1
|
Garcia PS, Duchemin W, Flandrois JP, Gribaldo S, Grangeasse C, Brochier-Armanet C. A Comprehensive Evolutionary Scenario of Cell Division and Associated Processes in the Firmicutes. Mol Biol Evol 2021; 38:2396-2412. [PMID: 33533884 PMCID: PMC8136486 DOI: 10.1093/molbev/msab034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The cell cycle is a fundamental process that has been extensively studied in bacteria. However, many of its components and their interactions with machineries involved in other cellular processes are poorly understood. Furthermore, most knowledge relies on the study of a few models, but the real diversity of the cell division apparatus and its evolution are largely unknown. Here, we present a massive in-silico analysis of cell division and associated processes in around 1,000 genomes of the Firmicutes, a major bacterial phylum encompassing models (i.e. Bacillus subtilis, Streptococcus pneumoniae, and Staphylococcus aureus), as well as many important pathogens. We analyzed over 160 proteins by using an original approach combining phylogenetic reconciliation, phylogenetic profiles, and gene cluster survey. Our results reveal the presence of substantial differences among clades and pinpoints a number of evolutionary hotspots. In particular, the emergence of Bacilli coincides with an expansion of the gene repertoires involved in cell wall synthesis and remodeling. We also highlight major genomic rearrangements at the emergence of Streptococcaceae. We establish a functional network in Firmicutes that allows identifying new functional links inside one same process such as between FtsW (peptidoglycan polymerase) and a previously undescribed Penicilin-Binding Protein or between different processes, such as replication and cell wall synthesis. Finally, we identify new candidates involved in sporulation and cell wall synthesis. Our results provide a previously undescribed view on the diversity of the bacterial cell cycle, testable hypotheses for further experimental studies, and a methodological framework for the analysis of any other biological system.
Collapse
Affiliation(s)
- Pierre S Garcia
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918 Villeurbanne F-69622, France.,Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, CNRS, Lyon, France.,Department of Microbiology, Unit "Evolutionary Biology of the Microbial Cell", Institut Pasteur, Paris, France
| | - Wandrille Duchemin
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918 Villeurbanne F-69622, France
| | - Jean-Pierre Flandrois
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918 Villeurbanne F-69622, France
| | - Simonetta Gribaldo
- Department of Microbiology, Unit "Evolutionary Biology of the Microbial Cell", Institut Pasteur, Paris, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Céline Brochier-Armanet
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918 Villeurbanne F-69622, France
| |
Collapse
|
2
|
Miyata M, Robinson RC, Uyeda TQP, Fukumori Y, Fukushima SI, Haruta S, Homma M, Inaba K, Ito M, Kaito C, Kato K, Kenri T, Kinosita Y, Kojima S, Minamino T, Mori H, Nakamura S, Nakane D, Nakayama K, Nishiyama M, Shibata S, Shimabukuro K, Tamakoshi M, Taoka A, Tashiro Y, Tulum I, Wada H, Wakabayashi KI. Tree of motility - A proposed history of motility systems in the tree of life. Genes Cells 2020; 25:6-21. [PMID: 31957229 PMCID: PMC7004002 DOI: 10.1111/gtc.12737] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 12/27/2022]
Abstract
Motility often plays a decisive role in the survival of species. Five systems of motility have been studied in depth: those propelled by bacterial flagella, eukaryotic actin polymerization and the eukaryotic motor proteins myosin, kinesin and dynein. However, many organisms exhibit surprisingly diverse motilities, and advances in genomics, molecular biology and imaging have showed that those motilities have inherently independent mechanisms. This makes defining the breadth of motility nontrivial, because novel motilities may be driven by unknown mechanisms. Here, we classify the known motilities based on the unique classes of movement‐producing protein architectures. Based on this criterion, the current total of independent motility systems stands at 18 types. In this perspective, we discuss these modes of motility relative to the latest phylogenetic Tree of Life and propose a history of motility. During the ~4 billion years since the emergence of life, motility arose in Bacteria with flagella and pili, and in Archaea with archaella. Newer modes of motility became possible in Eukarya with changes to the cell envelope. Presence or absence of a peptidoglycan layer, the acquisition of robust membrane dynamics, the enlargement of cells and environmental opportunities likely provided the context for the (co)evolution of novel types of motility.
