1
|
Ye B, Ji H, Zhu M, Wang A, Tang J, Liang Y, Zhang Q. Single-cell sequencing reveals novel proliferative cell type: a key player in renal cell carcinoma prognosis and therapeutic response. Clin Exp Med 2024; 24:167. [PMID: 39052149 PMCID: PMC11272756 DOI: 10.1007/s10238-024-01424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
Renal cell carcinoma (RCC) is characterized by a variety of subtypes, each defined by unique genetic and morphological features. This study utilizes single-cell RNA sequencing to explore the molecular heterogeneity of RCC. A highly proliferative cell subset, termed as "Prol," was discovered within RCC tumors, and its increased presence was linked to poorer patient outcomes. An artificial intelligence network, encompassing traditional regression, machine learning, and deep learning algorithms, was employed to develop a Prol signature capable of predicting prognosis. The signature demonstrated superior performance in predicting RCC prognosis compared to other signatures and exhibited pan-cancer prognostic capabilities. RCC patients with high Prol signature scores exhibited resistance to targeted therapies and immunotherapies. Furthermore, the key gene CEP55 from the Prol signature was validated by both proteinomics and quantitative real time polymerase chain reaction. Our findings may provide new insights into the molecular and cellular mechanisms of RCC and facilitate the development of novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Bicheng Ye
- School of Clinical Medicine, Yangzhou Polytechnic College, Yangzhou, China
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Hongsheng Ji
- Department of Urology, Lianshui People's Hospital of Kangda College Affiliated to Nanjing Medical University, Huai'an, China
| | - Meng Zhu
- Department of Geriatrics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian Second People's Hospital, Huaian, China
| | - Anbang Wang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jingsong Tang
- Department of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
| | - Yong Liang
- Department of Medical Laboratory, Huai'an Second People's Hospital Affiliated to Xuzhou Medical Universit, Huaian, China.
| | - Qing Zhang
- Department of Hepatology, Huai'an No. 4 People's Hospital, Huai'an, China.
| |
Collapse
|
2
|
Liao X, Lin R, Zhang Z, Tian D, Liu Z, Chen S, Xu G, Su M. Genome-wide DNA methylation and transcriptomic patterns of precancerous gastric cardia lesions. J Natl Cancer Inst 2024; 116:681-693. [PMID: 38258659 DOI: 10.1093/jnci/djad244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/25/2023] [Accepted: 11/15/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Intestinal metaplasia (IM) and intraepithelial neoplasia (IEN) are considered precursors of gastric cardia cancer (GCC). Here, we investigated the histopathologic and molecular profiles of precancerous gastric cardia lesions (PGCLs) and biomarkers for risk stratification of gastric cardia IM. METHODS We conducted a hospital-based evaluation (n = 4578) for PGCL profiles in high-incidence and non-high-incidence regions for GCC in China. We next performed 850K methylation arrays (n = 42) and RNA-seq (n = 44) in tissues with PGCLs. We then examined the protein expression of candidate biomarker using immunohistochemistry. RESULTS Of the 4578 participants, 791 were diagnosed with PGCLs (600 IM, 62 IM with IEN, and 129 IEN). We found that individuals from high-incidence regions (26.7%) were more likely to develop PGCLs than those from non-high-incidence areas (13.5%). DNA methylation and gene expression alterations, indicated by differentially methylated probes (DMPs) and differentially expressed genes (DEGs), exhibited a progressive increase from type I IM (DMP = 210, DEG = 24), type II IM (DMP = 3402, DEG = 129), to type III IM (DMP = 3735, DEG = 328), peaking in IEN (DMP = 47 373, DEG = 2278). Three DEGs with aberrant promoter methylation were identified, shared exclusively by type III IM and IEN. Of these DEGs, we found that OLFM4 expression appears in IMs and increases remarkably in IENs (P < .001). CONCLUSIONS We highlight that type III IM and IEN share similar epigenetic and transcriptional features in gastric cardia and propose biomarkers with potential utility in risk prediction.
Collapse
Affiliation(s)
- Xiaoqi Liao
- Department of Pathology, Shantou University Medical College, Shantou, People's Republic of China
| | - Runhua Lin
- Department of Pathology, Shantou University Medical College, Shantou, People's Republic of China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, People's Republic of China
| | - Zhihua Zhang
- Department of Pathology, Shantou University Medical College, Shantou, People's Republic of China
| | - Dongping Tian
- Department of Pathology, Shantou University Medical College, Shantou, People's Republic of China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, People's Republic of China
| | - Zhaohui Liu
- Department of Gastroenterology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, People's Republic of China
| | - Songqin Chen
- Department of Pathology, Jieyang People's Hospital, Jieyang, People's Republic of China
| | - Guohua Xu
- Department of Gastroenterology, Huiyang Sanhe Hospital, Huizhou, People's Republic of China
| | - Min Su
- Department of Pathology, Shantou University Medical College, Shantou, People's Republic of China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, People's Republic of China
| |
Collapse
|
3
|
Rosellini M, Mollica V, Marchetti A, Coluccelli S, Giunchi F, Tassinari E, Ricci C, Fiorentino M, Tallini G, De Biase D, Massari F. Chromosome 3p gene alterations as biomarkers for immunocombinations in metastatic renal cell carcinoma: A hypothesis-generating analysis. Pathol Res Pract 2024; 254:155142. [PMID: 38277752 DOI: 10.1016/j.prp.2024.155142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/31/2023] [Accepted: 01/13/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Identifying biomarkers for metastatic renal cell carcinoma (mRCC) is an unmet need in actual immunotherapy era. Available data regarding chromosome 3p genes (i.e., VHL, PBRM1, SETD2) mutations as potential predictors for therapy response is conflicting. We describe the impact of these mutations on clinical outcomes in mRCC patients treated with immune checkpoint inhibitor (ICI)-doublet or ICI/tyrosine kinase inhibitor (TKI) combinations. METHODS We performed a single-center retrospective analysis on mRCC patients treated with first line ICI/ICI or ICI/TKI. A multi-gene panel was used, allowing the amplification of 841 amplicons (54.93 kb, human reference sequence hg19/GRCh37) in the coding sequences of the following genes: ATM, BAP1, KDM5C, MET, MTOR, NF2, PBRM1, PIK3CA, PTEN, SETD2, SMARCB1, TP53, TSC1, TSC2, VHL. RESULTS 18 patients undergoing ICI/ICI and ICI/TKI who had tumor tissue adequate for molecular analysis were included. Histology was 100% clear cell. IMDC risk was 50% intermediate, 33.4% good, 16.6% poor. First line therapy was 89% ICI/TKI, 11% ICI/ICI. 83.3% pts (n = 15) carried genomic alterations (GA). Most common GA included VHL in 44% (n = 8; 7 pathogenic - PAT and 1 variant of unknown significance - VUS), PBRM1 in 44% (n = 8; 5 PAT and 3 VUS) and SETD2 in 33% (n = 6; 4 PAT and 2 VUS). With the limit of a small sample that did not allow proper statistical analyses, SETD2-mutated patients had lower median progression free (mPFS) and overall survival (mOS) than non-SETD2 mutated patients. Higher mPFS and mOS were shown with VHL or PBRM1 GA, especially in PBRM1 +VHL mutated pts. CONCLUSIONS Our data shows a possible negative predictive role of SETD2 GA for ICI-based therapy in RCC. Concomitant VHL and PBRM1 GA could act as a predictor for ICI/TKI efficacy. Our hypothesis-generating analysis highlights the need of an integrated evaluation of these genes as promising biomarkers in RCC. Further larger studies are required.
Collapse
Affiliation(s)
- Matteo Rosellini
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Andrea Marchetti
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Sara Coluccelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Francesca Giunchi
- Department of Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Elisa Tassinari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Costantino Ricci
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; Pathology Unit, Maggiore Hospital-AUSL Bologna, Bologna, Italy
| | - Michelangelo Fiorentino
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; Pathology Unit, Maggiore Hospital-AUSL Bologna, Bologna, Italy
| | - Giovanni Tallini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Dario De Biase
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; Department of Pharmacy and Biotechnology (FaBit), University of Bologna, 40126 Bologna, Italy
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
| |
Collapse
|
4
|
Zheng Z, Zeng X, Zhu Y, Leng M, Zhang Z, Wang Q, Liu X, Zeng S, Xiao Y, Hu C, Pang S, Wang T, Xu B, Peng P, Li F, Tan W. CircPPAP2B controls metastasis of clear cell renal cell carcinoma via HNRNPC-dependent alternative splicing and targeting the miR-182-5p/CYP1B1 axis. Mol Cancer 2024; 23:4. [PMID: 38184608 PMCID: PMC10770969 DOI: 10.1186/s12943-023-01912-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/07/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is one of the most common malignant tumor worldwide. Metastasis is a leading case of cancer-related deaths of RCC. Circular RNAs (circRNAs), a class of noncoding RNAs, have emerged as important regulators in cancer metastasis. However, the functional effects and regulatory mechanisms of circRNAs on RCC metastasis remain largely unknown. METHODS High-throughput RNA sequencing techniques were performed to analyze the expression profiles of circRNAs and mRNAs in highly and poorly invasive clear cell renal cell carcinoma (ccRCC) cell lines. Functional experiments were performed to unveil the regulatory role of circPPAP2B in the proliferation and metastatic capabilities of ccRCC cells. RNA pulldown, Mass spectrometry analysis, RNA methylation immunoprecipitation (MeRIP), RNA immunoprecipitation (RIP), co-immunoprecipitation (CoIP), next-generation RNA-sequencing and double luciferase experiments were employed to clarify the molecular mechanisms by which circPPAP2B promotes ccRCC metastasis. RESULTS In this study, we describe a newly identified circular RNA called circPPAP2B, which is overexpressed in highly invasive ccRCC cells, as determined through advanced high-throughput RNA sequencing techniques. Furthermore, we observed elevated circPPAP2B in ccRCC tissues, particularly in metastatic ccRCC tissues, and found it to be associated with poor prognosis. Functional experiments unveiled that circPPAP2B actively stimulates the proliferation and metastatic capabilities of ccRCC cells. Mechanistically, circPPAP2B interacts with HNRNPC in a m6A-dependent manner to facilitate HNRNPC nuclear translocation. Subcellular relocalization was dependent upon nondegradable ubiquitination of HNRNPC and stabilization of an HNRNPC/Vimentin/Importin α7 ternary complex. Moreover, we found that circPPAP2B modulates the interaction between HNRNPC and splicing factors, PTBP1 and HNPNPK, and regulates pre-mRNA alternative splicing. Finally, our studies demonstrate that circPPAP2B functions as a miRNA sponge to directly bind to miR-182-5p and increase CYP1B1 expression in ccRCC. CONCLUSIONS Collectively, our study provides comprehensive evidence that circPPAP2B promotes proliferation and metastasis of ccRCC via HNRNPC-dependent alternative splicing and miR-182-5p/CYP1B1 axis and highlights circPPAP2B as a potential therapeutic target for ccRCC intervention.
