1
|
Al-Huthaifi AM, Radman BA, Al-Alawi AA, Mahmood F, Liu TB. Mechanisms and Virulence Factors of Cryptococcus neoformans Dissemination to the Central Nervous System. J Fungi (Basel) 2024; 10:586. [PMID: 39194911 DOI: 10.3390/jof10080586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Cryptococcosis is a prevalent fungal infection of the central nervous system (CNS) caused by Cryptococcus neoformans, a yeast with a polysaccharide capsule in the basidiomycete group. Normally, C. neoformans infects the respiratory tract and then breaches the blood-brain barrier (BBB), leading to meningitis or meningoencephalitis, which leads to hundreds of thousands of deaths each year. Although the mechanism by which C. neoformans infiltrates the BBB to invade the brain has yet to be fully understood, research has revealed that C. neoformans can cross the BBB using transcellular penetration, paracellular traversal, and infected phagocytes (the "Trojan horse" mechanism). The secretion of multiple virulence factors by C. neoformans is crucial in facilitating the spread of infection after breaching the BBB and causing brain infections. Extensive research has shown that various virulence factors play a significant role in the dissemination of infection beyond the lungs. This review explores the mechanisms of C. neoformans entering the CNS and explains how it bypasses the BBB. Additionally, it aims to understand the interplay between the regulatory mechanisms and virulence factors of C. neoformans.
Collapse
Affiliation(s)
| | - Bakeel A Radman
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | | | - Fawad Mahmood
- Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Tong-Bao Liu
- Medical Research Institute, Southwest University, Chongqing 400715, China
- Jinfeng Laboratory, Chongqing 401329, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Guan G, Tao L, Li C, Xu M, Liu L, Bennett RJ, Huang G. Glucose depletion enables Candida albicans mating independently of the epigenetic white-opaque switch. Nat Commun 2023; 14:2067. [PMID: 37045865 PMCID: PMC10097730 DOI: 10.1038/s41467-023-37755-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
The human fungal pathogen Candida albicans can switch stochastically and heritably between a "white" phase and an "opaque" phase. Opaque cells are the mating-competent form of the species, whereas white cells are thought to be essentially "sterile". Here, we report that glucose depletion, a common nutrient stress, enables C. albicans white cells to undergo efficient sexual mating. The relative expression levels of pheromone-sensing and mating-associated genes (including STE2/3, MFA1, MFα1, FIG1, FUS1, and CEK1/2) are increased under glucose depletion conditions, while expression of mating repressors TEC1 and DIG1 is decreased. Cph1 and Tec1, factors that act downstream of the pheromone MAPK pathway, play opposite roles in regulating white cell mating as TEC1 deletion or CPH1 overexpression promotes white cell mating. Moreover, inactivation of the Cph1 repressor Dig1 increases white cell mating ~4000 fold in glucose-depleted medium relative to that in the presence of glucose. Our findings reveal that the white-to-opaque epigenetic switch may not be a prerequisite for sexual mating in C. albicans in nature.
Collapse
Affiliation(s)
- Guobo Guan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Tao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chao Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ming Xu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Richard J Bennett
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI, 02912, USA
| | - Guanghua Huang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China.
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, 200052, China.
| |
Collapse
|
3
|
Velazhahan V, McCann BL, Bignell E, Tate CG. Developing novel antifungals: lessons from G protein-coupled receptors. Trends Pharmacol Sci 2023; 44:162-174. [PMID: 36801017 DOI: 10.1016/j.tips.2022.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 02/18/2023]
Abstract
Up to 1.5 million people die yearly from fungal disease, but the repertoire of antifungal drug classes is minimal and the incidence of drug resistance is rising rapidly. This dilemma was recently declared by the World Health Organization as a global health emergency, but the discovery of new antifungal drug classes remains excruciatingly slow. This process could be accelerated by focusing on novel targets, such as G protein-coupled receptor (GPCR)-like proteins, that have a high likelihood of being druggable and have well-defined biology and roles in disease. We discuss recent successes in understanding the biology of virulence and in structure determination of yeast GPCRs, and highlight new approaches that might pay significant dividends in the urgent search for novel antifungal drugs.
Collapse
Affiliation(s)
- Vaithish Velazhahan
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Bethany L McCann
- MRC Centre for Medical Mycology, Stocker Road, University of Exeter, Exeter EX4 4QD, UK
| | - Elaine Bignell
- MRC Centre for Medical Mycology, Stocker Road, University of Exeter, Exeter EX4 4QD, UK.
| | - Christopher G Tate
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
4
|
Regulatory basis for reproductive flexibility in a meningitis-causing fungal pathogen. Nat Commun 2022; 13:7938. [PMID: 36566249 PMCID: PMC9790007 DOI: 10.1038/s41467-022-35549-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Pathogenic fungi of the genus Cryptococcus can undergo two sexual cycles, involving either bisexual diploidization (after fusion of haploid cells of different mating type) or unisexual diploidization (by autodiploidization of a single cell). Here, we construct a gene-deletion library for 111 transcription factor genes in Cryptococcus deneoformans, and explore the roles of these regulatory networks in the two reproductive modes. We show that transcription factors crucial for bisexual syngamy induce the expression of known mating determinants as well as other conserved genes of unknown function. Deletion of one of these genes, which we term FMP1, leads to defects in bisexual reproduction in C. deneoformans, its sister species Cryptococcus neoformans, and the ascomycete Neurospora crassa. Furthermore, we show that a recently evolved regulatory cascade mediates pre-meiotic unisexual autodiploidization, supporting that this reproductive process is a recent evolutionary innovation. Our findings indicate that genetic circuits with different evolutionary ages govern hallmark events distinguishing unisexual and bisexual reproduction in Cryptococcus.
Collapse
|
5
|
Kukurudz RJ, Chapel M, Wonitowy Q, Adamu Bukari AR, Sidney B, Sierhuis R, Gerstein AC. Acquisition of cross-azole tolerance and aneuploidy in Candida albicans strains evolved to posaconazole. G3 (BETHESDA, MD.) 2022; 12:jkac156. [PMID: 35881695 PMCID: PMC9434289 DOI: 10.1093/g3journal/jkac156] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/13/2022] [Indexed: 12/30/2022]
Abstract
A number of in vitro studies have examined the acquisition of drug resistance to the triazole fluconazole, a first-line treatment for many Candida infections. Much less is known about posaconazole, a newer triazole. We conducted the first in vitro experimental evolution of replicates from 8 diverse strains of Candida albicans in a high level of the fungistatic drug posaconazole. Approximately half of the 132 evolved replicates survived 50 generations of evolution, biased toward some of the strain backgrounds. We found that although increases in drug resistance were rare, increases in drug tolerance (the slow growth of a subpopulation of cells in a level of drug above the resistance level) were common across strains. We also found that adaptation to posaconazole resulted in widespread cross-tolerance to other azole drugs. Widespread aneuploidy was observed in evolved replicates from some strain backgrounds. Trisomy of at least one of chromosomes 3, 6, and R was identified in 11 of 12 whole-genome sequenced evolved SC5314 replicates. These findings document rampant evolved cross-tolerance among triazoles and highlight that increases in drug tolerance can evolve independently of drug resistance in a diversity of C. albicans strain backgrounds.
Collapse
Affiliation(s)
- Rebekah J Kukurudz
- Department of Microbiology, The University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Madison Chapel
- Department of Microbiology, The University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Quinn Wonitowy
- Department of Microbiology, The University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | - Brooke Sidney
- Department of Microbiology, The University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Riley Sierhuis
- Department of Microbiology, The University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Aleeza C Gerstein
- Department of Microbiology, The University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Statistics, The University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
6
|
Towards a Fungal Science That Is Independent of Researchers’ Gender. J Fungi (Basel) 2022; 8:jof8070675. [PMID: 35887432 PMCID: PMC9321353 DOI: 10.3390/jof8070675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
The main drivers of gender mainstreaming in basic and clinical research appear to be funding agencies and scientific journals. Some funding agencies have already recognized the importance of their actions for the global development of ideas in science, but further targeted efforts are needed. The challenges for women scientists in fungal research appear to be similar to those in other science, technology, engineering, and mathematics disciplines, although the gender gap in mycology publishing appears to be less pronounced; however, women are underrepresented as last (corresponding) authors. Two examples of best practices to bridge the gap have been promoted in the fungal community: “power hour” and a central resource database for women researchers of fungi and oomycetes. A more balanced ratio of women researchers among (plenary) session speakers, (plenary) session chairs, and committee members at the recent fungal genetics conference is an encouraging sign that the gender gap can be closed. The editorial policy of some journals follows the guidance “Sex and Gender Equality in Research,” and other journals should follow, and indicate the gender ratio among authors and reviewers.
Collapse
|
7
|
The Multifaceted Role of Mating Type of the Fungus and Sex of the Host in Studies of Fungal Infections in Humans. J Fungi (Basel) 2022; 8:jof8050461. [PMID: 35628717 PMCID: PMC9145136 DOI: 10.3390/jof8050461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
This review discusses the inclusion of sex and gender variables in studies of fungal infections in humans at the pathogen, host, and antifungal trial levels. The mating type of some fungi, or perhaps more likely the absence of the other, appears to be associated with some infections. Sexual and parasexual reproduction of some fungi is an important mechanism for the development of antifungal drug resistance. Host sex or gender influences the incidence of some infections such as aspergillosis, cryptococcosis, paracoccidioidomycosis, dermatophytosis, and candidiasis due to differences in immune response, behavior, and awareness for early detection and treatment. Participant sex (and age) is relevant not only in clinical antifungal trials but also in preclinical studies. The dimensions of sex and gender are important determinants throughout the fungal infection process and in approaches to prevent or treat these infections, as well as in development of antifungal drugs. Failure to consider sex and gender may be detrimental to the holistic understanding of the processes involved in fungal infection.
