1
|
Kidney Injuries and Evolution of Chronic Kidney Diseases Due to Neonatal Hyperoxia Exposure Based on Animal Studies. Int J Mol Sci 2022; 23:ijms23158492. [PMID: 35955627 PMCID: PMC9369080 DOI: 10.3390/ijms23158492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Preterm birth interrupts the development and maturation of the kidneys during the critical growth period. The kidneys can also exhibit structural defects and functional impairment due to hyperoxia, as demonstrated by various animal studies. Furthermore, hyperoxia during nephrogenesis impairs renal tubular development and induces glomerular and tubular injuries, which manifest as renal corpuscle enlargement, renal tubular necrosis, interstitial inflammation, and kidney fibrosis. Preterm birth along with hyperoxia exposure induces a pathological predisposition to chronic kidney disease. Hyperoxia-induced kidney injuries are influenced by several molecular factors, including hypoxia-inducible factor-1α and interleukin-6/Smad2/transforming growth factor-β, and Wnt/β-catenin signaling pathways; these are key to cell proliferation, tissue inflammation, and cell membrane repair. Hyperoxia-induced oxidative stress is characterized by the attenuation or the induction of multiple molecular factors associated with kidney damage. This review focuses on the molecular pathways involved in the pathogenesis of hyperoxia-induced kidney injuries to establish a framework for potential interventions.
Collapse
|
2
|
The Pathophysiologic Role of Gelsolin in Chronic Kidney Disease: Focus on Podocytes. Int J Mol Sci 2021; 22:ijms222413281. [PMID: 34948078 PMCID: PMC8704698 DOI: 10.3390/ijms222413281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 11/19/2022] Open
Abstract
Chronic kidney disease (CKD) is normally related to proteinuria, a common finding in a compromised glomerular filtration barrier (GFB). GFB is a structure composed of glomerular endothelial cells, the basement membrane, and the podocytes. CKD with podocyte damage may be associated with actin cytoskeleton reorganization, resulting in podocyte effacement. Gelsolin plays a critical role in several diseases, including cardiovascular diseases and cancer. Our current study aimed to determine the connection between gelsolin and podocyte, and thus the mechanism underlying podocyte injury in CKD. Experiments were carried out on Drosophila to demonstrate whether gelsolin had a physiological role in maintaining podocyte. Furthermore, the survival rate of gelsolin-knocked down Drosophila larvae was extensively reduced after AgNO3 exposure. Secondly, the in vitro podocytes treated with puromycin aminonucleoside (PAN) enhanced the gelsolin protein expression, as well as small GTPase RhoA and Rac1, which also regulated actin dynamic expression incrementally with the PAN concentrations. Thirdly, we further demonstrated in vivo that GSN was highly expressed inside the glomeruli with mitochondrial dysfunction in a CKD mouse model. Our findings suggest that an excess of gelsolin may contribute to podocytes damage in glomeruli.
Collapse
|
3
|
Randi EB, Vervaet B, Tsachaki M, Porto E, Vermeylen S, Lindenmeyer MT, Thuy LTT, Cohen CD, Devuyst O, Kistler AD, Szabo C, Kawada N, Hankeln T, Odermatt A, Dewilde S, Wenger RH, Hoogewijs D. The Antioxidative Role of Cytoglobin in Podocytes: Implications for a Role in Chronic Kidney Disease. Antioxid Redox Signal 2020; 32:1155-1171. [PMID: 31910047 DOI: 10.1089/ars.2019.7868] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aims: Cytoglobin (CYGB) is a member of the mammalian globin family of respiratory proteins. Despite extensive research efforts, its physiological role remains largely unknown, but potential functions include reactive oxygen species (ROS) detoxification and signaling. Accumulating evidence suggests that ROS play a crucial role in podocyte detachment and apoptosis during diabetic kidney disease. This study aimed to explore the potential antioxidative renal role of CYGB both in vivo and in vitro. Results: Using a Cygb-deficient mouse model, we demonstrate a Cygb-dependent reduction in renal function, coinciding with a reduced number of podocytes. To specifically assess the putative antioxidative function of CYGB in podocytes, we first confirmed high endogenous CYGB expression levels in two human podocyte cell lines and subsequently generated short hairpin RNA-mediated stable CYGB knockdown podocyte models. CYGB-deficient podocytes displayed increased cell death and accumulation of ROS as assessed by 2'7'-dichlorodihydrofluorescein diacetate assays and the redox-sensitive probe roGFP2-Orp1. CYGB-deficient cells also exhibited an impaired cellular bioenergetic status. Consistently, analysis of the CYGB-dependent transcriptome identified dysregulation of multiple genes involved in redox balance, apoptosis, as well as in chronic kidney disease (CKD). Finally, genome-wide association studies and expression studies in nephropathy biopsies indicate an association of CYGB with CKD. Innovation: This study demonstrates a podocyte-related renal role of Cygb, confirms abundant CYGB expression in human podocyte cell lines, and describes for the first time an association between CYGB and CKD. Conclusion: Our results provide evidence for an antioxidative role of CYGB in podocytes.
