1
|
Colina M, Campana G. Precision Medicine in Rheumatology: The Role of Biomarkers in Diagnosis and Treatment Optimization. J Clin Med 2025; 14:1735. [PMID: 40095875 PMCID: PMC11901317 DOI: 10.3390/jcm14051735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Rheumatic diseases encompass a wide range of autoimmune and inflammatory disorders, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), psoriatic arthritis (PsA), and systemic sclerosis (SSc). These conditions often result in chronic pain, disability, and reduced quality of life, with unpredictable disease courses that may lead to joint destruction, organ damage, or systemic complications. Biomarkers, defined as measurable indicators of biological processes or conditions, have the potential to transform clinical practice by improving disease diagnosis, monitoring, prognosis, and treatment decisions. While significant strides have been made in identifying and validating biomarkers in rheumatic diseases, challenges remain in their standardization, clinical utility, and integration into routine practice. This review provides an overview of the current state of biomarkers in rheumatic diseases, their roles in clinical settings, and the emerging advancements in the field.
Collapse
Affiliation(s)
- Matteo Colina
- Rheumatology Service, Section of Internal Medicine, Department of Medicine and Oncology, Ospedale Santa Maria della Scaletta, 40026 Imola, Italy
| | - Gabriele Campana
- Alma Mater Studiorum, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
2
|
Cheng Y, Zhang Z. Expression and Clinical Significance of microRNA-138-5p and TGF-β3 in Peripheral Blood of Patients With Ankylosing Spondylitis. Global Spine J 2025; 15:742-748. [PMID: 37978926 PMCID: PMC11881152 DOI: 10.1177/21925682231209626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
STUDY DESIGN Clinical study. OBJECTIVE Our work was aimed at exploring the expression and clinical significance of microRNA-138-5p (miR-138-5p) and Transforming Growth Factor-beta 3 (TGF-β3) in peripheral blood of patients with ankylosing spondylitis (AS). METHODS Forty-seven patients with AS were selected as the AS group, and the staging of the enrolled AS patients was based on the BASDAI score: <4 points were classified as the stable stage (stable group) and ≥4 points were classified as the active stage (active group). Forty-seven cases were selected from the same period of healthy physical examination in our hospital as the control group. miR-138-5p and TGF-β3 levels and disease activity factors in peripheral blood were measured in all patients. RESULTS Compared to healthy subjects, reduced miR-138-5p levels and increased TGF-β3 levels were found in AS patient. Even more, level of miR-138-5p was decreased and level of TGF-β3 was found to be increased in active disease stage of AS in comparison to inactive disease. Correlation analysis disclosed that miR-138-5p expression in peripheral blood of AS patients was negatively correlated with TGF-β3, HLA-B27, ESR, CRP, and BASDAI; serum TGF-β3 was positively correlated with HLA-B27, ESR, CRP, and BASDAI. The ROC curve analysis disclosed that miR-138-5p and TGF-β3 had certain diagnostic value for AS, and the combined detection could improve the clinical diagnostic capability of this disease. CONCLUSION miR-138-5p and TGF-β3 in peripheral blood of AS patients are potential biological markers for the diagnosis of AS and are expected to be new clinical diagnostic indicators.
Collapse
Affiliation(s)
- Yonghong Cheng
- Department of Spinal Surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhidong Zhang
- Department of Spinal Surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Zhou X, Yang M, Yang Y, Xu F, Wang F, Jiao M, Tao W, Li Y. Association of MiRNA Polymorphisms Involved in the PI3K/ATK/GSK3β Pathway with T2DM in a Chinese Population. Pharmgenomics Pers Med 2025; 18:71-84. [PMID: 39974346 PMCID: PMC11835773 DOI: 10.2147/pgpm.s487873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/03/2025] [Indexed: 02/21/2025] Open
Abstract
Background Single nucleotide polymorphisms (SNPs) in miRNA genes can influence the expression of miRNAs that modulate the PI3K/AKT/GSK3β pathway and play crucial roles in type 2 diabetes mellitus (T2DM) susceptibility. The purpose of this study was to investigate the association of SNPs in miRNA genes targeting the PI3K/AKT/GSK3β pathway with T2DM. Methods This case-control study included 1,416 subjects with T2DM and 1,694 non-diabetics. Eleven SNPs in miRNA genes (rs895819 in miR-27a, rs11888095 in miR-128a, rs2292832 in miR-149, rs6502892 in miR-22, rs13283671 in miR-31, rs1076063 and rs1076064 in miR-378a, rs10061133 in miR-449b, rs3746444 in miR-499a and rs678956 and rs476364 in miR-326) involved in PI3K/AKT/GSK3β pathway were genotyped by TaqMan Genotyping Assay, and the associations of these SNPs with T2DM were analyzed using online SHesis and SNPstats. Results The results showed that miR-378a rs1076064 G allele could be a protective factor against T2DM (p<0.001, OR=0.828; 95% CI:0.749-0.916), whereas the miR-31 rs13283671 C allele could increase the risk of developing T2DM (p=0.003, OR=1.193; 95% CI:1.060-1.342). In addition, the miR-378a rs1076063A-rs1076064G haplotype could be a protective against T2DM (p<0.001, OR=0.731; 95% CI:0.649-0.824). According to inheritance mode analysis, compared with the AA-AG genotype, the GG genotype of rs1076064 showed a protective effect in T2DM in the recessive mode (p<0.01, OR=0.71; 95% CI: 0.59-0.84). For rs13283671, compared with the TT genotype, the CT-CC genotype showed a risk effect in T2DM in the dominant inheritance model (p<0.01, OR=1.29; 95% CI: 1.12-1.49). Genotype-Tissue Expression (GTEx) Portal database analysis showed that miR-31 rs13283671 CT and CC genotypes had lower AKT expression than TT genotypes. Conclusion In conclusion, rs13283671 in miR-31 and rs1076064 in miR-378a involved in the PI3K/AKT/GSK3β pathway were associated with T2DM susceptibility in a Chinese population.
Collapse
Affiliation(s)
- Xing Zhou
- Department of Endocrinology, The Affiliated Hospital of Yunnan University & The Second People’s Hospital of Yunnan Province, Kunming, Yunnan, People’s Republic of China
- Kunming Medical University, Kunming, Yunnan, People’s Republic of China
- Department of Endocrinology, Dongguan Tungwah Hospital, Dongguan, Guangdong, People’s Republic of China
| | - Man Yang
- Department of Endocrinology, The Affiliated Hospital of Yunnan University & The Second People’s Hospital of Yunnan Province, Kunming, Yunnan, People’s Republic of China
| | - Ying Yang
- Department of Endocrinology, The Affiliated Hospital of Yunnan University & The Second People’s Hospital of Yunnan Province, Kunming, Yunnan, People’s Republic of China
| | - Fan Xu
- Department of Endocrinology, The Affiliated Hospital of Yunnan University & The Second People’s Hospital of Yunnan Province, Kunming, Yunnan, People’s Republic of China
| | - Feiying Wang
- Department of Endocrinology, The Affiliated Hospital of Yunnan University & The Second People’s Hospital of Yunnan Province, Kunming, Yunnan, People’s Republic of China
| | - Ming Jiao
- Kunming Medical University, Kunming, Yunnan, People’s Republic of China
- Yunnan Emergency Center, Kunming, Yunnan, People’s Republic of China
| | - Wenyu Tao
- Department of Endocrinology, The Affiliated Hospital of Yunnan University & The Second People’s Hospital of Yunnan Province, Kunming, Yunnan, People’s Republic of China
| | - Yiping Li
- Department of Endocrinology, The Affiliated Hospital of Yunnan University & The Second People’s Hospital of Yunnan Province, Kunming, Yunnan, People’s Republic of China
| |
Collapse
|
4
|
Jia D, Fan W, Ren W, Liu C. Click chemical ligation-enabled digital particle counting for multiplexed microRNA analysis. Biosens Bioelectron 2024; 261:116508. [PMID: 38896977 DOI: 10.1016/j.bios.2024.116508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
Digital counting assays, that quantify targets by counting individual signal entities, provide a promising way for the sensitive analysis of biomarkers even at the single-molecule level. Considering the requirements of complex enzyme-catalyzed amplification techniques and specialized instruments in traditional digital counting biosensors, herein, a simple digital counting platform for microRNA (miRNA) analysis is developed by employing the miRNA-templated click chemical ligation to hinge ultrabright quantum dot-doped nanoparticles (QDNPs) on the bottom of microplate well. Compared with the traditional short miRNA-mediated sandwich hybridization mechanism, the click chemistry-mediated ligation featured enhanced stability, achieving higher sensitivity by directly counting the number of QDNPs with a common wide-field fluorescence microscope. Furthermore, enzyme-free cycling click ligation strategy is adopted to push the detection limit of miRNA down to a low level of 8 fM. What is more, taking advantages of the tunable emission wavelength and narrow emission spectra of fluorescent nanoparticles, the platform enables simultaneous detection of multiplex miRNA targets without cross interference. Benefiting from the simple operation, high sensitivity, and good generality, miRNA analysis in complex samples is successfully achieved. This method not only pioneers a new route for digital counting assays but also holds great potential in miRNA-related biological researches.
Collapse
Affiliation(s)
- Dailu Jia
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wenjiao Fan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China.
| | - Wei Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
5
|
Mohammed OA, Alghamdi M, Adam MIE, BinAfif WF, Alfaifi J, Alamri MMS, Alqarni AA, Alhalafi AH, Bahashwan E, AlQahtani AAJ, Ayed A, Hassan RH, Abdel-Reheim MA, Abdel Mageed SS, Rezigalla AA, Doghish AS. miRNAs dysregulation in ankylosing spondylitis: A review of implications for disease mechanisms, and diagnostic markers. Int J Biol Macromol 2024; 268:131814. [PMID: 38677679 DOI: 10.1016/j.ijbiomac.2024.131814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Epigenetic processes, including non-coding RNA, histone modifications, and DNA methylation, play a vital role in connecting the environment to the development of a disorder, especially when there is a favorable genetic background. Ankylosing Spondylitis (AS) is a chronic type of spinal arthritis that highlights the significance of epigenetics in diseases related to autoimmunity and inflammation. MicroRNAs (miRNAs) are small non-coding RNAs that are involved in both normal and aberrant pathological and physiological gene expression. This study focuses on the pathophysiological pathways to clarify the role of miRNAs in AS. We have conducted a thorough investigation of the involvement of miRNAs in several processes, including inflammation, the production of new bone, T-cell activity, and the regulation of pathways such as BMP, Wnt, and TGFβ signaling. Undoubtedly, miRNAs play a crucial role in enhancing our comprehension of the pathophysiology of AS, and their promise as a therapeutic strategy is quickly expanding.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mushabab Alghamdi
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Waad Fuad BinAfif
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah Ali Alqarni
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah Hassan Alhalafi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Emad Bahashwan
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - AbdulElah Al Jarallah AlQahtani
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah Ayed
- Department of Surgery, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Rania H Hassan
- Dermatology Clinic, Abbasseya Psychiatric Hospital, Abbasseya, Cairo 11517, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Assad Ali Rezigalla
- Department of Anatomy, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
6
|
Park JS, Kim C, Choi J, Jeong HY, Moon YM, Kang H, Lee EK, Cho ML, Park SH. MicroRNA-21a-5p inhibition alleviates systemic sclerosis by targeting STAT3 signaling. J Transl Med 2024; 22:323. [PMID: 38561750 PMCID: PMC10983659 DOI: 10.1186/s12967-024-05056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/02/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND MicroRNA (miRNA)-21-5p participates in various biological processes, including cancer and autoimmune diseases. However, its role in the development of fibrosis in the in vivo model of systemic sclerosis (SSc) has not been reported. This study investigated the effects of miRNA-21a-5p overexpression and inhibition on SSc fibrosis using a bleomycin-induced SSc mouse model. METHODS A murine SSc model was induced by subcutaneously injecting 100 μg bleomycin dissolved in 0.9% NaCl into C57BL/6 mice daily for 5 weeks. On days 14, 21, and 28 from the start of bleomycin injection, 100 μg pre-miRNA-21a-5p or anti-miRNA-21a-5p in 1 mL saline was hydrodynamically injected into the mice. Fibrosis analysis was conducted in lung and skin tissues of SSc mice using hematoxylin and eosin as well as Masson's trichrome staining. Immunohistochemistry was used to examine the expression of inflammatory cytokines, phosphorylated signal transducer and activator of transcription-3 (STAT3) at Y705 or S727, and phosphatase and tensin homologue deleted on chromosome-10 (PTEN) in skin tissues of SSc mice. RESULTS MiRNA-21a-5p overexpression promoted lung fibrosis in bleomycin-induced SSc mice, inducing infiltration of cells expressing TNF-α, IL-1β, IL-6, or IL-17, along with STAT3 phosphorylated cells in the lesional skin. Conversely, anti-miRNA-21a-5p injection improved fibrosis in the lung and skin tissues of SSc mice, reducing the infiltration of cells secreting inflammatory cytokines in the skin tissue. In particular, it decreased STAT3-phosphorylated cell infiltration at Y705 and increased the infiltration of PTEN-expressing cells in the skin tissue of SSc mice. CONCLUSION MiRNA-21a-5p promotes fibrosis in an in vivo murine SSc model, suggesting that its inhibition may be a therapeutic strategy for improving fibrosis in SSc.
