FCM and adhering to the BIVAC design.
Collapse
Affiliation(s)
- Kai Guo
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P.R. China
- 12501 National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing, P.R. China
| | - Xiaoran Feng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P.R. China
- 12501 National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing, P.R. China
| | - Lei Xu
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P.R. China
- 12501 National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing, P.R. China
| | - Chenbin Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P.R. China
| | - Yating Ma
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P.R. China
| | - Mingting Peng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P.R. China
- 12501 National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing, P.R. China
| |
Collapse
|
2
|
Gao J, Luo Y, Li H, Zhao Y, Zhao J, Han X, Han J, Lin H, Qian F. Deep Immunophenotyping of Human Whole Blood by Standardized Multi-parametric Flow Cytometry Analyses. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:309-328. [PMID: 37325713 PMCID: PMC10260734 DOI: 10.1007/s43657-022-00092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Immunophenotyping is proving crucial to understanding the role of the immune system in health and disease. High-throughput flow cytometry has been used extensively to reveal changes in immune cell composition and function at the single-cell level. Here, we describe six optimized 11-color flow cytometry panels for deep immunophenotyping of human whole blood. A total of 51 surface antibodies, which are readily available and validated, were selected to identify the key immune cell populations and evaluate their functional state in a single assay. The gating strategies for effective flow cytometry data analysis are included in the protocol. To ensure data reproducibility, we provide detailed procedures in three parts, including (1) instrument characterization and detector gain optimization, (2) antibody titration and sample staining, and (3) data acquisition and quality checks. This standardized approach has been applied to a variety of donors for a better understanding of the complexity of the human immune system. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00092-9.
Collapse
Affiliation(s)
- Jian Gao
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yali Luo
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Helian Li
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yiran Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Jialin Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Xuling Han
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Jingxuan Han
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Huiqin Lin
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Feng Qian
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Institute of Immunophenome, International Human Phenome Institutes (Shanghai), Shanghai, 200433 China
| |
Collapse
|
3
|
Gorrese M, Bertolini A, Fresolone L, Campana A, Pezzullo L, Guariglia R, Mettivier L, Manzo P, Cuffa B, D'Alto F, Serio B, Selleri C, Giudice V. Inter-intra instrument comparison and standardization of a 10-color immunophenotyping for B and T cell non-Hodgkin lymphoma diagnosis and monitoring. J Immunol Methods 2022; 511:113374. [PMID: 36243108 DOI: 10.1016/j.jim.2022.113374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
Abstract
Harmonization of flow cytometry protocols from instrument settings to antibody panel and reagents is highly encouraged for inter-laboratory data comparison in both research and clinical settings, especially for minimal residual disease monitoring evaluation in hematological diseases across centers. Here, we described inter-intra instrument comparison of two standardized 10-color staining dried tubes for B- and T-cell lymphoproliferative disorder diagnosis and monitoring on two different flow cytometers, a Beckman Coulter NaviosEx and a Beckman Coulter DxFlex. A total of 47 consecutive patients were enrolled, and 39 of them were evaluable for further studies. We show highly comparable results between the two cytometers for cell frequency and fluorescence intensity signals for both standardized 10-color staining dried tubes. For this latter, fluorescence of each antibody and subject was normalized on the mean value obtained from the entire study cohort thus reducing the effects of biological variability and allowing comparison between instruments with different detector sensitivity. In summary, dried tubes were confirmed as an optimal standardized diagnostic tool, especially when associated with EuroFlow standardized procedures by minimizing technical and biological variability. However, data analysis is still operator-dependent, and more efforts are needed to develop automated or semi-automated software for flow cytometry data analysis for diagnostic purposes.
Collapse
Affiliation(s)
- Marisa Gorrese
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Angela Bertolini
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Lucia Fresolone
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Annapaola Campana
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Luca Pezzullo
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Roberto Guariglia
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Laura Mettivier
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Paola Manzo
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Bianca Cuffa
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Francesca D'Alto
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Bianca Serio
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Carmine Selleri
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy; Department of Medicine, Surgery, and Dentistry, University of Salerno, Baronissi, Italy.