Collapse
Affiliation(s)
- Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City University, Osaka, Japan.,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan
| | - Robert C Robinson
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan.,School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Taro Q P Uyeda
- Department of Physics, Faculty of Science and Technology, Waseda University, Tokyo, Japan
| | - Yoshihiro Fukumori
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan.,WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Shun-Ichi Fukushima
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Shin Haruta
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Masahiro Ito
- Graduate School of Life Sciences, Toyo University, Gunma, Japan
| | - Chikara Kaito
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kentaro Kato
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Tsuyoshi Kenri
- Laboratory of Mycoplasmas and Haemophilus, Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Hiroyuki Mori
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Miyagi, Japan
| | - Daisuke Nakane
- Department of Physics, Gakushuin University, Tokyo, Japan
| | - Koji Nakayama
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Masayoshi Nishiyama
- Department of Physics, Faculty of Science and Engineering, Kindai University, Osaka, Japan
| | - Satoshi Shibata
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Katsuya Shimabukuro
- Department of Chemical and Biological Engineering, National Institute of Technology, Ube College, Yamaguchi, Japan
| | - Masatada Tamakoshi
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Azuma Taoka
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan.,WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Yosuke Tashiro
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Isil Tulum
- Department of Botany, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Hirofumi Wada
- Department of Physics, Graduate School of Science and Engineering, Ritsumeikan University, Shiga, Japan
| | - Ken-Ichi Wakabayashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
| |
Collapse
|
3
|
Pérez-Burgos M, García-Romero I, Valvano MA, Søgaard Andersen L. Identification of the Wzx flippase, Wzy polymerase and sugar-modifying enzymes for spore coat polysaccharide biosynthesis in Myxococcus xanthus. Mol Microbiol 2020; 113:1189-1208. [PMID: 32064693 DOI: 10.1111/mmi.14486] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/11/2020] [Indexed: 12/28/2022]
Abstract
The rod-shaped cells of Myxococcus xanthus, a Gram-negative deltaproteobacterium, differentiate to environmentally resistant spores upon starvation or chemical stress. The environmental resistance depends on a spore coat polysaccharide that is synthesised by the ExoA-I proteins, some of which are part of a Wzx/Wzy-dependent pathway for polysaccharide synthesis and export; however, key components of this pathway have remained unidentified. Here, we identify and characterise two additional loci encoding proteins with homology to enzymes involved in polysaccharide synthesis and export, as well as sugar modification and show that six of the proteins encoded by these loci are essential for the formation of environmentally resistant spores. Our data support that MXAN_3260, renamed ExoM and MXAN_3026, renamed ExoJ, are the Wzx flippase and Wzy polymerase, respectively, responsible for translocation and polymerisation of the repeat unit of the spore coat polysaccharide. Moreover, we provide evidence that three glycosyltransferases (MXAN_3027/ExoK, MXAN_3262/ExoO and MXAN_3263/ExoP) and a polysaccharide deacetylase (MXAN_3259/ExoL) are important for formation of the intact spore coat, while ExoE is the polyisoprenyl-phosphate hexose-1-phosphate transferase responsible for initiating repeat unit synthesis, likely by transferring N-acetylgalactosamine-1-P to undecaprenyl-phosphate. Together, our data generate a more complete model of the Exo pathway for spore coat polysaccharide biosynthesis and export.
Collapse
Affiliation(s)
- María Pérez-Burgos
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Lotte Søgaard Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
4
|
Abstract
The bacterial flagellar motor is driven by an ion flux that is converted to torque by motor-attendant complexes known as stators. The dynamics of stator assembly around the motor in response to external stimuli have been the subject of much recent research, but less is known about the evolutionary origins of stator complexes and how they select for specific ions. Here, we review the latest structural and biochemical data for the stator complexes and compare these with other ion transporters and microbial motors to examine possible evolutionary origins of the stator complex.