Collapse
Affiliation(s)
- Jin-Sil Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea
| | - Chongtae Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea
| | - JeongWon Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea
| | - Ha Yeon Jeong
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea
| | - Young-Mee Moon
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea
| | - Hoin Kang
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea.
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea.
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea.
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, South Korea.
- Divison of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-Gu, Seoul, 06591, South Korea.
| |
Collapse
|
7
|
Xiao N, Xie Z, He Z, Xu Y, Zhen S, Wei Y, Zhang X, Shen J, Wang J, Tian Y, Zuo J, Peng J, Li Z. Pathogenesis of gout: Exploring more therapeutic target. Int J Rheum Dis 2024; 27:e15147. [PMID: 38644732 DOI: 10.1111/1756-185x.15147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/23/2024]
Abstract
Gout is a chronic metabolic and immune disease, and its specific pathogenesis is still unclear. When the serum uric acid exceeds its saturation in the blood or tissue fluid, it is converted to monosodium urate crystals, which lead to acute arthritis of varying degrees, urinary stones, or irreversible peripheral joint damage, and in severe cases, impairment of vital organ function. Gout flare is a clinically significant state of acute inflammation in gout. The current treatment is mostly anti-inflammatory analgesics, which have numerous side effects with limited treatment methods. Gout pathogenesis involves many aspects. Therefore, exploring gout pathogenesis from multiple perspectives is conducive to identifying more therapeutic targets and providing safer and more effective alternative treatment options for patients with gout flare. Thus, this article is of great significance for further exploring the pathogenesis of gout. The author summarizes the pathogenesis of gout from four aspects: signaling pathways, inflammatory factors, intestinal flora, and programmed cell death, focusing on exploring more new therapeutic targets.
Collapse
Affiliation(s)
- Niqin Xiao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaohu Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhiyan He
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Yundong Xu
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Shuyu Zhen
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyu Zhang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiayan Shen
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jian Wang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Yadan Tian
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jinlian Zuo
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiangyun Peng
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Zhaofu Li
- Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
8
|
Pettorossi F, Gasparotto M, Ghirardello A, Franco C, Ceolotto G, Giannella A, Iaccarino L, Zanatta E, Doria A, Gatto M. MicroRNAs in idiopathic inflammatory myopathies: state-of-the-art and future perspectives. Curr Opin Rheumatol 2023; 35:374-382. [PMID: 37582051 DOI: 10.1097/bor.0000000000000960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
PURPOSE OF REVIEW Idiopathic inflammatory myopathies (IIMs) are a group of rare autoimmune disorders characterized by muscle weakness and inflammation. MicroRNAs (miRNAs) are the main class of small noncoding RNAs regulating a wide range of physiological and pathological processes and play a role in mediating autoimmunity and inflammation. In this review, we summarize the latest knowledge on the role of miRNAs in systemic autoimmune diseases with particular focus on IIMs. RECENT FINDINGS Study on miRNA expression in IIMs is helping in understanding the pathogenetic basis of the disease at a tissue and systemic level. Several miRNAs, even with a muscle-specific expression (myomiRs), have been shown to be involved in immune and nonimmune mechanisms of myofiber damage. MiRNAs modulate and orchestrate the local inflammatory infiltrate and could be used as potential biomarkers as they correlate with disease activity and response to therapy. SUMMARY IIMs comprise different clinical phenotypes and still little is known about the molecular signature of each subset. Further research about miRNA profiling will provide additional insights in the disease characterization with an expected impact on the therapeutic strategies.
Collapse
Affiliation(s)
- Federico Pettorossi
- Division of Rheumatology, Department of Medicine, University of Padua, Padua
| | - Michela Gasparotto
- Division of Rheumatology, Department of Medicine, University of Padua, Padua
- Department of Medical Surgical and Health Sciences, University of Trieste, Cattinara Teaching Hospital, Trieste
| | - Anna Ghirardello
- Division of Rheumatology, Department of Medicine, University of Padua, Padua
| | - Chiara Franco
- Division of Rheumatology, Department of Medicine, University of Padua, Padua
| | | | - Alessandra Giannella
- Division of Thrombotic and Hemorrhagic Diseases, Department of Medicine, University of Padua, Padua
| | - Luca Iaccarino
- Division of Rheumatology, Department of Medicine, University of Padua, Padua
| | - Elisabetta Zanatta
- Division of Rheumatology, Department of Medicine, University of Padua, Padua
| | - Andrea Doria
- Division of Rheumatology, Department of Medicine, University of Padua, Padua
| | - Mariele Gatto
- Division of Rheumatology, Department of Medicine, University of Padua, Padua
- Unit of Rheumatology, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
9
|
Tavasolian F, Lively S, Pastrello C, Tang M, Lim M, Pacheco A, Qaiyum Z, Yau E, Baskurt Z, Jurisica I, Kapoor M, Inman RD. Proteomic and genomic profiling of plasma exosomes from patients with ankylosing spondylitis. Ann Rheum Dis 2023; 82:1429-1443. [PMID: 37532285 DOI: 10.1136/ard-2022-223791] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
INTRODUCTION Recent advances in understanding the biology of ankylosing spondylitis (AS) using innovative genomic and proteomic approaches offer the opportunity to address current challenges in AS diagnosis and management. Altered expression of genes, microRNAs (miRNAs) or proteins may contribute to immune dysregulation and may play a significant role in the onset and persistence of inflammation in AS. The ability of exosomes to transport miRNAs across cells and alter the phenotype of recipient cells has implicated exosomes in perpetuating inflammation in AS. This study reports the first proteomic and miRNA profiling of plasma-derived exosomes in AS using comprehensive computational biology analysis. METHODS Plasma samples from patients with AS and healthy controls (HC) were isolated via ultracentrifugation and subjected to extracellular vesicle flow cytometry analysis to characterise exosome surface markers by a multiplex immunocapture assay. Cytokine profiling of plasma-derived exosomes and cell culture supernatants was performed. Next-generation sequencing was used to identify miRNA populations in exosomes enriched from plasma fractions. CD4+ T cells were sorted, and the frequency and proliferation of CD4+ T-cell subsets were analysed after treatment with AS-exosomes using flow cytometry. RESULTS The expression of exosome marker proteins CD63 and CD81 was elevated in the patients with AS compared with HC (q<0.05). Cytokine profiling in plasma-derived AS-exosomes demonstrated downregulation of interleukin (IL)-8 and IL-10 (q<0.05). AS-exosomes cocultured with HC CD4+ T cells induced significant upregulation of IFNα2 and IL-33 (q<0.05). Exosomes from patients with AS inhibited the proliferation of regulatory T cells (Treg), suggesting a mechanism for chronically activated T cells in this disease. Culture of CD4+ T cells from healthy individuals in the presence of AS-exosomes reduced the proliferation of FOXP3+ Treg cells and decreased the frequency of FOXP3+IRF4+ Treg cells. miRNA sequencing identified 24 differentially expressed miRNAs found in circulating exosomes of patients with AS compared with HC; 22 of which were upregulated and 2 were downregulated. CONCLUSIONS Individuals with AS have different immunological and genetic profiles, as determined by evaluating the exosomes of these patients. The inhibitory effect of exosomes on Treg in AS suggests a mechanism contributing to chronically activated T cells in this disease.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Starlee Lively
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Chiara Pastrello
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, - Data Science Discovery Centre for Chronic Diseases, University Health Network, Toronto, Ontario, Canada
| | - Michael Tang
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Melissa Lim
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Addison Pacheco
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Zoya Qaiyum
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Enoch Yau
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Zeynep Baskurt
- Department of Biostatistics, Princess Margaret Cancer Center, 610 University Ave, Toronto, Ontario, Canada
| | - Igor Jurisica
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, - Data Science Discovery Centre for Chronic Diseases, University Health Network, Toronto, Ontario, Canada
- Departments of Medical Biophysics and Computer Science, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mohit Kapoor
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, Division of Orthopaedic Surgery and Department of Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Robert D Inman
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Spondylitis Program, Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Gu F, Huang X, Huang W, Zhao M, Zheng H, Wang Y, Chen R. The role of miRNAs in Behçet's disease. Front Immunol 2023; 14:1249826. [PMID: 37860009 PMCID: PMC10584330 DOI: 10.3389/fimmu.2023.1249826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023] Open
Abstract
The symptoms of Behçet's disease (BD), a multisystemic condition with autoimmune and inflammation as hallmarks, include arthritis, recurring oral and vaginal ulcers, skin rashes and lesions, and involvement of the nervous, gastrointestinal, and vascular systems. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), may be important regulators of inflammation and autoimmune disease. These ncRNAs are essential to the physiological and pathophysiological disease course, and miRNA in particular has received significant attention for its role and function in BD and its potential use as a diagnostic biomarker in recent years. Although promising as therapeutic targets, miRNAs must be studied further to fully comprehend how miRNAs in BD act biologically.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuanyin Wang
- College and Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China
| | - Ran Chen
- College and Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China
| |
Collapse
|
11
|
Long X, Luo T, Yuan P, Gan Y, Liu H, Deng Z, Ding J, Gong Z, Yang Y, Zhong S. Hairpin Switches-Based Isothermal Transcription Amplification for Simple, Sensitivity Detection of MicroRNA. Anal Chem 2023; 95:13872-13879. [PMID: 37682627 DOI: 10.1021/acs.analchem.3c02051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
The ability to simply, selectively, and sensitively detect low numbers of miRNAs in clinical samples is highly valuable but remains a challenge. In this work, we present a novel miRNA detection system by using the elaborately designed hairpin switch, where the T7 primer, template, target recognize sequence, and light-up RNA aptamer template are edited and embedded in one single-stranded DNA hairpin structure. In the beginning, the hairpin switch maintained the hairpin structure 1, in which the ds promoter of T7 polymerase was disrupted, thus the transcription reaction of T7 polymerase was inhibited. After binding to the target, the hairpin switch 1 was unfolded and turned to the hairpin structure 2. This switch initiates the in vitro T7 transcription reaction, producing plenty of RNA transcripts containing RNA aptamers. Consequently, transcribed tremendous RNA aptamers lighted up the fluorophore for quantitative analysis. Compared with the existing T7 polymerase-based amplification system, this strategy exhibits several advantages, including simplicity, convenience, and high selectivity and sensitivity. The experimental results demonstrated that we could achieve the quantification of miRNA in buffer and complex biological samples.
Collapse
Affiliation(s)
- Xi Long
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, 410017 P. R. China
| | - Tong Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, 410017 P. R. China
| | - Panpan Yuan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, 410017 P. R. China
| | - Yuqing Gan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, 410017 P. R. China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, 410017 P. R. China
| | - Zhiwei Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, 410017 P. R. China
| | - Jiacheng Ding
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, 410017 P. R. China
| | - Zan Gong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, 410017 P. R. China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, 410017 P. R. China
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, 410017 P. R. China
| |
Collapse
|
12
|
Pitea M, Canale FA, Porto G, Verduci C, Utano G, Policastro G, Alati C, Santoro L, Imbalzano L, Martino M. The Role of MicroRNA in Graft-Versus-Host-Disease: A Review. Genes (Basel) 2023; 14:1796. [PMID: 37761936 PMCID: PMC10530280 DOI: 10.3390/genes14091796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a clinically challenging modality for the treatment of many hematologic diseases such as leukemia, lymphoma, and myeloma. Graft-versus-host disease (GVHD) is a common complication after allo-HSCT and remains a major cause of morbidity and mortality, limiting the success of a potentially curative transplant. Several microRNAs (miRNAs) have recently been shown to impact the biology of GVHD. They are molecular regulators involved in numerous processes during T-cell development, homeostasis, and activation, and contribute to the pathological function of T-cells during GvHD. Here, we review the key role of miRNAs contributing to the GvHD; their detection might be an interesting possibility in the early diagnosis and monitoring of disease.