Collapse
Affiliation(s)
- Elisa B Randi
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland.,Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research (NCCR) "Kidney.CH", Zurich, Switzerland
| | - Benjamin Vervaet
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Maria Tsachaki
- National Centre of Competence in Research (NCCR) "Kidney.CH", Zurich, Switzerland.,Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Elena Porto
- Institute of Organismal and Molecular Evolutionary Biology, University of Mainz, Mainz, Germany
| | - Stijn Vermeylen
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Maja T Lindenmeyer
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research (NCCR) "Kidney.CH", Zurich, Switzerland.,Nephrological Center, Medical Clinic and Policlinic IV, University of Munich, Munich, Germany
| | - Le Thi Thanh Thuy
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Clemens D Cohen
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research (NCCR) "Kidney.CH", Zurich, Switzerland.,Nephrological Center, Medical Clinic and Policlinic IV, University of Munich, Munich, Germany
| | - Olivier Devuyst
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research (NCCR) "Kidney.CH", Zurich, Switzerland
| | - Andreas D Kistler
- Division of Nephrology, Kantonsspital Frauenfeld, Frauenfeld, Switzerland
| | - Csaba Szabo
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Thomas Hankeln
- Institute of Organismal and Molecular Evolutionary Biology, University of Mainz, Mainz, Germany
| | - Alex Odermatt
- National Centre of Competence in Research (NCCR) "Kidney.CH", Zurich, Switzerland.,Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Sylvia Dewilde
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Roland H Wenger
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research (NCCR) "Kidney.CH", Zurich, Switzerland
| | - David Hoogewijs
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland.,National Centre of Competence in Research (NCCR) "Kidney.CH", Zurich, Switzerland
| |
Collapse
|
4
|
Hu H, Li W, Liu M, Xiong J, Li Y, Wei Y, Huang C, Tang Y. C1q/Tumor Necrosis Factor-Related Protein-9 Attenuates Diabetic Nephropathy and Kidney Fibrosis in db/db Mice. DNA Cell Biol 2020; 39:938-948. [PMID: 32283037 DOI: 10.1089/dna.2019.5302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is characterized by excessive accumulation of extracellular matrix leading to early thickening of glomerular and tubular basement membrane. C1q/tumor necrosis factor (TNF)-related protein-9 (CTRP9) was recently identified as an adiponectin paralog of superior prominence. CTRP9 is an anti-inflammatory, antioxidant, vasodilation and atheroprotective adipose cytokine that share a similar metabolic regulatory function as adiponectin. Additionally, CTRP9 inhibits apoptosis of endothelial cells, decreases blood glucose level, and increases insulin sensitivity. However, the renoprotective effects of CTRP9 and the underlying molecular mechanisms in DN have not been explored. This study examined the effects of CTRP9 on DN in diabetic db/db mice through adenovirus-mediated overexpression. From the results, CTRP9 ameliorated renal dysfunction and injury at the structural and functional level in diabetic db/db mice. Additionally, CTRP9 inhibited glomerular and tubular glycogen accumulation, fibrosis, relieved hyperglycemia-mediated oxidative stress, and apoptosis. This is the first study to report on therapeutic effects of CTRP9 on DN, presenting a potentially effective clinical treatment method for DN patients.
Collapse
Affiliation(s)
- Hongyao Hu
- Department of Interventional Radiology, Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Wei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
| | - Mingxin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
| | - Jiarui Xiong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
| | - Yanjun Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
| | - Yanzhao Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P.R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P.R. China
| |
Collapse
|
5
|
Dong J, Jiang Z, Ma G. Hsp90 inhibition aggravates adriamycin-induced podocyte injury through intrinsic apoptosis pathway. Exp Cell Res 2020; 390:111928. [PMID: 32156599 DOI: 10.1016/j.yexcr.2020.111928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/09/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022]
Abstract
Podocyte injury leads to impaired filtration barrier function of the kidney that underlies the pathophysiology of idiopathic nephrotic syndrome (INS), the most common NS occurring in children. The heat shock protein 90 (Hsp90) is involved in the regulation of apoptosis in a variety of cell types, however, little is known about its role in podocytes and whether it associated with NS. Here, we show that Hsp90 is upregulated in glomeruli podocytes from mice with adriamycin (ADR)-induced nephropathy, and that it is also upregulated in an immortalized podocyte cell line treated with ADR in vitro, together suggesting an association of Hsp90 upregulation in podocytes with NS pathogenesis. Functionally, Hsp90 inhibition with PU-H71 aggravates ADR-induced podocyte apoptosis and worsens the impairment of filtration barrier function. Mechanistically, Hsp90 inhibition with PU-H71 enhances the activation of intrinsic apoptotic pathway, and moreover, blockade of podocyte apoptosis with zVAD-fmk (aVAD), a pan-caspase inhibitor, abrogates effects of Hsp90 inhibition on filtration barrier function of ADR-treated podocytes, thus demonstrating that Hsp90 inhibition aggravates ADR-induced podocyte injury through intrinsic apoptosis pathway. In sum, this study reveals a detrimental role of Hsp90 inhibition in podocyte injury, which may offer it as a potential therapeutic target in NS therapy.