Collapse
|
8
|
Lai WC, Hsu HC, Cheng CW, Wang SH, Li WC, Hsieh PS, Tseng TL, Lin TH, Shieh JC. Filament Negative Regulator CDC4 Suppresses Glycogen Phosphorylase Encoded GPH1 that Impacts the Cell Wall-Associated Features in Candida albicans. J Fungi (Basel) 2022; 8:jof8030233. [PMID: 35330235 PMCID: PMC8949380 DOI: 10.3390/jof8030233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
We have previously identified Candida albicans GPH1 (orf19.7021) whose protein product was associated with C. albicans Cdc4. The GPH1 gene is a putative glycogen phosphorylase because its Saccharomyces cerevisiae homolog participates in glycogen catabolism, which involves the synthesis of β-glucan of the fungal cell wall. We made a strain whose CaCDC4 expression is repressed, and GPH1 is constitutively expressed. We established a GPH1 null mutant strain and used it to conduct the in vitro virulence assays that detect cell wall function. The in vitro virulence assay is centered on biofilm formation in which analytic procedures are implemented to evaluate cell surface hydrophobicity; competence, either in stress resistance, germ tube formation, or fibronection association; and the XTT-based adhesion and biofilm formation. We showed that the constitutively expressed GPH1 partially suppresses filamentation when the CaCDC4 expression is repressed. The C. albicans Gph1 protein is reduced in the presence of CaCdc4 in comparison with the absence of CaCdc4. Compared with the wild-type strain, the gph1Δ/gph1Δ mutant displayed a reduction in the capability to form germ tubes and the cell surface hydrophobicity but an increase in binding with fibronectin. Compared with the wild-type strain, the gph1Δ/gph1Δ mutant showed a rise in adhesion, the initial stage of biofilm formation, but displayed a similar capacity to form a mature biofilm. There was no major impact on the gph1Δ/gph1Δ mutant regarding the conditions of cell wall damaging and TOR pathway-associated nutrient depletion. We conclude that GPH1, adversely regulated by the filament suppressor CDC4, contributes to cell wall function in C. albicans.
Collapse
Affiliation(s)
- Wei-Chung Lai
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Hsiao-Chi Hsu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Chun-Wen Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung City 40201, Taiwan;
| | - Shao-Hung Wang
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi 60004, Taiwan;
| | - Wan Chen Li
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Po-Szu Hsieh
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Tzu-Ling Tseng
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Ting-Hui Lin
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
| | - Jia-Ching Shieh
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan; (W.-C.L.); (H.-C.H.); (W.C.L.); (P.-S.H.); (T.-L.T.); (T.-H.L.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
- Immunology Research Center, Chung Shan Medical University, Taichung City 40201, Taiwan
- Correspondence: ; Tel.: +886-424-730-022 (ext. 11806); Fax: +886-424-757-412
| |
Collapse
|
9
|
Fu C, Davy A, Holmes S, Sun S, Yadav V, Gusa A, Coelho MA, Heitman J. Dynamic genome plasticity during unisexual reproduction in the human fungal pathogen Cryptococcus deneoformans. PLoS Genet 2021; 17:e1009935. [PMID: 34843473 PMCID: PMC8670703 DOI: 10.1371/journal.pgen.1009935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/14/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022] Open
Abstract
Genome copy number variation occurs during each mitotic and meiotic cycle and it is crucial for organisms to maintain their natural ploidy. Defects in ploidy transitions can lead to chromosome instability, which is a hallmark of cancer. Ploidy in the haploid human fungal pathogen Cryptococcus neoformans is exquisitely orchestrated and ranges from haploid to polyploid during sexual development and under various environmental and host conditions. However, the mechanisms controlling these ploidy transitions are largely unknown. During C. deneoformans (formerly C. neoformans var. neoformans, serotype D) unisexual reproduction, ploidy increases prior to the onset of meiosis, can be independent from cell-cell fusion and nuclear fusion, and likely occurs through an endoreplication pathway. To elucidate the molecular mechanisms underlying this ploidy transition, we identified twenty cell cycle-regulating genes encoding cyclins, cyclin-dependent kinases (CDK), and CDK regulators. We characterized four cyclin genes and two CDK regulator genes that were differentially expressed during unisexual reproduction and contributed to diploidization. To detect ploidy transition events, we generated a ploidy reporter, called NURAT, which can detect copy number increases via double selection for nourseothricin-resistant, uracil-prototrophic cells. Utilizing this ploidy reporter, we showed that ploidy transition from haploid to diploid can be detected during the early phases of unisexual reproduction. Interestingly, selection for the NURAT reporter revealed several instances of segmental aneuploidy of multiple chromosomes, which conferred azole resistance in some isolates. These findings provide further evidence of ploidy plasticity in fungi with significant biological and public health implications. Ploidy is an intrinsic fundamental feature of all eukaryotic organisms, and ploidy variation and maintenance are critical to the organism survival and evolution. Fungi exhibit exquisite plasticity in ploidy variation in adaptation to various environmental stresses. For example, the haploid opportunistic human fungal pathogen C. deneoformans can generate diploid blastospores during unisexual reproduction and also forms polyploid titan cells during host infection; however, the mechanisms underlying these ploidy transitions are largely unknown. In this study, we elucidated the genetic regulatory circuitry governing ploidy duplication during C. deneoformans unisexual reproduction through the identification and characterization of cell cycle regulators that are differentially expressed during unisexual reproduction. We showed that four cyclin and two cyclin-dependent kinase regulator genes function in concert to orchestrate ploidy transition during unisexual reproduction. To trace and track ploidy transition events, we also generated a ploidy reporter and revealed the formation of segmental aneuploidy in addition to diploidization, illustrating the diverse mechanisms of genome plasticity in C. deneoformans.
Collapse
Affiliation(s)
- Ci Fu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Aaliyah Davy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Simeon Holmes
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Asiya Gusa
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
10
|
Oliw EH. Fatty acid dioxygenase-cytochrome P450 fusion enzymes of filamentous fungal pathogens. Fungal Genet Biol 2021; 157:103623. [PMID: 34520871 DOI: 10.1016/j.fgb.2021.103623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/07/2021] [Indexed: 11/27/2022]
Abstract
Oxylipins designate oxygenated unsaturated C18 fatty acids. Many filamentous fungi pathogens contain dioxygenases (DOX) in oxylipin biosynthesis with homology to human cyclooxygenases. They contain a DOX domain, which is often fused to a functional cytochrome P450 at the C-terminal end. A Tyr radical in the DOX domain initiates dioxygenation of linoleic acid by hydrogen abstraction with formation of 8-, 9-, or 10-hydroperoxy metabolites. The P450 domains can catalyze heterolytic cleavage of 8- and 10-hydroperoxides with oxidation of the heme thiolate iron for hydroxylation at C-5, C-7, C-9, or C-11 and for epoxidation of the 12Z double bond; thus displaying linoleate diol synthase (LDS) and epoxy alcohol synthase (EAS) activities. LSD activities are present in the rice blast pathogen Magnaporthe oryzae, Botrytis cinerea causing grey mold and the black scurf pathogen Rhizoctonia solani. 10R-DOX-EAS has been found in M. oryzae and Fusarium oxysporum. The P450 domains may also catalyze homolytic cleavage of 8- and 9-hydroperoxy fatty acids and dehydration to produce epoxides with an adjacent double bond, i.e., allene oxides, thus displaying 8- and 9-DOX-allene oxide synthases (AOS). F. oxysporum, F. graminearum, and R. solani express 9S-DOX-AOS and Zymoseptoria tritici 8S-and 9R-DOX-AOS. Homologues are present in endemic human-pathogenic fungi with extensive studies in Aspergillus fumigatus, A. flavus (also a plant pathogen) as well as the genetic model A. nidulans. 8R-and 10R-DOX appear to bind fatty acids "headfirst" in the active site, whereas 9S-DOX binds them "tail first" in analogy with cyclooxygenases. The biological relevance of 8R-DOX-5,8-LDS (also designated PpoA) was first discovered in relation to sporulation of A. nidulans and recently for development and programmed hyphal branching of A. fumigatus. Gene deletion DOX-AOS homologues in F. verticillioides, A. flavus, and A. nidulans alters, inter alia, mycotoxin production, sporulation, and gene expression.
Collapse
Affiliation(s)
- Ernst H Oliw
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
11
|
Abstract
Quorum sensing (QS) is one of the most studied cell-cell communication mechanisms in fungi. Research in the last 20 years has explored various fungal QS systems that are involved in a wide range of biological processes, especially eukaryote- or fungus-specific behaviors, mirroring the significant contribution of QS regulation to fungal biology and evolution. Based on recent progress, we summarize in this review fungal QS regulation, with an emphasis on its functional role in behaviors unique to fungi or eukaryotes. We suggest that using fungi as genetically amenable eukaryotic model systems to address why and how QS regulation is integrated into eukaryotic reproductive strategies and molecular or cellular processes could be an important direction for QS research. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Xiuyun Tian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hao Ding
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Weixin Ke
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
12
|
Oliw EH. WITHDRAWN: Fatty acid dioxygenase-cytochrome P450 fusion enzymes of the top 10 fungal pathogens in molecular plant pathology and human-pathogenic fungi. Fungal Genet Biol 2021:103603. [PMID: 34214670 DOI: 10.1016/j.fgb.2021.103603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/21/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal
Collapse
Affiliation(s)
- Ernst H Oliw
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
13
|
The Interplay Between Neutral and Adaptive Processes Shapes Genetic Variation During Candida Species Evolution. CURRENT CLINICAL MICROBIOLOGY REPORTS 2021. [DOI: 10.1007/s40588-021-00171-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
d'Enfert C, Kaune AK, Alaban LR, Chakraborty S, Cole N, Delavy M, Kosmala D, Marsaux B, Fróis-Martins R, Morelli M, Rosati D, Valentine M, Xie Z, Emritloll Y, Warn PA, Bequet F, Bougnoux ME, Bornes S, Gresnigt MS, Hube B, Jacobsen ID, Legrand M, Leibundgut-Landmann S, Manichanh C, Munro CA, Netea MG, Queiroz K, Roget K, Thomas V, Thoral C, Van den Abbeele P, Walker AW, Brown AJP. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev 2021; 45:fuaa060. [PMID: 33232448 PMCID: PMC8100220 DOI: 10.1093/femsre/fuaa060] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans. It exists as a commensal in the oral cavity, gut or genital tract of most individuals, constrained by the local microbiota, epithelial barriers and immune defences. Their perturbation can lead to fungal outgrowth and the development of mucosal infections such as oropharyngeal or vulvovaginal candidiasis, and patients with compromised immunity are susceptible to life-threatening systemic infections. The importance of the interplay between fungus, host and microbiota in driving the transition from C. albicans commensalism to pathogenicity is widely appreciated. However, the complexity of these interactions, and the significant impact of fungal, host and microbiota variability upon disease severity and outcome, are less well understood. Therefore, we summarise the features of the fungus that promote infection, and how genetic variation between clinical isolates influences pathogenicity. We discuss antifungal immunity, how this differs between mucosae, and how individual variation influences a person's susceptibility to infection. Also, we describe factors that influence the composition of gut, oral and vaginal microbiotas, and how these affect fungal colonisation and antifungal immunity. We argue that a detailed understanding of these variables, which underlie fungal-host-microbiota interactions, will present opportunities for directed antifungal therapies that benefit vulnerable patients.