Collapse
|
5
|
Decoupling Filamentous Phage Uptake and Energy of the TolQRA Motor in Escherichia coli. J Bacteriol 2020; 202:JB.00428-19. [PMID: 31636109 DOI: 10.1128/jb.00428-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022] Open
Abstract
Filamentous phages are nonlytic viruses that specifically infect bacteria, establishing a persistent association with their host. The phage particle has no machinery for generating energy and parasitizes its host's existing structures in order to cross the bacterial envelope and deliver its genetic material. The import of filamentous phages across the bacterial periplasmic space requires some of the components of a macrocomplex of the envelope known as the Tol system. This complex uses the energy provided by the proton motive force (pmf) of the inner membrane to perform essential and highly energy-consuming functions of the cell, such as envelope integrity maintenance and cell division. It has been suggested that phages take advantage of pmf-driven conformational changes in the Tol system to transit across the periplasm. However, this hypothesis has not been formally tested. In order to decouple the role of the Tol system in cell physiology and during phage parasitism, we used mutations on conserved essential residues known for inactivating pmf-dependent functions of the Tol system. We identified impaired Tol complexes that remain fully efficient for filamentous phage uptake. We further demonstrate that the TolQ-TolR homologous motor ExbB-ExbD, normally operating with the TonB protein, is able to promote phage infection along with full-length TolA.IMPORTANCE Filamentous phages are widely distributed symbionts of Gram-negative bacteria, with some of them being linked to genome evolution and virulence of their host. However, the precise mechanism that permits their uptake across the cell envelope is poorly understood. The canonical phage model Fd requires the TolQRA protein complex in the host envelope, which is suspected to translocate protons across the inner membrane. In this study, we show that phage uptake proceeds in the presence of the assembled but nonfunctional TolQRA complex. Moreover, our results unravel an alternative route for phage import that relies on the ExbB-ExbD proteins. This work provides new insights into the fundamental mechanisms of phage infection and might be generalized to other filamentous phages responsible for pathogen emergence.
Collapse
|
6
|
Tol Energy-Driven Localization of Pal and Anchoring to the Peptidoglycan Promote Outer-Membrane Constriction. J Mol Biol 2019; 431:3275-3288. [DOI: 10.1016/j.jmb.2019.05.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023]
|
7
|
Maki-Yonekura S, Matsuoka R, Yamashita Y, Shimizu H, Tanaka M, Iwabuki F, Yonekura K. Hexameric and pentameric complexes of the ExbBD energizer in the Ton system. eLife 2018; 7:35419. [PMID: 29661272 PMCID: PMC5903867 DOI: 10.7554/elife.35419] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/18/2018] [Indexed: 01/18/2023] Open
Abstract
Gram-negative bacteria import essential nutrients such as iron and vitamin B12 through outer membrane receptors. This process utilizes proton motive force harvested by the Ton system made up of three inner membrane proteins, ExbB, ExbD and TonB. ExbB and ExbD form the proton channel that energizes uptake through TonB. Recently, crystal structures suggest that the ExbB pentamer is the scaffold. Here, we present structures of hexameric complexes of ExbB and ExbD revealed by X-ray crystallography and single particle cryo-EM. Image analysis shows that hexameric and pentameric complexes coexist, with the proportion of hexamer increasing with pH. Channel current measurement and 2D crystallography support the existence and transition of the two oligomeric states in membranes. The hexameric complex consists of six ExbB subunits and three ExbD transmembrane helices enclosed within the central channel. We propose models for activation/inactivation associated with hexamer and pentamer formation and utilization of proton motive force. Many biological processes that are essential for life are powered by the flow of ions across the membranes of cells. Similar to how energy is stored in the water behind a dam, energy is also stored when the concentration of ions on one side of a biological membrane is higher than it is on the other. When these ions then flow down this concentration gradient, the energy can be harnessed to power other processes. In many bacteria, the concentration of hydrogen ions, or protons, is higher on the outside of the cell. When the protons flow down the concentration gradient, a protein complex called the Ton system in the bacteria’s inner membrane harnesses