Collapse
Affiliation(s)
- Martina Pitea
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Filippo Antonio Canale
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Gaetana Porto
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Chiara Verduci
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Giovanna Utano
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Giorgia Policastro
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Caterina Alati
- Hematology Unit, Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy;
| | - Ludovica Santoro
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Lucrezia Imbalzano
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| | - Massimo Martino
- Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato-Oncology and Radiotherapy Grande Ospedale Metropolitano “Bianchi-Malacrino-Morelli”, 89124 Reggio Calabria, Italy; (F.A.C.); (G.P.); (C.V.); (G.U.); (G.P.); (L.S.); (L.I.); (M.M.)
| |
Collapse
|
13
|
Carvajal P, Aguilera S, Jara D, Indo S, Barrera MJ, González S, Molina C, Heathcote B, Hermoso M, Castro I, González MJ. hsa-miR-424-5p and hsa-miR-513c-3p dysregulation mediated by IFN-γ is associated with salivary gland dysfunction in Sjögren's syndrome patients. J Autoimmun 2023; 138:103037. [PMID: 37229808 DOI: 10.1016/j.jaut.2023.103037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 05/27/2023]
Abstract
Salivary secretory dysfunction in SS-patients is associated with altered proteostasis, upregulation of ATF6α and components of the ERAD complex, such as SEL1L, and downregulation of XBP-1s and GRP78. Hsa-miR-424-5p is downregulated and hsa-miR-513c-3p is overexpressed in salivary glands from SS-patients. These miRNAs emerged as candidates that could regulate ATF6/SEL1L and XBP-1s/GRP78 levels, respectively. This study aimed to evaluate the effect of IFN-γ on hsa-miR-424-5p and hsa-miR-513c-3p expression and how these miRNAs regulate their targets. In labial salivary glands (LSG) biopsies from 9 SS-patients and 7 control subjects and IFN-γ-stimulated 3D-acini were analyzed. hsa-miR-424-5p and hsa-miR-513c-3p levels were measured by TaqMan assays and their localization by ISH. mRNA, protein levels, and localization of ATF6, SEL1L, HERP, XBP-1s and GRP78 were determined by qPCR, Western blot, or immunofluorescence. Functional and interaction assays were also performed. In LSGs from SS-patients and IFN-γ-stimulated 3D-acini, hsa-miR-424-5p was downregulated and ATF6α and SEL1L were upregulated. ATF6α and SEL1L were decreased after hsa-miR-424-5p overexpression, while ATF6α, SEL1L and HERP increased after hsa-miR-424-5p silencing. Interaction assays revealed that hsa-miR-424-5p targets ATF6α directly. hsa-miR-513c-3p was upregulated and XBP-1s and GRP78 were downregulated. XBP-1s and GRP78 were decreased after hsa-miR-513c-3p overexpression, while increases in XBP-1s and GRP78 were observed after hsa-miR-513c-3p silencing. Furthermore, we determined that hsa-miR-513c-3p targets XBP-1s directly. Significant correlations were found between both miRNA levels and clinical parameters. In conclusion, IFN-γ-dependent hsa-miR-424-5p and hsa-miR-513c-3p levels affect the expression of important factors involved in cellular proteostasis that control secretory function in LSG from SS-patients.
Collapse
Affiliation(s)
- Patricia Carvajal
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Independencia, Santiago, Chile.
| | - Sergio Aguilera
- Clínica INDISA, Av. Sta. María 1810, 7520440, Providencia, Santiago, Chile.
| | - Daniela Jara
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Independencia, Santiago, Chile.
| | - Sebastián Indo
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Independencia, Santiago, Chile.
| | - María-José Barrera
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Bellavista 7, 8420524, Recoleta, Santiago, Chile.
| | - Sergio González
- Escuela de Odontología, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Alameda Libertador Bernardo O'Higgins N° 2027 (ex 2013), 8340585, Santiago, Santiago, Chile.
| | - Claudio Molina
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Bellavista 7, 8420524, Recoleta, Santiago, Chile.
| | - Benjamín Heathcote
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Independencia, Santiago, Chile.
| | - Marcela Hermoso
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Independencia, Santiago, Chile.
| | - Isabel Castro
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Independencia, Santiago, Chile.
| | - María-Julieta González
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453, Independencia, Santiago, Chile.
| |
Collapse
|
14
|
RNA-Seq Reveals the mRNAs, miRNAs, and lncRNAs Expression Profile of Knee Joint Synovial Tissue in Osteoarthritis Patients. J Clin Med 2023; 12:jcm12041449. [PMID: 36835984 PMCID: PMC9968173 DOI: 10.3390/jcm12041449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Osteoarthritis (OA) is a chronic disease common in the elderly population and imposes significant health and economic burden. Total joint replacement is the only currently available treatment but does not prevent cartilage degeneration. The molecular mechanism of OA, especially the role of inflammation in disease progression, is incompletely understood. We collected knee joint synovial tissue samples of eight OA patients and two patients with popliteal cysts (controls), measured the expression levels of lncRNAs, miRNAs, and mRNAs in these tissues by RNA-seq, and identified differentially expressed genes (DEGs) and key pathways. In the OA group, 343 mRNAs, 270 lncRNAs, and 247 miRNAs were significantly upregulated, and 232 mRNAs, 109 lncRNAs, and 157 miRNAs were significantly downregulated. mRNAs potentially targeted by lncRNAs were predicted. Nineteen overlapped miRNAs were screened based on our sample data and GSE 143514 data. Pathway enrichment and functional annotation analyses showed that the inflammation-related transcripts CHST11, ALDH1A2, TREM1, IL-1β, IL-8, CCL5, LIF, miR-146a-5p, miR-335-5p, lncRNA GAS5, LINC02288, and LOC101928134 were differentially expressed. In this study, inflammation-related DEGs and non-coding RNAs were identified in synovial samples, suggesting that competing endogenous RNAs have a role in OA. TREM1, LIF, miR146-5a, and GAS5 were identified to be OA-related genes and potential regulatory pathways. This research helps elucidate the pathogenesis of OA and identify novel therapeutic targets for this disorder.
Collapse
|
15
|
Assadiasl S, Rajabinejad M, Soleimanifar N, Makiyan F, Azizi E, Rezaiemanesh A, Nicknam MH. MicroRNAs-mediated regulation pathways in rheumatic diseases. Inflammopharmacology 2023; 31:129-144. [PMID: 36469219 DOI: 10.1007/s10787-022-01097-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/29/2022] [Indexed: 12/09/2022]
Abstract
Rheumatoid arthritis (RA) and ankylosing spondylitis (AS) are two common rheumatic disorders marked by persistent inflammatory joint disease. Patients with RA have osteodestructive symptoms, but those with AS have osteoproliferative manifestations. Ligaments, joints, tendons, bones, and muscles are all affected by rheumatic disorders. In recent years, many epigenetic factors contributing to the pathogenesis of rheumatoid disorders have been studied. MicroRNAs (miRNAs) are small, non-coding RNA molecules implicated as potential therapeutic targets or biomarkers in rheumatic diseases. MiRNAs play a critical role in the modulation of bone homeostasis and joint remodeling by controlling fibroblast-like synoviocytes (FLSs), chondrocytes, and osteocytes. Several miRNAs have been shown to be dysregulated in rheumatic diseases, including miR-10a, 16, 17, 18a, 19, 20a, 21, 27a, 29a, 34a, 103a, 125b, 132, 137, 143, 145, 146a, 155, 192, 203, 221, 222, 301a, 346, and 548a.The major molecular pathways governed by miRNAs in these cells are Wnt, bone-morphogenic protein (BMP), nuclear factor (NF)-κB, receptor activator of NF-κB (RANK)-RANK ligand (RANKL), and macrophage colony-stimulating factor (M-CSF) receptor pathway. This review aimed to provide an overview of the most important signaling pathways controlled by miRNAs in rheumatic diseases.
Collapse
Affiliation(s)
- Sara Assadiasl
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Misagh Rajabinejad
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Narjes Soleimanifar
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Makiyan
- Division of Nanobiotechnology, Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Esfandiar Azizi
- Department of Immunology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Daneshgah Street, Shahid Shiroudi Boulevard, PO-Box: 6714869914, Bākhtarān, Iran.
| | | |
Collapse
|
16
|
Xie J, He C, Su Y, Ding Y, Zhu X, Xu Y, Ding J, Zhou H, Wang H. Research progress on microRNA in gout. Front Pharmacol 2022; 13:981799. [PMID: 36339582 PMCID: PMC9631428 DOI: 10.3389/fphar.2022.981799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/26/2022] [Indexed: 07/30/2023] Open
Abstract
Gout is a common form of arthritis caused by the deposition of sodium urate crystals in the joints and tissues around them. MicroRNAs (miRNAs) are noncoding RNAs that have been shown to be involved in regulating the pathogenesis of gout through multiple cellular signaling pathways, which may be potential targets for the treatment of gout. In this review, we systematically discuss the regulatory roles of related miRNAs in gout, which will provide help for the treatment of gout and miRNAs is expected to become a potential biomarker for gout diagnosis.
Collapse
Affiliation(s)
- Jing Xie
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Cuixia He
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Yue Su
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- School of Public Foundation, Bengbu Medical College, Bengbu, Anhui, China
| | - Yuzhou Ding
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Xingyu Zhu
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Yuanyuan Xu
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Jiaxiang Ding
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- School of Public Foundation, Bengbu Medical College, Bengbu, Anhui, China
| | - Huan Zhou
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
- School of Public Foundation, Bengbu Medical College, Bengbu, Anhui, China
| | - Hongju Wang
- Clinical Trials Center, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
17
|
Ultrasenstive SERS biosensor based on Zn 2+ from ZnO nanoparticle assisted DNA enzyme amplification for detection of miRNA. Anal Chim Acta 2022; 1228:340340. [PMID: 36127003 DOI: 10.1016/j.aca.2022.340340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/13/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022]
Abstract
In this work, a simple and sensitive SERS biosensor was proposed for ultrasensitive detecting miRNA 122 based on ZnO nanoparticle amplification strategy and the full utilization of DNA chain. Firstly, ZnO@S1/S2 and CoFe2O4@S3 complexes can flock together with the assistance of target miRNA. Accompanied with the incremental amount of miRNA, the quantity of ZnO@S1/S2 would increase. Therefore, a significant amplification capability can be obtained by converting ZnO complexes into Zn2+ with the assistance of HCl. In this case, the DNA chain S2 can be obtained by the ZnO dissolving. In addition, through a clever design, the obtained Zn2+ can be further utilized to induce DNA enzyme cycle amplification to cleave S5 into DNA chain which was similar with DNA S2. This step greatly avoided the waste of DNA chains and improved the utilization efficiency of DNA chains. The S2 and abundant S2 analogues can complement with S4 on the Raman sensing interface to imbed lots of Raman probe DOX for obtaining strong Raman signal. By this way, with the increased number of miRNA, the S2 and abundant S2 analogues would increase, so the amount of DOX would increase to produce strong Raman signal to quantitatively detect target miRNA. As a result, this SERS biosensor based on Zn+ amplification and high utilization efficiency of DNA chain can obtain a low detection limit of 6.82 aM and wide linear range from 10 aM to 10 pM, which shown great potential in the clinical application and medical diagnosis.
Collapse
|
18
|
Yang X, Wang J, Gao Z, Zhang W, Zhu H, Song Y, Wang Q, Liu M, Jiang L, Huang Y, Xia F. An orthogonal dual-regulation strategy for sensitive biosensing applications. Natl Sci Rev 2022; 9:nwac048. [PMID: 36285294 PMCID: PMC9584063 DOI: 10.1093/nsr/nwac048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/22/2021] [Accepted: 02/15/2022] [Indexed: 10/27/2023] Open
Abstract
Biosensing systems based on controllable motion behaviors of droplets have attracted extensive attention, but still face challenges of insufficient sensitivity and uncontrollable dynamic range due to imprecise manipulation of droplet motion on the surfaces. Here, we report an orthogonal dual-regulation strategy for precise motion control of droplets and we demonstrate its utility as a sensitive sensing system with controllable dynamic ranges of sensing for adenosine triphosphate, miRNA, thrombin and kanamycin, as well as discrimination of five kinds of DNA. We endowed a DNA-contained bio-droplet sliding on a lubricant-infused structural surface with micro-grooves to separately adjust the resistance from liquid phase and solid phase. The resistance from liquid phase mainly depended on hydrophobic interaction between DNA and lubricant, which can be finely tuned by different DNA's average chain length. Meanwhile, the resistance from solid surface was determined by the energy barrier from the periodic micro-grooves, which can be adjusted by varying the droplet's sliding direction on the surface. The hydrophobic interaction is conformed to be orthogonal to the micro-grooves' anisotropic resistance by three different methods. This orthogonal dual-regulation strategy thus demonstrated its ability to precisely control bio-droplets' motion behaviors and sensitive detection with adjustable dynamic ranges for various bio-targets. The dual-regulation strategy will provide significant insights for super-wettable biosensors, visual inspection and beyond.