Collapse
Affiliation(s)
- Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Ann-Kristin Kaune
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Leovigildo-Rey Alaban
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Sayoni Chakraborty
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Nathaniel Cole
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Margot Delavy
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Daria Kosmala
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Benoît Marsaux
- ProDigest BV, Technologiepark 94, B-9052 Gent, Belgium
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 9000 Ghent, Belgium
| | - Ricardo Fróis-Martins
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Moran Morelli
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Marisa Valentine
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Zixuan Xie
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Yoan Emritloll
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Peter A Warn
- Magic Bullet Consulting, Biddlecombe House, Ugbrook, Chudleigh Devon, TQ130AD, UK
| | - Frédéric Bequet
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Stephanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF0545, 20 Côte de Reyne, 15000 Aurillac, France
| | - Mark S Gresnigt
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Bernhard Hube
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Ilse D Jacobsen
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Mélanie Legrand
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Salomé Leibundgut-Landmann
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Chaysavanh Manichanh
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Karla Queiroz
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Karine Roget
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | - Vincent Thomas
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Claudia Thoral
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | | | - Alan W Walker
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alistair J P Brown
- MRC Centre for Medical Mycology, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
15
|
Motaung TE, Peremore C, Wingfield B, Steenkamp E. Plant-associated fungal biofilms-knowns and unknowns. FEMS Microbiol Ecol 2021; 96:5956487. [PMID: 33150944 DOI: 10.1093/femsec/fiaa224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Nearly all microbes, including fungi, grow firmly attached to surfaces as a biofilm. Yet, attention toward fungal interactions with plants and the environment is dedicated to free-floating (planktonic) cells. Fungal biofilms are generally thought to configure interactions across and among plant populations. Despite this, plant fungal biofilm research lags far behind the research on biofilms of medically important fungi. The deficit in noticing and exploring this research avenue could limit disease management and plant improvement programs. Here, we provide the current state of knowledge of fungal biofilms and the different pivotal ecological roles they impart in the context of disease, through leveraging evidence across medically important fungi, secondary metabolite production, plant beneficial functions and climate change. We also provide views on several important information gaps potentially hampering plant fungal biofilm research, and propose a way forward to address these gaps.
Collapse
Affiliation(s)
- Thabiso E Motaung
- University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Chizné Peremore
- University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Brenda Wingfield
- University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Emma Steenkamp
- University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| |
Collapse
|
16
|
Landscape Genetic Connectivity and Evidence for Recombination in the North American Population of the White-Nose Syndrome Pathogen, Pseudogymnoascus destructans. J Fungi (Basel) 2021; 7:jof7030182. [PMID: 33802538 PMCID: PMC8001231 DOI: 10.3390/jof7030182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 11/28/2022] Open
Abstract
White-Nose Syndrome is an ongoing fungal epizootic caused by epidermal infections of the fungus, Pseudogymnoascus destructans (P. destructans), affecting hibernating bat species in North America. Emerging early in 2006 in New York State, infections of P. destructans have spread to 38 US States and seven Canadian Provinces. Since then, clonal isolates of P. destructans have accumulated genotypic and phenotypic variations in North America. Using microsatellite and single nucleotide polymorphism markers, we investigated the population structure and genetic relationships among P. destructans isolates from diverse regions in North America to understand its pattern of spread, and to test hypotheses about factors that contribute to transmission. We found limited support for genetic isolation of P. destructans populations by geographic distance, and instead identified evidence for gene flow among geographic regions. Interestingly, allelic association tests revealed evidence for recombination in the North American P. destructans population. Our landscape genetic analyses revealed that the population structure of P. destructans in North America was significantly influenced by anthropogenic impacts on the landscape. Our results have important implications for understanding the mechanism(s) of P. destructans spread.
Collapse
|
17
|
Reinhardt D, Roux C, Corradi N, Di Pietro A. Lineage-Specific Genes and Cryptic Sex: Parallels and Differences between Arbuscular Mycorrhizal Fungi and Fungal Pathogens. TRENDS IN PLANT SCIENCE 2021; 26:111-123. [PMID: 33011084 DOI: 10.1016/j.tplants.2020.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/29/2020] [Accepted: 09/08/2020] [Indexed: 05/25/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) live as obligate root symbionts on almost all land plants. They have long been regarded as ancient asexuals that have propagated clonally for millions of years. However, genomic studies in Rhizophagus irregularis and other AMF revealed many features indicative of sex. Surprisingly, comparative genomics of conspecific isolates of R. irregularis revealed an unexpected interstrain diversity, suggesting that AMF carry a high number of lineage-specific (LS) genes. Intriguingly, cryptic sex and LS genomic regions have previously been reported in a number of fungal pathogens of plants and humans. Here, we discuss these genomic similarities and highlight their potential relevance for AMF adaptation to the environment and for symbiotic functioning.
Collapse
Affiliation(s)
- Didier Reinhardt
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, UPS, CNRS, Université de Toulouse, Castanet-Tolosan 31326, France
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Antonio Di Pietro
- Departamento de Genética, Universidad de Cordoba, 14071 Cordoba, Spain
| |
Collapse
|
18
|
Alonso-García M, Grewe F, Payette S, Villarreal A JC. Population genomics of a reindeer lichen species from North American lichen woodlands. AMERICAN JOURNAL OF BOTANY 2021; 108:159-171. [PMID: 33512730 DOI: 10.1002/ajb2.1601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/28/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Lichens are one of the main structural components of plant communities in the North American boreal biome. They play a pivotal role in lichen woodlands, a large ecosystem situated north of the closed-crown forest zone, and south of the forest-tundra zone. In Eastern Canada (Quebec), there is a remnant LW found 500 km south of its usual distribution range, in the Parc National des Grands-Jardins, originated mainly because of wildfires. We inferred the origin of the lichen Cladonia stellaris from this LW and assessed its genetic diversity in a postfire succession. METHODS We genotyped 122 individuals collected across a latitudinal gradient in Quebec. Using the software Stacks, we compared four different approaches of locus selection and single-nucleotide polymorphism calling. We identified the best fitting approach to investigate population structure and estimate genetic diversity of C. stellaris. RESULTS Populations in southern Quebec are not genetically different from those of northern LWs. The species consists of at least four phylogenetic lineages with elevated levels of genetic diversity and low co-ancestry. In Parc National des Grands-Jardins, we reported high values of genetic diversity not related with time since fire disturbance and low genetic differentiation among populations with different fire histories. CONCLUSIONS This first population genomic study of C. stellaris is an important step forward to understand the origin and biogeographic patterns of lichen woodlands in North America. Our findings also contribute to the understanding of the effect of postfire succession on the genetic structure of the species.
Collapse
Affiliation(s)
- Marta Alonso-García
- Département de Biologie, Université Laval, Québec, G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada
| | - Felix Grewe
- The Field Museum, Grainger Bioinformatics Center, 1400 South Lake Shore Drive, Chicago, 60605, USA
| | - Serge Payette
- Département de Biologie, Université Laval, Québec, G1V 0A6, Canada
| | - Juan Carlos Villarreal A
- Département de Biologie, Université Laval, Québec, G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, EH3 5LR, Scotland, UK
- Smithsonian Tropical Research Institute, Panama City, Panama
| |
Collapse
|
19
|
Ellena V, Sauer M, Steiger MG. The fungal sexual revolution continues: discovery of sexual development in members of the genus Aspergillus and its consequences. Fungal Biol Biotechnol 2020; 7:17. [PMID: 33357234 PMCID: PMC7761153 DOI: 10.1186/s40694-020-00107-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
Asexuality was considered to be a common feature of a large part of fungi, including those of the genus Aspergillus. However, recent advances and the available genomic and genetic engineering technologies allowed to gather more and more indications of a hidden sexuality in fungi previously considered asexual. In parallel, the acquired knowledge of the most suitable conditions for crossings was shown to be crucial to effectively promote sexual reproduction in the laboratory. These discoveries not only have consequences on our knowledge of the biological processes ongoing in nature, questioning if truly asexual fungal species exist, but they also have important implications on other research areas. For instance, the presence of sexuality in certain fungi can have effects on their pathogenicity or on shaping the ecosystem that they normally colonize. For these reasons, further investigations of the sexual potential of Aspergillus species, such as the industrially important A. niger, will be carried on.
Collapse
Affiliation(s)
- Valeria Ellena
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 18, Vienna, Austria. .,Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.
| | - Michael Sauer
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 18, Vienna, Austria.,Institute of Microbiology and Microbial Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, Austria.,CD Laboratory for Biotechnology of Glycerol, Muthgasse 18, Vienna, Austria
| | - Matthias G Steiger
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 18, Vienna, Austria.,Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
20
|
Wilken PM, Aylward J, Chand R, Grewe F, Lane FA, Sinha S, Ametrano C, Distefano I, Divakar PK, Duong TA, Huhndorf S, Kharwar RN, Lumbsch HT, Navathe S, Pérez CA, Ramírez-Berrutti N, Sharma R, Sun Y, Wingfield BD, Wingfield MJ. IMA Genome - F13: Draft genome sequences of Ambrosiella cleistominuta, Cercospora brassicicola, C. citrullina, Physcia stellaris, and Teratosphaeria pseudoeucalypti. IMA Fungus 2020; 11:19. [PMID: 33014691 PMCID: PMC7513301 DOI: 10.1186/s43008-020-00039-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Draft genomes of the fungal species Ambrosiella cleistominuta, Cercospora brassicicola, C. citrullina, Physcia stellaris, and Teratosphaeria pseudoeucalypti are presented. Physcia stellaris is an important lichen forming fungus and Ambrosiella cleistominuta is an ambrosia beetle symbiont. Cercospora brassicicola and C. citrullina are agriculturally relevant plant pathogens that cause leaf-spots in brassicaceous vegetables and cucurbits respectively. Teratosphaeria pseudoeucalypti causes severe leaf blight and defoliation of Eucalyptus trees. These genomes provide a valuable resource for understanding the molecular processes in these economically important fungi.