the energy to transport various compounds, including essential nutrients, across the outer membrane, which is about 20 nanometres away. Toxins, and viruses that infect bacteria, can also hijack the Ton system to gain entry into these cells. This means that the Ton system could perhaps be targeted via drugs to treat bacterial infections. Though the Ton system is important, structural information on this protein family is limited. The Ton complex is composed of three proteins – ExbB, ExbD and TonB – located in the bacteria’s inner membrane. ExbB and ExbD together form a channel for the protons and the complex made from these two proteins can be thought of as the system’s engine. Maki-Yonekura et al. wanted to understand how the ExbB / ExbD complex works, which was challenging because the complex was not well suited to any single structural biology technique. To get around this issue, a combination of two techniques called X-ray crystallography and single particle cryo-EM were used. This approached revealed that the two proteins form complexes made up of either five or six ExbB subunits with one or three ExbD subunits, respectively. It also showed that the proteins transition between the two forms in a cell’s membrane. More of the larger six-unit complex (also called a “hexamer”) formed at higher pH. This is consistent with the increased flow of protons through the channel when the local conditions inside the cell become less acidic. Based on these results, Maki-Yonekura et al. propose that some subunits in the core of the complex rotate to harness the energy from the flow of protons, and the number of subunits in the complex changes when it switches to become active or inactive. The discoveries may provide a new vision of dynamic membrane biology. Further studies are now needed to see how general this mechanism is in biology, and the new structural information could also be used to help develop more anti-bacterial drugs.
Collapse
Affiliation(s)
| | - Rei Matsuoka
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Japan
| | - Yoshiki Yamashita
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Japan
| | - Hirofumi Shimizu
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Maiko Tanaka
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Japan
| | - Fumie Iwabuki
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Japan
| | - Koji Yonekura
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Japan
| |
Collapse
|
8
|
Abstract
As discovered over the past 25 years, the cytoskeletons of bacteria and archaea are complex systems of proteins whose central components are dynamic cytomotive filaments. They perform roles in cell division, DNA partitioning, cell shape determination and the organisation of intracellular components. The protofilament structures and polymerisation activities of various actin-like, tubulin-like and ESCRT-like proteins of prokaryotes closely resemble their eukaryotic counterparts but show greater diversity. Their activities are modulated by a wide range of accessory proteins but these do not include homologues of the motor proteins that supplement filament dynamics to aid eukaryotic cell motility. Numerous other filamentous proteins, some related to eukaryotic IF-proteins/lamins and dynamins etc, seem to perform structural roles similar to those in eukaryotes.
Collapse
Affiliation(s)
- Linda A Amos
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
9
|
Highly Signal-Responsive Gene Regulatory Network Governing Myxococcus Development. Trends Genet 2016; 33:3-15. [PMID: 27916428 DOI: 10.1016/j.tig.2016.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 10/14/2016] [Accepted: 10/24/2016] [Indexed: 11/20/2022]
Abstract
The bacterium Myxococcus xanthus undergoes multicellular development when starved. Thousands of cells build mounds in which some differentiate into spores. This remarkable feat and the genetic tractability of Myxococcus provide a unique opportunity to understand the evolution of gene regulatory networks (GRNs). Recent work has revealed a GRN involving interconnected cascades of signal-responsive transcriptional activators. Initially, starvation-induced intracellular signals direct changes in gene expression. Subsequently, self-generated extracellular signals provide morphological cues that regulate certain transcriptional activators. However, signals for many of the activators remain to be discovered. A key insight is that activators often work combinatorially, allowing signal integration. The Myxococcus GRN differs strikingly from those governing sporulation of Bacillus and Streptomyces, suggesting that Myxococcus evolved a highly signal-responsive GRN to enable complex multicellular development.