Collapse
Affiliation(s)
- Zaosong Zheng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiangbo Zeng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuanchao Zhu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Mengxin Leng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhiyong Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qiong Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiaocen Liu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Siying Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yongyuan Xiao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Chenxi Hu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shiyu Pang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Tong Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Bihong Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Peidan Peng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Fei Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
5
|
Liu C, Ni L, Li X, Rao H, Feng W, Zhu Y, Zhang W, Ma C, Xu Y, Gui L, Wang Z, Aji R, Xu J, Gao W, Li L. SETD2 deficiency promotes renal fibrosis through the TGF-β/Smad signalling pathway in the absence of VHL. Clin Transl Med 2023; 13:e1468. [PMID: 37933774 PMCID: PMC10629155 DOI: 10.1002/ctm2.1468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Renal fibrosis is the final development pathway and the most common pathological manifestation of chronic kidney disease. Epigenetic alteration is a significant intrinsic factor contributing to the development of renal fibrosis. SET domain-containing 2 (SETD2) is the sole histone H3K36 trimethyltransferase, catalysing H3K36 trimethylation. There is evidence that SETD2-mediated epigenetic alterations are implicated in many diseases. However, it is unclear what role SETD2 plays in the development of renal fibrosis. METHODS Kidney tissues from mice as well as HK2 cells were used as research subjects. Clinical databases of patients with renal fibrosis were analysed to investigate whether SETD2 expression is reduced in the occurrence of renal fibrosis. SETD2 and Von Hippel-Lindau (VHL) double-knockout mice were used to further investigate the role of SETD2 in renal fibrosis. Renal tubular epithelial cells isolated from mice were used for RNA sequencing and chromatin immunoprecipitation sequencing to search for molecular signalling pathways and key molecules leading to renal fibrosis in mice. Molecular and cell biology experiments were conducted to analyse and validate the role of SETD2 in the development of renal fibrosis. Finally, rescue experiments were performed to determine the molecular mechanism of SETD2 deficiency in the development of renal fibrosis. RESULTS SETD2 deficiency leads to severe renal fibrosis in VHL-deficient mice. Mechanically, SETD2 maintains the transcriptional level of Smad7, a negative feedback factor of the transforming growth factor-β (TGF-β)/Smad signalling pathway, thereby preventing the activation of the TGF-β/Smad signalling pathway. Deletion of SETD2 leads to reduced Smad7 expression, which results in activation of the TGF-β/Smad signalling pathway and ultimately renal fibrosis in the absence of VHL. CONCLUSIONS Our findings reveal the role of SETD2-mediated H3K36me3 of Smad7 in regulating the TGF-β/Smad signalling pathway in renal fibrogenesis and provide an innovative insight into SETD2 as a potential therapeutic target for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Changwei Liu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
| | - Li Ni
- Department of NursingShanghai East HospitalTongji UniversityShanghaiChina
| | - Xiaoxue Li
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
| | - Hanyu Rao
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
| | - Wenxin Feng
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
| | - Yiwen Zhu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
| | - Wei Zhang
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
| | - Chunxiao Ma
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
| | - Yue Xu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
| | - Liming Gui
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
| | - Ziyi Wang
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
| | - Rebiguli Aji
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
| | - Jin Xu
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
| | - Wei‐Qiang Gao
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
| | - Li Li
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
6
|
Mo Y, Zhao J, Zhao R, Huang Y, Liang Z, Zhou X, Chu J, Pan X, Duan S, Chen S, Mo L, Huang B, Huang Z, Wei J, Zheng Q, Luo W. Loss of ACOX1 in clear cell renal cell carcinoma and its correlation with clinical features. Open Life Sci 2023; 18:20220696. [PMID: 37724116 PMCID: PMC10505341 DOI: 10.1515/biol-2022-0696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/18/2023] [Accepted: 07/30/2023] [Indexed: 09/20/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a major pathological type of kidney cancer with a poor prognosis due to a lack of biomarkers for early diagnosis and prognosis prediction of ccRCC. In this study, we investigated the aberrant expression of Acyl-coenzyme A oxidase 1 (ACOX1) in ccRCC and evaluated its potential in diagnosis and prognosis. ACOX1 is the first rate-limiting enzyme in the peroxidation β-oxidation pathway and is involved in the regulation of fatty acid oxidative catabolism. The mRNA and protein levels of ACOX1 were significantly downregulated in ccRCC, and its downregulation was closely associated with the tumor-node-metastasis stage of patients. The ROC curves showed that ACOX1 possesses a high diagnostic value for ccRCC. The OS analysis suggested that lower expression of ACOX1 was closely related to the worse outcome of patients. In addition, gene set enrichment analysis suggested that expression of ACOX1 was positively correlated with CDH1, CDH2, CDKL2, and EPCAM, while negatively correlated with MMP9 and VIM, which strongly indicated that ACOX1 may inhibit the invasion and migration of ccRCC by reversing epithelial-mesenchymal transition. Furthermore, we screened out that miR-16-5p is upregulated at the mRNA transcript level in ccRCC and negatively correlated with ACOX1. In conclusion, our results showed that ACOX1 is abnormally low expressed in ccRCC, suggesting that it could serve as a diagnostic and prognostic biomarker for ccRCC. Overexpression of miR-16-5p may be responsible for the inactivation of ACOX1.
Collapse
Affiliation(s)
- Yingxi Mo
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jun Zhao
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China
- Affiliated Stomatological Hospital of Guangxi Medical University, Nanning, China
| | - Ran Zhao
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China
- Life Science Institute, Guangxi Medical University, #22 Shuangyong Road, Nanning, 530021, China
| | - Yiying Huang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Ziyuan Liang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China
- Life Science Institute, Guangxi Medical University, #22 Shuangyong Road, Nanning, 530021, China
| | - Xiaoying Zhou
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China
- Life Science Institute, Guangxi Medical University, #22 Shuangyong Road, Nanning, 530021, China
| | - Jiemei Chu
- Life Science Institute, Guangxi Medical University, #22 Shuangyong Road, Nanning, 530021, China
| | - Xinli Pan
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
| | - Siyu Duan
- Life Science Institute, Guangxi Medical University, #22 Shuangyong Road, Nanning, 530021, China
| | - Shiman Chen
- Life Science Institute, Guangxi Medical University, #22 Shuangyong Road, Nanning, 530021, China
| | - Liufang Mo
- Life Science Institute, Guangxi Medical University, #22 Shuangyong Road, Nanning, 530021, China
| | - Bizhou Huang
- Life Science Institute, Guangxi Medical University, #22 Shuangyong Road, Nanning, 530021, China
| | - Zhaozhang Huang
- Life Science Institute, Guangxi Medical University, #22 Shuangyong Road, Nanning, 530021, China
| | - Jiale Wei
- Life Science Institute, Guangxi Medical University, #22 Shuangyong Road, Nanning, 530021, China
| | - Qian Zheng
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning, China
- Life Science Institute, Guangxi Medical University, #22 Shuangyong Road, Nanning, 530021, China
| | - Wenqi Luo
- Department of Pathology, Guangxi Medical University Cancer Hospital, 530021, Nanning, China
| |
Collapse
|
7
|
Zamora-Fuentes JM, Hernández-Lemus E, Espinal-Enríquez J. Methylation-related genes involved in renal carcinoma progression. Front Genet 2023; 14:1225158. [PMID: 37693315 PMCID: PMC10486271 DOI: 10.3389/fgene.2023.1225158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/25/2023] [Indexed: 09/12/2023] Open
Abstract
Renal carcinomas are a group of malignant tumors often originating in the cells lining the small tubes in the kidney responsible for filtering waste from the blood and urine production. Kidney tumors arise from the uncontrolled growth of cells in the kidneys and are responsible for a large share of global cancer-related morbidity and mortality. Understanding the molecular mechanisms driving renal carcinoma progression results crucial for the development of targeted therapies leading to an improvement of patient outcomes. Epigenetic mechanisms such as DNA methylation are known factors underlying the development of several cancer types. There is solid experimental evidence of relevant biological functions modulated by methylation-related genes, associated with the progression of different carcinomas. Those mechanisms can often be associated to different epigenetic marks, such as DNA methylation sites or chromatin conformation patterns. Currently, there is no definitive method to establish clear relations between genetic and epigenetic factors that influence the progression of cancer. Here, we developed a data-driven method to find methylation-related genes, so we could find relevant bonds between gene co-expression and methylation-wide-genome regulation patterns able to drive biological processes during the progression of clear cell renal carcinoma (ccRC). With this approach, we found out genes such as ITK oncogene that appear hypomethylated during all four stages of ccRC progression and are strongly involved in immune response functions. Also, we found out relevant tumor suppressor genes such as RAB25 hypermethylated, thus potentially avoiding repressed functions in the AKT signaling pathway during the evolution of ccRC. Our results have relevant implications to further understand some epigenetic-genetic-affected roles underlying the progression of renal cancer.
Collapse
Affiliation(s)
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
8
|
Hjazi A, Ghaffar E, Asghar W, Alauldeen Khalaf H, Ikram Ullah M, Mireya Romero-Parra R, Hussien BM, Abdulally Abdulhussien Alazbjee A, Singh Bisht Y, Fakri Mustafa Y, Reza Hosseini-Fard S. CDKN2B-AS1 as a novel therapeutic target in cancer: Mechanism and clinical perspective. Biochem Pharmacol 2023; 213:115627. [PMID: 37257723 DOI: 10.1016/j.bcp.2023.115627] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Long non-coding RNAs (lncRNA) have been identified as essential components having considerable modulatory impactson biological activities through altering gene transcription, epigenetic changes, and protein translation. Cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1), a recently discovered lncRNA, was shown to be substantially elevated in various cancers.Furthermore, via modulation ofvarious signalingaxes, it is effectively connected to the control of critical cancer-associatedbiological pathways likecell proliferation, apoptosis, cell cycle, epithelial-mesenchymal transition(EMT), invasion, and migration. Considering the crucial functions ofCDKN2B-AS1in cancer onset and development, this lncRNA offers immense therapeutic implications for usage as a new diagnostic or treatment approach. In this article, we evaluate the most recent discoveries made into the functions of the lncRNA CDKN2B-AS1 in cancer, in addition to its prospect asbeneficial properties,prognostic anddiagnostic biomarkersin the cancer-related treatment, emphasizingits participation in a broad network of signalingaxes whichcould affectvariouscancers and investigating its promising therapeutic possibility.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | | | | | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 75471, Aljouf, Saudi Arabia
| | | | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Yashwant Singh Bisht
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Seyed Reza Hosseini-Fard
- Biochemistry Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Zheng Q, Wang Y, Zhao R, Han P, Zhao J, Li L, Zhou X, Li P, Mo Y, Pan X, Luo W, Zhou X. Inactivation of epithelial sodium ion channel molecules serves as effective diagnostic biomarkers in clear cell renal cell carcinoma. Genes Genomics 2023; 45:855-866. [PMID: 37133722 DOI: 10.1007/s13258-023-01376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 03/08/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Non-voltage-gated sodium channel, also known as the epithelial sodium channel (ENaC), formed by heteromeric complexes consisting of SCNN1A, SCNN1B, and SCNN1G, is responsible for maintaining sodium ion and body fluid homeostasis in epithelial cells. However, no systematic study of SCNN1 family members has been conducted in renal clear cell carcinoma (ccRCC) to date. OBJECTIVE To investigate the abnormal expression of SCNN1 family in ccRCC and its potential correlation with clinical parameters. METHODS The transcription and protein expression levels of SCNN1 family members in ccRCC were analyzed based on the TCGA database, and were confirmed by quantitative RT-PCR and immunohistochemical staining assays, respectively. The area under curve (AUC) was used to evaluate the diagnostic value of SCNN1 family members for ccRCC patients. RESULTS The mRNA and protein expression of SCNN1 family members was significantly downregulated in ccRCC compared with normal kidney tissues, which might be due to DNA hypermethylation in the promoter region. It is worth noting that the AUC of SCNN1A, SCNN1B, and SCNN1G were 0.965, 0.979, and 0.988 based on the TCGA database (p < 0.0001), respectively. The diagnostic value was even higher when combing these three members together (AUC = 0.997, p < 0.0001). Intriguingly, the mRNA level of SCNN1A was significantly lower in females compared with males, while SCNN1B and SCNN1G were increased with the progression of ccRCC and remarkably associated with a worse outcome for patients. CONCLUSION The aberrantly decrease of SCNN1 family members might serve as valuable biomarkers for the diagnosis of ccRCC.
Collapse
Affiliation(s)
- Qian Zheng
- Life Science Institute, Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Yifang Wang
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Ran Zhao
- Life Science Institute, Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Peipei Han
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Jun Zhao
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Limei Li
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Xiaohui Zhou
- Life Science Institute, Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Ping Li
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Yingxi Mo
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Xinli Pan
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
| | - Wenqi Luo
- Department of Pathology, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China.
| | - Xiaoying Zhou
- Life Science Institute, Guangxi Medical University, Nanning, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China.
| |
Collapse
|
10
|
Kruk L, Mamtimin M, Braun A, Anders HJ, Andrassy J, Gudermann T, Mammadova-Bach E. Inflammatory Networks in Renal Cell Carcinoma. Cancers (Basel) 2023; 15:cancers15082212. [PMID: 37190141 DOI: 10.3390/cancers15082212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Cancer-associated inflammation has been established as a hallmark feature of almost all solid cancers. Tumor-extrinsic and intrinsic signaling pathways regulate the process of cancer-associated inflammation. Tumor-extrinsic inflammation is triggered by many factors, including infection, obesity, autoimmune disorders, and exposure to toxic and radioactive substances. Intrinsic inflammation can be induced by genomic mutation, genome instability and epigenetic remodeling in cancer cells that promote immunosuppressive traits, inducing the recruitment and activation of inflammatory immune cells. In RCC, many cancer cell-intrinsic alterations are assembled, upregulating inflammatory pathways, which enhance chemokine release and neoantigen expression. Furthermore, immune cells activate the endothelium and induce metabolic shifts, thereby amplifying both the paracrine and autocrine inflammatory loops to promote RCC tumor growth and progression. Together with tumor-extrinsic inflammatory factors, tumor-intrinsic signaling pathways trigger a Janus-faced tumor microenvironment, thereby simultaneously promoting or inhibiting tumor growth. For therapeutic success, it is important to understand the pathomechanisms of cancer-associated inflammation, which promote cancer progression. In this review, we describe the molecular mechanisms of cancer-associated inflammation that influence cancer and immune cell functions, thereby increasing tumor malignancy and anti-cancer resistance. We also discuss the potential of anti-inflammatory treatments, which may provide clinical benefits in RCCs and possible avenues for therapy and future research.
Collapse
Affiliation(s)
- Linus Kruk
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Medina Mamtimin
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Joachim Andrassy
- Division of General, Visceral, Vascular and Transplant Surgery, Hospital of LMU, 81377 Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- German Center for Lung Research (DZL), 80336 Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| |
Collapse
|
11
|
The role of histone methylation in renal cell cancer: an update. Mol Biol Rep 2023; 50:2735-2742. [PMID: 36575323 DOI: 10.1007/s11033-022-08124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/15/2022] [Indexed: 12/29/2022]
Abstract
Renal cell carcinoma accounts for 2-3% of all cancers. It is difficult to diagnose early. Recently, genome-wide studies have identified that histone methylation was one of the functional classes that is most frequently dysregulated in renal cell cancer. Mutation or mis-regulation of histone methylation, methyltransferases, demethylases are associated with gene expression and tumor progression in renal cell cancer. Herein, we summarize histone methylations, demethylases and their alterations and mechanisms in renal cell cancer.