Collapse
Affiliation(s)
- P. Markus Wilken
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028 South Africa
| | - Janneke Aylward
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028 South Africa
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602 South Africa
| | - Ramesh Chand
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Felix Grewe
- Field Museum, Department of Science and Education, Grainger Bioinformatics Center, Chicago, IL USA
| | - Frances A. Lane
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028 South Africa
| | - Shagun Sinha
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005 India
- Center of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Claudio Ametrano
- Field Museum, Department of Science and Education, Grainger Bioinformatics Center, Chicago, IL USA
| | - Isabel Distefano
- Field Museum, Department of Science and Education, Grainger Bioinformatics Center, Chicago, IL USA
| | - Pradeep K. Divakar
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Tuan A. Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028 South Africa
| | - Sabine Huhndorf
- Field Museum, Department of Science and Education, Grainger Bioinformatics Center, Chicago, IL USA
| | - Ravindra N. Kharwar
- Center of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - H. Thorsten Lumbsch
- Field Museum, Department of Science and Education, Grainger Bioinformatics Center, Chicago, IL USA
| | - Sudhir Navathe
- Agharkar Research Institute, G.G. Agharkar Road, Pune, 411004 India
| | - Carlos A. Pérez
- Department of Plant Protection, EEMAC, Facultad de Agronomía, UdelaR, Paysandú, Uruguay
| | | | - Rohit Sharma
- National Centre for Microbial Resource, National Centre for Cell Science, S.P, Pune University, Pune, 411 007 India
| | - Yukun Sun
- Field Museum, Department of Science and Education, Grainger Bioinformatics Center, Chicago, IL USA
| | - Brenda D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028 South Africa
| | - Michael J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028 South Africa
| |
Collapse
|
21
|
Yong M, Yu J, Pan X, Yu M, Cao H, Song T, Qi Z, Du Y, Zhang R, Yin X, Liu W, Liu Y. Two mating-type genes MAT1-1-1 and MAT1-1-2 with significant functions in conidiation, stress response, sexual development, and pathogenicity of rice false smut fungus Villosiclava virens. Curr Genet 2020; 66:989-1002. [PMID: 32572596 DOI: 10.1007/s00294-020-01085-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/13/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Rice false smut caused by Villosiclava virens is one of the destructive diseases on panicles of rice. Sexual development of V. virens, controlled by mating-type locus, plays an important role in the prevalence of rice false smut and genetic diversity of the pathogen. However, how the mating-type genes mediate sexual development of the V. virens remains largely unknown. In this study, we characterized the two mating-type genes, MAT1-1-1 and MAT1-1-2, in V. virens. MAT1-1-1 knockout mutant showed defects in hyphal growth, conidia morphogenesis, sexual development, and increase in the tolerance to salt and osmotic stress. Targeted deletion of MAT1-1-2 not only impaired the sclerotia formation and pathogenicity of V. virens, but also reduced the production of conidia. The MAT1-1-2 mutant showed increases in tolerance to salt and hydrogen peroxide stress, but decreases in tolerance to osmotic stress. Yeast two-hybrid assay showed that MAT1-1-1 interacted with MAT1-1-2, indicating that those proteins might form a complex to regulate sexual development. In addition, MAT1-1-1 localized in the nucleus, and MAT1-1-2 localized in the cytoplasm. Collectively, our results demonstrate that MAT1-1-1 and MAT1-1-2 play important roles in the conidiation, stress response, sexual development, and pathogenicity of V. virens, thus providing new insights into the function of mating-type gene.
Collapse
Affiliation(s)
- Mingli Yong
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaole Yin
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| |
Collapse
|
22
|
Cotton JA, Durrant C, Franssen SU, Gelanew T, Hailu A, Mateus D, Sanders MJ, Berriman M, Volf P, Miles MA, Yeo M. Genomic analysis of natural intra-specific hybrids among Ethiopian isolates of Leishmania donovani. PLoS Negl Trop Dis 2020; 14:e0007143. [PMID: 32310945 PMCID: PMC7237039 DOI: 10.1371/journal.pntd.0007143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/19/2020] [Accepted: 12/24/2019] [Indexed: 12/30/2022] Open
Abstract
Parasites of the genus Leishmania (Kinetoplastida: Trypanosomatidae) cause widespread and devastating human diseases. Visceral leishmaniasis due to Leishmania donovani is endemic in Ethiopia where it has also been responsible for major epidemics. The presence of hybrid genotypes has been widely reported in surveys of natural populations, genetic variation reported in a number of Leishmania species, and the extant capacity for genetic exchange demonstrated in laboratory experiments. However, patterns of recombination and the evolutionary history of admixture that produced these hybrid populations remain unclear. Here, we use whole-genome sequence data to investigate Ethiopian L. donovani isolates previously characterized as hybrids by microsatellite and multi-locus sequencing. To date there is only one previous study on a natural population of Leishmania hybrids based on whole-genome sequences. We propose that these hybrids originate from recombination between two different lineages of Ethiopian L. donovani occurring in the same region. Patterns of inheritance are more complex than previously reported with multiple, apparently independent, origins from similar parents that include backcrossing with parental types. Analysis indicates that hybrids are representative of at least three different histories. Furthermore, isolates were highly polysomic at the level of chromosomes with differences between parasites recovered from a recrudescent infection from a previously treated individual. The results demonstrate that recombination is a significant feature of natural populations and contributes to the growing body of data that shows how recombination, and gene flow, shape natural populations of Leishmania.
Collapse
Affiliation(s)
| | | | | | - Tesfaye Gelanew
- Faculty of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Asrat Hailu
- Faculty of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - David Mateus
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michael A. Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matthew Yeo
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
23
|
Mitotic Recombination and Adaptive Genomic Changes in Human Pathogenic Fungi. Genes (Basel) 2019; 10:genes10110901. [PMID: 31703352 PMCID: PMC6895784 DOI: 10.3390/genes10110901] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022] Open
Abstract
Genome rearrangements and ploidy alterations are important for adaptive change in the pathogenic fungal species Candida and Cryptococcus, which propagate primarily through clonal, asexual reproduction. These changes can occur during mitotic growth and lead to enhanced virulence, drug resistance, and persistence in chronic infections. Examples of microevolution during the course of infection were described in both human infections and mouse models. Recent discoveries defining the role of sexual, parasexual, and unisexual cycles in the evolution of these pathogenic fungi further expanded our understanding of the diversity found in and between species. During mitotic growth, damage to DNA in the form of double-strand breaks (DSBs) is repaired, and genome integrity is restored by the homologous recombination and non-homologous end-joining pathways. In addition to faithful repair, these pathways can introduce minor sequence alterations at the break site or lead to more extensive genetic alterations that include loss of heterozygosity, inversions, duplications, deletions, and translocations. In particular, the prevalence of repetitive sequences in fungal genomes provides opportunities for structural rearrangements to be generated by non-allelic (ectopic) recombination. In this review, we describe DSB repair mechanisms and the types of resulting genome alterations that were documented in the model yeast Saccharomyces cerevisiae. The relevance of similar recombination events to stress- and drug-related adaptations and in generating species diversity are discussed for the human fungal pathogens Candida albicans and Cryptococcus neoformans.
Collapse
|
24
|
Metin B, Heitman J. She Loves Me, She Loves Me Not: On the Dualistic Asexual/Sexual Nature of Dermatophyte Fungi. Mycopathologia 2019; 185:87-101. [PMID: 31578669 DOI: 10.1007/s11046-019-00390-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022]
Abstract
Dermatophytes are ascomycetous fungi whose sexuality is greatly influenced by their ecology. Sexual reproduction is ubiquitous among soil-related geophiles and some animal-associated zoophiles. In contrast, anthropophiles are generally present as a single mating type in the population and appear to reproduce asexually. In this article, the current knowledge on the sexuality of dermatophytes including reproduction modes, mating conditions, mating type distributions and the mating type (MAT) locus is presented in the context of revised taxonomy and discussed from an evolutionary perspective.
Collapse
Affiliation(s)
- Banu Metin
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Halkali Cad, No: 2, Halkali, Kucukcekmece, 34303, Istanbul, Turkey.
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
25
|
Moshiri F, Ebrahimi H, Ardakani MR, Rejali F, Mousavi SM. Biogeochemical distribution of Pb and Zn forms in two calcareous soils affected by mycorrhizal symbiosis and alfalfa rhizosphere. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 179:241-248. [PMID: 31051397 DOI: 10.1016/j.ecoenv.2019.04.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/07/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
Using of arbuscular mycorrhizal fungi (AMF) has emerged as a new technique to alleviate the toxic metals stress through changing their chemical behavior. The present work was conducted as a factorial arrangement based on a completely randomized design to study the inoculation effects of Glomus intraradices, Glomus mosseae and Glomus etunicatum, on Pb and Zn fractions in the rhizosphere of alfalfa by using rhizobox technique in two agricultural soils with different Zn and Pb concentrations [with low (LH) and high (HH) concentration levels]. The results showed that AMF colonization promoted plant growth and lowered the shoot and root Pb and shoot Zn concentrations in the studied soils compared to uninoculated treatments. Mycorrhizal colonization significantly increased the Ca(NO3)2- extractable Zn and ORG-Zn (respectively 500 and 59.6% more than the uninoculated treatment) and decreased the OXI-Zn (20.32% less than the none inoculated treatment) in the HH soil. By contrast, mycorrhizae slightly increased the CARB, OXI and ORG-Zn forms in the LH soil compared to the uninoculation condition. In the AMF- treated HH soil, an increase was recorded in the Ca(NO3)2- extractable Pb, EXCH-Pb and CARB-Pb (respectively, 17.65, 3.09 and 14.22% compared to the none inoculated treatment) and a decrease in the OXI and ORG-Pb forms (respectively, 28.79 and 13.51% compared to the uninoculated treatment). A reverse status was observed for Pb changes in the LH soil. Depending on the contamination level, the mycorrhizal inoculation differentially affected the Pb and Zn fractions at different distances from the root surface. In the LH soil, at <5 mm distance (i.e. rhizospheric soil), the mycorrhizal inoculation decreased the CARB (about 17.99%) and OXI -Zn (about 29.63%) forms compared to bulk soil (i.e. > 5 mm distance) while ORG-Zn was increased up to 48.63%. However, Ca(NO3)2- extractable, CARB and ORG-Pb was increased in rhizosphere soil (respectively, 89.33, 3.84 and 6.14%) and OXI-Pb was decreased up to 10.36% compared to the bulk soil. In the HH soil, mycorrhizal inoculation increased the CARB and OXI-Zn (respectively, 1.76 and 5.71%) and OXI-Pb fractions (11.56%) compared to the <5 mm distances. Whereas, it reduced the Ca(NO3)2- extractable, EXCH, and ORG-Zn (Respectively, 52.70, 19.19 and 30.16%) and Ca(NO3)2- extractable, CARB and ORG-Pb (respectively, 47.18, 3.70 and 5.79%). These results revealed that depending on the soil contamination level and nature of the element, AMF colonization affects biogeochemical fractions of the metals and their accumulation in the plant tissues.
