1
|
Whole-exome sequencing in eccrine porocarcinoma indicates promising therapeutic strategies. Cancer Gene Ther 2022; 29:697-708. [PMID: 34045664 PMCID: PMC9209330 DOI: 10.1038/s41417-021-00347-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 04/23/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023]
Abstract
Malignant sweat gland tumours are rare, with the most common form being Eccrine porocarcinoma (EP). To investigate the mutational landscape of EP, we performed whole-exome sequencing (WES) on 14 formalin-fixed paraffin-embedded samples of matched primary EP and healthy surrounding tissue. Mutational profiling revealed a high overall median mutation rate. This was attributed to signatures of mutational processes related to ultraviolet (UV) exposure, APOBEC enzyme dysregulation, and defective homologous double-strand break repair. All of these processes cause genomic instability and are implicated in carcinogenesis. Recurrent driving somatic alterations were detected in the EP candidate drivers TP53, FAT2, CACNA1S, and KMT2D. The analyses also identified copy number alterations and recurrent gains and losses in several chromosomal regions including that containing BRCA2, as well as deleterious alterations in multiple HRR components. In accordance with this reduced or even a complete loss of BRCA2 protein expression was detected in 50% of the investigated EP tumours. Our results implicate crucial oncogenic driver pathways and suggest that defective homologous double-strand break repair and the p53 pathway are involved in EP aetiology. Targeting of the p53 axis and PARP inhibition, and/or immunotherapy may represent promising treatment strategies.
Collapse
|
2
|
Painous C, van Os NJH, Delamarre A, Michailoviene I, Marti MJ, van de Warrenburg BP, Meissner WG, Utkus A, Reinhard C, Graessner H, Tijssen MA. Management of rare movement disorders in Europe: outcome of surveys of the European Reference Network for Rare Neurological Diseases. Eur J Neurol 2020; 27:1493-1500. [PMID: 32386078 PMCID: PMC7496702 DOI: 10.1111/ene.14302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/27/2020] [Indexed: 01/05/2023]
Abstract
Background and purpose The diagnosis of rare movement disorders is difficult and specific management programmes are not well defined. Thus, in order to capture and assess care needs, the European Reference Network for Rare Neurological Diseases has performed an explorative care need survey across all European Union (EU) countries. Methods This is a multicentre, cross‐sectional study. A survey about the management of different rare movement disorders (group 1, dystonia, paroxysmal dyskinesia and neurodegeneration with brain iron accumulation; group 2, ataxias and hereditary spastic paraparesis; group 3, atypical parkinsonism; group 4, choreas) was sent to an expert in each group of disorders from each EU country. Results Some EU countries claimed for an increase of teaching courses. Genetic testing was not readily available in a significant number of countries. Regarding management, patients’ accessibility to tertiary hospitals, to experts and to multidisciplinary teams was unequal between countries and groups of diseases. The availability of therapeutic options, such as botulinum toxin or more invasive treatments like deep brain stimulation, was limited in some countries. Conclusions The management of these conditions in EU countries is unequal. The survey provides evidence that a European care‐focused network that is able to address the unmet rare neurological disease care needs and inequalities is highly warranted.
Collapse
Affiliation(s)
- C Painous
- Neurology Service, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic Universitari, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - N J H van Os
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A Delamarre
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, Bordeaux, France.,UMR 5293, CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - I Michailoviene
- Faculty of Medicine, Institute of Biomedical Sciences, Vilnius, Vilnius University, Lithuania
| | - M J Marti
- Neurology Service, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic Universitari, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - B P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - W G Meissner
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, Bordeaux, France.,UMR 5293, CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France.,Department of Medicine, University of Otago, Christchurch, New Zealand.,New Zealand Brain Research Institute, Christchurch, New Zealand
| | - A Utkus
- Faculty of Medicine, Institute of Biomedical Sciences, Vilnius, Vilnius University, Lithuania
| | - C Reinhard
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Rare Diseases, University Hospital Tübingen, Tübingen, Germany
| | - H Graessner
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Rare Diseases, University Hospital Tübingen, Tübingen, Germany
| | - M A Tijssen
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Reduced Function of the Glutathione S-Transferase S1 Suppresses Behavioral Hyperexcitability in Drosophila Expressing Mutant Voltage-Gated Sodium Channels. G3-GENES GENOMES GENETICS 2020; 10:1327-1340. [PMID: 32054635 PMCID: PMC7144092 DOI: 10.1534/g3.119.401025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Voltage-gated sodium (Nav) channels play a central role in the generation and propagation of action potentials in excitable cells such as neurons and muscles. To determine how the phenotypes of Nav-channel mutants are affected by other genes, we performed a forward genetic screen for dominant modifiers of the seizure-prone, gain-of-function Drosophila melanogaster Nav-channel mutant, paraShu. Our analyses using chromosome deficiencies, gene-specific RNA interference, and single-gene mutants revealed that a null allele of glutathione S-transferase S1 (GstS1) dominantly suppresses paraShu phenotypes. Reduced GstS1 function also suppressed phenotypes of other seizure-prone Nav-channel mutants, paraGEFS+ and parabss. Notably, paraShu mutants expressed 50% less GstS1 than wild-type flies, further supporting the notion that paraShu and GstS1 interact functionally. Introduction of a loss-of-function GstS1 mutation into a paraShu background led to up- and down-regulation of various genes, with those encoding cytochrome P450 (CYP) enzymes most significantly over-represented in this group. Because GstS1 is a fly ortholog of mammalian hematopoietic prostaglandin D synthase, and in mammals CYPs are involved in the oxygenation of polyunsaturated fatty acids including prostaglandins, our results raise the intriguing possibility that bioactive lipids play a role in GstS1-mediated suppression of paraShu phenotypes.