Collapse
|
12
|
Zhang X, Ji H, Huang Y, Zhu B, Xing Q. Elevated PTTG1 predicts poor prognosis in kidney renal clear cell carcinoma and correlates with immunity. Heliyon 2023; 9:e13201. [PMID: 36793955 PMCID: PMC9922818 DOI: 10.1016/j.heliyon.2023.e13201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Background PTTG1 has been reported to be linked with the prognosis and progression of various cancers, including kidney renal clear cell carcinoma (KIRC). In this article, we mainly investigated the associations between prognosis, immunity, and PTTG1 in KIRC patients. Method We downloaded transcriptome data from the TCGA-KIRC database. PCR and immunohistochemistry were used, respectively, to validate the expression of PTTG1 in KIRC at the cell line and the protein levels. Survival analyses as well as univariate or multivariate Cox hazard regression analyses were used to prove whether PTTG1 alone could affect the prognosis of KIRC. The most important point was to study the relationship between PTTG1 and immunity. Results The results of the paper revealed that the expression levels of PTTG1 were elevated in KIRC compared with para-cancerous normal tissues, validated by PCR and immunohistochemistry at the cell line and the protein levels (P < 0.05). High PTTG1 expression was related to shorter overall survival (OS) in patients with KIRC (P < 0.05). Through univariate or multivariate regression analysis, PTTG1 was confirmed to be an independent prognostic factor for OS of KIRC (P < 0.05), and its related seven pathways were obtained through gene set enrichment analysis (GSEA; P < 0.05). Moreover, tumor mutational burden (TMB) and immunity were found to be significantly connected with PTTG1 in KIRC (P < 0.05). Correlations between PTTG1 and immunotherapy responses implied that the low-PTTG1 group was more sensitive to immunotherapy (P < 0.05). Conclusions PTTG1 was closely associated with TMB or immunity, and it had a superior ability to forecast the prognosis of KIRC patients.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Hao Ji
- Department of Urology, Tumor Hospital Affiliated to Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yeqing Huang
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Bingye Zhu
- Department of Urology, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, 226001, Jiangsu Province, China,Corresponding author. Department of Urology, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), No. 881 Yonghe Road, Nantong, 226001, Jiangsu Province, China.
| | - Qianwei Xing
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China,Corresponding author. Department of Urology, Affiliated Hospital of Nantong University, No.20 West Temple Road, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
13
|
D'costa M, Bothe A, Das S, Udhaya Kumar S, Gnanasambandan R, George Priya Doss C. CDK regulators—Cell cycle progression or apoptosis—Scenarios in normal cells and cancerous cells. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:125-177. [PMID: 37061330 DOI: 10.1016/bs.apcsb.2022.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Serine/threonine kinases called cyclin-dependent kinases (CDKs) interact with cyclins and CDK inhibitors (CKIs) to control the catalytic activity. CDKs are essential controllers of RNA transcription and cell cycle advancement. The ubiquitous overactivity of the cell cycle CDKs is caused by a number of genetic and epigenetic processes in human cancer, and their suppression can result in both cell cycle arrest and apoptosis. This review focused on CDKs, describing their kinase activity, their role in phosphorylation inhibition, and CDK inhibitory proteins (CIP/KIP, INK 4, RPIC). We next compared the role of different CDKs, mainly p21, p27, p57, p16, p15, p18, and p19, in the cell cycle and apoptosis in cancer cells with respect to normal cells. The current work also draws attention to the use of CDKIs as therapeutics, overcoming the pharmacokinetic barriers of pan-CDK inhibitors, analyze new chemical classes that are effective at attacking the CDKs that control the cell cycle (cdk4/6 or cdk2). It also discusses CDKI's drawbacks and its combination therapy against cancer patients. These findings collectively demonstrate the complexity of cancer cell cycles and the need for targeted therapeutic intervention. In order to slow the progression of the disease or enhance clinical outcomes, new medicines may be discovered by researching the relationship between cell death and cell proliferation.
Collapse
Affiliation(s)
- Maria D'costa
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Anusha Bothe
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Soumik Das
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - S Udhaya Kumar
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - R Gnanasambandan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
14
|
Wang T, Jian W, Xue W, Meng Y, Xia Z, Li Q, Xu S, Dong Y, Mao A, Zhang C. Integration analysis identifies MYBL1 as a novel immunotherapy biomarker affecting the immune microenvironment in clear cell renal cell carcinoma: Evidence based on machine learning and experiments. Front Immunol 2022; 13:1080403. [PMID: 36591240 PMCID: PMC9794576 DOI: 10.3389/fimmu.2022.1080403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Background Previous studies have identified MYBL1 as a cancer-promoting molecule in numerous types of cancer. Nevertheless, the role of MYBL in renal cancer remains unclear. Methods Genomic and clinical data of clear cell renal cell carcinoma (ccRCC) was get from the Cancer Genome Atlas (TCGA) database. CCK8, colony formation, and 5-ethynyl-2'-deoxyuridine assay were utilized to evaluate the performance of cell proliferation. Cell apoptosis was detected using the flow cytometric analysis. The protein level of MYBL1 in different tissues was evaluated using immunohistochemistry. A machine learning algorithm was utilized to identify the prognosis signature based on MYBL1-derived molecules. Results Here, we comprehensively investigated the role of MYBL1 in ccRCC. Here, we noticed a higher level of MYBL1 in ccRCC patients in both RNA and protein levels. Further analysis showed that MYBL1 was correlated with progressive clinical characteristics and worse prognosis performance. Biological enrichment analysis showed that MYBL1 can activate multiple oncogenic pathways in ccRCC. Moreover, we found that MYBL1 can remodel the immune microenvironment of ccRCC and affect the immunotherapy response. In vitro and in vivo assays indicated that MYBL1 was upregulated in ccRCC cells and can promote cellular malignant behaviors of ccRCC. Ultimately, an machine learning algorithm - LASSO logistics regression was utilized to identify a prognosis signature based on the MYBL1-derived molecules, which showed satisfactory prediction ability on patient prognosis in both training and validation cohorts. Conclusions Our result indicated that MYBL1 is a novel biomarker of ccRCC, which can remodel the tumor microenvironment, affect immunotherapy response and guide precision medicine in ccRCC.
Collapse
Affiliation(s)
- Tengda Wang
- Urology Surgery Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wengang Jian
- Urology Surgery Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Xue
- Urology Surgery Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuyang Meng
- Urology Surgery Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhinan Xia
- Urology Surgery Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qinchen Li
- The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Shenhao Xu
- The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yu Dong
- The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Anli Mao
- The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Cheng Zhang
- Urology Surgery Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China,The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China,*Correspondence: Cheng Zhang,
| |
Collapse
|
15
|
Molina-Cerrillo J, Santoni M, Ruiz Á, Massari F, Pozas J, Ortego I, Gómez V, Grande E, Alonso-Gordoa T. Epigenetics in advanced renal cell carcinoma: Potential new targets. Crit Rev Oncol Hematol 2022; 180:103857. [DOI: 10.1016/j.critrevonc.2022.103857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
|
16
|
González-Rodríguez P, Delorme-Axford E, Bernard A, Keane L, Stratoulias V, Grabert K, Engskog-Vlachos P, Füllgrabe J, Klionsky DJ, Joseph B. SETD2 transcriptional control of ATG14L/S isoforms regulates autophagosome-lysosome fusion. Cell Death Dis 2022; 13:953. [PMID: 36371383 PMCID: PMC9653477 DOI: 10.1038/s41419-022-05381-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
Macroautophagy/autophagy is an evolutionarily conserved and tightly regulated catabolic process involved in the maintenance of cellular homeostasis whose dysregulation is implicated in several pathological processes. Autophagy begins with the formation of phagophores that engulf cytoplasmic cargo and mature into double-membrane autophagosomes; the latter fuse with lysosomes/vacuoles for cargo degradation and recycling. Here, we report that yeast Set2, a histone lysine methyltransferase, and its mammalian homolog, SETD2, both act as positive transcriptional regulators of autophagy. However, whereas Set2 regulates the expression of several autophagy-related (Atg) genes upon nitrogen starvation, SETD2 effects in mammals were found to be more restricted. In fact, SETD2 appears to primarily regulate the differential expression of protein isoforms encoded by the ATG14 gene. SETD2 promotes the expression of a long ATG14 isoform, ATG14L, that contains an N-terminal cysteine repeats domain, essential for the efficient fusion of the autophagosome with the lysosome, that is absent in the short ATG14 isoform, ATG14S. Accordingly, SETD2 loss of function decreases autophagic flux, as well as the turnover of aggregation-prone proteins such as mutant HTT (huntingtin) leading to increased cellular toxicity. Hence, our findings bring evidence to the emerging concept that the production of autophagy-related protein isoforms can differentially affect core autophagy machinery bringing an additional level of complexity to the regulation of this biological process in more complex organisms.
Collapse
Affiliation(s)
- Patricia González-Rodríguez
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 17177, Stockholm, Sweden
- Department of Oncology Pathology, Cancer Centrum Karolinska, Karolinska Institutet, 171 76, Stockholm, Sweden
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Elizabeth Delorme-Axford
- Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Amélie Bernard
- Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- University of Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140, Villenave d'Ornon, France
| | - Lily Keane
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Vassilis Stratoulias
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 17177, Stockholm, Sweden
- Department of Oncology Pathology, Cancer Centrum Karolinska, Karolinska Institutet, 171 76, Stockholm, Sweden
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kathleen Grabert
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Pinelopi Engskog-Vlachos
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Jens Füllgrabe
- Department of Oncology Pathology, Cancer Centrum Karolinska, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Daniel J Klionsky
- Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 17177, Stockholm, Sweden.
| |
Collapse
|
17
|
Li C, Liu Z, Xu G, Wu S, Peng Y, Wu R, Zhao S, Liao X, Lin R. Aberrant DNA methylation and expression of EYA4 in gastric cardia intestinal metaplasia. Saudi J Gastroenterol 2022; 28:456-465. [PMID: 36453428 PMCID: PMC9843510 DOI: 10.4103/sjg.sjg_228_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Intestinal metaplasia (IM) of the gastric cardia is an important premalignant lesion. However, there is limited information concerning its epidemiological and molecular features. Herein, we aimed to provide an overview of the epidemiological data for gastric cardiac IM and evaluate the role of EYA transcriptional coactivator and phosphatase 4 (EYA4) as an epigenetic biomarker for gastric cardiac IM. METHODS The study was conducted in the context of the gastric cardiac precancerous lesion program in southern China, which included 718 non-cancer participants, who undertook endoscopic biopsy and pathological examination in three endoscopy centers, between November 2018 and November 2021. Pyrosequencing and immunohistochemistry were performed to examine the DNA methylation status and protein expression level of EYA4. RESULTS Gastric cardiac IM presented in 14.1% (101/718) of participants and was more common among older (>50 years; 22.0% [95% CI: 17.8-26.8]) than younger participants (≤50 years; 6.7% [95% CI: 4.5-9.9]; P < 0.001). IM was more common in male participants (16.9% [95% CI: 13.2-21.3] vs. 11.3% [95% CI: 8.3-15.1]; P = 0.04). Pyrosequencing revealed that IM tissues exhibited significantly higher DNA methylation levels in EYA4 gene than normal tissues (P = 0.016). Further, the protein expression level of EYA4 was reduced in IM and absent in intraepithelial neoplasia tissues compared to normal tissues (P < 0.001). CONCLUSIONS Detection rates of gastric cardiac IM increase with age and are higher in men. Our findings highlight the important role of promoter hypermethylation and downregulation of EYA4 in gastric cardiac IM development.
Collapse
Affiliation(s)
- Chenxi Li
- Department of Pathology, Shantou University Medical College, Shantou, P.R. China
| | - Zhaohui Liu
- Department of Gastroenterology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, P.R. China
| | - Guohua Xu
- Department of Gastroenterology, Huiyang Sanhe Hospital, Huizhou, P.R. China
| | - Shibin Wu
- Department of Gastroenterology, Huiyang Sanhe Hospital, Huizhou, P.R. China
| | - Yunhui Peng
- Department of Gastroenterology, Huiyang Sanhe Hospital, Huizhou, P.R. China
| | - Ruinuan Wu
- Department of Pathology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, P.R. China
| | - Shukun Zhao
- Department of Pathology, Shantou University Medical College, Shantou, P.R. China
| | - Xiaoqi Liao
- Department of Pathology, Shantou University Medical College, Shantou, P.R. China
| | - Runhua Lin
- Department of Pathology, Shantou University Medical College, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, P.R. China
- Address for correspondence: Dr. Runhua Lin, Department of Pathology, Shantou University Medical College, No. 22, Xinling Road, Shantou 515041, P.R. China. E-mail:
| |
Collapse
|
18
|
Ge T, Gu X, Jia R, Ge S, Chai P, Zhuang A, Fan X. Crosstalk between metabolic reprogramming and epigenetics in cancer: updates on mechanisms and therapeutic opportunities. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1049-1082. [PMID: 36266736 PMCID: PMC9648395 DOI: 10.1002/cac2.12374] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/19/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022]
Abstract
Reversible, spatial, and temporal regulation of metabolic reprogramming and epigenetic homeostasis are prominent hallmarks of carcinogenesis. Cancer cells reprogram their metabolism to meet the high bioenergetic and biosynthetic demands for vigorous proliferation. Epigenetic dysregulation is a common feature of human cancers, which contributes to tumorigenesis and maintenance of the malignant phenotypes by regulating gene expression. The epigenome is sensitive to metabolic changes. Metabolism produces various metabolites that are substrates, cofactors, or inhibitors of epigenetic enzymes. Alterations in metabolic pathways and fluctuations in intermediate metabolites convey information regarding the intracellular metabolic status into the nucleus by modulating the activity of epigenetic enzymes and thus remodeling the epigenetic landscape, inducing transcriptional responses to heterogeneous metabolic requirements. Cancer metabolism is regulated by epigenetic machinery at both transcriptional and post‐transcriptional levels. Epigenetic modifiers, chromatin remodelers and non‐coding RNAs are integral contributors to the regulatory networks involved in cancer metabolism, facilitating malignant transformation. However, the significance of the close connection between metabolism and epigenetics in the context of cancer has not been fully deciphered. Thus, it will be constructive to summarize and update the emerging new evidence supporting this bidirectional crosstalk and deeply assess how the crosstalk between metabolic reprogramming and epigenetic abnormalities could be exploited to optimize treatment paradigms and establish new therapeutic options. In this review, we summarize the central mechanisms by which epigenetics and metabolism reciprocally modulate each other in cancer and elaborate upon and update the major contributions of the interplays between epigenetic aberrations and metabolic rewiring to cancer initiation and development. Finally, we highlight the potential therapeutic opportunities for hematological malignancies and solid tumors by targeting this epigenetic‐metabolic circuit. In summary, we endeavored to depict the current understanding of the coordination between these fundamental abnormalities more comprehensively and provide new perspectives for utilizing metabolic and epigenetic targets for cancer treatment.