Collapse
Affiliation(s)
- Farhad Moshiri
- Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Hashem Ebrahimi
- Department of Agronomy and Plant Breeding, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mohammad Reza Ardakani
- Department of Agronomy and Plant Breeding, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Farhad Rejali
- Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Seyed Majid Mousavi
- Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
26
|
Genetic and genomic evolution of sexual reproduction: echoes from LECA to the fungal kingdom. Curr Opin Genet Dev 2019; 58-59:70-75. [PMID: 31473482 DOI: 10.1016/j.gde.2019.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/28/2019] [Accepted: 07/16/2019] [Indexed: 12/30/2022]
Abstract
Sexual reproduction is vastly diverse and yet highly conserved across the eukaryotic domain. This ubiquity suggests that the last eukaryotic common ancestor (LECA) was sexual. It is hypothesized that several critical processes in sexual reproduction, including cell fusion and meiosis, were acquired during the evolution from the first eukaryotic common ancestor (FECA) to the sexual LECA. However, it is challenging to delineate the exact origin and evolution of sexual reproduction given that both FECA and LECA are extinct. Studies of diverse eukaryotes have helped to shed light on this sexual evolutionary trajectory, revealing that a primordial sexual ploidy cycle likely involved endoreplication followed by concerted chromosome loss and that cell-cell fusion, meiosis, and sex determination later arose to shape modern sexual reproduction. Despite the general conservation of sexual reproduction processes throughout eukaryotes, modern sexual cycles are immensely diverse and complex. This diversity and complexity has become readily apparent in the fungal kingdom with the recent rapid expansion of whole-genome sequencing. This abundance of data, the variety of genetic tools available to manipulate and characterize fungi, and the thorough characterization of many fungal sexual cycles make the fungal kingdom an excellent forum, in which to study the conservation and diversification of sexual reproduction.
Collapse
|
27
|
Novel clinical and dual infection by Histoplasma capsulatum genotypes in HIV patients from Northeastern, Brazil. Sci Rep 2019; 9:11789. [PMID: 31409874 PMCID: PMC6692370 DOI: 10.1038/s41598-019-48111-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Histoplasmosis is a worldwide-distributed deep mycosis that affects healthy and immunocompromised hosts. Severe and disseminated disease is especially common in HIV-infected patients. At least 11 phylogenetic species are recognized and the majority of diversity is found in Latin America. The northeastern region of Brazil has one of the highest HIV/AIDS prevalence in Latin America and Ceará State has one of the highest death rates due to histoplasmosis in the world, where the mortality rate varies between 33-42%. The phylogenetic distribution and population genetic structure of 51 clinical isolates from Northeast Brazil was studied. For that morphological characteristics, exoantigens profile, and fungal mating types were evaluated. The genotypes were deduced by a MSLT in order to define local population structure of this fungal pathogen. In addition, the relationships of H. capsulatum genotypes with clinically relevant phenotypes and clinical aspects were investigated. The results suggest two cryptic species, herein named population Northeast BR1 and population Northeast BR2. These populations are recombining, exhibit a high level of haplotype diversity, and contain different ratios of mating types MAT1-1 and MAT1-2. However, differences in phenotypes or clinical aspects were not observed within these new cryptic species. A HIV patient can be co-infected by two or more genotypes from Northeast BR1 and/or Northeast BR2, which may have significant impact on disease progression due to the impaired immune response. We hypothesize that co-infections could be the result of multiple exposure events and may indicate higher risk of disseminated histoplasmosis, especially in HIV infected patients.
Collapse
|
28
|
Studying fungal pathogens of humans and fungal infections: fungal diversity and diversity of approaches. Microbes Infect 2019; 21:237-245. [PMID: 31255676 DOI: 10.1016/j.micinf.2019.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/26/2022]
Abstract
Seminal work by Louis Pasteur revealed the contribution of fungi - yeasts and microsporidia to agroindustry and disease in animals, respectively. More than 150 years later, the impact of fungi on human health and beyond is an ever-increasing issue, although often underestimated. Recent studies estimate that fungal infections, especially those caused by Candida, Cryptococcus and Aspergillus species, kill more than one million people annually. Indeed, these neglected infections are in general very difficult to cure and the associated mortality remains very high even when antifungal treatments exist. The development of new antifungals and diagnostic tools that are both necessary to fight fungal diseases efficiently, requires greater insights in the biology of the fungal pathogens of humans in the context of the infection, on their epidemiology, and on their role in the human mycobiota. We also need a better understanding of the host immune responses to fungal pathogens as well as the genetic basis for the increased sensitivity of some individuals to fungal infections. Here, we highlight some recent progress made in these different areas of research, in particular based on work conducted in our own laboratories. These progresses should lay the ground for better management of fungal infections, as they provide opportunities for better diagnostic, vaccination, the development of classical antifungals but also strategies for targeting virulence factors or the host.
Collapse
|
29
|
Fillinger RJ, Anderson MZ. Seasons of change: Mechanisms of genome evolution in human fungal pathogens. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 70:165-174. [PMID: 30826447 DOI: 10.1016/j.meegid.2019.02.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Fungi are a diverse kingdom of organisms capable of thriving in various niches across the world including those in close association with multicellular eukaryotes. Fungal pathogens that contribute to human disease reside both within the host as commensal organisms of the microbiota and the environment. Their niche of origin dictates how infection initiates but also places specific selective pressures on the fungal pathogen that contributes to its genome organization and genetic repertoire. Recent efforts to catalogue genomic variation among major human fungal pathogens have unveiled evolutionary themes that shape the fungal genome. Mechanisms ranging from large scale changes such as aneuploidy and ploidy cycling as well as more targeted mutations like base substitutions and gene copy number variations contribute to the evolution of these species, which are often under multiple competing selective pressures with their host, environment, and other microbes. Here, we provide an overview of the major selective pressures and mechanisms acting to evolve the genome of clinically important fungal pathogens of humans.
Collapse
Affiliation(s)
- Robert J Fillinger
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew Z Anderson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
30
|
Lim JY, Park HM. Expression of sexual genes in Aspergillus fumigatus homogeneous culture produced by vegetative mass mating. J Microbiol 2019; 57:688-693. [PMID: 31079330 DOI: 10.1007/s12275-019-9094-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 12/19/2022]
Abstract
There are presently no studies on the genes for sexual development of Aspergillus fumigatus in situ using mating culture, primarily because of challenging experimental conditions that require a significantly long period of induction and produce developmentally heterogenous culture, harboring very few sexual organs. In order to overcome these challenges, we developed an efficient and convenient procedure called 'vegetative mass mating (VeM)' for study at a molecular level. The VeM method enabled production of a developmentally homogenous A. fumigatus culture, harboring many sexual organs in a plate within a short period of two weeks. Feasibility of the use of VeM for functional study of genes during A. fumigatus sexual development was evaluated by analyzing the transcription pattern of genes involved in pheromone signal transduction and regulation of sexual development. Here, we present for the first time, an in situ expression pattern of sexual genes during the mating process, induced by the VeM method, which will enable and promote the sexual development study of A. fumigatus at the molecular level.
Collapse
Affiliation(s)
- Joo-Yeon Lim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hee-Moon Park
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
31
|
Studying fungal pathogens of humans and fungal infections: fungal diversity and diversity of approaches. Genes Immun 2019; 20:403-414. [PMID: 31019254 DOI: 10.1038/s41435-019-0071-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/24/2022]
Abstract
Seminal work by Louis Pasteur revealed the contribution of fungi-yeasts and microsporidia to agroindustry and disease in animals, respectively. More than 150 years later, the impact of fungi on human health and beyond is an ever-increasing issue, although often underestimated. Recent studies estimate that fungal infections, especially those caused by Candida, Cryptococcus and Aspergillus species, kill more than one million people annually. Indeed, these neglected infections are in general very difficult to cure and the associated mortality remains very high even when antifungal treatments exist. The development of new antifungals and diagnostic tools that are both necessary to fight fungal diseases efficiently, requires greater insights in the biology of the fungal pathogens of humans in the context of the infection, on their epidemiology, and on their role in the human mycobiota. We also need a better understanding of the host immune responses to fungal pathogens as well as the genetic basis for the increased sensitivity of some individuals to fungal infections. Here, we highlight some recent progress made in these different areas of research, in particular based on work conducted in our own laboratories. These progress should lay the ground for better management of fungal infections, as they provide opportunities for better diagnostic, vaccination, the development of classical antifungals but also strategies for targeting virulence factors or the host.
Collapse
|
32
|
Legrand M, Jaitly P, Feri A, d'Enfert C, Sanyal K. Candida albicans: An Emerging Yeast Model to Study Eukaryotic Genome Plasticity. Trends Genet 2019; 35:292-307. [PMID: 30826131 DOI: 10.1016/j.tig.2019.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 01/07/2023]
Abstract
Saccharomyces cerevisiae and Schizosaccharomyces pombe have served as uncontested unicellular model organisms, as major discoveries made in the field of genome biology using yeast genetics have proved to be relevant from yeast to humans. The yeast Candida albicans has attracted much attention because of its ability to switch between a harmless commensal and a dreaded human pathogen. C. albicans bears unique features regarding its life cycle, genome structure, and dynamics, and their links to cell biology and adaptation to environmental challenges. Examples include a unique reproduction cycle with haploid, diploid, and tetraploid forms; a distinctive organisation of chromosome hallmarks; a highly dynamic genome, with extensive karyotypic variations, including aneuploidies, isochromosome formation, and loss-of-heterozygosity; and distinctive links between the response to DNA alterations and cell morphology. These features have made C. albicans emerge as a new and attractive unicellular model to study genome biology and dynamics in eukaryotes.
Collapse
Affiliation(s)
- Mélanie Legrand
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France
| | - Priya Jaitly
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Adeline Feri
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France; Current address: Pathoquest, BioPark, 11 rue Watt, 75013 Paris, France
| | - Christophe d'Enfert
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France.
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.
| |
Collapse
|
33
|
Damasceno LS, Vite-Garín T, Ramírez JA, Rodríguez-Arellanes G, Almeida MAD, Muniz MDM, Mesquita JRLD, Leitão TDMJS, Taylor ML, Zancopé-Oliveira RM. Mixed infection by Histoplasma capsulatum isolates with different mating types in Brazilian AIDS-patients. Rev Inst Med Trop Sao Paulo 2019; 61:e8. [PMID: 30785562 PMCID: PMC6376931 DOI: 10.1590/s1678-9946201961008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 12/20/2018] [Indexed: 11/24/2022] Open
Abstract
Mixed infection by Histoplasma capsulatum isolates with
different mating types, in AIDS-patients are described in this study.