Collapse
|
4
|
Berkut AA, Chugunov AO, Mineev KS, Peigneur S, Tabakmakher VM, Krylov NA, Oparin PB, Lihonosova AF, Novikova EV, Arseniev AS, Grishin EV, Tytgat J, Efremov RG, Vassilevski AA. Protein surface topography as a tool to enhance the selective activity of a potassium channel blocker. J Biol Chem 2019; 294:18349-18359. [PMID: 31533989 DOI: 10.1074/jbc.ra119.010494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Indexed: 01/24/2023] Open
Abstract
Tk-hefu is an artificial peptide designed based on the α-hairpinin scaffold, which selectively blocks voltage-gated potassium channels Kv1.3. Here we present its spatial structure resolved by NMR spectroscopy and analyze its interaction with channels using computer modeling. We apply protein surface topography to suggest mutations and increase Tk-hefu affinity to the Kv1.3 channel isoform. We redesign the functional surface of Tk-hefu to better match the respective surface of the channel pore vestibule. The resulting peptide Tk-hefu-2 retains Kv1.3 selectivity and displays ∼15 times greater activity compared with Tk-hefu. We verify the mode of Tk-hefu-2 binding to the channel outer vestibule experimentally by site-directed mutagenesis. We argue that scaffold engineering aided by protein surface topography represents a reliable tool for design and optimization of specific ion channel ligands.
Collapse
Affiliation(s)
- Antonina A Berkut
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Anton O Chugunov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; National Research University Higher School of Economics, 101000 Moscow, Russia; Moscow Institute of Physics and Technology (State University), 141700 Dolgoprudny, Russia
| | - Konstantin S Mineev
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; Moscow Institute of Physics and Technology (State University), 141700 Dolgoprudny, Russia
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven, 3000 Leuven, Belgium
| | - Valentin M Tabakmakher
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; School of Biomedicine, Far Eastern Federal University, 690950 Vladivostok, Russia
| | - Nikolay A Krylov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Peter B Oparin
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alyona F Lihonosova
- National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Ekaterina V Novikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; Moscow Institute of Physics and Technology (State University), 141700 Dolgoprudny, Russia
| | - Alexander S Arseniev
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; Moscow Institute of Physics and Technology (State University), 141700 Dolgoprudny, Russia
| | - Eugene V Grishin
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, 3000 Leuven, Belgium
| | - Roman G Efremov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; National Research University Higher School of Economics, 101000 Moscow, Russia; Moscow Institute of Physics and Technology (State University), 141700 Dolgoprudny, Russia.
| | - Alexander A Vassilevski
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; Moscow Institute of Physics and Technology (State University), 141700 Dolgoprudny, Russia.
| |
Collapse
|
5
|
Abstract
The spinocerebellar ataxias (SCAs) comprise more than 40 autosomal dominant neurodegenerative disorders that present principally with progressive ataxia. Within the past few years, studies of pathogenic mechanisms in the SCAs have led to the development of promising therapeutic strategies, especially for SCAs caused by polyglutamine-coding CAG repeats. Nucleotide-based gene-silencing approaches that target the first steps in the pathogenic cascade are one promising approach not only for polyglutamine SCAs but also for the many other SCAs caused by toxic mutant proteins or RNA. For these and other emerging therapeutic strategies, well-coordinated preparation is needed for fruitful clinical trials. To accomplish this goal, investigators from the United States and Europe are now collaborating to share data from their respective SCA cohorts. Increased knowledge of the natural history of SCAs, including of the premanifest and early symptomatic stages of disease, will improve the prospects for success in clinical trials of disease-modifying drugs. In addition, investigators are seeking validated clinical outcome measures that demonstrate responsiveness to changes in SCA populations. Findings suggest that MRI and magnetic resonance spectroscopy biomarkers will provide objective biological readouts of disease activity and progression, but more work is needed to establish disease-specific biomarkers that track target engagement in therapeutic trials. Together, these efforts suggest that the development of successful therapies for one or more SCAs is not far away.
Collapse
|
7
|
Gottrand F, Ley D, Michaud L, Sfeir R. Importance of an International Registry for and Collaborative Research on Esophageal Atresia. Front Pediatr 2017; 5:81. [PMID: 28473972 PMCID: PMC5397510 DOI: 10.3389/fped.2017.00081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/04/2017] [Indexed: 12/14/2022] Open
Abstract
Esophageal atresia (EA) is a rare congenital defect. Data on EA prevalence, management, and long-term outcome are lacking because the available data come from small retrospective series from tertiary referral centers. An international multicenter registry would provide strong epidemiological data from large population-based cohorts on EA prevalence and incidence, treatment, long-term morbidity, and prognosis and would thus provide accurate data for evaluation of the current guidelines for EA management. The future challenge of the new international network on EA, which was created in 2013, is to promote the creation of a collaborative database and further studies.
Collapse
Affiliation(s)
- Frédéric Gottrand
- Reference Center for Congenital and Malformative Esophageal Disorders, CHU Lille, Univ. Lille2, Lille, France
| | - Delphine Ley
- Reference Center for Congenital and Malformative Esophageal Disorders, CHU Lille, Univ. Lille2, Lille, France
| | - Laurent Michaud
- Reference Center for Congenital and Malformative Esophageal Disorders, CHU Lille, Univ. Lille2, Lille, France
| | - Rony Sfeir
- Reference Center for Congenital and Malformative Esophageal Disorders, CHU Lille, Univ. Lille2, Lille, France
| |
Collapse
|