Collapse
Affiliation(s)
- Tongxin Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| |
Collapse
|
19
|
Huang S, Hou Y, Hu M, Hu J, Liu X. Clinical significance and oncogenic function of NR1H4 in clear cell renal cell carcinoma. BMC Cancer 2022; 22:995. [PMID: 36123627 PMCID: PMC9487048 DOI: 10.1186/s12885-022-10087-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Nuclear receptor subfamily 1 group H member 4 (NR1H4) have been reported in various cancer types, however, little is known about the clinical values and biological function in clear cell Renal cell carcinoma (ccRCC). METHODS The expression pattens of NR1H4 in ccRCC were investigated in clinical specimens, cell lines and publicly‑available databases. Cell Counting Kit-8 (CCK-8), colony formation, 5-ethynyl-2' -deoxyuridine (EdU), transwell and cell wound healing assays were performed to assess the biological functions of NR1H4 in 786-O ccRCC cells. Gene set enrichment analysis (GSEA), Flow Cytometry, quantitative real-time PCR (qRT-PCR), western blot and immunofluorescence were performed to explore the molecular mechanism of NR1H4 in ccRCC. We explored the early diagnostic value, prognostic value, genetic mutation and DNA methylation of NR1H4 by a comprehensive bioinformatics analysis based on the data published in the following databases: The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Kaplan-Meier Plotter, Gene Expression Profiling Interactive Analysis (GEPIA), UNIVERSITY OF CALIFORNIA SANTA CRUZ Xena (UCSC Xena), cBio Cancer Genomics Portal, MethSurv, SurvivalMeth and The University of ALabama at Birmingham CANcer data analysis Portal (UALCAN). Its correlation with tumor-infiltrating immune cells in ccRCC was analyzed by Tumor Immune Estimation Resource 2.0 (TIMER2.0) and Tumor Immune System Interactions Database (TISIDB). RESULTS In this study, NR1H4 was found to be highly expressed in ccRCC tissues and ccRCC cell lines. Knockdown of NR1H4 significantly suppressed cancer cell proliferation, migration and invasion. Mechanistically, tumor-associated signaling pathways were enriched in the NR1H4 overexpression group and si-NR1H4 could induce the downregulation of Cyclin E2 (CCNE2). By bioinformatics analysis, NR1H4 was identified as highly expressed in stage I ccRCC with a high diagnostic accuracy (area under the receiver operating characteristic curve > 0.8). Genetic alteration and DNA methylation of NR1H4 were significantly associated with prognosis in ccRCC patients. Moreover, NR1H4 expression associated with immune cell infiltration levels in ccRCC, which provides a new idea for immunotherapy. CONCLUSIONS Our study indicated that NR1H4 might be a potential tumor biomarker and therapeutic target for ccRCC which could promote cancer cell proliferation, migration and invasion via regulating CCNE2.
Collapse
Affiliation(s)
- Shiyu Huang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yanguang Hou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Min Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Juncheng Hu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
20
|
Ju D, Liang Y, Hou G, Zheng W, Zhang G, Dun X, Wei D, Yan F, Zhang L, Lai D, Yuan J, Zheng Y, Wang F, Meng P, Wang Y, Yu W, Yuan J. FBP1
/miR-24-1/enhancer axis activation blocks renal cell carcinoma progression via Warburg effect. Front Oncol 2022; 12:928373. [PMID: 35978816 PMCID: PMC9376222 DOI: 10.3389/fonc.2022.928373] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Warburg effect is a pivotal hallmark of cancers and appears prevalently in renal cell carcinoma (RCC). FBP1 plays a negative role in Warburg effect as a rate-limiting enzyme in gluconeogenesis, yet its mechanism in RCC remains to be further characterized. Herein, we revealed that FBP1 was downregulated in RCC tissue samples and was related to the poor survival rate of RCC. Strikingly, miR-24-1 whose DNA locus is overlapped with enhancer region chr9:95084940-95087024 was closely linked with the depletion of FBP1 in RCC. Of note, miRNAs like miR-24-1 whose DNA loci are enriched with H3K27ac and H3K4me1 modifications are belonging to nuclear activating miRNAs (NamiRNAs), which surprisingly upregulate target genes in RCC through enhancer beyond the conventional role of repressing target gene expression. Moreover, miR-24-1 reactivated the expression of FBP1 to suppress Warburg effect in RCC cells, and subsequently inhibited proliferation and metastasis of RCC cells. In mechanism, the activating role of miR-24-1 was dependent on enhancer integrity by dual luciferase reporter assay and CRISPR/Cas9 system. Ultimately, animal assay in vivo validated the suppressive function of FBP1 on 786-O and ACHN cells. Collectively, the current study highlighted that activation of FBP1 by enhancer-overlapped miR-24-1 is capable of contributing to Warburg effect repression through which RCC progression is robustly blocked, providing an alternative mechanism for RCC development and as well implying a potential clue for RCC treatment strategy.
Collapse
Affiliation(s)
- Dongen Ju
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ying Liang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Public Health Clinical Center and Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
- Department of Pharmacy, Precision Pharmacy and Drug Development Center, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Guangdong Hou
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wanxiang Zheng
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Geng Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xinlong Dun
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Di Wei
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Fei Yan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Lei Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Dong Lai
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jiarui Yuan
- Clinical Medicine Department, St. George’s University School of Medicine, Saint George, Grenada
| | - Yu Zheng
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Medical Innovation Center, Fourth Military Medical Univeristy, Xi’an, China
| | - Fuli Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ping Meng
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yong Wang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Yong Wang, ; Wenqiang Yu, ; Jianlin Yuan,
| | - Wenqiang Yu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Public Health Clinical Center and Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
- *Correspondence: Yong Wang, ; Wenqiang Yu, ; Jianlin Yuan,
| | - Jianlin Yuan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Yong Wang, ; Wenqiang Yu, ; Jianlin Yuan,
| |
Collapse
|
21
|
Zhao Y, Ye G, Wang Y, Luo D. MiR-4461 Inhibits Tumorigenesis of Renal Cell Carcinoma by Targeting PPP1R3C. Cancer Biother Radiopharm 2022; 37:503-514. [PMID: 32915648 DOI: 10.1089/cbr.2020.3846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Renal cell carcinoma (RCC) is one of the most common and malignant tumors in the urinary system. The aim of this research was to investigate the mechanism and clinical significance of miR-4461 in the RCC progression. Materials and Methods: Twenty-eight (28) paired RCC tissue samples and adjacent nontumor tissue samples, as well as RCC cell lines were used to measure the expression of miR-4461 and protein phosphatase 1 regulatory subunit 3C (PPP1R3C) transcript by real-time quantitative PCR. The target relationship between miR-4461 and PPP1R3C was predicted by TargetScan and further verified by dual-luciferase reporter gene assay and RNA pull-down assay. Cell Counting Kit-8 (CCK-8) assay and BrdU ELISA assay were performed to measure RCC cell viability and proliferation. In addition, caspase-3 activity assay and cell adhesion assay were implemented to measure RCC cell apoptosis and adhesion. Results: MiR-4461 was lowly expressed both in RCC tissues and cells, while upregulated PPP1R3C was tested in RCC tissues and cells. In addition, miR-4461 was validated to directly target PPP1R3C, thereby negatively regulating PPP1R3C. Particularly, miR-4461 exerted a clear inhibitory effect on the malignant phenotypes of RCC cells by binding and inhibiting PPP1R3C. Conclusion: MiR-4461, which served as a tumor suppressor, inhibited RCC progression by targeting and downregulating PPP1R3C.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Department of Nephrology, Wuhan Third Hospital, Wuhan, China
| | - Gang Ye
- Department of Nephrology, Wuhan Third Hospital, Wuhan, China
| | - You Wang
- Department of Nephrology, Wuhan Third Hospital, Wuhan, China
| | - Dan Luo
- Department of Nephrology, Wuhan Third Hospital, Wuhan, China
| |
Collapse
|
22
|
Li M, He M, Xu F, Guan Y, Tian J, Wan Z, Zhou H, Gao M, Chong T. Abnormal expression and the significant prognostic value of aquaporins in clear cell renal cell carcinoma. PLoS One 2022; 17:e0264553. [PMID: 35245343 PMCID: PMC8896691 DOI: 10.1371/journal.pone.0264553] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/12/2022] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) are a kind of transmembrane proteins that exist in various organs of the human body. AQPs play an important role in regulating water transport, lipid metabolism and glycolysis of cells. Clear cell renal cell carcinoma (ccRCC) is a common malignant tumor of the kidney, and the prognosis is worse than other types of renal cell cancer (RCC). The impact of AQPs on the prognosis of ccRCC and the potential relationship between AQPs and the occurrence and development of ccRCC are demanded to be investigated. In this study, we first explored the expression pattern of AQPs by using Oncomine, UALCAN, and HPA databases. Secondly, we constructed protein-protein interaction (PPI) network and performed function enrichment analysis through STRING, GeneMANIA, and Metascape. Then a comprehensive analysis of the genetic mutant frequency of AQPs in ccRCC was carried out using the cBioPortal database. In addition, we also analyzed the main enriched biological functions of AQPs and the correlation with seven main immune cells. Finally, we confirmed the prognostic value of AQPs throughGEPIA and Cox regression analysis. We found that the mRNA expression levels of AQP0/8/9/10 were up-regulated in patients with ccRCC, while those of AQP1/2/3/4/5/6/7/11 showed the opposite. Among them, the expression differences of AQP1/2/3/4/5/6/7/8/9/11 were statistically significant. The differences in protein expression levels of AQP1/2/3/4/5/6 in ccRCC and normal renal tissues were consistent with the change trends of mRNA. The biological functions of AQPs were mainly concentrated in water transport, homeostasis maintenance, glycerol transport, and intracellular movement of sugar transporters. The high mRNA expression levels of AQP0/8/9 were significantly correlated with worse overall survival (OS), while those of AQP1/4/7 were correlated with better OS. AQP0/1/4/9 were prognostic-related factors, and AQP1/9 were independent prognostic factors. In general, this research has investigated the values of AQPs in ccRCC, which could become new survival markers for ccRCC targeted therapy.
Collapse
Affiliation(s)
- Mingrui Li
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Minxin He
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Fangshi Xu
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Yibing Guan
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Juanhua Tian
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Ziyan Wan
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Haibin Zhou
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Mei Gao
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Tie Chong
- Department of Urology, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- * E-mail:
| |
Collapse
|
23
|
Li Q, Zhang L, Zhang Z, Fan Y, Zhang Q. Carbonic anhydrase 10 functions as a tumor suppressor in renal cell carcinoma and its methylation is a risk factor for survival outcome. Urol Oncol 2022; 40:168.e1-168.e9. [DOI: 10.1016/j.urolonc.2021.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/31/2022]
|
24
|
Shou Y, Liu Y, Xu J, Liu J, Xu T, Tong J, Liu L, Hou Y, Liu D, Yang H, Cheng G, Zhang X. TIMP1 Indicates Poor Prognosis of Renal Cell Carcinoma and Accelerates Tumorigenesis via EMT Signaling Pathway. Front Genet 2022; 13:648134. [PMID: 35281807 PMCID: PMC8914045 DOI: 10.3389/fgene.2022.648134] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/11/2022] [Indexed: 12/29/2022] Open
Abstract
Renal cell carcinoma (RCC) is one of the most common malignancies in the urinary system. The mortality of advanced RCC remains high despite advances in systemic therapy of RCC. Considering the misdiagnosis of early-stage RCC, the identification of effective biomarkers is of great importance. Tissue inhibitor matrix metalloproteinase 1 (TIMP1), which belongs to TIMP gene family, is a natural inhibitor of the matrix metalloproteinases (MMPs). In this study, we found TIMP1 was significantly up-regulated in cell lines and RCC tissues. Kaplan-Meier analysis revealed that high expression of TIMP1 indicated a poor prognosis. Multivariate analysis further indicated that TIMP1 overexpression was an independent prognostic factor of RCC patients. Furthermore, knockdown of TIMP1 in vitro suppressed the proliferation, migration, and invasion of RCC cells, while upregulating TIMP1 accelerated the proliferation, migration, and invasion of RCC cells. In addition, we also found that TIMP1 prompted the progression of RCC via epithelial-to-mesenchymal transition (EMT) signaling pathway. In conclusion, the present results suggested that TIMP1 indicated poor prognosis of renal cell carcinoma and could serve as a potential diagnostic and prognostic biomarker for RCC.