Collapse
Affiliation(s)
- Xian Yang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- State Grid Integrated Energy Service Group CO. LTD., Beijing 100052, China
| | - Jinhua Wang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Zhongfeng Gao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Weiqi Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hai Zhu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yongjun Song
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Quan Wang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Mingjie Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, China
| | - Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Zhejiang Institute, China University of Geosciences, Hangzhou 311305, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Zhejiang Institute, China University of Geosciences, Hangzhou 311305, China
| |
Collapse
|
19
|
Wu F, Gao J, Kang J, Wang X, Niu Q, Liu J, Zhang L. Knowledge Mapping of Exosomes in Autoimmune Diseases: A Bibliometric Analysis (2002–2021). Front Immunol 2022; 13:939433. [PMID: 35935932 PMCID: PMC9353180 DOI: 10.3389/fimmu.2022.939433] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/24/2022] [Indexed: 12/14/2022] Open
Abstract
Background Autoimmune diseases (AIDs) are a class of chronic disabling diseases characterized by inflammation and damage to muscles, joints, bones, and internal organs. Recent studies have shown that much progress has been made in the research of exosomes in AIDs. However, there is no bibliometric analysis in this research field. This study aims to provide a comprehensive overview of the knowledge structure and research hotspots of exosomes in AIDs through bibliometrics. Method Publications related to exosomes in AIDs from 2002 to 2021 were searched on the web of science core collection (WoSCC) database. VOSviewers, CiteSpace and R package “bibliometrix” were used to conduct this bibliometric analysis. Results 312 articles from 48 countries led by China and the United States were included. The number of publications related to exosomes in AIDs is increasing year by year. Central South University, Sun Yat Sen University, Tianjin Medical University and University of Pennsylvania are the main research institutions. Frontiers in immunology is the most popular journal in this field, and Journal of Immunology is the most co-cited journal. These publications come from 473 authors among which Ilias Alevizos, Qianjin Lu, Wei Wei, Jim Xiang and Ming Zhao had published the most papers and Clotilde Théry was co-cited most often. Studying the mechanism of endogenous exosomes in the occurrence and development of AIDs and the therapeutic strategy of exogenous exosomes in AIDs are the main topics in this research field. “Mesenchymal stem cells”, “microRNA”, “biomarkers”, “immunomodulation”, and “therapy” are the primary keywords of emerging research hotspots. Conclusion This is the first bibliometric study that comprehensively summarizes the research trends and developments of exosomes in AIDs. This information identifies recent research frontiers and hot directions, which will provide a reference for scholars studying exosomes.
Collapse
Affiliation(s)
- Fengping Wu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jinfang Gao
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Kang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xuexue Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Qing Niu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jiaxi Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Liyun Zhang
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Liyun Zhang,
| |
Collapse
|
20
|
Tsermpini EE, Kalogirou CI, Kyriakopoulos GC, Patrinos GP, Stathopoulos C. miRNAs as potential diagnostic biomarkers and pharmacogenomic indicators in psychiatric disorders. THE PHARMACOGENOMICS JOURNAL 2022; 22:211-222. [PMID: 35725816 DOI: 10.1038/s41397-022-00283-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 12/11/2022]
Abstract
The heterogeneity of psychiatric disorders and the lack of reliable biomarkers for prediction and treatments follow-up pose difficulties towards recognition and understanding of the molecular basis of psychiatric diseases. However, several studies based on NGS approaches have shown that miRNAs could regulate gene expression during onset and disease progression and could serve as potential diagnostic and pharmacogenomics biomarkers during treatment. We provide herein a detailed overview of circulating miRNAs and their expression profiles as biomarkers in schizophrenia, bipolar disorder and major depressive disorder and their role in response to specific treatments. Bioinformatics analysis of miR-34a, miR-106, miR-134 and miR-132, which are common among SZ, BD and MDD patients, showed brain enrichment and involvement in the modulation of critical signaling pathways, which are often deregulated in psychiatric disorders. We propose that specific miRNAs support accurate diagnosis and effective precision treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Evangelia Eirini Tsermpini
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Christina I Kalogirou
- Department of Biochemistry, School of Medicine, University of Patras, Patras, Greece
| | | | - George P Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, School of Health Sciences, Department of Pharmacy, University of Patras, Patras, Greece
| | | |
Collapse
|
21
|
Zhu R, Qi WY, Liu TW, Liu F. MicroRNA 449a can Attenuate Protective Effect of Urokinase Against Pulmonary Embolism. Front Pharmacol 2022; 13:713848. [PMID: 35571119 PMCID: PMC9095938 DOI: 10.3389/fphar.2022.713848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Acute pulmonary embolism (APE) is a disabling diseases with high incidence rate and mortality rate. Although with high specificity, D-Dimer lacks specificity to assess APE, hence additional diagnostic and prognostic biomarkers are necessary. APE is widely treated with serine protease urokinase or urokinase-type plasminogen activator (uPA), which act as a catalyst for conversion of plasminogen to plasmin to resolve blood clots. However, it is unknown the role of differential expression of microRNAs (miRNAs) in protective effect of uPA against APE. Hence, we performed miRNA profiling in a hypoxia/reoxygenation (H/R) model of bronchial epithelial BEAS-2B cells in vitro and a APE mice model in vivo. Our analysis revealed that miR-34a-5p, miR-324-5p, miR-331-3p are upregulated with H/R or APE induction, whereas miR-429, miR-491-5p, and miR-449a are downregulated. The differential expression of the miRNAs was attenuated to levels comparable to control by treatment with uPA both in vitro and in vivo. In situ target prediction and analysis of potential functions of the target genes showed that the enrichment of biological processes and pathways were related to cell growth, proliferation, and inflammation. Ectopic overexpression of miR-449a using a mimic completely attenuated the protective effect of uPA in the H/R model in vitro. These results provide a group of miRNAs that could be used as markers, and the modulation of these miRNAs might have potential therapeutic benefits in patients with APE, which need to be validated in additional studies in humans.
Collapse
Affiliation(s)
- Ran Zhu
- Department of Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Wei-yi Qi
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Ting-wei Liu
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Fan Liu
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Fan Liu,
| |
Collapse
|
22
|
Singh RP, Hahn BH, Bischoff DS. Identification and Contribution of Inflammation-Induced Novel MicroRNA in the Pathogenesis of Systemic Lupus Erythematosus. Front Immunol 2022; 13:848149. [PMID: 35444657 PMCID: PMC9013931 DOI: 10.3389/fimmu.2022.848149] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Recently microRNAs (miRNAs) have been recognized as powerful regulators of many genes and pathways involved in the pathogenesis of inflammatory diseases including Systemic Lupus Erythematosus (SLE). SLE is an autoimmune disease characterized by production of various autoantibodies, inflammatory immune cells, and dysregulation of epigenetic changes. Several candidate miRNAs regulating inflammation and autoimmunity in SLE are described. In this study, we found significant increases in the expression of miR21, miR25, and miR186 in peripheral blood mononuclear cells (PBMCs) of SLE patients compared to healthy controls. However, miR146a was significantly decreased in SLE patients compared to healthy controls and was negatively correlated with plasma estradiol levels and with SLE disease activity scores (SLEDAI). We also found that protein levels of IL-12 and IL-21 were significantly increased in SLE patients as compared to healthy controls. Further, our data shows that protein levels of IL-12 were positively correlated with miR21 expression and protein levels of IL-21 positively correlated with miR25 and miR186 expression in SLE patients. In addition, we found that levels of miR21, miR25, and miR186 positively correlated with SLEDAI and miR146a was negatively correlated in SLE patients. Thus, our data shows a dynamic interplay between disease pathogenesis and miRNA expression. This study has translational potential and may identify novel therapeutic targets in patients with SLE.
Collapse
Affiliation(s)
- Ram P Singh
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Division of Rheumatology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bevra H Hahn
- Division of Rheumatology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - David S Bischoff
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
23
|
Castro I, Carvajal P, Jara D, Aguilera S, Heathcote B, Barrera MJ, Aliaga-Tobar V, Maracaja-Coutinho V, Urzúa U, Quest AFG, González S, Molina C, Hermoso M, González MJ. Small RNA Expression Profiling Reveals hsa-miR-181d-5p Downregulation Associated With TNF-α Overexpression in Sjögren’s Syndrome Patients. Front Immunol 2022; 13:870094. [PMID: 35432384 PMCID: PMC9010469 DOI: 10.3389/fimmu.2022.870094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/14/2022] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (sRNA), that alter gene expression by binding to target messenger RNAs (mRNAs) and repressing translation. Dysregulated miRNA expression has been implicated in the pathogenesis of autoimmune diseases such as Sjögren’s syndrome (SS). The aim of this study was to characterize the global profile of sRNAs in labial salivary glands (LSG) from SS-patients and to validate potential miRNA candidates implicated in glandular inflammation. LSG from 21 SS-patients and 9 sicca controls were analyzed. A global next generation sequencing (NGS)-based sRNA profiling approach was employed to identify direct targets whereby differentially expressed miRNAs were predicted using bioinformatics tools. miRNA levels were validated by TaqMan and target mRNA levels were determined by quantitative real-time PCR. We also performed in vitro assays using recombinant TNF-α. NGS shows that ~30% of sRNAs were miRNAs. In comparison with samples from sicca controls, four miRNAs were found differentially expressed in LSG from SS-patients with low focus score (LFS) and 18 from SS-patients with high focus score (HFS). The miRNA with the most significant changes identified by NGS was hsa-miR-181d-5p and downregulation was confirmed by TaqMan analysis. Levels of TNF-α mRNA, a direct target of hsa-miR-181d-5p, were significantly increased and negatively correlated with hsa-miR-181d-5p presence. Moreover, positive correlations between TNF-α transcript levels, focus score, ESSDAI, and autoantibody levels were also detected. Furthermore, TNF-α stimulation decreased hsa-miR-181d-5p levels in vitro. Downregulation of hsa-miR-181d-5p in LSG from SS-patients could contribute to the glandular pro-inflammatory environment by deregulation of its direct target TNF-α. Further dissection of the pathophysiological mechanisms underlying the hsa-miR-181d-5p-mediated action in inflammatory conditions could be useful to evaluate the benefits of increasing hsa-miR-181d-5p levels for restoration of salivary gland epithelial cell architecture and function.
Collapse
Affiliation(s)
- Isabel Castro
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Patricia Carvajal
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Daniela Jara
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio Aguilera
- Departamento de Reumatología, Clínica Instituto de Diagnóstico Sociedad Anónima (Indisa), Santiago, Chile
| | - Benjamín Heathcote
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | - Víctor Aliaga-Tobar
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Ulises Urzúa
- Departamento de Oncología Básico-Clínico, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrew F. G. Quest
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio González
- Escuela de Odontología, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Santiago, Chile
| | - Claudio Molina
- Facultad de Odontología, Universidad San Sebastián, Santiago, Chile
| | - Marcela Hermoso
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - María-Julieta González
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- *Correspondence: María-Julieta González, ;
| |
Collapse
|
24
|
hsa-miR-206b Involves in the Development of Papillary Thyroid Carcinoma via Targeting LMX1B. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7488708. [PMID: 35342753 PMCID: PMC8948606 DOI: 10.1155/2022/7488708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/21/2022] [Accepted: 02/19/2022] [Indexed: 11/18/2022]
Abstract
Objectives Papillary thyroid carcinoma (PTC) is the most common endocrine system malignant thyroid cancer, and patients with lymph node metastasis typically exhibit poor prognosis. MicroRNAs (miRNAs) can act as either oncogenes or tumor suppressors in PTC. This study was aimed at using PTC transcriptome data obtained from The Cancer Genome Atlas (TCGA) to identify differentially expressed, survival-related miRNAs and target genes. Methods We analyzed the TCGA datasets to identify differentially expressed mRNAs/miRNAs in 493 PTC patients with stage I_II group (stages I and II) versus stage III_IV group (stages III and IV) according to TNM staging. The Kaplan-Meier survival analysis, the Cox regression analysis, and the log-rank test were performed to investigate survival-related miRNAs. Results We identified 36 significantly differentially expressed miRNAs in the stage I_II group versus the stage III_IV group, in which 31 were upregulated and only 5 were downregulated (i.e., hsa-miR-891a-5p, hsa-miR-892a, hsa-miR-888-5p, hsa-miR-891b, and hsa-miR-892b). Additionally, five signature miRNAs (hsa-miR-206, hsa-miR-299-3p, hsa-miR-299-5p, hsa-miR-496, and hsa-miR-509-3-5p) were associated with the overall survival of PTC patients. We also found that LMX1B, whose expression was inversely correlated with hsa-miR-206 expression, was a putative target gene of hsa-miR-206 and LMX1B was likely to serve as a tumor suppressor in PTC. Conclusion hsa-miR-206b might be involved in promoting TNM staging in PTC via targeting of LMX1B.
Collapse
|
25
|
Barghbani M, Sarookhani MR, Abbasi M, Maali A, Hajiaghaei M, Keshavarz Shahbaz S, Foroughi F. Evaluation of serum level of miR-155 and TNF-α in rheumatoid arthritis patients. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Luo Z, Yang F, Hong S, Wang J, Chen B, Li L, Yang J, Yao Y, Yang C, Hu Y, Wang S, Xu T, Wu J. Role of microRNA alternation in the pathogenesis of gouty arthritis. Front Endocrinol (Lausanne) 2022; 13:967769. [PMID: 36034424 PMCID: PMC9402903 DOI: 10.3389/fendo.2022.967769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022] Open
Abstract
Gouty arthritis is a common inflammatory disease. The condition is triggered by a disorder of uric acid metabolism, which causes urate deposition and gout flares. MicroRNAs are a class of conserved small non-coding RNAs that bind to the 3' untranslated region (UTR) of mRNA and regulate the expression of a variety of proteins at the post-transcriptional level. In recent years, attention has been focused on the role of miRNAs in various inflammatory diseases, including gouty arthritis. It is thought that miRNAs may regulate immune function and inflammatory responses, thereby influencing the onset and progression of the disease. This article mainly reviewed the roles of miRNAs in the pathogenesis of gouty arthritis and prospected their potential as diagnostic and prognostic relevant biomarkers and as possible therapeutic targets.