Collapse
|
10
|
Muñoz-Dorado J, Marcos-Torres FJ, García-Bravo E, Moraleda-Muñoz A, Pérez J. Myxobacteria: Moving, Killing, Feeding, and Surviving Together. Front Microbiol 2016; 7:781. [PMID: 27303375 PMCID: PMC4880591 DOI: 10.3389/fmicb.2016.00781] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/09/2016] [Indexed: 11/13/2022] Open
Abstract
Myxococcus xanthus, like other myxobacteria, is a social bacterium that moves and feeds cooperatively in predatory groups. On surfaces, rod-shaped vegetative cells move in search of the prey in a coordinated manner, forming dynamic multicellular groups referred to as swarms. Within the swarms, cells interact with one another and use two separate locomotion systems. Adventurous motility, which drives the movement of individual cells, is associated with the secretion of slime that forms trails at the leading edge of the swarms. It has been proposed that cellular traffic along these trails contributes to M. xanthus social behavior via stigmergic regulation. However, most of the cells travel in groups by using social motility, which is cell contact-dependent and requires a large number of individuals. Exopolysaccharides and the retraction of type IV pili at alternate poles of the cells are the engines associated with social motility. When the swarms encounter prey, the population of M. xanthus lyses and takes up nutrients from nearby cells. This cooperative and highly density-dependent feeding behavior has the advantage that the pool of hydrolytic enzymes and other secondary metabolites secreted by the entire group is shared by the community to optimize the use of the degradation products. This multicellular behavior is especially observed in the absence of nutrients. In this condition, M. xanthus swarms have the ability to organize the gliding movements of 1000s of rods, synchronizing rippling waves of oscillating cells, to form macroscopic fruiting bodies, with three subpopulations of cells showing division of labor. A small fraction of cells either develop into resistant myxospores or remain as peripheral rods, while the majority of cells die, probably to provide nutrients to allow aggregation and spore differentiation. Sporulation within multicellular fruiting bodies has the benefit of enabling survival in hostile environments, and increases germination and growth rates when cells encounter favorable conditions. Herein, we review how these social bacteria cooperate and review the main cell–cell signaling systems used for communication to maintain multicellularity.
Collapse
Affiliation(s)
- José Muñoz-Dorado
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada Granada, Spain
| | | | - Elena García-Bravo
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada Granada, Spain
| | - Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada Granada, Spain
| | - Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada Granada, Spain
| |
Collapse
|
11
|
Kwak MJ, Kwon SK, Yoon JH, Kim JF. Genome sequence of Lysobacter dokdonensis DS-58(T), a gliding bacterium isolated from soil in Dokdo, Korea. Stand Genomic Sci 2015; 10:123. [PMID: 26664701 PMCID: PMC4673725 DOI: 10.1186/s40793-015-0116-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 11/25/2015] [Indexed: 11/10/2022] Open
Abstract
Lysobacter dokdonensis DS-58, belonging to the family Xanthomonadaceae, was isolated from a soil sample in Dokdo, Korea in 2011. Strain DS-58 is the type strain of L. dokdonensis. In this study, we determined the genome sequence to describe the genomic features including annotation information and COG functional categorization. The draft genome sequence consists of 25 contigs totaling 3,274,406 bp (67.24 % G + C) and contains 3,155 protein coding genes, 2 copies of ribosomal RNA operons, and 48 transfer RNA genes. Among the protein coding genes, 75.91 % of the genes were annotated with a putative function and 87.39 % of the genes were assigned to the COG category. In the genome of L. dokdonensis, a large number of genes associated with protein degradation and antibiotic resistance were detected.