| | - Valentina Giudice
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy; Department of Medicine, Surgery, and Dentistry, University of Salerno, Baronissi, Italy
| |
Collapse
|
4
|
High throughput pSTAT signaling profiling by fluorescent cell barcoding and computational analysis. J Immunol Methods 2019; 477:112667. [PMID: 31726053 DOI: 10.1016/j.jim.2019.112667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/08/2019] [Accepted: 09/12/2019] [Indexed: 12/31/2022]
Abstract
Fluorescent cell barcoding (FCB) is a multiplexing technique for high-throughput flow cytometry (FCM). Although powerful in minimizing staining variability, it remains a subjective FCM technique because of inter-operator variability and differences in data analysis. FCB was implemented by combining two-dye barcoding (DyLight 350 plus Pacific Orange) with five-color surface marker antibody and intracellular staining for phosphoprotein signaling analysis. We proposed a robust method to measure intra- and inter-assay variability of FCB in T/B cells and monocytes by combining range and ratio of variability to standard statistical analyses. Data analysis was carried out by conventional and semi-automated workflows and built with R software. Results obtained from both analyses were compared to assess feasibility and reproducibility of FCB data analysis by machine-learning methods. Our results showed efficient FCB using DyLight 350 and Pacific Orange at concentrations of 0, 15 or 30, and 250 μg/mL, and a high reproducibility of FCB in combination with surface marker and intracellular antibodies. Inter-operator variability was minimized by adding an internal control bridged across matrices used as rejection criterion if significant differences were present between runs. Computational workflows showed comparable results to conventional gating strategies. FCB can be used to study phosphoprotein signaling in T/B cells and monocytes with high reproducibility across operators, and the addition of bridge internal controls can further minimize inter-operator variability. This FCB protocol, which has high throughput analysis and low intra- and inter-assay variability, can be a powerful tool for clinical trial studies. Moreover, FCB data can be reliably analyzed using computational software.
Collapse
|
5
|
Rolf N, Smolen KK, Kariminia A, Velenosi A, Fidanza M, Strahlendorf C, Seif AE, Reid GSD. Absolute lymphocyte counts at end of induction correlate with distinct immune cell compartments in pediatric B cell precursor acute lymphoblastic leukemia. Cancer Immunol Immunother 2018; 67:225-236. [PMID: 29052781 PMCID: PMC11028201 DOI: 10.1007/s00262-017-2070-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/26/2017] [Indexed: 01/10/2023]
Abstract
Several retrospective studies in children with B cell precursor (BCP) acute lymphoblastic leukemia (ALL) provided clinical evidence that higher absolute lymphocyte counts (ALC) early into treatment significantly correlated with improved relapse-free and overall survival. It still remains unknown, however, whether the predictive role of higher ALCs reflects general bone marrow recovery or a more specific attribute of immune function. To investigate this question, we implemented a prospective observational cohort study in 20 children with BCP ALL on day 29 (D29) of induction chemotherapy and immunophenotyped their lymphoid (T, B and natural killer cells) and myeloid (neutrophils, monocytes, dendritic cells) compartments. In a first evaluation of a cohort treated with Children's Oncology Group-based induction chemotherapy, the immune cell compartments were differentially depleted at D29. Neither gender, risk status, minimal residual disease, nor bone marrow recovery markers correlated with D29 ALC. In contrast, both CD3+ T cell and dendritic cell compartments, which did not correlate with age, significantly correlated with D29 ALC (p < 0.0001). In addition, subset complexity of cellular immune compartments was preserved at D29. This study reveals that D29 ALC significantly correlates with distinct immune cell compartments but not with bone marrow recovery markers, suggesting that higher D29 ALCs may contribute to leukemia control by inducing specific host immune activity.
Collapse
Affiliation(s)
- Nina Rolf
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, 950 West 28th Avenue, Reid Lab (Room 3062), Vancouver, BC, V5Z 4H4, Canada.
- Division of Pediatric Hem/Onc/BMT, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.
| | - Kinga K Smolen
- Experimental Medicine Program, University of British Columbia, Vancouver, BC, Canada
| | - Amina Kariminia
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, 950 West 28th Avenue, Reid Lab (Room 3062), Vancouver, BC, V5Z 4H4, Canada
| | - Adam Velenosi
- Department of Pathology and Laboratory Medicine, BC Children's Hospital Biobank, Vancouver, BC, Canada
| | - Mario Fidanza
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, 950 West 28th Avenue, Reid Lab (Room 3062), Vancouver, BC, V5Z 4H4, Canada
- Experimental Medicine Program, University of British Columbia, Vancouver, BC, Canada
| | - Caron Strahlendorf
- Division of Pediatric Hem/Onc/BMT, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Alix E Seif
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia and Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregor S D Reid
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, 950 West 28th Avenue, Reid Lab (Room 3062), Vancouver, BC, V5Z 4H4, Canada