Collapse
Affiliation(s)
- Zhipan Luo
- The First Affifiliated Hospital, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Institute of Innovative Drugs, Hefei, China
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Fan Yang
- The First Affifiliated Hospital, Anhui Medical University, Hefei, China
| | - Shaocheng Hong
- The First Affifiliated Hospital, Anhui Medical University, Hefei, China
| | - Jianpeng Wang
- The First Affifiliated Hospital, Anhui Medical University, Hefei, China
| | - Bangjie Chen
- The First Affifiliated Hospital, Anhui Medical University, Hefei, China
| | - Liangyun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Institute of Innovative Drugs, Hefei, China
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Junfa Yang
- Institute of clinical pharmacology, Anhui Medical University, Hefei, China
| | - Yan Yao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Institute of Innovative Drugs, Hefei, China
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Chenchen Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Institute of Innovative Drugs, Hefei, China
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Institute of Innovative Drugs, Hefei, China
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Shuxian Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Institute of Innovative Drugs, Hefei, China
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Anhui Institute of Innovative Drugs, Hefei, China
- School of Pharmacy, Anhui Medical University, Hefei, China
- *Correspondence: Tao Xu, ; Jun Wu,
| | - Jun Wu
- Geriatric Department, The First Affifiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Tao Xu, ; Jun Wu,
| |
Collapse
|
27
|
Ali SA, Peffers MJ, Ormseth MJ, Jurisica I, Kapoor M. The non-coding RNA interactome in joint health and disease. Nat Rev Rheumatol 2021; 17:692-705. [PMID: 34588660 DOI: 10.1038/s41584-021-00687-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Non-coding RNAs have distinct regulatory roles in the pathogenesis of joint diseases including osteoarthritis (OA) and rheumatoid arthritis (RA). As the amount of high-throughput profiling studies and mechanistic investigations of microRNAs, long non-coding RNAs and circular RNAs in joint tissues and biofluids has increased, data have emerged that suggest complex interactions among non-coding RNAs that are often overlooked as critical regulators of gene expression. Identifying these non-coding RNAs and their interactions is useful for understanding both joint health and disease. Non-coding RNAs regulate signalling pathways and biological processes that are important for normal joint development but, when dysregulated, can contribute to disease. The specific expression profiles of non-coding RNAs in various disease states support their roles as promising candidate biomarkers, mediators of pathogenic mechanisms and potential therapeutic targets. This Review synthesizes literature published in the past 2 years on the role of non-coding RNAs in OA and RA with a focus on inflammation, cell death, cell proliferation and extracellular matrix dysregulation. Research to date makes it apparent that 'non-coding' does not mean 'non-essential' and that non-coding RNAs are important parts of a complex interactome that underlies OA and RA.
Collapse
Affiliation(s)
- Shabana A Ali
- Bone and Joint Center, Department of Orthopaedic Surgery, Henry Ford Health System, Detroit, MI, USA. .,Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, USA.
| | - Mandy J Peffers
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Michelle J Ormseth
- Department of Research and Development, Veterans Affairs Medical Center, Nashville, TN, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
28
|
Exploring the Extracellular Vesicle MicroRNA Expression Repertoire in Patients with Rheumatoid Arthritis and Ankylosing Spondylitis Treated with TNF Inhibitors. DISEASE MARKERS 2021; 2021:2924935. [PMID: 34691284 PMCID: PMC8529175 DOI: 10.1155/2021/2924935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/03/2021] [Indexed: 12/17/2022]
Abstract
Rheumatoid arthritis (RA) and ankylosing spondylitis (AS) belong to the most common inflammatory rheumatic diseases. MicroRNAs (miRNAs) are small 18–22 RNA molecules that function as posttranscriptional regulators. They are abundantly present within extracellular vesicles (EVs), small intercellular communication vesicles that can be found in bodily fluids and that have key functions in pathological and physiological pathways. Recently, EVs have gained much interest because of their diagnostic and therapeutic potential. Using NanoString profiling technology, the miRNA repertoire of serum EVs was determined and compared in RA and AS patients before and after anti-TNF therapy to assess its potential use as a diagnostic and prognostic biomarker. Furthermore, possible functional effects of those miRNAs that were characterized by the most significant expression changes were evaluated using in silico prediction algorithms. The analysis revealed a unique profile of differentially expressed miRNAs in RA and AS patient serum EVs. We identified 12 miRNAs whose expression profiles enabled differentiation between RA and AS patients before induction of anti-TNF treatment, as well as 4 and 14 miRNAs whose repertoires were significantly changed during the treatment in RA and AS patients, respectively. In conclusion, our findings suggest that extracellular vesicle miRNAs could be used as potential biomarkers associated with RA and AS response to biological treatment.
Collapse
|
29
|
Akaslan E, Güvener O, Görür A, Çelikcan DH, Tamer L, Biçer A. The plasma microRNA levels and their relationship with the general health and functional status in female patients with fibromyalgia syndrome. Arch Rheumatol 2021; 36:482-492. [PMID: 35382374 PMCID: PMC8957758 DOI: 10.46497/archrheumatol.2022.8363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/26/2021] [Indexed: 11/03/2022] Open
Abstract
Objectives: The aim of this study was to identify the plasma level of micro-ribonucleic acid (microRNA) expressions and the relationship between plasma microRNA levels with the general health and functional status in female patients with fibromyalgia syndrome (FMS).
Patients and methods: Thirty-five female patients (mean age: 42.0±11.8 years; range, 21 to 62 years) diagnosed as FMS and 35 sex-and age-matched healthy controls (mean age: 43.7±8.8 years; range, 21 to 56 years) were enrolled in the study. MicroRNA measurements of the participants in plasma were carried out by using the quantitative polymerase chain reaction (qPCR). A total of 11 plasma levels of microRNA expressions were examined in both groups. The general health and functional status of the patients and controls were assessed by the Fibromyalgia Impact Questionnaire (FIQ) and the Short Form-36 (SF-36) scale.
Results: No significant difference was observed between the plasma levels of microRNA expressions in patients with FMS and healthy controls. The plasma level of miR-320a expression was found to be negatively correlated with the total FIQ score in female patients with FMS (p=0.05, r=-0.34). Negative correlations were also detected between the plasma level of miR-320a and miR-320b expressions and the subscale score of SF-36 physical function in female patients with FMS (p=0.01, r=-0.43 and p=0.01, r=-0.43, respectively). A strong positive correlation was found between miR-142-3p and the subscale score of SF-36 mental symptom score in female patients with FMS (p<0.001, r=1.00).
Conclusion: The expression levels of microRNAs in plasma between female patients with FMS and controls were not significantly different. Only plasma levels of miR-320a, miR-320b, and miR-142-3p expressions were associated with the general health, functional status, and mental symptom score in female patients with FMS.
Collapse
Affiliation(s)
- Erbil Akaslan
- Department of Physical Medicine and Rehabilitation, Hatay State Hospital, Hatay, Turkey
| | - Orhan Güvener
- Department of Physical Medicine and Rehabilitation, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Ayşegül Görür
- Department of Medical Biochemistry, Mersin University Faculty of Medicine, Mersin, Turkey
| | | | - Lülüfer Tamer
- Department of Medical Biochemistry, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Ali Biçer
- Department of Physical Medicine and Rehabilitation, Mersin University Faculty of Medicine, Mersin, Turkey
| |
Collapse
|
30
|
Belli R, Ferraro E, Molfino A, Carletti R, Tambaro F, Costelli P, Muscaritoli M. Liquid Biopsy for Cancer Cachexia: Focus on Muscle-Derived microRNAs. Int J Mol Sci 2021; 22:ijms22169007. [PMID: 34445710 PMCID: PMC8396502 DOI: 10.3390/ijms22169007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer cachexia displays a complex nature in which systemic inflammation, impaired energy metabolism, loss of muscle and adipose tissues result in unintentional body weight loss. Cachectic patients have a poor prognosis and the presence of cachexia reduces the tolerability of chemo/radio-therapy treatments and it is frequently the primary cause of death in advanced cancer patients. Early detection of this condition could make treatments more effective. However, early diagnostic biomarkers of cachexia are currently lacking. In recent years, although solid biopsy still remains the "gold standard" for diagnosis of cancer, liquid biopsy is gaining increasing interest as a source of easily accessible potential biomarkers. Moreover, the growing interest in circulating microRNAs (miRNAs), has made these molecules attractive for the diagnosis of several diseases, including cancer. Some muscle-derived circulating miRNA might play a pivotal role in the onset/progression of cancer cachexia. This topic is of great interest since circulating miRNAs might be easily detectable by means of liquid biopsies and might allow an early diagnosis of this syndrome. We here summarize the current knowledge on circulating muscular miRNAs involved in muscle atrophy, since they might represent easily accessible and promising biomarkers of cachexia.
Collapse
Affiliation(s)
- Roberta Belli
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (A.M.); (R.C.); (F.T.)
- Correspondence: (R.B.); (M.M.); Tel./Fax: +390-649-972-020 (M.M.)
| | - Elisabetta Ferraro
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56126 Pisa, Italy;
| | - Alessio Molfino
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (A.M.); (R.C.); (F.T.)
| | - Raffaella Carletti
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (A.M.); (R.C.); (F.T.)
| | - Federica Tambaro
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (A.M.); (R.C.); (F.T.)
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Torino, 10124 Torino, Italy;
| | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (A.M.); (R.C.); (F.T.)
- Correspondence: (R.B.); (M.M.); Tel./Fax: +390-649-972-020 (M.M.)
| |
Collapse
|
31
|
Rahaghi FF. Alpha-1 antitrypsin deficiency research and emerging treatment strategies: what's down the road? Ther Adv Chronic Dis 2021; 12_suppl:20406223211014025. [PMID: 34408832 PMCID: PMC8367209 DOI: 10.1177/20406223211014025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/08/2021] [Indexed: 01/29/2023] Open
Abstract
Intravenous infusion of alpha-1 antitrypsin (AAT) was approved by the United States Food and Drug Administration (FDA) to treat emphysema associated with AAT deficiency (AATD) in 1987 and there are now several FDA-approved therapy products on the market, all of which are derived from pooled human plasma. Intravenous AAT therapy has proven clinical efficacy in slowing the decline of lung function associated with AATD progression; however, it is only recommended for individuals with the most severe forms of AATD as there is a lack of evidence that this treatment is effective in treating wild-type heterozygotes (e.g., PI*MS and PI*MZ genotypes), for which the prevalence may be much higher than previously thought. There are large numbers of individuals that are currently left untreated despite displaying symptoms of AATD. Furthermore, not all countries offer AAT augmentation therapy due to its expense and inconvenience for patients. More cost-effective treatments are now being sought that show efficacy for less severe forms of AATD and many new therapeutic technologies are being investigated, such as gene repair and other interference strategies, as well as the use of chemical chaperones. New sources of AAT are also being investigated to ensure there are enough supplies to meet future demand, and new methods of assessing response to treatment are being evaluated. There is currently extensive research into AATD and its treatment, and this chapter aims to highlight important emerging treatment strategies that aim to improve the lives of patients with AATD.
Collapse
Affiliation(s)
- Franck F Rahaghi
- Advanced Lung Disease Clinic, Cleveland Clinic Florida, 2950 Cleveland Clinic Boulevard, Weston, FL 33331, USA
| |
Collapse
|
32
|
Li J, Xie X, Liu W, Gu F, Zhang K, Su Z, Wen Q, Sui Z, Zhou P, Yu T. MicroRNAs as Biomarkers for the Diagnosis of Ankylosing Spondylitis: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2021; 8:701789. [PMID: 34447765 PMCID: PMC8383110 DOI: 10.3389/fmed.2021.701789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Abnormal expression levels of microRNAs (miRNAs) were observed in ankylosing spondylitis (AS) in recent articles, suggesting that miRNAs may be used as biomarkers for AS diagnoses. In this paper, we conducted a meta-analysis to identify the overall diagnostic accuracy of miRNA biomarkers in AS patients. Methods: An extensive search was undertaken in PubMed, Embase, Cochrane databases, and Wan Fang database up to 30 December 2020 using the following key words: ("microRNAs" or "microRNA" or "miRNA" or "miR" or "RNA, Micro" or "Primary MicroRNA") and ("Spondylitis Ankylosing" or "Spondyloarthritis Ankylopoietica" or "Ankylosing Spondylarthritis" or "Ankylosing Spondylarthritides" or "Spondylarthritides Ankylosing" or "Ankylosing Spondylitis") and ("blood" or "serum" or "plasma"). Statistical evaluation of dysregulated miRNAs using the sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and the area under the curve (AUC). Results: Twenty-nine articles reporting on the miRNAs of AS were included. A total of 42 miRNAs were observed to be up-regulated and 45 miRNAs were down-regulated in the AS cases compared with the controls. Besides, 29 studies from nine articles were included in our meta-analysis. The pooled sensitivity, specificity, PLR, NLR, DOR, and AUC were 0. 76 (95% CI, 0.70-0.81), 0.80 (95% CI, 0.74-0.85), 3.75 (95% CI, 2.82-5.01), 0.30 (95% CI, 0.24-0.39), 12.32 (95% CI, 7.65-19.83), 0.85 (95% CI, 0.81-0.88), respectively, suggesting a good diagnostic accuracy of miRNAs for AS. Conclusions: Circulating miRNAs are deregulated in AS patients. miRNAs may be used as a relatively non-invasive biomarkers for the detection of AS.