Collapse
Affiliation(s)
- Junyu Dong
- Department of Paediatrics, The First Affiliated Hospital of Henan University of Science & Technology, Luoyang, Henan, 471000, China
| | - Zhihong Jiang
- Department of Paediatrics, The First Affiliated Hospital of Henan University of Science & Technology, Luoyang, Henan, 471000, China.
| | - Guorui Ma
- Department of Paediatrics, The First Affiliated Hospital of Henan University of Science & Technology, Luoyang, Henan, 471000, China
| |
Collapse
|
6
|
Ni W, Zhou H, Ding H, Tang L. Berberine ameliorates renal impairment and inhibits podocyte dysfunction by targeting the phosphatidylinositol 3-kinase-protein kinase B pathway in diabetic rats. J Diabetes Investig 2020; 11:297-306. [PMID: 31336024 PMCID: PMC7078081 DOI: 10.1111/jdi.13119] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/09/2019] [Accepted: 07/21/2019] [Indexed: 02/06/2023] Open
Abstract
AIMS/INTRODUCTION Amelioration of renal impairment is the key to diabetic nephropathy (DN) therapy. The progression of DN is closely related to podocyte dysfunction, but the detailed mechanism has not yet been clarified. The present study aimed to explore the renal impairment amelioration effect of berberine and related mechanisms targeting podocyte dysfunction under the diabetic state. MATERIALS AND METHODS Streptozotocin (35 mg/kg) was used to develop a DN rat model together with a high-glucose/high-lipid diet. Renal functional parameters and glomerular ultrastructure changes were recorded. The alterations of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt) and phosphorylated Akt in the kidney cortex were determined by western blot. Meanwhile, podocyte dysfunction was induced and treated with berberine and LY294002. After that, podocyte adhesion functional parameters, protein biomarker and the alterations of the PI3K-Akt pathway were detected. RESULTS Berberine reduces the increased levels of biochemical indicators, and significantly improves the abnormal expression of PI3K, Akt and phosphorylated Akt in a rat kidney model. In vitro, a costimulating factor could obviously reduce the podocyte adhesion activity, including decreased expression of nephrin, podocin and adhesion molecule α3β1 levels, to induce podocyte dysfunction, and the trends were markedly reversed by berberine and LY294002 therapy. Furthermore, reduction of PI3K and phosphorylated Akt levels were observed in the berberine (30 and 60 μmol/L) and LY294002 (40 μmol/L) treatment group, but the Akt protein expression showed little change. CONCLUSIONS Berberine could be a promising antidiabetic nephropathy drug through ameliorating renal impairment and inhibiting podocyte dysfunction in diabetic rats, and the underlying molecular mechanisms might be involved in the regulation of the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Wei‐Jian Ni
- Department of PharmacyAnhui Provincial HospitalAnhui Medical UniversityHefeiAnhuiChina
- Department of PharmacyAnhui Provincial HospitalThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Hong Zhou
- Department of PharmacyAnhui Provincial Cancer HospitalWest District of The First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Hai‐Hua Ding
- Department of PharmacyAnhui Provincial HospitalAnhui Medical UniversityHefeiAnhuiChina
| | - Li‐Qin Tang
- Department of PharmacyAnhui Provincial HospitalThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| |
Collapse
|
7
|
Duni A, Liakopoulos V, Roumeliotis S, Peschos D, Dounousi E. Oxidative Stress in the Pathogenesis and Evolution of Chronic Kidney Disease: Untangling Ariadne's Thread. Int J Mol Sci 2019; 20:ijms20153711. [PMID: 31362427 PMCID: PMC6695865 DOI: 10.3390/ijms20153711] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Amplification of oxidative stress is present since the early stages of chronic kidney disease (CKD), holding a key position in the pathogenesis of renal failure. Induction of renal pro-oxidant enzymes with excess generation of reactive oxygen species (ROS) and accumulation of dityrosine-containing protein products produced during oxidative stress (advanced oxidation protein products—AOPPs) have been directly linked to podocyte damage, proteinuria, and the development of focal segmental glomerulosclerosis (FSGS) as well as tubulointerstitial fibrosis. Vascular oxidative stress is considered to play a critical role in CKD progression, and ROS are potential mediators of the impaired myogenic responses of afferent renal arterioles in CKD and impaired renal autoregulation. Both oxidative stress and inflammation are CKD hallmarks. Oxidative stress promotes inflammation via formation of proinflammatory oxidized lipids or AOPPs, whereas activation of nuclear factor κB transcription factor in the pro-oxidant milieu promotes the expression of proinflammatory cytokines and recruitment of proinflammatory cells. Accumulating evidence implicates oxidative stress in various clinical models of CKD, including diabetic nephropathy, IgA nephropathy, polycystic kidney disease as well as the cardiorenal syndrome. The scope of this review is to tackle the issue of oxidative stress in CKD in a holistic manner so as to provide a future framework for potential interventions.