Collapse
Affiliation(s)
- Min-Jung Kwak
- Department of Systems Biology and Division of Life Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 Republic of Korea
| | - Soon-Kyeong Kwon
- Department of Systems Biology and Division of Life Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 Republic of Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jihyun F Kim
- Department of Systems Biology and Division of Life Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 Republic of Korea
| |
Collapse
|
12
|
Islam ST, Mignot T. The mysterious nature of bacterial surface (gliding) motility: A focal adhesion-based mechanism in Myxococcus xanthus. Semin Cell Dev Biol 2015; 46:143-54. [PMID: 26520023 DOI: 10.1016/j.semcdb.2015.10.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 11/19/2022]
Abstract
Motility of bacterial cells promotes a range of important physiological phenomena such as nutrient detection, harm avoidance, biofilm formation, and pathogenesis. While much research has been devoted to the mechanism of bacterial swimming in liquid via rotation of flagellar filaments, the mechanisms of bacterial translocation across solid surfaces are poorly understood, particularly when cells lack external appendages such as rotary flagella and/or retractile type IV pili. Under such limitations, diverse bacteria at the single-cell level are still able to "glide" across solid surfaces, exhibiting smooth translocation of the cell along its long axis. Though multiple gliding mechanisms have evolved in different bacterial classes, most remain poorly characterized. One exception is the gliding motility mechanism used by the Gram-negative social predatory bacterium Myxococcus xanthus. The available body of research suggests that M. xanthus gliding motility is mediated by trafficked multi-protein (Glt) cell envelope complexes, powered by proton-driven flagellar stator homologues (Agl). Through coupling to the substratum via polysaccharide slime, Agl-Glt assemblies can become fixed relative to the substratum, forming a focal adhesion site. Continued directional transport of slime-associated substratum-fixed Agl-Glt complexes would result in smooth forward movement of the cell. In this review, we have provided a comprehensive synthesis of the latest mechanistic and structural data for focal adhesion-mediated gliding motility in M. xanthus, with emphasis on the role of each Agl and Glt protein. Finally, we have also highlighted the possible connection between the motility complex and a new type of spore coat assembly system, suggesting that gliding and cell envelope synthetic complexes are evolutionarily linked.
Collapse
Affiliation(s)
- Salim T Islam
- Laboratoire de Chimie Bactérienne, Centre National de la Recherche Scientifique (CNRS) UMR7283, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, 31 chemin Joseph Aiguier, 13009 Marseille, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, Centre National de la Recherche Scientifique (CNRS) UMR7283, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, 31 chemin Joseph Aiguier, 13009 Marseille, France.
| |
Collapse
|
13
|
Guzzo M, Agrebi R, Espinosa L, Baronian G, Molle V, Mauriello EMF, Brochier-Armanet C, Mignot T. Evolution and Design Governing Signal Precision and Amplification in a Bacterial Chemosensory Pathway. PLoS Genet 2015; 11:e1005460. [PMID: 26291327 PMCID: PMC4546325 DOI: 10.1371/journal.pgen.1005460] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/23/2015] [Indexed: 11/19/2022] Open
Abstract
Understanding the principles underlying the plasticity of signal transduction networks is fundamental to decipher the functioning of living cells. In Myxococcus xanthus, a particular chemosensory system (Frz) coordinates the activity of two separate motility systems (the A- and S-motility systems), promoting multicellular development. This unusual structure asks how signal is transduced in a branched signal transduction pathway. Using combined evolution-guided and single cell approaches, we successfully uncoupled the regulations and showed that the A-motility regulation system branched-off an existing signaling system that initially only controlled S-motility. Pathway branching emerged in part following a gene duplication event and changes in the circuit structure increasing the signaling efficiency. In the evolved pathway, the Frz histidine kinase generates a steep biphasic response to increasing external stimulations, which is essential for signal partitioning to the motility systems. We further show that this behavior results from the action of two accessory response regulator proteins that act independently to filter and amplify signals from the upstream kinase. Thus, signal amplification loops may underlie the emergence of new connectivity in signal transduction pathways.