Collapse
Affiliation(s)
- Jiangbi Li
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Xiaoping Xie
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Weibing Liu
- Department of Orthopedics, The First People's Hospital of Yunnan Province, Kunming, China
| | - Feng Gu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Ke Zhang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Zilong Su
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Qiangqiang Wen
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Zhenjiang Sui
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Pengcheng Zhou
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Tiecheng Yu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
33
|
miR-183-5p Is a Potential Molecular Marker of Systemic Lupus Erythematosus. J Immunol Res 2021; 2021:5547635. [PMID: 34036107 PMCID: PMC8124875 DOI: 10.1155/2021/5547635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
Objective To investigate microRNA (miRNA) expression profiles in individuals with systemic lupus erythematosus (SLE) and identify the valuable miRNA biomarkers in diagnosing and monitoring SLE. Methods Next-generation sequencing (NGS) was performed to assess miRNA amounts in peripheral blood mononuclear cells (PBMCs) from four SLE cases and four healthy controls. Quantitative polymerase chain reaction (qPCR) was carried out for validating candidate miRNAs in 32 SLE cases and 32 healthy controls. In addition, receiver operating characteristic (ROC) curve analysis was completed to evaluate diagnostic performance. Finally, the associations of candidate miRNAs with various characteristics of SLE were analyzed. Results A total of 157 miRNAs were upregulated, and 110 miRNAs were downregulated in PBMCs from SLE cases in comparison to healthy controls, of which the increase of miR-183-5p and decrease of miR-374b-3p were validated by qPCR and both showed good diagnostic performance for SLE diagnosis. Besides, miR-183-5p expression levels displayed a positive association with SLE disease activity index (SLEDAI) and anti-dsDNA antibody amounts. Conclusion Our data indicated that miR-183-5p is a promising biomarker of SLE.
Collapse
|
34
|
Adipocyte, Immune Cells, and miRNA Crosstalk: A Novel Regulator of Metabolic Dysfunction and Obesity. Cells 2021; 10:cells10051004. [PMID: 33923175 PMCID: PMC8147115 DOI: 10.3390/cells10051004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity is characterized as a complex and multifactorial excess accretion of adipose tissue (AT) accompanied with alterations in the immune response that affects virtually all age and socioeconomic groups around the globe. The abnormal accumulation of AT leads to several metabolic diseases, including nonalcoholic fatty liver disorder (NAFLD), low-grade inflammation, type 2 diabetes mellitus (T2DM), cardiovascular disorders (CVDs), and cancer. AT is an endocrine organ composed of adipocytes and immune cells, including B-Cells, T-cells and macrophages. These immune cells secrete various cytokines and chemokines and crosstalk with adipokines to maintain metabolic homeostasis and low-grade chronic inflammation. A novel form of adipokines, microRNA (miRs), is expressed in many developing peripheral tissues, including ATs, T-cells, and macrophages, and modulates the immune response. miRs are essential for insulin resistance, maintaining the tumor microenvironment, and obesity-associated inflammation (OAI). The abnormal regulation of AT, T-cells, and macrophage miRs may change the function of different organs including the pancreas, heart, liver, and skeletal muscle. Since obesity and inflammation are closely associated, the dysregulated expression of miRs in inflammatory adipocytes, T-cells, and macrophages suggest the importance of miRs in OAI. Therefore, in this review article, we have elaborated the role of miRs as epigenetic regulators affecting adipocyte differentiation, immune response, AT browning, adipogenesis, lipid metabolism, insulin resistance (IR), glucose homeostasis, obesity, and metabolic disorders. Further, we will discuss a set of altered miRs as novel biomarkers for metabolic disease progression and therapeutic targets for obesity.
Collapse
|
35
|
miR-19b-3p and miR-20a-5p are associated with the levels of antiphospholipid antibodies in patients with antiphospholipid syndrome. Rheumatol Int 2021; 41:1329-1335. [PMID: 33891159 DOI: 10.1007/s00296-021-04864-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Monocytes play a key role in pathophysiology of antiphospholipid syndrome (APS), nevertheless it is unclear if microRNA expression is associated with particular APS features. Identify whether miR-19b-3p and miR-20a-5p expression in monocytes are associated with hallmarks of the APS. Fifty-seven APS patients and 18 healthy controls were studied. Expression of miR-19b-3p and miR-20a-5p was measured in monocytes by RT-qPCR. Both miR-19b-3p (AUC = 0.835, 95% CI 0.733-0.938; P < 0.001) and miR-20a-5p (AUC = 0.857, 0.757-0.957; P < 0.001) discriminated APS patients from healthy individuals. A cut-off point of 1.98 for miR-19-3p and 2.18 for miR-20a-5p showed that APS patients with low microRNA expression had higher levels of IgM and IgG anticardiolipin antibodies than patients with high microRNA expression. In addition, APS patients with low microRNA expression had higher IgG anti-β2 glycoprotein I antibody levels than their counterparts with high microRNA expression. Finally, miR-19b-3p and miR-20a-5p expression levels were significantly higher in APS patients using oral anticoagulants. Monocyte expression of miR-19b-3p and miR-20a-5p is low in APS, and patients with the lowest microRNA expression presented the highest levels of antiphospholipid antibodies.
Collapse
|
36
|
López-Pedrera C, Villalba JM, Patiño-Trives AM, Luque-Tévar M, Barbarroja N, Aguirre MÁ, Escudero-Contreras A, Pérez-Sánchez C. Therapeutic Potential and Immunomodulatory Role of Coenzyme Q 10 and Its Analogues in Systemic Autoimmune Diseases. Antioxidants (Basel) 2021; 10:antiox10040600. [PMID: 33924642 PMCID: PMC8069673 DOI: 10.3390/antiox10040600] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is a mitochondrial electron carrier and a powerful lipophilic antioxidant located in membranes and plasma lipoproteins. CoQ10 is endogenously synthesized and obtained from the diet, which has raised interest in its therapeutic potential against pathologies related to mitochondrial dysfunction and enhanced oxidative stress. Novel formulations of solubilized CoQ10 and the stabilization of reduced CoQ10 (ubiquinol) have improved its bioavailability and efficacy. Synthetic analogues with increased solubility, such as idebenone, or accumulated selectively in mitochondria, such as MitoQ, have also demonstrated promising properties. CoQ10 has shown beneficial effects in autoimmune diseases. Leukocytes from antiphospholipid syndrome (APS) patients exhibit an oxidative perturbation closely related to the prothrombotic status. In vivo ubiquinol supplementation in APS modulated the overexpression of inflammatory and thrombotic risk-markers. Mitochondrial abnormalities also contribute to immune dysregulation and organ damage in systemic lupus erythematosus (SLE). Idebenone and MitoQ improved clinical and immunological features of lupus-like disease in mice. Clinical trials and experimental models have further demonstrated a therapeutic role for CoQ10 in Rheumatoid Arthritis, multiple sclerosis and type 1 diabetes. This review summarizes the effects of CoQ10 and its analogs in modulating processes involved in autoimmune disorders, highlighting the potential of these therapeutic approaches for patients with immune-mediated diseases.
Collapse
Affiliation(s)
- Chary López-Pedrera
- Rheumatology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (A.M.P.-T.); (M.L.-T.); (N.B.); (M.Á.A.); (A.E.-C.)
- Correspondence: ; Tel.: +34-957-213795
| | - José Manuel Villalba
- Department of Cell Biology, Immunology and Physiology, Agrifood Campus of International Excellence, University of Córdoba, ceiA3, 14014 Córdoba, Spain; (J.M.V.); (C.P.-S.)
| | - Alejandra Mª Patiño-Trives
- Rheumatology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (A.M.P.-T.); (M.L.-T.); (N.B.); (M.Á.A.); (A.E.-C.)
| | - Maria Luque-Tévar
- Rheumatology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (A.M.P.-T.); (M.L.-T.); (N.B.); (M.Á.A.); (A.E.-C.)
| | - Nuria Barbarroja
- Rheumatology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (A.M.P.-T.); (M.L.-T.); (N.B.); (M.Á.A.); (A.E.-C.)
| | - Mª Ángeles Aguirre
- Rheumatology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (A.M.P.-T.); (M.L.-T.); (N.B.); (M.Á.A.); (A.E.-C.)
| | - Alejandro Escudero-Contreras
- Rheumatology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (A.M.P.-T.); (M.L.-T.); (N.B.); (M.Á.A.); (A.E.-C.)
| | - Carlos Pérez-Sánchez
- Department of Cell Biology, Immunology and Physiology, Agrifood Campus of International Excellence, University of Córdoba, ceiA3, 14014 Córdoba, Spain; (J.M.V.); (C.P.-S.)
| |
Collapse
|
37
|
Yoneyama H, Morishita A, Iwama H, Fujita K, Masaki T, Tani J, Tadokoro T, Nomura T, Sakamoto T, Oura K, Takuma K, Nakahara M, Mimura S, Deguchi A, Oryu M, Tsutsui K, Himoto T, Shimotohno K, Wakita T, Kobara H, Masaki T. Identification of microRNA associated with the elimination of hepatitis C virus genotype 1b by direct-acting antiviral therapies. J Gastroenterol Hepatol 2021; 36:1126-1135. [PMID: 32839985 DOI: 10.1111/jgh.15224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM Direct-acting antiviral (DAA) therapies have been proven to be highly effective for the eradication of hepatitis C virus (HCV) without resistance-associated substitutions (RASs). However, even in cases with no detected RASs, treatment sometimes fails, suggestive of the existence of some host-related factors involved in HCV eradication by DAAs. To explore such factors, we analyzed the serum microRNAs (miRNAs) of patients who received DAA treatment. METHODS The serum miRNA expression levels of 39 patients with chronic HCV infection without any detectable RASs, who achieved sustained virological response with asunaprevir/daclatasvir or grazoprevir/elbasvir therapy, were investigated cyclopedically, using oligonucleotide microarrays. The effects of specific miRNAs on the replication of HCV were measured in the HCV genomic replicon containing Huh-7 hepatoma cells. RESULTS Along with the disappearance of HCV, the expression quantiles of 16 miRNAs in the asunaprevir/daclatasvir group and 18 miRNAs in the grazoprevir/elbasvir group showed a tendency to increase or decrease. Among these molecules, adjustments for multiple testing yielded a significant differential expression at a false discovery rate of less than 5% for only one molecule, hsa-miR-762. Its expression quantile increased after HCV exclusion in all patients who had achieved sustained virological response. Quantitative polymerase chain reaction analysis validated a significant increase in the serum hsa-miR-762 after disappearance of HCV. On the contrary, hsa-miR-762 was decreased in the relapse and breakthrough of HCV in DAA failures. Transfection of hsa-miR-762 into cultured HCV-infected hepatocytes significantly decreased HCV-RNA replication. CONCLUSION These data suggest that hsa-miR-762 is one of the host factors participating in HCV exclusion by DAA therapy.
Collapse
Affiliation(s)
- Hirohito Yoneyama
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, Miki, Kagawa, Japan
| | - Koji Fujita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Takahiro Masaki
- Department of Laboratory Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Joji Tani
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Takako Nomura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Teppei Sakamoto
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Kyoko Oura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Kei Takuma
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Mai Nakahara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Shima Mimura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Akihiro Deguchi
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Makoto Oryu
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Kunihiko Tsutsui
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Takashi Himoto
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Kagawa, Japan
| | - Kunitada Shimotohno
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Toyama, Tokyo, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| |
Collapse
|
38
|
Wielinska J, Bogunia-Kubik K. miRNAs as potential biomarkers of treatment outcome in rheumatoid arthritis and ankylosing spondylitis. Pharmacogenomics 2021; 22:291-301. [PMID: 33769067 DOI: 10.2217/pgs-2020-0148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Common autoimmune, inflammatory rheumatic diseases including rheumatoid arthritis and ankylosing spondylitis can lead to structural and functional disability, an increase in mortality and a decrease in the quality of a patient's life. To date, the core of available therapy consists of nonsteroidal anti-inflammatory drugs, glucocorticoids and conventional synthetic disease-modifying antirheumatic drugs, like methotrexate. Nowadays, biological therapy including anti-TNF, IL-6 and IL-1 inhibitors, as well as antibodies targeting IL-17 and Janus kinase inhibitors have been found to be helpful in the management of rheumatic conditions. The review provides a summary of the current therapy strategies with a focus on miRNA, which is considered to be a potential biomarker and possible answer to the challenges in the prediction of treatment outcome in patients with rheumatoid arthritis and ankylosing spondylitis.