Morphological, mating type-specific PCR assay and multilocus sequencing type
analysis of H. capsulatum isolates recovered from two Brazilian
AIDS-patients were performed. Five H. capsulatum isolates were
recovered at different times from the two patients. Three isolates were obtained
from bone marrow (day 1 – CE0411) and buffy coat cultures (day 1 – CE0311; day 2
– CE0511) of patient 1, and two isolates were isolated from buffy coat cultures
(day 3 – CE2813; day 12 – CE2513) of patient 2. The mycelial colonies depicted
different textures and pigmentation features. Dimorphic conversion to the
yeast-phase in ML-Gema medium was achieved in all isolates. MAT1-1 idiomorph was
identified in CE0311, CE0411 and CE2813 isolates; MAT1-2 idiomorph was found in
CE0511 and CE2513 isolates. These H. capsulatum isolates were
grouped within LAm A clade, highlighting that CE0311 and CE0411 isolates formed
a subgroup supported by a high bootstrap value. The CE0511, CE2513, and CE2813
isolates clustered together with a Brazilian H151 isolate. This research reports
mixed infections caused by H. capsulatum isolates with
different mating types in Brazilian AIDS-patients for the first time in the
literature.
Collapse
Affiliation(s)
- Lisandra Serra Damasceno
- Fundação Oswaldo Cruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Micologia, Setor Imunodiagnóstico, Rio de Janeiro, Rio de Janeiro, Brazil.,Hospital São José de Doenças Infecciosas, Fortaleza, Ceará, Brazil
| | - Tania Vite-Garín
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Microbiología y Parasitología, Laboratorio de Inmunología de Hongos, Ciudad de México, México
| | - José Antonio Ramírez
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Microbiología y Parasitología, Laboratorio de Inmunología de Hongos, Ciudad de México, México
| | - Gabriela Rodríguez-Arellanes
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Microbiología y Parasitología, Laboratorio de Inmunología de Hongos, Ciudad de México, México
| | - Marcos Abreu de Almeida
- Fundação Oswaldo Cruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Micologia, Setor Imunodiagnóstico, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauro de Medeiros Muniz
- Fundação Oswaldo Cruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Micologia, Setor Imunodiagnóstico, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Terezinha do Menino Jesus Silva Leitão
- Hospital São José de Doenças Infecciosas, Fortaleza, Ceará, Brazil.,Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Saúde Comunitária, Fortaleza, Ceará, Brazil
| | - Maria Lucia Taylor
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Microbiología y Parasitología, Laboratorio de Inmunología de Hongos, Ciudad de México, México
| | - Rosely Maria Zancopé-Oliveira
- Fundação Oswaldo Cruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Micologia, Setor Imunodiagnóstico, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Metin B, Döğen A, Yıldırım E, de Hoog GS, Heitman J, Ilkit M. Mating type (MAT) locus and possible sexuality of the opportunistic pathogen Exophiala dermatitidis. Fungal Genet Biol 2019; 124:29-38. [PMID: 30611834 DOI: 10.1016/j.fgb.2018.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/27/2018] [Accepted: 12/30/2018] [Indexed: 11/27/2022]
Abstract
Sexual reproduction among the black yeasts is generally limited to environmental saprobic species and is rarely observed among opportunists in humans. To date, a complete sexual cycle has not been observed in Exophiala dermatitidis. In this study, we aimed to gain insight into the reproductive mode of E. dermatitidis by characterizing its mating type (MAT) locus, conducting MAT screening of environmental and clinical isolates, examining the expression of the MAT genes and analyzing the virulence of the isolates of different mating types. Similar to other members of the Pezizomycotina, the E. dermatitidis genome harbors a high mobility group (HMG) domain gene (MAT1-2-1) in the vicinity of the SLA2 and APN2 genes. The MAT loci of 74 E. dermatitidis isolates (11 clinical and 63 environmental) were screened by PCR, and the surrounding region was amplified using long-range PCR. Sequencing of the ∼ 12-kb PCR product of a MAT1-1 isolate revealed an α-box gene (MAT1-1-1). The MAT1-1 idiomorph was 3544-bp long and harbored the MAT1-1-1 and MAT1-1-4 genes. The MAT1-2 idiomorph was longer, 3771-bp, and harbored only the MAT1-2-1 gene. This structure suggests a heterothallic reproduction mode. The distribution of MAT among 74 isolates was ∼ 1:1 with a MAT1-1:MAT1-2 ratio of 35:39. RT-PCR analysis indicated that the MAT genes are transcribed. No significant difference was detected in the virulence of isolates representing different mating types using a Galleria mellonella model (P > 0.05). Collectively, E. dermatitidis is the first opportunistic black yeast in which both MAT idiomorphs have been characterized. The occurrence of isolates bearing both idiomorphs, their approximately equal distribution, and the expression of the MAT genes suggest that E. dermatitidis might reproduce sexually.
Collapse
Affiliation(s)
- Banu Metin
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey.
| | - Aylin Döğen
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Mersin University, Mersin, Turkey.
| | - Esra Yıldırım
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey.
| | - G Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands; Center of Expertise in Mycology of Radboudumc/CWZ, Nijmegen, the Netherlands.
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey.
| |
Collapse
|
35
|
Yu Y, Blachowicz A, Will C, Szewczyk E, Glenn S, Gensberger-Reigl S, Nowrousian M, Wang CCC, Krappmann S. Mating-type factor-specific regulation of the fumagillin/pseurotin secondary metabolite supercluster in Aspergillus fumigatus. Mol Microbiol 2018; 110:1045-1065. [PMID: 30240513 DOI: 10.1111/mmi.14136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2018] [Indexed: 12/13/2022]
Abstract
In the human pathogenic mold Aspergillus fumigatus, sexual identity is determined by the mating-type idiomorphs MAT1-1 and MAT1-2 residing at the MAT locus. Upon crossing of compatible partners, a heterothallic mating is executed to eventually form cleistothecia that contain recombinant ascospores. Given that the MAT1 gene products are DNA binding master regulators that govern this complex developmental process, we monitored the MAT1-driven transcriptomes of A. fumigatus by conditional overexpression of either MAT1 gene followed by RNA-seq analyses. Numerous genes related to the process of mating were found to be under transcriptional control, such as pheromone production and recognition. Substantial differences between the MAT1-1- and MAT1-2-driven transcriptomes could be detected by functional categorization of differentially expressed genes. Moreover, a significant and distinct impact on expression of genetic clusters of secondary metabolism became apparent, which could be verified on the product level. Unexpectedly, specific cross-regulation of the fumagillin/pseurotin supercluster was evident, thereby uncoupling its co-regulatory characteristic. These insights imply a tight interconnection of sexual development accompanied by ascosporogenesis with secondary metabolite production of a pathogenic fungus and impose evolutionary constraints that link these two fundamental aspects of the fungal lifestyle.
Collapse
Affiliation(s)
- Yidong Yu
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Adriana Blachowicz
- School of Pharmacy, John Staffer Pharmaceutical Sciences Center, University of Southern California, Los Angeles, CA, USA
| | - Cornelia Will
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Edyta Szewczyk
- Research Center for Infectious Diseases, Julius-Maximilians-Universität Würzburg, Germany
| | - Steven Glenn
- School of Pharmacy, John Staffer Pharmaceutical Sciences Center, University of Southern California, Los Angeles, CA, USA
| | - Sabrina Gensberger-Reigl
- Henriette Schmidt-Burkhardt Chair of Food Chemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Minou Nowrousian
- Department of General and Molecular Botany, Ruhr University Bochum, Germany
| | - Clay C C Wang
- School of Pharmacy, John Staffer Pharmaceutical Sciences Center, University of Southern California, Los Angeles, CA, USA
| | - Sven Krappmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| |
Collapse
|
36
|
Lee YT, Fang YY, Sun YW, Hsu HC, Weng SM, Tseng TL, Lin TH, Shieh JC. THR1 mediates GCN4 and CDC4 to link morphogenesis with nutrient sensing and the stress response in Candida albicans. Int J Mol Med 2018; 42:3193-3208. [PMID: 30320368 PMCID: PMC6202100 DOI: 10.3892/ijmm.2018.3930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/08/2018] [Indexed: 12/31/2022] Open
Abstract
Candida albicans (C. albicans) CDC4 (CaCDC4), encoding the F-box protein for the substrate specificity of the Skp1-cullin-F-box E3 ubiquitin ligase complex, suppresses the yeast-to-filament transition in C. albicans. In our previous study, Thr1 was identified as a CaCdc4-associated protein using affinity purification. THR1 encodes a homoserine kinase, which is involved in the threonine biosynthesis pathway. The present study generated a strain with repressible CaCDC4 expression and continuous THR1 expression. Colony and cell morphology analyses, as well as immunoblotting, revealed that the Thr1 protein was detectable under conditions in which the expression of CaCDC4 was repressed and that the filaments resulting from the repressed expression of CaCDC4 were suppressed by the constitutive expression of THR1 in C. albicans. Additionally, by using the CaSAT1-flipper method, the present study produced null mutants of THR1, GCN4, and CaCDC4. The phenotypic consequences were evaluated by growth curves, spotting assays, microscopic analysis, reverse transcription-polymerase chain reaction and XTT-based biofilm formation ability. The results revealed that fewer cells lacking THR1 entered the stationary phase but had no apparent morphological alteration. It was observed that the expression of THR1 was upregulated concurrently with GCN4 during nutrient depletion and that cells lacking GCN4 rescued the lethality of cells in the absence of THR1 in conditions accumulating homoserine in the threonine biosynthesis pathway. Of note, it was found that cells with either CaCDC4 or THR1 loss were sensitive to oxidative stress and osmotic stress, with those with THR1 loss being more sensitive. In addition, it was observed that cells with loss of either CaCDC4 or THR1 exhibited the ability to increase biofilm formation, with those lacking CaCDC4 exhibiting a greater extent of enhancement. It was concluded that CaCDC4 is important in the coordination of morphogenesis, nutrient sensing, and the stress response through THR1 in C. albicans.