Collapse
Affiliation(s)
- Anila Duni
- Department of Nephrology, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Vassilios Liakopoulos
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stefanos Roumeliotis
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Dimitrios Peschos
- Laboratory of Physiology, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Evangelia Dounousi
- Department of Nephrology, Medical School, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
8
|
Wnt/β-catenin links oxidative stress to podocyte injury and proteinuria. Kidney Int 2019; 95:830-845. [PMID: 30770219 DOI: 10.1016/j.kint.2018.10.032] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/03/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023]
Abstract
Podocyte injury is the major cause of proteinuria in primary glomerular diseases. Oxidative stress has long been thought to play a role in triggering podocyte damage; however, the underlying mechanism remains poorly understood. Here we show that the Wnt/β-catenin pathway is involved in mediating oxidative stress-induced podocyte dysfunction. Advanced oxidation protein products, a marker and trigger of oxidative stress, were increased in the serum of patients with chronic kidney disease and correlated with impaired glomerular filtration, proteinuria, and circulating level of Wnt1. Both serum from patients with chronic kidney disease and exogenous advanced oxidation protein products induced Wnt1 and Wnt7a expression, activated β-catenin, and reduced expression of podocyte-specific markers in vitro and in vivo. Blockade of Wnt signaling by Klotho or knockdown of β-catenin by shRNA in podocytes abolished β-catenin activation and the upregulation of fibronectin, desmin, matrix metalloproteinase-9, and Snail1 triggered by advanced oxidation protein products. Furthermore, conditional knockout mice with podocyte-specific ablation of β-catenin were protected against podocyte injury and albuminuria after treatment with advanced oxidation protein products. The action of Wnt/β-catenin was dependent on the receptor of advanced glycation end products (RAGE)-mediated NADPH oxidase induction, reactive oxygen species generation, and nuclear factor-κB activation. These studies uncover a novel mechanistic linkage of oxidative stress, Wnt/β-catenin activation, and podocyte dysfunction.
Collapse
|
9
|
Huang SS, Ding DF, Chen S, Dong CL, Ye XL, Yuan YG, Feng YM, You N, Xu JR, Miao H, You Q, Lu X, Lu YB. Resveratrol protects podocytes against apoptosis via stimulation of autophagy in a mouse model of diabetic nephropathy. Sci Rep 2017; 7:45692. [PMID: 28374806 PMCID: PMC5379482 DOI: 10.1038/srep45692] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 03/03/2017] [Indexed: 12/30/2022] Open
Abstract
Podocyte apoptosis coincides with albuminuria onset and precedes podocytopenia in diabetic nephropathy. However, there is a lack of effective therapeutic drugs to protect podocytes from apoptosis. Here, we demonstrated that resveratrol relieved a series of indicators of diabetic nephropathy and attenuated apoptosis of podocytes in db/db diabetic model mice. In addition, resveratrol induced autophagy in both db/db mice and human podocytes. Furthermore, inhibition of autophagy by 3-methyladenine (3-MA) and autophagy gene 5 (Atg5) short hairpin RNA (shRNA) reversed the protective effects of resveratrol on podocytes. Finally, we found that resveratrol might regulate autophagy and apoptosis in db/db mice and podocytes through the suppression of microRNA-383-5p (miR-383-5p). Together, our results indicate that resveratrol effectively attenuates high glucose-induced apoptosis via the activation of autophagy in db/db mice and podocytes, which involves miR-383-5p. Thus, this study reveals a new possible strategy to treat diabetic nephropathy.
Collapse
Affiliation(s)
- Shan-Shan Huang
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- Department of Endocrinology, Nanjing General Hospital of Nanjing Military Command, Nanjing, China
| | - Da-Fa Ding
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Sheng Chen
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Cheng-Long Dong
- Department of Emergency, Yancheng First People’s Hospital, Yancheng, China
| | - Xiao-Long Ye
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yang-Gang Yuan
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ya-Min Feng
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Na You
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jia-Rong Xu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Heng Miao
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qiang You
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xiang Lu
- Department of Geriatics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yi-Bing Lu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|