Collapse
Affiliation(s)
- Joanna Wielinska
- Laboratory of Clinical Immunogenetics & Pharmacogenetics, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics & Pharmacogenetics, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
39
|
miRNA Regulatory Functions in Farm Animal Diseases, and Biomarker Potentials for Effective Therapies. Int J Mol Sci 2021; 22:ijms22063080. [PMID: 33802936 PMCID: PMC8002598 DOI: 10.3390/ijms22063080] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small endogenous RNAs that regulate gene expression post-transcriptionally by targeting either the 3′ untranslated or coding regions of genes. They have been reported to play key roles in a wide range of biological processes. The recent remarkable developments of transcriptomics technologies, especially next-generation sequencing technologies and advanced bioinformatics tools, allow more in-depth exploration of messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs), including miRNAs. These technologies have offered great opportunities for a deeper exploration of miRNA involvement in farm animal diseases, as well as livestock productivity and welfare. In this review, we provide an overview of the current knowledge of miRNA roles in major farm animal diseases with a particular focus on diseases of economic importance. In addition, we discuss the steps and future perspectives of using miRNAs as biomarkers and molecular therapy for livestock disease management as well as the challenges and opportunities for understanding the regulatory mechanisms of miRNAs related to disease pathogenesis.
Collapse
|
40
|
Arisan ED, Rencuzogullari O, Cieza-Borrella C, Miralles Arenas F, Dwek M, Lange S, Uysal-Onganer P. MiR-21 Is Required for the Epithelial-Mesenchymal Transition in MDA-MB-231 Breast Cancer Cells. Int J Mol Sci 2021; 22:1557. [PMID: 33557112 PMCID: PMC7913884 DOI: 10.3390/ijms22041557] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BCa) is one of the leading health problems among women. Although significant achievements have led to advanced therapeutic success with targeted therapy options, more efforts are required for different subtypes of tumors and according to genomic, transcriptomic, and proteomic alterations. This study underlines the role of microRNA-21 (miR-21) in metastatic MDA-MB-231 breast cancer cells. Following the knockout of miR-21 from MDA-MB-231 cells, which have the highest miR-21 expression levels compared to MCF-7 and SK-BR-3 BCa cells, a decrease in epithelial-mesenchymal transition (EMT) via downregulation of mesenchymal markers was observed. Wnt-11 was a critical target for miR-21, and the Wnt-11 related signaling axis was altered in the stable miR-21 knockout cells. miR-21 expression was associated with a significant increase in mesenchymal markers in MDA-MB-231 BCa cells. Furthermore, the release of extracellular vesicles (EVs) was significantly reduced in the miR-21 KO cells, alongside a significant reduction in relative miR-21 export in EV cargo, compared with control cells. We conclude that miR-21 is a leading factor involved in mesenchymal transition in MDA-MB-231 BCa. Future therapeutic strategies could focus on its role in the treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Elif Damla Arisan
- Institute of Biotechnology, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey;
| | - Ozge Rencuzogullari
- Department of Molecular Biology and Genetics, Atakoy Campus, Istanbul Kultur University, 34156 Istanbul, Turkey;
| | - Clara Cieza-Borrella
- Centre for Biomedical Education/Cell Biology and Genetics Research Centre, St. George’s, University of London, Cranmer Terrace, London SW17 0RE, UK; (C.C.-B.); (F.M.A.)
| | - Francesc Miralles Arenas
- Centre for Biomedical Education/Cell Biology and Genetics Research Centre, St. George’s, University of London, Cranmer Terrace, London SW17 0RE, UK; (C.C.-B.); (F.M.A.)
| | - Miriam Dwek
- Cancer Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK;
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK;
| |
Collapse
|
41
|
Bagheri Khoulenjani N, Saniee Abadeh M, Sarbazi-Azad S, Jaddi NS. Cancer miRNA biomarkers classification using a new representation algorithm and evolutionary deep learning. Soft comput 2021. [DOI: 10.1007/s00500-020-05366-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Gbotosho OT, Kapetanaki MG, Kato GJ. The Worst Things in Life are Free: The Role of Free Heme in Sickle Cell Disease. Front Immunol 2021; 11:561917. [PMID: 33584641 PMCID: PMC7873693 DOI: 10.3389/fimmu.2020.561917] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Hemolysis is a pathological feature of several diseases of diverse etiology such as hereditary anemias, malaria, and sepsis. A major complication of hemolysis involves the release of large quantities of hemoglobin into the blood circulation and the subsequent generation of harmful metabolites like labile heme. Protective mechanisms like haptoglobin-hemoglobin and hemopexin-heme binding, and heme oxygenase-1 enzymatic degradation of heme limit the toxicity of the hemolysis-related molecules. The capacity of these protective systems is exceeded in hemolytic diseases, resulting in high residual levels of hemolysis products in the circulation, which pose a great oxidative and proinflammatory risk. Sickle cell disease (SCD) features a prominent hemolytic anemia which impacts the phenotypic variability and disease severity. Not only is circulating heme a potent oxidative molecule, but it can act as an erythrocytic danger-associated molecular pattern (eDAMP) molecule which contributes to a proinflammatory state, promoting sickle complications such as vaso-occlusion and acute lung injury. Exposure to extracellular heme in SCD can also augment the expression of placental growth factor (PlGF) and interleukin-6 (IL-6), with important consequences to enthothelin-1 (ET-1) secretion and pulmonary hypertension, and potentially the development of renal and cardiac dysfunction. This review focuses on heme-induced mechanisms that are implicated in disease pathways, mainly in SCD. A special emphasis is given to heme-induced PlGF and IL-6 related mechanisms and their role in SCD disease progression.
Collapse
Affiliation(s)
- Oluwabukola T. Gbotosho
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Maria G. Kapetanaki
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Gregory J. Kato
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
43
|
Dzakah EE, Huang L, Xue Y, Wei S, Wang X, Chen H, Shui J, Kyei F, Rashid F, Zheng H, Yang B, Tang S. Host cell response and distinct gene expression profiles at different stages of Chlamydia trachomatis infection reveals stage-specific biomarkers of infection. BMC Microbiol 2021; 21:3. [PMID: 33397284 PMCID: PMC7784309 DOI: 10.1186/s12866-020-02061-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/24/2020] [Indexed: 02/01/2023] Open
Abstract
Background Chlamydia trachomatis is the most common sexually transmitted infection and the bacterial agent of trachoma globally. C. trachomatis undergoes a biphasic developmental cycle involving an infectious elementary body and a replicative reticulate body. Little is currently known about the gene expression dynamics of host cell mRNAs, lncRNAs, and miRNAs at different stages of C. trachomatis development. Results Here, we performed RNA-seq and miR-seq on HeLa cells infected with C. trachomatis serovar E at 20 h post-infection (hpi) and 44 hpi with or without IFN-γ treatment. Our study identified and validated differentially expressed host cell mRNAs, lncRNAs, and miRNAs during infection. Host cells at 20 hpi showed the most differential upregulation of both coding and non-coding genes while at 44 hpi in the presence of IFN-γ resulted in a dramatic downregulation of a large proportion of host genes. Using RT-qPCR, we validated the top 5 upregulated mRNAs and miRNAs, which are specific for different stages of C. trachomatis development. One of the commonly expressed miRNAs at all three stages of C. trachomatis development, miR-193b-5p, showed significant expression in clinical serum samples of C. trachomatis-infected patients as compared to sera from healthy controls and HIV-1-infected patients. Furthermore, we observed significant upregulation of antigen processing and presentation, and T helper cell differentiation pathways at 20 hpi whereas T cell receptor, mTOR, and Rap1 pathways were modulated at 44 hpi. Treatment with IFN-γ at 44 hpi showed the upregulation of cytokine-cytokine receptor interaction, FoxO signaling, and Ras signaling pathways. Conclusions Our study documented transcriptional manipulation of the host cell genomes and the upregulation of stage-specific signaling pathways necessary for the survival of the pathogen and could serve as potential biomarkers in the diagnosis and management of the disease.
Collapse
Affiliation(s)
- Emmanuel Enoch Dzakah
- Dermatology Hospital of Southern Medical University, Guangzhou, China.,Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Liping Huang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yaohua Xue
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Shuai Wei
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xiaolin Wang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hongliang Chen
- The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, China
| | - Jingwei Shui
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Foster Kyei
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Farooq Rashid
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Heping Zheng
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Bing Yang
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Shixing Tang
- Dermatology Hospital of Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
44
|
Pérez-Sánchez L, Patiño-Trives AM, Aguirre-Zamorano MÁ, Luque-Tévar M, Ábalos-Aguilera MC, Arias-de la Rosa I, Seguí P, Velasco-Gimena F, Barbarroja N, Escudero-Contreras A, Collantes-Estévez E, Pérez-Sánchez C, López-Pedrera C. Characterization of Antiphospholipid Syndrome Atherothrombotic Risk by Unsupervised Integrated Transcriptomic Analyses. Arterioscler Thromb Vasc Biol 2020; 41:865-877. [PMID: 33356391 DOI: 10.1161/atvbaha.120.315346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Our aim was to characterize distinctive clinical antiphospholipid syndrome phenotypes and identify novel microRNA (miRNA)-mRNA-intracellular signaling regulatory networks in monocytes linked to cardiovascular disease. Approach and Results: Microarray analysis in antiphospholipid syndrome monocytes revealed 547 differentially expressed genes, mainly involved in inflammatory, cardiovascular, and reproductive disorders. Besides, this approach identified several genes related to inflammatory, renal, and dermatologic diseases. Functional analyses further demonstrated phosphorylation of intracellular kinases related to thrombosis and immune-mediated chronic inflammation. miRNA profiling showed altered expression of 22 miRNAs, enriched in pathways related to immune functions, cardiovascular disease, and autoimmune-associated pathologies. Unbiased integrated mRNA-miRNA analysis identified a signature of 9 miRNAs as potential modulators of 17 interconnected genes related to cardiovascular disease. The altered expression of that miRNA-mRNA signature was proven to be stable along time and distinctive of nonautoimmune thrombotic patients. Transfection studies and luciferase assays established the relationship between specific miRNAs and their identified target genes and proteins, along with their involvement in the regulation of monocytes procoagulant activity and cell adhesion. Correlation analyses showed relationship among altered miRNAs and their interconnected genes with aPL (antiphospholipid antibodies)-titers, along with microvascular endothelial dysfunction. In vitro studies demonstrated modulation in healthy monocytes by IgG-aPLs of several genes/miRNAs, which further intermediated downstream effects on endothelial function. The identified transcriptomic signature allowed the unsupervised division of three clusters of patients with antiphospholipid syndrome showing distinctive clinical profiles, mainly associated with their prothrombotic risk (thrombosis, autoantibody profile, cardiovascular risk factors, and atherosclerosis). CONCLUSIONS Extensive molecular profiling of monocytes in patients with primary antiphospholipid syndrome might help to identify distinctive clinical phenotypes, thus enabling new patients' tailored treatments.