Collapse
Affiliation(s)
- Yi Shou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuenan Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaju Xu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingchong Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianbo Xu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junwei Tong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lilong Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaxin Hou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Yang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gong Cheng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Gong Cheng, ; Xiaoping Zhang,
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urologic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Gong Cheng, ; Xiaoping Zhang,
| |
Collapse
|
25
|
Yang X, Chen R, Chen Y, Zhou Y, Wu C, Li Q, Wu J, Hu W, Zhao W, Wei W, Shi J, Ji M. Methyltransferase SETD2 Inhibits Tumor Growth and Metastasis via STAT1‐IL‐8 signaling mediated EMT in lung adenocarcinoma. Cancer Sci 2022; 113:1195-1207. [PMID: 35152527 PMCID: PMC8990294 DOI: 10.1111/cas.15299] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 01/13/2022] [Accepted: 01/30/2022] [Indexed: 11/29/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a major subtype of non–small‐cell lung cancer, which is the leading cause of cancer death worldwide. The histone H3K36 methyltransferase SETD2 has been reported to be frequently mutated or deleted in types of human cancer. However, the functions of SETD2 in tumor growth and metastasis in LUAD has not been well illustrated. Here, we found that SETD2 was significantly downregulated in human lung cancer and greatly impaired proliferation, migration, and invasion in vitro and in vivo. Furthermore, we found that SETD2 overexpression significantly attenuated the epithelial–mesenchymal transition (EMT) of LUAD cells. RNA‐seq analysis identified differentially expressed transcripts that showed an elevated level of interleukin 8 (IL‐8) in STED2‐knockdown LUAD cells, which was further verified using qPCR, western blot, and promoter luciferase report assay. Mechanically, SETD2‐mediated H3K36me3 prevented assembly of Stat1 on the IL‐8 promoter and contributed to the inhibition of tumorigenesis in LUAD. Our findings highlight the suppressive role of SETD2/H3K36me3 in cell proliferation, migration, invasion, and EMT during LUAD carcinogenesis, via regulation of the STAT1–IL‐8 signaling pathway. Therefore, our studies on the molecular mechanism of SETD2 will advance our understanding of epigenetic dysregulation at LUAD progression.
Collapse
Affiliation(s)
- Xin Yang
- Department of Oncology The Third Affiliated Hospital of Soochow University Changzhou 213003 P.R. China
- Jiangsu Engineering Research Center for Tumor Immunotherapy Changzhou 213003 P.R. China
- Institute of Cell Therapy Soochow University Changzhou 213003 P.R. China
| | - Rui Chen
- Department of Oncology The Third Affiliated Hospital of Soochow University Changzhou 213003 P.R. China
| | - Yan Chen
- Department of Oncology The Third Affiliated Hospital of Soochow University Changzhou 213003 P.R. China
| | - You Zhou
- Jiangsu Engineering Research Center for Tumor Immunotherapy Changzhou 213003 P.R. China
- Institute of Cell Therapy Soochow University Changzhou 213003 P.R. China
- Department of Tumor Biological Treatment The Third Affiliated Hospital of Soochow University Changzhou 213003 P.R. China
| | - Chen Wu
- Department of Oncology The Third Affiliated Hospital of Soochow University Changzhou 213003 P.R. China
| | - Qing Li
- Department of Pathology The Third Affiliated Hospital of Soochow University Changzhou 213003 P.R. China
| | - Jun Wu
- Department of Oncology The Third Affiliated Hospital of Soochow University Changzhou 213003 P.R. China
| | - Wen‐wei Hu
- Department of Oncology The Third Affiliated Hospital of Soochow University Changzhou 213003 P.R. China
| | - Wei‐qing Zhao
- Department of Oncology The Third Affiliated Hospital of Soochow University Changzhou 213003 P.R. China
| | - Wei Wei
- Department of Oncology The Third Affiliated Hospital of Soochow University Changzhou 213003 P.R. China
| | - Jun‐tao Shi
- Department of Cardiothoracic Surgery The Third Affiliated Hospital of Soochow University Changzhou 213003 P.R. China
| | - Mei Ji
- Department of Oncology The Third Affiliated Hospital of Soochow University Changzhou 213003 P.R. China
| |
Collapse
|
26
|
Yao ZY, Xing C, Liu YW, Xing XL. Identification of Two Immune Related Genes Correlated With Aberrant Methylations as Prognosis Signatures for Renal Clear Cell Carcinoma. Front Genet 2021; 12:750997. [PMID: 34925447 PMCID: PMC8674690 DOI: 10.3389/fgene.2021.750997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Almost 75% of renal cancers are renal clear cell carcinomas (KIRC). Accumulative evidence indicates that epigenetic dysregulations are closely related to the development of KIRC. Cancer immunotherapy is an effective treatment for cancers. The aim of this study was to identify immune-related differentially expressed genes (IR-DEGs) associated with aberrant methylations and construct a risk assessment model using these IR-DEGs to predict the prognosis of KIRC. Two IR-DEGs (SLC11A1 and TNFSF14) were identified by differential expression, correlation analysis, and Cox regression analysis, and risk assessment models were established. The area under the receiver operating characteristic (ROC) curve (AUC) was 0.6907. In addition, we found that risk scores were significantly associated with 31 immune cells and factors. Our present study not only shows that two IR-DEGs can be used as prognosis signatures for KIRC, but also provides a strategy for the screening of suitable prognosis signatures associated with aberrant methylation in other cancers.
Collapse
Affiliation(s)
- Zhi-Yong Yao
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China.,The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
| | - Chaoqung Xing
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Yuan-Wu Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Xiao-Liang Xing
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China.,The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
| |
Collapse
|
27
|
Huang L, Xie Y, Jiang S, Han W, Zeng F, Li D. The lncRNA Signatures of Genome Instability to Predict Survival in Patients with Renal Cancer. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:1090698. [PMID: 34917302 PMCID: PMC8670921 DOI: 10.1155/2021/1090698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022]
Abstract
Long noncoding RNAs (lncRNAs) exert an increasingly important effect on genome instability and the prognosis of cancer patients. The present research established a computational framework originating from the mutation assumption combining lncRNA expression profile and somatic mutation profile in the genome of renal cancer to assess the effect of lncRNAs on the gene instability of renal cancer. A total of 45 differentially expressed lncRNAs were evaluated to be genome-instability-associated from the high and low cumulative somatic mutations groups. Then we established a prognosis model based on three genome-instability-associated lncRNAs (AC156455.1, AC016405.3, and LINC01234)-GlncScore. The GlncScore was then verified in testing cohort and the total TCGA renal cancer cohort. The GlncScore was evaluated to have an accurate prediction for the survival of patients. Furthermore, GlncScore was associated with somatic mutation patterns, indicating its capacity of reflecting genome instability in renal cancer. In conclusion, this study evaluated the effect of lncRNAs on genome instability of renal cancer and provided new hidden cancer biomarkers related to genome instability in renal cancer.
Collapse
Affiliation(s)
- Liang Huang
- Department of Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, Hunan 410013, China
| | - Yu Xie
- Department of Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, Hunan 410013, China
| | - Shusuan Jiang
- Department of Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, Hunan 410013, China
| | - Weiqing Han
- Department of Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, Hunan 410013, China
| | - Fanchang Zeng
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan 570311, China
| | - Daoyuan Li
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan 570311, China
| |
Collapse
|
28
|
Chen C, Jiang X, Xia F, Chen X, Wang W. Clinicopathological Characteristics and Survival Outcomes of Primary Renal Leiomyosarcoma. Front Surg 2021; 8:704221. [PMID: 34746221 PMCID: PMC8566676 DOI: 10.3389/fsurg.2021.704221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Primary renal leiomyosarcoma (LMS) is an exceedingly rare entity with a poor prognosis. We summarized the clinicopathological characteristics, treatment choice, and survival outcomes of LMS from the Surveillance, Epidemiology, and End Results (SEER) database. Methods: Renal LMS and kidney renal clear cell carcinoma (KIRC) data from 1998 to 2016 were collected from the SEER database. The continuous variables were analyzed using t-tests, while the categorical variables were analyzed using Pearson's chi-squared or Fisher's exact tests. Propensity score matching (PSM) was also performed. The cancer-specific survival (CSS) and overall survival (OS) curves were estimated using Kaplan-Meier analyses and compared by log-rank tests. The risk factors for CSS and OS were estimated using univariable and multivariable Cox proportional hazard regression models. Results: A total of 140 patients with renal LMS and 75,401 patients with KIRC were enrolled. These groups differed significantly in sex, race, tumor size, grade, SEER stage, surgery, radiation, and chemotherapy. Renal LMS exhibited poorer CSS and OS compared with KIRC before and after PSM. For renal LMS, the univariate Cox proportional hazard regression model indicated that larger tumor size, higher tumor grade, higher SEER stage, and chemotherapy were risk factors for CSS and OS, while surgery appeared to be a protective factor. However, only tumor grade, SEER stage, and receiving surgery remained independent prognostic factors in the multivariable Cox proportional hazard regression model. In addition, subgroup analyses indicated that surgery remained a protective factor for advanced renal LMS. However, there was no survival benefit for patients receiving chemotherapy. Conclusions: Primary renal LMS is an exceedingly rare entity with distinct clinicopathological features and a poor prognosis. A higher tumor grade and late stage may indicate a poor prognosis. Complete tumor resection remains to be the first treatment choice, while chemotherapy may be a palliative treatment for patients with advanced disease.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Urology, Xiangya Changde Hospital, Changde, China
| | - Xinjie Jiang
- Department of Urology, Xiangya Changde Hospital, Changde, China
| | - Fei Xia
- Department of Urology, Xiangya Changde Hospital, Changde, China
| | - Xudong Chen
- Department of Urology, Xiangya Changde Hospital, Changde, China
| | - Weiguo Wang
- Department of Urology, Xiangya Changde Hospital, Changde, China
| |
Collapse
|
29
|
Zaib S, Rana N, Khan I. Histone modifications and their role in epigenetics of cancer. Curr Med Chem 2021; 29:2399-2411. [PMID: 34749606 DOI: 10.2174/0929867328666211108105214] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 11/22/2022]
Abstract
Epigenetic regulations play a crucial role in the expression of various genes that are important in the normal cell function. Any alteration in these epigenetic mechanisms can lead to the modification of histone and DNA resulting in the silencing or enhanced expression of some genes causing various diseases. Acetylation, methylation, ribosylation or phosphorylation of histone proteins modifies its interaction with the DNA, consequently changing the ratio of heterochromatin and euchromatin. Terminal lysine residues of histone proteins serve as potential targets of such epigenetic modifications. The current review focuses on the histone modifications, their contributing factors, role of these modifications on metabolism leading to cancer and methylation of histone in cancer affects the DNA repair mechanisms.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore-54590. Pakistan
| | - Nehal Rana
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore-54590. Pakistan
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN. United Kingdom
| |
Collapse
|
30
|
Kubiliute R, Zalimas A, Bakavicius A, Ulys A, Jankevicius F, Jarmalaite S. Clinical Significance of ADAMTS19, BMP7, SIM1, and SFRP1 Promoter Methylation in Renal Clear Cell Carcinoma. Onco Targets Ther 2021; 14:4979-4990. [PMID: 34675538 PMCID: PMC8502107 DOI: 10.2147/ott.s330341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney tumors, accounting for the majority of deaths from genitourinary cancers. The currently used nomograms for predicting patient outcomes are based on clinical-pathological characteristics only; however, a significant number of ccRCC survivors with similar radiological and histological features still demonstrate a different clinical course of the disease. This study aimed at the identification of novel DNA methylation biomarkers for the monitoring of patients with ccRCC. Methods Gene expression profiling by SurePrint G3 Human GE 8×60K Microarrays was performed in 4 ccRCC tissues and adjacent non-cancerous renal tissue (NRT) samples. Four down-regulated genes were selected for further DNA methylation status analysis in 123 ccRCC and 45 NRT samples using methylation-specific PCR (MSP). Results DNA methylation changes of ADAMTS19, BMP7, SIM1, and SFRP1 were cancer-specific with significantly (P<0.050) higher methylation frequency (37%, 20%, 18%, and 42%, respectively) in tumor tissues. The methylated status of at least one gene was significantly related to various clinical-pathological parameters, including tumor size, Fuhrman and WHO/ISUP grades, intravascular invasion, and necrosis. Moreover, the methylated status of multimarker panel ADAMTS19, BMP7 & SFRP1 was predictive for poorer overall survival (HR, 4.11; 95% CI, 1.22–13.86). Conclusion In conclusion, DNA methylation of the three-gene panel consisting of ADAMTS19, BMP7 & SFRP1 supposedly predicts the outcome of patients diagnosed with ccRCC and possibly might be used to enrich the current prognostic tools.