Collapse
Affiliation(s)
- Yuan-Ti Lee
- Institute of Medicine and School of Medicine, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Yi-Ya Fang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Yu Wen Sun
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Hsiao-Chi Hsu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Shan-Mei Weng
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Tzu-Ling Tseng
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Ting-Hui Lin
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Jia-Ching Shieh
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| |
Collapse
|
37
|
Unequal distribution of the mating type ( MAT ) locus idiomorphs in dermatophyte species. Fungal Genet Biol 2018; 118:45-53. [DOI: 10.1016/j.fgb.2018.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/08/2018] [Accepted: 07/14/2018] [Indexed: 11/23/2022]
|
38
|
Krishnan D, Ghosh SK. Cellular Events of Multinucleated Giant Cells Formation During the Encystation of Entamoeba invadens. Front Cell Infect Microbiol 2018; 8:262. [PMID: 30109218 PMCID: PMC6079502 DOI: 10.3389/fcimb.2018.00262] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/13/2018] [Indexed: 12/21/2022] Open
Abstract
Entamoeba histolytica, the causative agent of amoebiasis, does not form cysts in vitro, so reptilian pathogen Entamoeba invadens is used as an Entamoeba encystation model. During the in vitro encystation of E. invadens, a few multinucleated giant cells (MGC) were also appeared in the culture along with cysts. Like the cyst, these MGC's were also formed in the multicellular aggregates found in the encystation culture. Time-lapse live cell imaging revealed that MGC's were the result of repeated cellular fusion with fusion-competent trophozoites as a starting point. The early MGC were non-adherent, and they moved slowly and randomly in the media, but under confinement, MGC became highly motile and directionally persistent. The increased motility resulted in rapid cytoplasmic fissions, which indicated the possibility of continuous cell fusion and division taking place inside the compact multicellular aggregates. Following cell fusion, each nucleus obtained from the fusion-competent trophozoites gave rise to four nuclei with half genomic content. All the haploid nuclei in MGC later aggregated and fused to form a polyploid nucleus. These observations have important implications on Entamoeba biology as they point toward the possibility of E. invadens undergoing sexual or parasexual reproduction.
Collapse
Affiliation(s)
- Deepak Krishnan
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sudip K Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
39
|
Abstract
Ploidy, the number of sets of homologous chromosomes in a cell, can alter cellular physiology, gene regulation, and the spectrum of acquired mutations. Advances in single-cell flow cytometry have greatly improved the understanding of how genome size contributes to diverse biological processes including speciation, adaptation, pathogenesis, and tumorigenesis. For example, fungal pathogens can undergo whole genome duplications during infection of the human host and during acquisition of antifungal drug resistance. Quantification of ploidy is dramatically affected by the nucleic acid staining technique and the flow cytometry analysis of single cells. Ploidy in fungi is also impacted by samples that are heterogeneous for both ploidy and morphology, and control strains with known ploidy must be included in every flow cytometry experiment. To detect ploidy changes within fungal strains, the following protocol was developed to accurately and dependably interrogate single-cell ploidy. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Robert T Todd
- Department of Medical Microbiology and Immunology, Creighton University Medical School, Omaha, Nebraska
| | - Ann L Braverman
- Department of Medical Microbiology and Immunology, Creighton University Medical School, Omaha, Nebraska
| | - Anna Selmecki
- Department of Medical Microbiology and Immunology, Creighton University Medical School, Omaha, Nebraska
| |
Collapse
|
40
|
Cryptococcus neoformans sexual reproduction is controlled by a quorum sensing peptide. Nat Microbiol 2018; 3:698-707. [PMID: 29784977 DOI: 10.1038/s41564-018-0160-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/16/2018] [Indexed: 12/13/2022]
Abstract
Bacterial quorum sensing is a well-characterized communication system that governs a large variety of collective behaviours. By comparison, quorum sensing regulation in eukaryotic microbes remains poorly understood, especially its functional role in eukaryote-specific behaviours, such as sexual reproduction. Cryptococcus neoformans is a prevalent fungal pathogen that has two defined sexual cycles (bisexual and unisexual) and is a model organism for studying sexual reproduction in fungi. Here, we show that the quorum sensing peptide Qsp1 serves as an important signalling molecule for both forms of sexual reproduction. Qsp1 orchestrates various differentiation and molecular processes, including meiosis, the hallmark of sexual reproduction. It activates bisexual mating, at least in part through the control of pheromone, a signal necessary for bisexual activation. Notably, Qsp1 also plays a major role in the intercellular regulation of unisexual initiation and coordination, in which pheromone is not strictly required. Through a multi-layered genetic screening approach, we identified the atypical zinc finger regulator Cqs2 as an important component of the Qsp1 signalling cascade during both bisexual and unisexual reproduction. The absence of Cqs2 eliminates the Qsp1-stimulated mating response. Together, these findings extend the range of behaviours governed by quorum sensing to sexual development and meiosis.
Collapse
|
41
|
Du H, Zheng Q, Bing J, Bennett RJ, Huang G. A coupled process of same- and opposite-sex mating generates polyploidy and genetic diversity in Candida tropicalis. PLoS Genet 2018; 14:e1007377. [PMID: 29734333 PMCID: PMC5957450 DOI: 10.1371/journal.pgen.1007377] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/17/2018] [Accepted: 04/24/2018] [Indexed: 01/04/2023] Open
Abstract
Sexual reproduction is a universal mechanism for generating genetic diversity in eukaryotes. Fungi exhibit diverse strategies for sexual reproduction both in nature and in the laboratory. In this study, we report the discovery of same-sex (homothallic) mating in the human fungal pathogen Candida tropicalis. We show that same-sex mating occurs between two cells carrying the same mating type (MTLa/a or α/α) and requires the presence of pheromone from the opposite mating type as well as the receptor for this pheromone. In ménage à trois mating mixes (i.e., “a x a + α helper” or “α x α + a helper” mixes), pheromone secreted by helper strains promotes diploid C. tropicalis cells to undergo same-sex mating and form tetraploid products. Surprisingly, however, the tetraploid mating products can then efficiently mate with cells of the opposite mating type to generate hexaploid products. The unstable hexaploid progeny generated from this coupled process of same- and opposite-sex mating undergo rapid chromosome loss and generate extensive genetic variation. Phenotypic analysis demonstrated that the mating progeny-derived strains exhibit diverse morphologies and phenotypes, including differences in secreted aspartic proteinase (Sap) activity and susceptibility to the antifungal drugs. Thus, the coupling of same- and opposite-sex mating represents a novel mode to generate polyploidy and genetic diversity, which may facilitate the evolution of new traits in C. tropicalis and adaptation to changing environments. The fungal pathogen Candida tropicalis not only lives as a commensal in humans but is also widely distributed in diverse environments. Until recently, C. tropicalis was thought to be an asexual diploid organism. In this study, we report the discovery of same-sex mating and reveal an unusual process in which same- and opposite-sex mating are coupled in this fungus. The coupling process represents a novel mode of mating which produces unstable polyploid products and results in a high level of genetic and phenotypic diversity. This biological process may benefit the adaptation of C. tropicalis to a variety of ecological niches and promotes survival under stressful conditions. Our study expands the repertoire of mating strategies in fungi and sheds new lights on the generation of polyploidy and genomic flexibility.
Collapse
Affiliation(s)
- Han Du
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- * E-mail:
| | - Qiushi Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Bing
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Richard J. Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Guanghua Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Repeated evolution of self-compatibility for reproductive assurance. Nat Commun 2018; 9:1639. [PMID: 29691402 PMCID: PMC5915400 DOI: 10.1038/s41467-018-04054-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/29/2018] [Indexed: 01/22/2023] Open
Abstract
Sexual reproduction in eukaryotes requires the fusion of two compatible gametes of opposite sexes or mating types. To meet the challenge of finding a mating partner with compatible gametes, evolutionary mechanisms such as hermaphroditism and self-fertilization have repeatedly evolved. Here, by combining the insights from comparative genomics, computer simulations and experimental evolution in fission yeast, we shed light on the conditions promoting separate mating types or self-compatibility by mating-type switching. Analogous to multiple independent transitions between switchers and non-switchers in natural populations mediated by structural genomic changes, novel switching genotypes readily evolved under selection in the experimental populations. Detailed fitness measurements accompanied by computer simulations show the benefits and costs of switching during sexual and asexual reproduction, governing the occurrence of both strategies in nature. Our findings illuminate the trade-off between the benefits of reproductive assurance and its fitness costs under benign conditions facilitating the evolution of self-compatibility. Mating-type switching enables self-compatible reproduction in fungi, but switching ability is variable even within species. Here, the authors find de novo evolution of switching genotypes in experimentally evolved fission yeast populations and show a trade-off between mating success and growth.
Collapse
|
43
|
Fungal G-protein-coupled receptors: mediators of pathogenesis and targets for disease control. Nat Microbiol 2018; 3:402-414. [DOI: 10.1038/s41564-018-0127-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/09/2018] [Indexed: 12/31/2022]
|
44
|
Abstract
The ability of an organism to replicate and segregate its genome with high fidelity is vital to its survival and for the production of future generations. Errors in either of these steps (replication or segregation) can lead to a change in ploidy or chromosome number. While these drastic genome changes can be detrimental to the organism, resulting in decreased fitness, they can also provide increased fitness during periods of stress. A change in ploidy or chromosome number can fundamentally change how a cell senses and responds to its environment. Here, we discuss current ideas in fungal biology that illuminate how eukaryotic genome size variation can impact the organism at a cellular and evolutionary level. One of the most fascinating observations from the past 2 decades of research is that some fungi have evolved the ability to tolerate large genome size changes and generate vast genomic heterogeneity without undergoing canonical meiosis.
Collapse
|
45
|
Modulation of the Fungal-Host Interaction by the Intra-Species Diversity of C. albicans. Pathogens 2018; 7:pathogens7010011. [PMID: 29342100 PMCID: PMC5874737 DOI: 10.3390/pathogens7010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/09/2023] Open
Abstract
The incidence of human infections caused by the opportunistic fungal pathogen Candida albicans is on the rise due to increasing numbers of immunosuppressed patients. The importance of the immune system in preventing overgrowth of the colonizing fungus and thereby limiting infection is well recognized and host protective mechanisms widely investigated. Only recently, it was recognized that the natural diversity in the fungal species could also influence the outcome of the interaction between the fungus and the host. C. albicans strain-specific differences are complex and their regulation at the genomic, genetic, and epigenetic level and by environmental factors is only partially understood. In this review, we provide an overview of the natural diversity of C. albicans and discuss how it impacts host-fungal interactions and thereby affects the balance between commensalism versus disease.