- Division of Pediatric Hem/Onc/BMT, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Wang L, Hückelhoven A, Hong J, Jin N, Mani J, Chen BA, Schmitt M, Schmitt A. Standardization of cryopreserved peripheral blood mononuclear cells through a resting process for clinical immunomonitoring-Development of an algorithm. Cytometry A 2016; 89:246-58. [DOI: 10.1002/cyto.a.22813] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 10/18/2015] [Accepted: 12/11/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Lei Wang
- Department of Internal Medicine V; University Clinic Heidelberg, University of Heidelberg; Germany
| | - Angela Hückelhoven
- Department of Internal Medicine V; University Clinic Heidelberg, University of Heidelberg; Germany
| | - Jian Hong
- Department of Internal Medicine V; University Clinic Heidelberg, University of Heidelberg; Germany
| | - Nan Jin
- Department of Hematology; Zhongda Hospital, Southeast University; Nanjing China
| | - Jiju Mani
- Department of Internal Medicine V; University Clinic Heidelberg, University of Heidelberg; Germany
| | - Bao-an Chen
- Department of Hematology; Zhongda Hospital, Southeast University; Nanjing China
| | - Michael Schmitt
- Department of Internal Medicine V; University Clinic Heidelberg, University of Heidelberg; Germany
| | - Anita Schmitt
- Department of Internal Medicine V; University Clinic Heidelberg, University of Heidelberg; Germany
| |
Collapse
|
7
|
Martino D, Allen K. Meeting the challenges of measuring human immune regulation. J Immunol Methods 2015; 424:1-6. [DOI: 10.1016/j.jim.2015.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/08/2015] [Accepted: 04/27/2015] [Indexed: 11/30/2022]
|
8
|
|
9
|
Hasan M, Beitz B, Rouilly V, Libri V, Urrutia A, Duffy D, Cassard L, Di Santo JP, Mottez E, Quintana-Murci L, Albert ML, Rogge L. Semi-automated and standardized cytometric procedures for multi-panel and multi-parametric whole blood immunophenotyping. Clin Immunol 2015; 157:261-76. [PMID: 25572534 DOI: 10.1016/j.clim.2014.12.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 11/04/2014] [Accepted: 12/18/2014] [Indexed: 11/26/2022]
Abstract
Immunophenotyping by multi-parametric flow cytometry is the cornerstone technology for enumeration and characterization of immune cell populations in health and disease. Standardized procedures are essential to allow for inter-individual comparisons in the context of population based or clinical studies. Herein we report the approach taken by the Milieu Intérieur Consortium, highlighting the standardized and automated procedures used for immunophenotyping of human whole blood samples. We optimized eight-color antibody panels and procedures for staining and lysis of whole blood samples, and implemented pre-analytic steps with a semi-automated workflow using a robotic system. We report on four panels that were designed to enumerate and phenotype major immune cell populations (PMN, T, B, NK cells, monocytes and DC). This work establishes a foundation for defining reference values in healthy donors. Our approach provides robust protocols for affordable, semi-automated eight-color cytometric immunophenotyping that can be used in population-based studies and clinical trial settings.
Collapse
Affiliation(s)
- Milena Hasan
- Center for Human Immunology, Institut Pasteur, Paris, France
| | - Benoit Beitz
- Center for Human Immunology, Institut Pasteur, Paris, France
| | - Vincent Rouilly
- Center for Human Immunology, Institut Pasteur, Paris, France; Center for Bioinformatics, Institut Pasteur, Paris, France
| | - Valentina Libri
- Center for Human Immunology, Institut Pasteur, Paris, France
| | - Alejandra Urrutia
- Center for Human Immunology, Institut Pasteur, Paris, France; INSERM U818, France; Laboratory of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, Paris, France
| | - Darragh Duffy
- Center for Human Immunology, Institut Pasteur, Paris, France; INSERM U818, France; Laboratory of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, Paris, France
| | - Lydie Cassard
- Center for Human Immunology, Institut Pasteur, Paris, France
| | - James P Di Santo
- Laboratory of Innate Immunity, Department of Immunology, Institut Pasteur, Paris, France
| | - Estelle Mottez
- Center for Human Immunology, Institut Pasteur, Paris, France
| | - Lluis Quintana-Murci
- Laboratory of Human Evolutionary Genetics, Department of Genomes & Genetics, Institut Pasteur, Paris, France; CNRS URA3012, France
| | - Matthew L Albert
- Center for Human Immunology, Institut Pasteur, Paris, France; INSERM U818, France; Laboratory of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, Paris, France; INSERM UMS20, France.
| | - Lars Rogge
- Center for Human Immunology, Institut Pasteur, Paris, France; Laboratory of Immunoregulation, Department of Immunology, Institut Pasteur, Paris, France.
| | | |
Collapse
|
10
|
Muñoz FA, Franco-Noguez SY, Gonzalez-Ballesteros E, Negrete-Philippe AC, Flores-Romo L. Characterisation of the green turtle’s leukocyte subpopulations by flow cytometry and evaluation of their phagocytic activity. Vet Res Commun 2014; 38:123-8. [DOI: 10.1007/s11259-014-9595-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2014] [Indexed: 11/30/2022]
Affiliation(s)
- F A Muñoz
- Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, Carretera San Luis-Matehuala km 14.5, Soledad de Graciano Sánchez, C.P.78433, San Luis Potosí, México,
| | | | | | | | | |
Collapse
|