Collapse
Affiliation(s)
- Raimonda Kubiliute
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania.,National Cancer Institute, Vilnius, Lithuania
| | - Algirdas Zalimas
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania.,National Cancer Institute, Vilnius, Lithuania
| | - Arnas Bakavicius
- National Cancer Institute, Vilnius, Lithuania.,Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania.,Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | | | - Feliksas Jankevicius
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania.,Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Sonata Jarmalaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania.,National Cancer Institute, Vilnius, Lithuania
| |
Collapse
|
31
|
You Y, Ren Y, Liu J, Qu J. Promising Epigenetic Biomarkers Associated With Cancer-Associated-Fibroblasts for Progression of Kidney Renal Clear Cell Carcinoma. Front Genet 2021; 12:736156. [PMID: 34630525 PMCID: PMC8495159 DOI: 10.3389/fgene.2021.736156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) is the most common malignant kidney tumor as its characterization of highly metastatic potential. Patients with KIRC are associated with poor clinical outcomes with limited treatment options. Up to date, the underlying molecular mechanisms of KIRC pathogenesis and progression are still poorly understood. Instead, particular features of Cancer-Associated Fibroblasts (CAFs) are highly associated with adverse outcomes of patients with KIRC, while the precise regulatory mechanisms at the epigenetic level of KIRC in governing CAFs remain poorly defined. Therefore, explore the correlations between epigenetic regulation and CAFs infiltration may help us better understand the molecular mechanisms behind KIRC progression, which may improve clinical outcomes and patients quality of life. In the present study, we identified a set of clinically relevant CAFs-related methylation-driven genes, NAT8, TINAG, and SLC17A1 in KIRC. Our comprehensive in silico analysis revealed that the expression levels of NAT8, TINAG, and SLC17A1 are highly associated with outcomes of patients with KIRC. Meanwhile, their methylation levels are highly correlates with the severity of KIRC. We suggest that the biomarkers might contribute to CAFs infiltration in KIRC. Taken together, our study provides a set of promising biomarkers which could predict the progression and prognosis of KIRC. Our findings could have potential prognosis and therapeutic significance in the progression of KIRC.
Collapse
Affiliation(s)
- Yongke You
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen, China
| | - Yeping Ren
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen, China
| | - Jikui Liu
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jianhua Qu
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
32
|
Yang C, Pang J, Xu J, Pan H, Li Y, Zhang H, Liu H, Xiao SY. LRRK2 is a candidate prognostic biomarker for clear cell renal cell carcinoma. Cancer Cell Int 2021; 21:343. [PMID: 34217264 PMCID: PMC8254929 DOI: 10.1186/s12935-021-02047-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/24/2021] [Indexed: 12/19/2022] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC), derived from renal tubular epithelial cells, is the most common malignant tumor of the kidney. The study of key genes related to the pathogenesis of ccRCC has become important for gene target therapy. Methods Bioinformatics analysis of The Cancer Genome Atlas (TCGA), the NCBI Gene Expression Omnibus (GEO) database, USUC Xena database, cBioPortal for Cancer Genomics, and MethSurv were performed to examine the aberrant genetic pattern and prognostic significance of leucine-rich repeat kinase 2 (LRRK2) expression and its relationship to clinical parameters. Immunohistochemistry and Western blot were performed to verify LRRK2 expression. The regulation of ccRCC tumor cell lines proliferation by LRRK2 was examined by CCK8 assay. Results Bioinformatics analysis showed that LRRK2 expression was up-regulated and largely correlated with DNA methylation in ccRCC. The up-regulation of LRRK2 was confirmed in ccRCC tissue immunohistochemically and by protein analysis. The level of expression was related to gender, pathological grade, stage, and metastatic status of ccRCC patients. Meanwhile, Kaplan–Meier analysis showed that high expression of LRRK2 correlates to a better prognosis; knockdown of LRRK2 expression attenuated the proliferation ability of ccRCC tumor cell lines; protein–protein interaction network analysis showed that LRRK2 interacts with HIF1A and EGFR. Conclusion We found that LRRK2 may play an important role in the tumorigenesis and progression of ccRCC. Our findings provided a potential predictor and therapeutic target in ccRCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02047-y.
Collapse
Affiliation(s)
- Chunxiu Yang
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Wuhan University Center for Pathology and Molecular Diagnostics, Wuhan, China
| | - Jingjing Pang
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Wuhan University Center for Pathology and Molecular Diagnostics, Wuhan, China
| | - Jian Xu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Wuhan University Center for Pathology and Molecular Diagnostics, Wuhan, China
| | - He Pan
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Wuhan University Center for Pathology and Molecular Diagnostics, Wuhan, China
| | - Yueying Li
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Wuhan University Center for Pathology and Molecular Diagnostics, Wuhan, China
| | - Huainian Zhang
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Wuhan University Center for Pathology and Molecular Diagnostics, Wuhan, China
| | - Huan Liu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Wuhan University Center for Pathology and Molecular Diagnostics, Wuhan, China
| | - Shu-Yuan Xiao
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Wuhan University Center for Pathology and Molecular Diagnostics, Wuhan, China. .,Department of Pathology, University of Chicago Medicine, Chicago, IL, USA.
| |
Collapse
|
33
|
Tong X, Xu L, Rong R, Su X, Xiang T, Peng W, Shi T. Epigenetic silencing of ZBTB28 promotes renal cell carcinogenesis. Asia Pac J Clin Oncol 2021; 18:e79-e86. [PMID: 34161675 DOI: 10.1111/ajco.13560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022]
Abstract
AIM Zinc finger and BTB domain-containing protein 28 (ZBTB28) is a potential tumor suppressor for some cancers. However, its epigenetic regulation and functions in renal cell carcinoma (RCC) remain to be elucidated. METHODS The expression of ZBTB28 mRNA was analyzed by semi-quantitative reverse transcription polymerase chain reaction (PCR) in nine RCC cell lines and normal kidney tissues. Methylation status of ZBTB28 promoter was assessed by methylation-specific PCR in RCC cell lines, primary RCC, tumors and adjacent tissues. The involvement of ZBTB28 in cell proliferation and migration was investigated. RESULTS ZBTB28 promoter was hypermethylated in 88.9% (8/9) of RCC cell lines with reduced ZBTB28 mRNA expression, and could be reversed by DNA methyltransferase inhibitors. The methylation of ZBTB28 promoter was detected in 73.5% (36/49) of primary RCC tissues, compared with 7.1% (1/14) in normal tissues. Overexpression of ZBTB28 significantly inhibited RCC cell proliferation and migration, and induced apoptosis. Further analyses revealed that ZBTB28 upregulation could inhibit multiple oncogenic signaling transduction pathways. CONCLUSION ZBTB28 is frequently silenced by promoter methylation in RCC pathogenesis and functions as a novel tumor suppressive gene. ZBTB28 may be a potential target for the development of RCC therapeutic strategies.
Collapse
Affiliation(s)
- Xin Tong
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Lu Xu
- Core Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China
| | - Rong Rong
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK-Shenzhen Research Institute, Shenzhen, China
| | - Xianwei Su
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK-Shenzhen Research Institute, Shenzhen, China
| | - Tingxiu Xiang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyan Peng
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Taoping Shi
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
34
|
Marques-Magalhães Â, Graça I, Miranda-Gonçalves V, Henrique R, Lopez M, Arimondo PB, Jerónimo C. Anti-neoplastic and demethylating activity of a newly synthetized flavanone-derived compound in Renal Cell Carcinoma cell lines. Biomed Pharmacother 2021; 141:111681. [PMID: 34139552 DOI: 10.1016/j.biopha.2021.111681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
Renal Cell Carcinoma (RCC) is on the top 10 of the most incident cancers worldwide, being a third of patients diagnosed with advanced disease, for which no curative therapies are currently available. Thus, new effective therapeutic strategies are urgently needed. Herein, we tested the antineoplastic effect of newly synthesized 3-nitroflavanones (MLo1302) on RCC cell lines. 786-O, Caki2, and ACHN cell lines were cultured and treated with newly synthesized 3-nitroflavanones. IC50 values were calculated based on the effect on cell viability assessed by MTT assay, after 72 h of exposure. MLo1302 displayed antineoplastic properties in RCC cell lines through marked reduction of cell viability, increased apoptosis and DNA damage, and morphometric alterations indicating a less aggressive phenotype. MLo1302 induced a significant reduction of global DNA methylation and DNMT mRNA levels, increasing global DNA hydroxymethylation and TET expression. Moreover, MLo1302 decreased DNMT3A activity in RCC cell lines, demethylated and re-expressed hypermethylated genes in CAM-generated tumors. A marked in vivo decrease in tumor growth and angiogenesis was also disclosed. MLo1302 disclosed antineoplastic and demethylating activity in RCC cell lines, constituting a potential therapeutic agent for RCC patients.
Collapse
Affiliation(s)
- Ângela Marques-Magalhães
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto 4200-072, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Inês Graça
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto 4200-072, Portugal
| | - Vera Miranda-Gonçalves
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto 4200-072, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto 4200-072, Portugal; Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto 4200-072, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto 4050-313, Portugal
| | - Marie Lopez
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM UMR 5247, Montpellier 34296, France
| | - Paola B Arimondo
- Epigenetic Chemical Biology, Institut Pasteur, CNRS UMR3523, Paris 75724, France
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto 4200-072, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto 4050-313, Portugal.
| |
Collapse
|
35
|
Epigenetic targeted therapy of stabilized BAP1 in ASXL1 gain-of-function mutated leukemia. NATURE CANCER 2021; 2:515-526. [PMID: 35122023 DOI: 10.1038/s43018-021-00199-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/16/2021] [Indexed: 02/04/2023]
Abstract
Mutations of ASXL1, encoding a component of the BAP1 histone H2A deubiquitinase complex, occur in human myeloid neoplasms and are uniformly associated with poor prognosis. However, the precise molecular mechanisms through which ASXL1 mutations alter BAP1 activity and drive leukemogenesis remain unclear. Here we demonstrate that cancer-associated frameshift mutations in ASXL1, which were originally proposed to act as destabilizing loss-of-function mutations, in fact encode stable truncated gain-of-function proteins. Truncated ASXL1 increases BAP1 protein stability, enhances BAP1 recruitment to chromatin and promotes the expression of a pro-leukemic transcriptional signature. Through a biochemical screen, we identified BAP1 catalytic inhibitors that inhibit truncated-ASXL1-driven leukemic gene expression and impair tumor progression in vivo. This study represents a breakthrough in our understanding of the molecular mechanisms of ASXL1 mutations in leukemia pathogenesis and identifies small-molecular catalytic inhibitors of BAP1 as a potential targeted therapy for leukemia.
Collapse
|
36
|
Kruppa J, Sieg M, Richter G, Pohrt A. Estimands in epigenome-wide association studies. Clin Epigenetics 2021; 13:98. [PMID: 33926513 PMCID: PMC8086103 DOI: 10.1186/s13148-021-01083-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background In DNA methylation analyses like epigenome-wide association studies, effects in differentially methylated CpG sites are assessed. Two kinds of outcomes can be used for statistical analysis: Beta-values and M-values. M-values follow a normal distribution and help to detect differentially methylated CpG sites. As biological effect measures, differences of M-values are more or less meaningless. Beta-values are of more interest since they can be interpreted directly as differences in percentage of DNA methylation at a given CpG site, but they have poor statistical properties. Different frameworks are proposed for reporting estimands in DNA methylation analysis, relying on Beta-values, M-values, or both. Results We present and discuss four possible approaches of achieving estimands in DNA methylation analysis. In addition, we present the usage of M-values or Beta-values in the context of bioinformatical pipelines, which often demand a predefined outcome. We show the dependencies between the differences in M-values to differences in Beta-values in two data simulations: a analysis with and without confounder effect. Without present confounder effects, M-values can be used for the statistical analysis and Beta-values statistics for the reporting. If confounder effects exist, we demonstrate the deviations and correct the effects by the intercept method. Finally, we demonstrate the theoretical problem on two large human genome-wide DNA methylation datasets to verify the results. Conclusions The usage of M-values in the analysis of DNA methylation data will produce effect estimates, which cannot be biologically interpreted. The parallel usage of Beta-value statistics ignores possible confounder effects and can therefore not be recommended. Hence, if the differences in Beta-values are the focus of the study, the intercept method is recommendable. Hyper- or hypomethylated CpG sites must then be carefully evaluated. If an exploratory analysis of possible CpG sites is the aim of the study, M-values can be used for inference. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01083-9.