Collapse
|
46
|
The Influence of Genetic Stability on Aspergillus fumigatus Virulence and Azole Resistance. G3-GENES GENOMES GENETICS 2018; 8:265-278. [PMID: 29150592 PMCID: PMC5765354 DOI: 10.1534/g3.117.300265] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Genetic stability is extremely important for the survival of every living organism, and a very complex set of genes has evolved to cope with DNA repair upon DNA damage. Here, we investigated the Aspergillus fumigatus AtmA (Ataxia-telangiectasia mutated, ATM) and AtrA kinases, and how they impact virulence and the evolution of azole resistance. We demonstrated that A. fumigatus atmA and atrA null mutants are haploid and have a discrete chromosomal polymorphism. The ΔatmA and ΔatrA strains are sensitive to several DNA-damaging agents, but surprisingly both strains were more resistant than the wild-type strain to paraquat, menadione, and hydrogen peroxide. The atmA and atrA genes showed synthetic lethality emphasizing the cooperation between both enzymes and their consequent redundancy. The lack of atmA and atrA does not cause any significant virulence reduction in A. fumigatus in a neutropenic murine model of invasive pulmonary aspergillosis and in the invertebrate alternative model Galleria mellonela. Wild-type, ΔatmA, and ΔatrA populations that were previously transferred 10 times in minimal medium (MM) in the absence of voriconazole have not shown any significant changes in drug resistance acquisition. In contrast, ΔatmA and ΔatrA populations that similarly evolved in the presence of a subinhibitory concentration of voriconazole showed an ∼5–10-fold increase when compared to the original minimal inhibitory concentration (MIC) values. There are discrete alterations in the voriconazole target Cyp51A/Erg11A or cyp51/erg11 and/or Cdr1B efflux transporter overexpression that do not seem to be the main mechanisms to explain voriconazole resistance in these evolved populations. Taken together, these results suggest that genetic instability caused by ΔatmA and ΔatrA mutations can confer an adaptive advantage, mainly in the intensity of voriconazole resistance acquisition.
Collapse
|
47
|
Wertheimer NB, Stone N, Berman J. Ploidy dynamics and evolvability in fungi. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0461. [PMID: 28080987 PMCID: PMC5095540 DOI: 10.1098/rstb.2015.0461] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2016] [Indexed: 12/12/2022] Open
Abstract
Rapid responses to acute stresses are essential for stress survival and are critical to the ability of fungal pathogens to adapt to new environments or hosts. The rapid emergence of drug resistance is used as a model for how fungi adapt and survive stress conditions that inhibit the growth of progenitor cells. Aneuploidy and loss of heterozygosity (LOH), which are large-scale genome shifts involving whole chromosomes or chromosome arms, occur at higher frequency than point mutations and have the potential to mediate stress survival. Furthermore, the stress of exposure to an antifungal drug can induce elevated levels of LOH and can promote the formation of aneuploids. This occurs via mitotic defects that first produce tetraploid progeny with extra spindles, followed by chromosome mis-segregation. Thus, drug exposure induces elevated levels of aneuploidy, which can alter the copy number of genes that improve survival in a given stress or drug. Selection then acts to increase the proportion of adaptive aneuploids in the population. Because aneuploidy is a common property of many pathogenic fungi, including those posing emerging threats to plants, animals and humans, we propose that aneuploid formation and LOH often accompanying it contribute to the rapid generation of diversity that can facilitate the emergence of fungal pathogens to new environmental niches and/or new hosts, as well as promote antifungal drug resistance that makes emerging fungal infections ever more difficult to contain.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'.
Collapse
Affiliation(s)
- Noa Blutraich Wertheimer
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Britannia 418, Ramat Aviv, Israel
| | - Neil Stone
- Institute of Infection and Immunity, St George's, University of London, London SW17 0RE, UK
| | - Judith Berman
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Britannia 418, Ramat Aviv, Israel
| |
Collapse
|
48
|
Fu C, Heitman J. PRM1 and KAR5 function in cell-cell fusion and karyogamy to drive distinct bisexual and unisexual cycles in the Cryptococcus pathogenic species complex. PLoS Genet 2017; 13:e1007113. [PMID: 29176784 PMCID: PMC5720818 DOI: 10.1371/journal.pgen.1007113] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/07/2017] [Accepted: 11/13/2017] [Indexed: 11/18/2022] Open
Abstract
Sexual reproduction is critical for successful evolution of eukaryotic organisms in adaptation to changing environments. In the opportunistic human fungal pathogens, the Cryptococcus pathogenic species complex, C. neoformans primarily undergoes bisexual reproduction, while C. deneoformans undergoes both unisexual and bisexual reproduction. During both unisexual and bisexual cycles, a common set of genetic circuits regulates a yeast-to-hyphal morphological transition, that produces either monokaryotic or dikaryotic hyphae. As such, both the unisexual and bisexual cycles can generate genotypic and phenotypic diversity de novo. Despite the similarities between these two cycles, genetic and morphological differences exist, such as the absence of an opposite mating-type partner and monokaryotic instead of dikaryotic hyphae during C. deneoformans unisexual cycle. To better understand the similarities and differences between these modes of sexual reproduction, we focused on two cellular processes involved in sexual reproduction: cell-cell fusion and karyogamy. We identified orthologs of the plasma membrane fusion protein Prm1 and the nuclear membrane fusion protein Kar5 in both Cryptococcus species, and demonstrated their conserved roles in cell fusion and karyogamy during C. deneoformans α-α unisexual reproduction and C. deneoformans and C. neoformans a-α bisexual reproduction. Notably, karyogamy occurs inside the basidum during bisexual reproduction in C. neoformans, but often occurs earlier following cell fusion during bisexual reproduction in C. deneoformans. Characterization of these two genes also showed that cell fusion is dispensable for solo unisexual reproduction in C. deneoformans. The blastospores produced along hyphae during C. deneoformans unisexual reproduction are diploid, suggesting that diploidization occurs early during hyphal development, possibly through either an endoreplication pathway or cell fusion-independent karyogamy events. Taken together, our findings suggest distinct mating mechanisms for unisexual and bisexual reproduction in Cryptococcus, exemplifying distinct evolutionary trajectories within this pathogenic species complex.
Collapse
Affiliation(s)
- Ci Fu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States of America
- * E-mail:
| |
Collapse
|
49
|
Triana S, de Cock H, Ohm RA, Danies G, Wösten HAB, Restrepo S, González Barrios AF, Celis A. Lipid Metabolic Versatility in Malassezia spp. Yeasts Studied through Metabolic Modeling. Front Microbiol 2017; 8:1772. [PMID: 28959251 PMCID: PMC5603697 DOI: 10.3389/fmicb.2017.01772] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/31/2017] [Indexed: 01/23/2023] Open
Abstract
Malassezia species are lipophilic and lipid-dependent yeasts belonging to the human and animal microbiota. Typically, they are isolated from regions rich in sebaceous glands. They have been associated with dermatological diseases such as seborrheic dermatitis, pityriasis versicolor, atopic dermatitis, and folliculitis. The genomes of Malassezia globosa, Malassezia sympodialis, and Malassezia pachydermatis lack the genes related to fatty acid synthesis. Here, the lipid-synthesis pathways of these species, as well as of Malassezia furfur, and of an atypical M. furfur variant were reconstructed using genome data and Constraints Based Reconstruction and Analysis. To this end, the genomes of M. furfur CBS 1878 and the atypical M. furfur 4DS were sequenced and annotated. The resulting Enzyme Commission numbers and predicted reactions were similar to the other Malassezia strains despite the differences in their genome size. Proteomic profiling was utilized to validate flux distributions. Flux differences were observed in the production of steroids in M. furfur and in the metabolism of butanoate in M. pachydermatis. The predictions obtained via these metabolic reconstructions also suggested defects in the assimilation of palmitic acid in M. globosa, M. sympodialis, M. pachydermatis, and the atypical variant of M. furfur, but not in M. furfur. These predictions were validated via physiological characterization, showing the predictive power of metabolic network reconstructions to provide new clues about the metabolic versatility of Malassezia.
Collapse
Affiliation(s)
- Sergio Triana
- Department of Biological Sciences, Universidad de los AndesBogotá, Colombia
- Grupo de Diseño de Productos y Procesos, Department of Chemical Engineering, Universidad de los AndesBogotá, Colombia
- Structural and Computational Biology Unit, European Molecular Biology LaboratoryHeidelberg, Germany
| | - Hans de Cock
- Microbiology, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | - Robin A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | - Giovanna Danies
- Department of Biological Sciences, Universidad de los AndesBogotá, Colombia
| | - Han A. B. Wösten
- Microbiology, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| | - Silvia Restrepo
- Department of Biological Sciences, Universidad de los AndesBogotá, Colombia
| | - Andrés F. González Barrios
- Grupo de Diseño de Productos y Procesos, Department of Chemical Engineering, Universidad de los AndesBogotá, Colombia
| | - Adriana Celis
- Department of Biological Sciences, Universidad de los AndesBogotá, Colombia
- Microbiology, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|
50
|
Insight into the Recent Genome Duplication of the Halophilic Yeast Hortaea werneckii: Combining an Improved Genome with Gene Expression and Chromatin Structure. G3-GENES GENOMES GENETICS 2017; 7:2015-2022. [PMID: 28500048 PMCID: PMC5499112 DOI: 10.1534/g3.117.040691] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Extremophilic organisms demonstrate the flexibility and adaptability of basic biological processes by highlighting how cell physiology adapts to environmental extremes. Few eukaryotic extremophiles have been well studied and only a small number are amenable to laboratory cultivation and manipulation. A detailed characterization of the genome architecture of such organisms is important to illuminate how they adapt to environmental stresses. One excellent example of a fungal extremophile is the halophile Hortaea werneckii (Pezizomycotina, Dothideomycetes, Capnodiales), a yeast-like fungus able to thrive at near-saturating concentrations of sodium chloride and which is also tolerant to both UV irradiation and desiccation. Given its unique lifestyle and its remarkably recent whole genome duplication, H. werneckii provides opportunities for testing the role of genome duplications and adaptability to extreme environments. We previously assembled the genome of H. werneckii using short-read sequencing technology and found a remarkable degree of gene duplication. Technology limitations, however, precluded high-confidence annotation of the entire genome. We therefore revisited the H. wernickii genome using long-read, single-molecule sequencing and provide an improved genome assembly which, combined with transcriptome and nucleosome analysis, provides a useful resource for fungal halophile genomics. Remarkably, the ∼50 Mb H. wernickii genome contains 15,974 genes of which 95% (7608) are duplicates formed by a recent whole genome duplication (WGD), with an average of 5% protein sequence divergence between them. We found that the WGD is extraordinarily recent, and compared to Saccharomyces cerevisiae, the majority of the genome’s ohnologs have not diverged at the level of gene expression of chromatin structure.
Collapse
|