Collapse
Affiliation(s)
- Laura Pérez-Sánchez
- Rheumatology Service (L.P.-S., A.M.P.-T., M.A.A.-Z., M.L.-T., M.C.A.-A., I.A.-d.l.R., N.B., A.E.-C., E.C.-E., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| | - Alejandra M Patiño-Trives
- Rheumatology Service (L.P.-S., A.M.P.-T., M.A.A.-Z., M.L.-T., M.C.A.-A., I.A.-d.l.R., N.B., A.E.-C., E.C.-E., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| | - M Ángeles Aguirre-Zamorano
- Rheumatology Service (L.P.-S., A.M.P.-T., M.A.A.-Z., M.L.-T., M.C.A.-A., I.A.-d.l.R., N.B., A.E.-C., E.C.-E., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| | - María Luque-Tévar
- Rheumatology Service (L.P.-S., A.M.P.-T., M.A.A.-Z., M.L.-T., M.C.A.-A., I.A.-d.l.R., N.B., A.E.-C., E.C.-E., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| | - M Carmen Ábalos-Aguilera
- Rheumatology Service (L.P.-S., A.M.P.-T., M.A.A.-Z., M.L.-T., M.C.A.-A., I.A.-d.l.R., N.B., A.E.-C., E.C.-E., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| | - Iván Arias-de la Rosa
- Rheumatology Service (L.P.-S., A.M.P.-T., M.A.A.-Z., M.L.-T., M.C.A.-A., I.A.-d.l.R., N.B., A.E.-C., E.C.-E., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| | - Pedro Seguí
- Radiology Service (P.S.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| | - Francisco Velasco-Gimena
- Haematology Service (F.V.-G.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| | - Nuria Barbarroja
- Rheumatology Service (L.P.-S., A.M.P.-T., M.A.A.-Z., M.L.-T., M.C.A.-A., I.A.-d.l.R., N.B., A.E.-C., E.C.-E., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (N.B.)
| | - Alejandro Escudero-Contreras
- Rheumatology Service (L.P.-S., A.M.P.-T., M.A.A.-Z., M.L.-T., M.C.A.-A., I.A.-d.l.R., N.B., A.E.-C., E.C.-E., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| | - Eduardo Collantes-Estévez
- Rheumatology Service (L.P.-S., A.M.P.-T., M.A.A.-Z., M.L.-T., M.C.A.-A., I.A.-d.l.R., N.B., A.E.-C., E.C.-E., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| | - Carlos Pérez-Sánchez
- Deparment of Medicine, University of Cambridge, School of Clinical Medicine, Addenbroke's Hospital, Cambridge Institute for Medical Research, United Kingdom (C.P.-S.)
| | - Chary López-Pedrera
- Rheumatology Service (L.P.-S., A.M.P.-T., M.A.A.-Z., M.L.-T., M.C.A.-A., I.A.-d.l.R., N.B., A.E.-C., E.C.-E., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| |
Collapse
|
45
|
Zhang X, Dang Y, Liu R, Zhao S, Ma J, Qin Y. MicroRNA-127-5p impairs function of granulosa cells via HMGB2 gene in premature ovarian insufficiency. J Cell Physiol 2020; 235:8826-8838. [PMID: 32391592 DOI: 10.1002/jcp.29725] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/10/2020] [Indexed: 12/30/2022]
Abstract
Distinct microRNA (miRNA) profiles have been reported in premature ovarian insufficiency (POI), but their functional relevance in POI is not yet clearly stated. In this study, aberrant expressions of miR-127-5p and high mobility group box 2 (HMGB2) were observed by microarrays in granulosa cells (GCs) from biochemical POI (bPOI) women and further confirmed by a quantitative reverse-transcription polymerase chain reaction. Immortalized human granulosa cell line and mouse primary ovarian GCs were used for functional validation. Orthotopic mouse model was established to examine the role of miR-127-5p in vivo. Finally, the expression of miR-127-5p was measured in the plasma of bPOI women. The receiver operating characteristic curve analysis was performed to determine the indicative role of miR-127-5p for ovarian reserve. Results showed the upregulation of miR-127-5p was identified in GCs from bPOI patients. It inhibited GCs proliferation and impaired DNA damage repair capacity through targeting HMGB2, which was significantly downregulated in GCs from the same cohort of cases. miR-127-5p was confirmed to attenuate DNA repair capability via HMGB2 in mouse ovary in vivo. Intriguingly, the upexpression of miR-127-5p was also detected in plasma of bPOI individuals, suggesting that miR-127-5p could be a promising indicator for bPOI. Taken together, our results discovered the deleterious effects of miR-127-5p on GCs function and its predictive value in POI process. The target gene HMGB2 could be considered as a new candidate for POI. This study highlights the importance of DNA repair capacity for ovarian function and sheds light on the epigenetic mechanism in the pathogenicity of POI.
Collapse
Affiliation(s)
- Xinyue Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Yujie Dang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Ran Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Shidou Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Jinlong Ma
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Yingying Qin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| |
Collapse
|
46
|
MotieGhader H, Masoudi-Sobhanzadeh Y, Ashtiani SH, Masoudi-Nejad A. mRNA and microRNA selection for breast cancer molecular subtype stratification using meta-heuristic based algorithms. Genomics 2020; 112:3207-3217. [DOI: 10.1016/j.ygeno.2020.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/13/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
|
47
|
Pang K, Li B, Tang Z, Yang W, Hao L, Shi Z, Zhang J, Cai L, Li R, Liu Y, Lv Q, Ding J, Han C. Resveratrol inhibits hypertrophic scars formation by activating autophagy via the miR-4654/Rheb axis. Mol Med Rep 2020; 22:3440-3452. [PMID: 32945452 PMCID: PMC7453609 DOI: 10.3892/mmr.2020.11407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
Hypertrophic scars (HSs) are a type of pathological scar which are induced by surgery, burn injuries or trauma during the healing process. Due to the high recurrence rates and strong invasive properties, HSs have become a major clinical issue. Resveratrol has been identified as a potential agent to suppress scar formation; however, the underlying mechanism of action remains unclear. Therefore, the present study aimed to investigate the effect of resveratrol on HS-derived fibroblasts (HSFBs) in vitro. MTT assay was performed to evaluate cell viability following the resveratrol treatment. Western blot and RT-qPCR analysis was used to identify the expression levels and the relationship among autophagic markers, miR-4654 and resveratrol treatment. Finally, GFP-LC3 stable HSFBs cells were generated to further assess the effect of resveratrol. The results revealed that resveratrol significantly induced cell death in a dose-dependent manner and induced autophagy by downregulating the expression levels of Rheb in HSFBs. Notably, microRNA-4654 (miR-4654) was significantly decreased in the HSFBs and re-upregulated by resveratrol treatment dose-dependently. Through the bioinformatic analysis and luciferase assay, miR-4654 was identified to directly target Rheb. Transfection studies showed that miR-4654 negative correlated with Rheb expression, suggesting that the autophagic process may be altered by the miR-4654/Rheb axis under the control of resveratrol. In conclusion, the results of the present study suggested that resveratrol may promote autophagy by upregulating miR-4654, which in turn may suppress Rheb expression via directly binding to the 3′-untranslated region of Rheb. These findings provided a novel insight into the development of potential therapeutic targets for HSs.
Collapse
Affiliation(s)
- Kun Pang
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| | - Bibo Li
- Department of Urology, Taizhou Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, Jiangsu 225300, P.R. China
| | - Zhiming Tang
- Department of Dermatology, Xuzhou Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Xuzhou, Jiangsu 221009, P.R. China
| | - Wen Yang
- Department of Renal Disease, Shandong First Medical University, Tai'an, Shandong 271016, P.R. China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| | - Zhenduo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| | - Jianjun Zhang
- Department of Urology, Suqian People's Hospital of Nanjing Drum-Tower Hospital Group, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu 223800, P.R. China
| | - Longjun Cai
- Department of Urology, Suqian People's Hospital of Nanjing Drum-Tower Hospital Group, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu 223800, P.R. China
| | - Rui Li
- Department of Burns and Plastic Surgery, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| | - Ying Liu
- Department of Burns and Plastic Surgery, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| | - Qian Lv
- Department of Burns and Plastic Surgery, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| | - Jicun Ding
- Department of Burns and Plastic Surgery, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| | - Conghui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
48
|
Li ZH, Wang YF, He DD, Zhang XM, Zhou YL, Yue H, Huang S, Fu Z, Zhang LY, Mao ZQ, Li S, Zhang CY, Chen X, Fu J. Let-7f-5p suppresses Th17 differentiation via targeting STAT3 in multiple sclerosis. Aging (Albany NY) 2020; 11:4463-4477. [PMID: 31326963 PMCID: PMC6660039 DOI: 10.18632/aging.102093] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/10/2019] [Indexed: 12/24/2022]
Abstract
T helper 17 (Th17) cells are regarded as key factors in the pathogenesis of multiple sclerosis (MS). Although the involvement of certain microRNAs (miRNAs) in the development of MS has been reported, their roles in Th17 cell differentiation and MS pathogenesis remain elusive. In this study, we identified that let-7f-5p expression is significantly downregulated in CD4+ T cells from MS patients and during the process of Th17 differentiation. The overexpression of let-7f-5p suppressed Th17 differentiation, whereas the knockdown of let-7f-5p expression enhanced this progress. We then explored the molecular mechanism through which let-7f-5p suppressed Th17 differentiation and identified signal transducer and activator of transcription 3 (STAT3), a pivotal transcription factor of Th17 cells, as a direct target of let-7f-5p. In contrast to the downregulated expression of let-7f-5p, STAT3 and p-STAT3 protein levels were dramatically upregulated and inversely correlated with let-7f-5p in peripheral blood CD4+ T cells from MS patients. In conclusion, let-7f-5p functions as a potential inhibitor of Th17 differentiation in the pathogenesis of MS by targeting STAT3 and may serve as a new therapeutic target.
Collapse
Affiliation(s)
- Zhi-Hui Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Yi-Fei Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Dan-Dan He
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin Heilongjiang 150086, China
| | - Xue-Mei Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Ying-Lian Zhou
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Hui Yue
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Shan Huang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Zheng Fu
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093,China
| | - Ling-Yu Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Zhu-Qing Mao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Shuang Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Chen-Yu Zhang
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093,China
| | - Xi Chen
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093,China
| | - Jin Fu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150086, China
| |
Collapse
|
49
|
Yao P, Ni Y, Liu C. Long Non-Coding RNA 691 Regulated PTEN/PI3K/AKT Signaling Pathway in Osteosarcoma Through miRNA-9-5p. Onco Targets Ther 2020; 13:4597-4606. [PMID: 32547090 PMCID: PMC7250307 DOI: 10.2147/ott.s249827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/18/2020] [Indexed: 12/15/2022] Open
Abstract
Background Large amounts of researches indicate that non-coding RNAs play a crucial role in many malignancies. However, the potential mechanisms of non-coding RNAs involved in osteosarcoma tumorigenesis remain elusive. Materials and Methods The expression of long non-protein coding RNA 691 (lncRNA 691) in cell lines and paired osteosarcoma tissues was compared by qRT-PCR assay. Then, we explored the tumor suppressor function of lncRNA 691 with MTS and colony formation assay. Flow cytometry results showed lncRNA 691 can enhance cell apoptosis. Then, we predicted and verified the negative regulation relationship with miRNA and the miRNA’s target gene. Lastly, we revealed the tumorigenesis function of lncRNA-691/miRNA/target gene axis in osteosarcoma. Results In our study, we disclosed that lncRNA 691 had low expression levels in osteosarcoma cell lines and tissues. Overexpression of lncRNA 691 could suppress the cell proliferation and induce cell apoptosis in MG-63 cell line. Then, bioinformatics analyses were performed and miR-9-5p was found to negatively regulate the lncRNA 691 expression and promote the osteosarcoma tumorigenesis in vitro. PTEN was predicted as the target gene of miR-9-5p. Luciferase reporter assay and RIP assay demonstrated the regulatory network of lncRNA 691/miR-9-5p/PTEN. We revealed that PTEN was downregulated by the overexpression of miR-9-5p and upregulated by the overexpression of lncRNA 691. At last, the apoptosis-associated protein of the lncRNA 691/miR-9-5p/PTEN/PI3K/AKT was further demonstrated. Conclusion LncRNA 691/miR-9-5p could regulate the tumorigenesis by regulating the PTEN/PI3K/AKT signal pathway in osteosarcoma.
Collapse
Affiliation(s)
- Pengju Yao
- Department of Joint Surgery, Jiaozuo People's Hospital, Henan Province, People's Republic of China
| | - Yangming Ni
- Department of Joint Surgery, Jiaozuo People's Hospital, Henan Province, People's Republic of China
| | - Changlu Liu
- Department of Joint Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, People's Republic of China
| |
Collapse
|
50
|
Ye Z, Sun B, Xiao Z. Machine learning identifies 10 feature miRNAs for lung squamous cell carcinoma. Gene 2020; 749:144669. [PMID: 32298761 DOI: 10.1016/j.gene.2020.144669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/07/2020] [Accepted: 04/11/2020] [Indexed: 12/24/2022]
Abstract
Lung squamous cell carcinoma (LUSC) is a common type of malignancy. The mechanism behind its tumor progression is not clear yet. The aim of this study is to use machine learning to identify the feature miRNAs, which can be reliably used as biomarkers for diagnosis LUSC. We downloaded microRNA expression data and clinical data from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus(GEO) database to identify differences in microRNA expression of primary tumor tissues and para-carcinoma tissues from LUSC. Construction of miRNA-mRNA interaction network, GO, KEGG pathway analysis and Kaplan-Meier survival analysis were used to explore the biological functions of the identified microRNAs. 21 feature miRNAs were identified between lung SCC tumor tissues and para-carcinoma tissues with the support of SVM and PCA methods. Among them, ten feature miRNAs: mir-143, mir-100, mir-101-1, mir-101-2, mir-182, mir-183, mir-205, mir-21, mir-30a, mir30-d were identified which could be used as a feature group to separate the cancer tissues from the adjacent tissues ultimately, and cross-validation of the obtained data showed that it can achieve extremely high accuracy and recall rate. Using KEGG, Reactome, GO databases, these 10 miRNAs and their target genes were found to be highly correlated with cancer. Survival analysis found that this group of miRNAs had a significant relationship with the survival rate of cancer patients, and the expression was significantly different between tumor tissues and healthy tissues. The dysregulated feature miRNAs might be involved in the pathology of LUSC and could be used as potential diagnostic biomarkers or therapeutic targets for LUSC.
Collapse
Affiliation(s)
- Zheng Ye
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Bo Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|