Collapse
Affiliation(s)
- Jochen Kruppa
- Charité - University Medicine, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biometry and Clinical Epidemiology, Charitéplatz 1, 10117, Berlin, Germany. .,Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178, Berlin, Germany.
| | - Miriam Sieg
- Charité - University Medicine, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biometry and Clinical Epidemiology, Charitéplatz 1, 10117, Berlin, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178, Berlin, Germany
| | - Gesa Richter
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178, Berlin, Germany.,Department of Periodontology and Synoptic Dentistry, Institute of Dental, Oral and Maxillary Medicine, Charité - University Medicine, Charitéplatz 1, 10117, Berlin, Germany
| | - Anne Pohrt
- Charité - University Medicine, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biometry and Clinical Epidemiology, Charitéplatz 1, 10117, Berlin, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178, Berlin, Germany
| |
Collapse
|
37
|
Santos VE, da Costa WH, Bezerra SM, da Cunha IW, Nobre JQC, Brazão ES, Meduna RR, Rocha MM, Fornazieri L, Zequi SDC. Prognostic Impact of Loss of SETD2 in Clear Cell Renal Cell Carcinoma. Clin Genitourin Cancer 2021; 19:339-345. [PMID: 33839039 DOI: 10.1016/j.clgc.2021.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/10/2021] [Accepted: 03/03/2021] [Indexed: 11/19/2022]
Abstract
PURPOSE To evaluate the prognostic impact of immunohistochemical expression of SETD2 in patients with clear cell renal cell carcinoma (ccRCC). PATIENTS AND METHODS A total of 662 patients with primary or metastatic ccRCC were evaluated. Two genitourinary pathologist reviewed all of the cases for uniform reclassification and determined the selection of the most representative tumor areas for construction of the tissue microarray (TMA). RESULTS SETD2 nuclear staining showed that 101 areas (15.3%) had negative expression, and 561 areas (84,7%) had positive expression of SETD2. The protein expression of SETD2 was associated with clinical stage (P < .001), pathological stage (P < .001), tumor size (P < .001), perinephric fat invasion (P < .001), Eastern Cooperative Oncology Group status (P = .004), surgery type (P < .001), International Society of Urologic Pathologists grade (P < .001), and tumor necrosis (P < .001). SETD2 influenced disease-specific survival (DSS) and overall survival (OS). DSS rates in patients with positive and negative expression of SETD2 were 90.2% and 58.4%, respectively (P < .001). OS rates in patients with positive and negative expression of SETD2 were 87% and 55.4%, respectively (P < .001). In a multivariate Cox analysis, low SETD2 expression was an independent predictor of DSS (hazard ratio [HR], 1.690; 95% confidence interval [CI], 1.0582.700; P = .031) and OS (HR, 1.641; 95% CI, 1.039-2.593; P = .037). CONCLUSION Our study showed that the negative expression of SETD2 was associated with a worse prognosis, and it was an independent predictor of survival in patients with ccRCC. We believe that the protein expression of SETD2 is an important biomarker in the management of patients with ccRCC.
Collapse
Affiliation(s)
| | - Walter Henriques da Costa
- Division of Urology, A.C. Camargo Cancer Center, São Paulo, Brazil; National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, Brazil
| | | | - Isabela Werneck da Cunha
- Division of Urology, A.C. Camargo Cancer Center, São Paulo, Brazil; National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, Brazil.; Department of Pathology, Rede D'Or-São Luiz, São Paulo, Brazil
| | | | | | | | | | - Lucas Fornazieri
- Division of Urology, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Stenio de Cassio Zequi
- Division of Urology, A.C. Camargo Cancer Center, São Paulo, Brazil; National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, Brazil
| |
Collapse
|
38
|
Gan Y, Cao C, Li A, Song H, Kuang G, Ma B, Zhang Q, Zhang Q. Silencing of the TRIM58 Gene by Aberrant Promoter Methylation is Associated with a Poor Patient Outcome and Promotes Cell Proliferation and Migration in Clear Cell Renal Cell Carcinoma. Front Mol Biosci 2021; 8:655126. [PMID: 33816562 PMCID: PMC8012909 DOI: 10.3389/fmolb.2021.655126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 12/09/2022] Open
Abstract
To investigate the underlying molecular mechanism of tripartite motif-containing 58 (TRIM58) in the development of clear cell renal cell carcinoma (ccRCC), we explored TRIM58 expression and methylation in tumor tissues and the association with clinicopathological features and prognosis of tissue samples; Moreover, we examined the direct gene transcription of TRIM58-specific DNA demethyltransferase (TRIM58-TET1) by the CRISPR-dCas9 fused with the catalytic domain of TET1 and the biological functions in RCC cells. In this study, we demonstrate that TRIM58 is frequently downregulated by promoter methylation in ccRCC tissues, associated significantly with tumor nuclear grade and poor patient survival. TRIM58-TET1 directly induces demethylation of TRIM58 CpG islands, and activates TRIM58 transcription in RCC cell lines. Besides, DNA demethylation of TRIM58 by TRIM58-TET1 significantly inhibits cell proliferation and migration Overall, our results demonstrate that TRIM58 is inactivated by promoter methylation, associates with tumor nuclear grade and poor survival, and TRIM58 DNA demethylation could directly activate TRIM58 transcription and inhibit cell proliferation and migration in RCC cell lines.
Collapse
Affiliation(s)
- Ying Gan
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China.,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Congcong Cao
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Aolin Li
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China.,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Haifeng Song
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China.,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Guanyu Kuang
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China.,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Binglei Ma
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China.,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Quan Zhang
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China.,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Qian Zhang
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China.,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| |
Collapse
|
39
|
Wu P, Xu Y, Li J, Li X, Zhang P, Ruan N, Zhang C, Sun P, Wang Q, Wu G. Comparison of the Fatty Acid Metabolism Pathway in Pan-Renal Cell Carcinoma: Evidence from Bioinformatics. Anal Cell Pathol (Amst) 2021; 2021:8842105. [PMID: 33688464 PMCID: PMC7925032 DOI: 10.1155/2021/8842105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
This study analyzed and compared the potential role of fatty acid metabolism pathways in three subtypes of renal cell carcinoma. Biological pathways that were abnormally up- and downregulated were identified through gene set variation analysis in the subtypes. Abnormal downregulation of the fatty acid metabolism pathway occurred in all three renal cell carcinoma subtypes. Alteration of the fatty acid metabolism pathway was vital in the development of pan-renal cell carcinoma. Bioinformatics methods were used to obtain a panoramic view of copy number variation, single-nucleotide variation, mRNA expression, and the survival landscape of fatty acid metabolism pathway-related genes in pan-renal cell carcinoma. Most importantly, we used genes related to the fatty acid metabolism pathway to establish a prognostic-related risk model in the three subtypes of renal cell carcinoma. The data will be valuable for future clinical treatment and scientific research.
Collapse
Affiliation(s)
- Ping Wu
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiayi Li
- School of Business, Hanyang University, Seoul, Republic of Korea
| | - Xiaowei Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Peizhi Zhang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ningke Ruan
- The Nursing College of Zhengzhou University, Zhengzhou, China
| | - Cong Zhang
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Panpan Sun
- Department of Pain Management, The Second Hospital of Shandong University, Jinan, China
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
40
|
Mehdi A, Rabbani SA. Role of Methylation in Pro- and Anti-Cancer Immunity. Cancers (Basel) 2021; 13:cancers13030545. [PMID: 33535484 PMCID: PMC7867049 DOI: 10.3390/cancers13030545] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/09/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
DNA and RNA methylation play a vital role in the transcriptional regulation of various cell types including the differentiation and function of immune cells involved in pro- and anti-cancer immunity. Interactions of tumor and immune cells in the tumor microenvironment (TME) are complex. TME shapes the fate of tumors by modulating the dynamic DNA (and RNA) methylation patterns of these immune cells to alter their differentiation into pro-cancer (e.g., regulatory T cells) or anti-cancer (e.g., CD8+ T cells) cell types. This review considers the role of DNA and RNA methylation in myeloid and lymphoid cells in the activation, differentiation, and function that control the innate and adaptive immune responses in cancer and non-cancer contexts. Understanding the complex transcriptional regulation modulating differentiation and function of immune cells can help identify and validate therapeutic targets aimed at targeting DNA and RNA methylation to reduce cancer-associated morbidity and mortality.
Collapse
Affiliation(s)
- Ali Mehdi
- Department of Human Genetics, McGill University, Montreal, QC H3A 2B4, Canada;
- Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Shafaat A. Rabbani
- Department of Human Genetics, McGill University, Montreal, QC H3A 2B4, Canada;
- Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Correspondence: ; Tel.: +1-514-843-1632
| |
Collapse
|
41
|
Jiang H, Tang JY, Xue D, Chen YM, Wu TC, Zhuang QF, He XZ. Apolipoprotein C1 stimulates the malignant process of renal cell carcinoma via the Wnt3a signaling. Cancer Cell Int 2021; 21:41. [PMID: 33430855 PMCID: PMC7802262 DOI: 10.1186/s12935-020-01713-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background Renal cell carcinoma (RCC) is a clinically common tumor in the urinary system, showing an upward trend of both incidence and mortality. Apolipoprotein C1 (APOC1) has been identified as a vital regulator in tumor progression. This study aims to uncover the biological function of APOC1 in RCC process and the underlying mechanism. Methods Differential levels of APOC1 in RCC samples and normal tissues in a downloaded TCGA profile and clinical samples collected in our center were detected by quantitative reverse transcription PCR (qRT-PCR). The prognostic value of APOC1 in RCC was assessed by depicting Kaplan–Meier survival curves. After intervening APOC1 level by transfection of sh-APOC1 or oe-APOC1, changes in phenotypes of RCC cells were examined through CCK-8, colony formation, Transwell assay and flow cytometry. Subsequently, protein levels of EMT-related genes influenced by APOC1 were determined by Western blot. The involvement of the Wnt3a signaling in APOC1-regulated malignant process of RCC was then examined through a series of rescue experiments. Finally, a RCC xenograft model was generated in nude mice, aiming to further clarify the in vivo function of APOC1 in RCC process. Results APOC1 was upregulated in RCC samples. Notably, its level was correlated to overall survival of RCC patients, displaying a certain prognostic value. APOC1 was able to stimulate proliferative, migratory and invasive abilities in RCC cells. The Wnt3a signaling was identified to be involved in APOC1-mediated RCC process. Notably, Wnt3a was able to reverse the regulatory effects of APOC1 on RCC cell phenotypes. In vivo knockdown of APOC1 in xenografted nude mice slowed down the growth of RCC. Conclusions APOC1 stimulates the malignant process of RCC via targeting the Wnt3a signaling.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jing-Yuan Tang
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, People's Republic of China
| | - Yi-Meng Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, People's Republic of China
| | - Ting-Chun Wu
- Department of Urology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, People's Republic of China
| | - Qian-Feng Zhuang
- Department of Urology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, People's Republic of China.
| | - Xiao-Zhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, People's Republic of China.
| |
Collapse
|
42
|
Miao Y, Cao F, Li P, Liu P. DNA methylation of Hugl-2 is a prognostic biomarker in kidney renal clear cell carcinoma. Clin Exp Pharmacol Physiol 2021; 48:44-53. [PMID: 32754907 PMCID: PMC7821335 DOI: 10.1111/1440-1681.13390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/17/2020] [Accepted: 07/30/2020] [Indexed: 01/13/2023]
Abstract
It has been reported that loss of Hugl-2 contributes to tumour formation and progression in vitro and in vivo. However, whether Hugl-2 levels decrease during kidney renal clear cell carcinoma (KIRC) and the mechanism involved remain unknown. This study aimed to investigate whether DNA methylation of Hugl-2 reduces its expression, leading to the progression and poor prognosis of KIRC. Hugl-2 methylation and mRNA expression and KIRC clinicopathological data were extracted from The Cancer Genome Atlas (TCGA), and relationships among these factors were analyzed using UALCAN, MethHC, Wanderer and LinkedOmics web tools. We found that Hugl-2 mRNA and protein levels were reduced in KIRC tissues. Moreover, Hugl-2 mRNA levels were related to tumour grade and overall survival, and Hugl-2 methylation was increased in KIRC. According to the results of methylation-specific PCR, KIRC cells had higher Hugl-2 DNA methylation levels than HKC cells. Moreover, Hugl-2 DNA methylation correlated negatively with Hugl-2 mRNA and was also related to the pathology and T stage of KIRC patients. KIRC patients with high Hugl-2 DNA methylation also had shorter overall survival. Additionally, methylation of cg08827674, a Hugl-2 probe, was related to pathologic stage, T stage, neoplasm histologic grade, serum calcium level without laterality, M stage, N stage, and ethnicity. Furthermore, treatment with the DNA methylation inhibitor decitabine resulted in upregulation of Hugl-2 mRNA and protein levels in KIRC cell lines. These results indicate that Hugl-2 DNA methylation may be both a prognostic marker and a therapeutic target in KIRC.
Collapse
Affiliation(s)
- Yi Miao
- Center for Translational MedicineThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Fang Cao
- Center for Translational MedicineThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Pingping Li
- Center for Translational MedicineThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Peijun Liu
- Center for Translational MedicineThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| |
Collapse
|
43
|
Feng C, Huang X, Li X, Mao J. The Roles of Base Modifications in Kidney Cancer. Front Oncol 2020; 10:580018. [PMID: 33282735 PMCID: PMC7691527 DOI: 10.3389/fonc.2020.580018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/19/2020] [Indexed: 11/26/2022] Open
Abstract
Epigenetic modifications including histone modifications and DNA and RNA modifications are involved in multiple biological processes and human diseases. One disease, kidney cancer, includes a common type of tumor, accounts for about 2% of all cancers, and usually has poor prognosis. The molecular mechanisms and therapeutic strategy of kidney cancer are still under intensive study. Understanding the roles of epigenetic modifications and underlying mechanisms in kidney cancer is critical to its diagnosis and clinical therapy. Recently, the function of DNA and RNA modifications has been uncovered in kidney tumor. In the present review, we summarize recent findings about the roles of epigenetic modifications (particularly DNA and RNA modifications) in the incidence, progression, and metastasis of kidney cancer, especially the renal cell carcinomas.