Collapse
Affiliation(s)
- Mathilde Guzzo
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS Aix-Marseille University UMR 7283, Marseille, France
| | - Rym Agrebi
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS Aix-Marseille University UMR 7283, Marseille, France
| | - Leon Espinosa
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS Aix-Marseille University UMR 7283, Marseille, France
| | - Grégory Baronian
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS Universités de Montpellier II et I, UMR 5235, case 107, Montpellier, France
| | - Virginie Molle
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS Universités de Montpellier II et I, UMR 5235, case 107, Montpellier, France
| | - Emilia M. F. Mauriello
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS Aix-Marseille University UMR 7283, Marseille, France
| | - Céline Brochier-Armanet
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS Aix-Marseille University UMR 7283, Marseille, France
- * E-mail:
| |
Collapse
|
14
|
Jakobczak B, Keilberg D, Wuichet K, Søgaard-Andersen L. Contact- and Protein Transfer-Dependent Stimulation of Assembly of the Gliding Motility Machinery in Myxococcus xanthus. PLoS Genet 2015; 11:e1005341. [PMID: 26132848 PMCID: PMC4488436 DOI: 10.1371/journal.pgen.1005341] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/08/2015] [Indexed: 01/06/2023] Open
Abstract
Bacteria engage in contact-dependent activities to coordinate cellular activities that aid their survival. Cells of Myxococcus xanthus move over surfaces by means of type IV pili and gliding motility. Upon direct contact, cells physically exchange outer membrane (OM) lipoproteins, and this transfer can rescue motility in mutants lacking lipoproteins required for motility. The mechanism of gliding motility and its stimulation by transferred OM lipoproteins remain poorly characterized. We investigated the function of CglC, GltB, GltA and GltC, all of which are required for gliding. We demonstrate that CglC is an OM lipoprotein, GltB and GltA are integral OM β-barrel proteins, and GltC is a soluble periplasmic protein. GltB and GltA are mutually stabilizing, and both are required to stabilize GltC, whereas CglC accumulate independently of GltB, GltA and GltC. Consistently, purified GltB, GltA and GltC proteins interact in all pair-wise combinations. Using active fluorescently-tagged fusion proteins, we demonstrate that GltB, GltA and GltC are integral components of the gliding motility complex. Incorporation of GltB and GltA into this complex depends on CglC and GltC as well as on the cytoplasmic AglZ protein and the inner membrane protein AglQ, both of which are components of the gliding motility complex. Conversely, incorporation of AglZ and AglQ into the gliding motility complex depends on CglC, GltB, GltA and GltC. Remarkably, physical transfer of the OM lipoprotein CglC to a ΔcglC recipient stimulates assembly of the gliding motility complex in the recipient likely by facilitating the OM integration of GltB and GltA. These data provide evidence that the gliding motility complex in M. xanthus includes OM proteins and suggest that this complex extends from the cytoplasm across the cell envelope to the OM. These data add assembly of gliding motility complexes in M. xanthus to the growing list of contact-dependent activities in bacteria. Motility facilitates a wide variety of processes such as virulence, biofilm formation and development in bacteria. Bacteria have evolved at least three mechanisms for motility on surfaces: swarming motility, twitching motility and gliding motility. Mechanistically, gliding motility is poorly understood. Here, we focused on four proteins in Myxococcus xanthus that are essential for gliding. We show that CglC is an outer membrane (OM) lipoprotein, GltB and GltA are integral OM β-barrel proteins, and GltC is a soluble periplasmic protein. GltB, GltA and GltC are components of the gliding motility complex, and CglC likely stimulates the integration of GltB and GltA into the OM. Moreover, CglC, in a cell-cell contact-dependent manner, can be transferred from a cglC+ donor to a ΔcglC mutant leading to stimulation of gliding motility in the recipient. We show that upon physical transfer of CglC, CglC stimulates the assembly of the gliding motility complex in the recipient. The data presented here adds to the growing list of cell-cell contact-dependent activities in bacteria by demonstrating that gliding motility can be stimulated in a contact-dependent manner by transfer of a protein that stimulates assembly of the gliding motility complexes.
Collapse
Affiliation(s)
- Beata Jakobczak
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Daniela Keilberg
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Kristin Wuichet
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
15
|
Erratum: An evolutionary link between capsular biogenesis and surface motility in bacteria. Nat Rev Microbiol 2015. [DOI: 10.1038/nrmicro3489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|