Collapse
Affiliation(s)
- Chunyue Feng
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaoli Huang
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Xuekun Li
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China.,Institute of Translational Medicine of Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Mao
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
44
|
Liu XP, Ju L, Chen C, Liu T, Li S, Wang X. DNA Methylation-Based Panel Predicts Survival of Patients With Clear Cell Renal Cell Carcinoma and Its Correlations With Genomic Metrics and Tumor Immune Cell Infiltration. Front Cell Dev Biol 2020; 8:572628. [PMID: 33178689 PMCID: PMC7593608 DOI: 10.3389/fcell.2020.572628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/28/2020] [Indexed: 01/09/2023] Open
Abstract
DNA methylation based prognostic factor for patients with clear cell renal cell carcinoma (ccRCC) remains unclear. In the present study, we identified survival-related DNA methylation sites based on the differentially methylated DNA CpG sites between normal renal tissue and ccRCC. Then, these survival-related DNA methylation sites were included into an elastic net regularized Cox proportional hazards regression (CoxPH) model to build a DNA methylation-based panel, which could stratify patients into different survival groups with excellent accuracies in the training set and test set. External validation suggested that the DNA methylation-based panel could effectively distinguish normal controls from tumor samples and classify patients into metastasis group and non-metastasis group. The nomogram containing DNA methylation-based panel was reliable in clinical settings. Higher total mutation number, SCNA level, and MATH score were associated with higher methylation risk. The innate immune, ratio between CD8+T cell versus Treg cell as well as Th17 cell versus Th2 cell were significantly decreased in high methylation risk group. In inclusion, we developed a DNA methylation-based panel which might be independent prognostic factor in ccRCC. Patients with higher methylation risk were associated genomic alteration and poor immune microenvironment.
Collapse
Affiliation(s)
- Xiao-Ping Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China
| | - Chen Chen
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China
| | - Tongzu Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sheng Li
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
45
|
Mu Z, Dong D, Sun M, Li L, Wei N, Hu B. Prognostic Value of YTHDF2 in Clear Cell Renal Cell Carcinoma. Front Oncol 2020; 10:1566. [PMID: 33102202 PMCID: PMC7546891 DOI: 10.3389/fonc.2020.01566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/20/2020] [Indexed: 11/13/2022] Open
Abstract
m6A, the main form of mRNA modification, participates in regulating multiple normal and pathological biological events, especially in tumorigenesis. However, there is little known about the association of m6A-related genes with prognosis of clear cell renal cell cancer (ccRCC). Therefore, the prognostic value of m6A-related genes was investigated using Kaplan–Meier curves of overall survival (OS) with the log-rank test and Cox regression analysis. The differential expression of YTHDF2 mRNA in ccRCC and tumor-adjacent normal tissues and associated with clinicopathological characteristics was also analyzed. The alteration of cancer signaling pathways was screened by Gene Set Enrichment Analysis (GSEA). Univariate analysis showed that 15 m6A-related genes (including YTHDF2) were closely related to prognosis. Multivariate analysis further confirmed that YTHDF2 could serve as an independent prognostic factor for the OS of ccRCC patients (P < 0.001). Low-level expression of YTHDF2 had poor prognosis in ccRCC patients with lower tumor–node–metastasis (TNM) stage, age > 61, non-distant metastasis, non-lymph node metastasis, female gender, and higher histological grade (P < 0.05). Moreover, YTHDF2 expression in ccRCC tissues (N = 529) is significantly lower than that of tumor-adjacent normal tissues (N = 72, P = 0.0086). Furthermore, GSEA demonstrated that AKT/mTOR/GSK3 pathway, EIF4 pathway, CHREBP2 pathway, MET pathway, NFAT pathway, FAS pathway, EDG1 pathway, and CTCF pathway are altered in tumors with high YTHDF2 expression. Taken together, our results demonstrated that YTHDF2 (an m6A-related gene) could serve as a potential prognostic biomarker of ccRCC, and targeting epigenetic modification may be a novel therapeutic strategy for the treatment of ccRCC.
Collapse
Affiliation(s)
- Zhongyi Mu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Dan Dong
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Mingli Sun
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Liwen Li
- Department of Biostatistics, Fairbanks School of Public Health, Indiana University, Indianapolis, IN, United States
| | - Ning Wei
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bin Hu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
46
|
Papatsirou M, Artemaki PI, Scorilas A, Kontos CK. The role of circular RNAs in therapy resistance of patients with solid tumors. Per Med 2020; 17:469-490. [PMID: 33052780 DOI: 10.2217/pme-2020-0103] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) are a type of single-stranded RNA molecules forming a covalently closed, continuous structure, lacking 5'-3' polarity and polyadenylated tails. Recent advances in high-throughput sequencing technologies have revealed that these molecules are abundant, resistant to degradation and often expressed in a tissue- or developmental stage-specific manner. circRNAs are produced by back-splicing circularization of primary transcripts and exhibit a variety of functions, including regulation of transcription, translation and cellular localization. This review focuses on differentially expressed circRNAs conferring therapy resistance or sensitivity of solid tumors, such as carcinomas, sarcomas and lymphomas. Deregulated circRNAs can participate in the development of resistance to treatment by modulating regulatory pathways and cellular processes, including the mitogen-activated protein kinase pathway, epithelial-mesenchymal transition, apoptosis and autophagy.
Collapse
Affiliation(s)
- Maria Papatsirou
- Department of Biochemistry & Molecular Biology, Faculty of Biology, National & Kapodistrian University of Athens, Athens 15701, Greece
| | - Pinelopi I Artemaki
- Department of Biochemistry & Molecular Biology, Faculty of Biology, National & Kapodistrian University of Athens, Athens 15701, Greece
| | - Andreas Scorilas
- Department of Biochemistry & Molecular Biology, Faculty of Biology, National & Kapodistrian University of Athens, Athens 15701, Greece
| | - Christos K Kontos
- Department of Biochemistry & Molecular Biology, Faculty of Biology, National & Kapodistrian University of Athens, Athens 15701, Greece
| |
Collapse
|
47
|
Seervai RNH, Jangid RK, Karki M, Tripathi DN, Jung SY, Kearns SE, Verhey KJ, Cianfrocco MA, Millis BA, Tyska MJ, Mason FM, Rathmell WK, Park IY, Dere R, Walker CL. The Huntingtin-interacting protein SETD2/HYPB is an actin lysine methyltransferase. SCIENCE ADVANCES 2020; 6:6/40/eabb7854. [PMID: 33008892 PMCID: PMC7852384 DOI: 10.1126/sciadv.abb7854] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/07/2020] [Indexed: 05/05/2023]
Abstract
The methyltransferase SET domain-containing 2 (SETD2) was originally identified as Huntingtin (HTT) yeast partner B. However, a SETD2 function associated with the HTT scaffolding protein has not been elucidated, and no linkage between HTT and methylation has yet been uncovered. Here, we show that SETD2 is an actin methyltransferase that trimethylates lysine-68 (ActK68me3) in cells via its interaction with HTT and the actin-binding adapter HIP1R. ActK68me3 localizes primarily to the insoluble F-actin cytoskeleton in cells and regulates actin polymerization/depolymerization dynamics. Disruption of the SETD2-HTT-HIP1R axis inhibits actin methylation, causes defects in actin polymerization, and impairs cell migration. Together, these data identify SETD2 as a previously unknown HTT effector regulating methylation and polymerization of actin filaments and provide new avenues for understanding how defects in SETD2 and HTT drive disease via aberrant cytoskeletal methylation.
Collapse
Affiliation(s)
- Riyad N H Seervai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rahul K Jangid
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Menuka Karki
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Durga Nand Tripathi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah E Kearns
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael A Cianfrocco
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Bryan A Millis
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Biophotonics Center, Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37240, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Frank M Mason
- Vanderbilt-Ingram Cancer Center, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - W Kimryn Rathmell
- Vanderbilt-Ingram Cancer Center, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - In Young Park
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Ruhee Dere
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Cheryl Lyn Walker
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
48
|
Ma W, Han C, Zhang J, Song K, Chen W, Kwon H, Wu T. The Histone Methyltransferase G9a Promotes Cholangiocarcinogenesis Through Regulation of the Hippo Pathway Kinase LATS2 and YAP Signaling Pathway. Hepatology 2020; 72:1283-1297. [PMID: 31990985 PMCID: PMC7384937 DOI: 10.1002/hep.31141] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 12/22/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) is a highly malignant epithelial tumor of the biliary tree with poor prognosis. In the current study, we present evidence that the histone-lysine methyltransferase G9a is up-regulated in human CCA and that G9a enhances CCA cell growth and invasiveness through regulation of the Hippo pathway kinase large tumor suppressor 2 (LATS2) and yes-associated protein (YAP) signaling pathway. APPROACH AND RESULTS Kaplan-Meier survival analysis revealed that high G9a expression is associated with poor prognosis of CCA patients. In experimental systems, depletion of G9a by small interfering RNA/short hairpin RNA or inhibition of G9a by specific pharmacological inhibitors (UNC0642 and UNC0631) significantly inhibited human CCA cell growth in vitro and in severe combined immunodeficient mice. Increased G9a expression was also observed in mouse CCA induced by hydrodynamic tail vein injection of notch intracellular domain (NICD) and myr-Akt. Administration of the G9a inhibitor UNC0642 to NICD/Akt-injected mice reduced the growth of CCA, in vivo. These findings suggest that G9a inhibition may represent an effective therapeutic strategy for the treatment of CCA. Mechanistically, our data show that G9a-derived dimethylated H3K9 (H3K9me2) silenced the expression of the Hippo pathway kinase LATS2, and this effect led to subsequent activation of oncogenic YAP. Consequently, G9a depletion or inhibition reduced the level of H3K9me2 and restored the expression of LATS2 leading to YAP inhibition. CONCLUSIONS Our findings provide evidence for an important role of G9a in cholangiocarcinogenesis through regulation of LATS2-YAP signaling and suggest that this pathway may represent a potential therapeutic target for CCA treatment.
Collapse
|
49
|
Bai X, Yi M, Dong B, Zheng X, Wu K. The global, regional, and national burden of kidney cancer and attributable risk factor analysis from 1990 to 2017. Exp Hematol Oncol 2020; 9:27. [PMID: 33005476 PMCID: PMC7525971 DOI: 10.1186/s40164-020-00181-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Kidney cancer's incidence and mortality vary in different regions and countries. To compare and interpret kidney cancer's burden and change trends in the globe and in different countries, we conducted this study to report the global kidney cancer burden and attributable risk factors. METHODS Data about kidney cancer's incidence, death, disability-adjusted life-year (DALY) were extracted from the Global Burden of Diseases 2017. Besides, social-demographic index (SDI) values were adopted to investigate the correlation between kidney cancer's burden and social development degrees. RESULTS In the globe, the incidence case of kidney cancer increased sharply from 207.31*103 in 1990 to 393.04*103 in 2017. High SDI countries had the highest kidney cancer's burden with a decreased trend in incidence rate. On the contrary, the incidence rate was rapidly increased in low-middle SDI countries, although their burden of kidney cancer kept relatively low. At the same time, the deaths of kidney cancer increased from 68.14*103 to 138.53*103, and the kidney cancer-related DALYs increased from 1915.49*103 in 1990 to 3284.32*103 in 2017. Then, we searched the GBD database for kidney cancer-related risk factor. The high body-mass index and smoking were the main factors contributing to kidney cancer-related mortality. CONCLUSIONS Generally, from 1990 to 2017, the incidence rate in developed countries had gone down from the historic peak values while the incidence rate was still on the rise in developing counties. Given the aging trend in the globe, it is necessary to appeal to the public to decrease the exposure of kidney cancer-associated risk factors.
Collapse
Affiliation(s)
- Xianguang Bai
- Medical School of Pingdingshan University, Pingdingshan, Henan China
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Bing Dong
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan China
| | - Xinhua Zheng
- Medical School of Pingdingshan University, Pingdingshan, Henan China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan China
| |
Collapse
|
50
|
Outeiro-Pinho G, Barros-Silva D, Correia MP, Henrique R, Jerónimo C. Renal Cell Tumors: Uncovering the Biomarker Potential of ncRNAs. Cancers (Basel) 2020; 12:cancers12082214. [PMID: 32784737 PMCID: PMC7465320 DOI: 10.3390/cancers12082214] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022] Open
Abstract
Renal cell tumors (RCT) remain as one of the most common and lethal urological tumors worldwide. Discrimination between (1) benign and malignant disease, (2) indolent and aggressive tumors, and (3) patient responsiveness to a specific therapy is of major clinical importance, allowing for a more efficient patient management. Nonetheless, currently available tools provide limited information and novel strategies are needed. Over the years, a putative role of non-coding RNAs (ncRNAs) as disease biomarkers has gained relevance and is now one of the most prolific fields in biological sciences. Herein, we extensively sought the most significant reports on ncRNAs as potential RCTs' diagnostic, prognostic, predictive, and monitoring biomarkers. We could conclude that ncRNAs, either alone or in combination with currently used clinical and pathological parameters, might represent key elements to improve patient management, potentiating the implementation of precision medicine. Nevertheless, most ncRNA biomarkers require large-scale validation studies, prior to clinical implementation.
Collapse
Affiliation(s)
- Gonçalo Outeiro-Pinho
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
| | - Daniela Barros-Silva
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
| | - Margareta P. Correia
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
- Correspondence: ; Tel.: +351-225084000; Fax: +351-225084199
| |
Collapse
|