1
|
Khalid K, Poh CL. The Promising Potential of Reverse Vaccinology-Based Next-Generation Vaccine Development over Conventional Vaccines against Antibiotic-Resistant Bacteria. Vaccines (Basel) 2023; 11:1264. [PMID: 37515079 PMCID: PMC10385262 DOI: 10.3390/vaccines11071264] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The clinical use of antibiotics has led to the emergence of multidrug-resistant (MDR) bacteria, leading to the current antibiotic resistance crisis. To address this issue, next-generation vaccines are being developed to prevent antimicrobial resistance caused by MDR bacteria. Traditional vaccine platforms, such as inactivated vaccines (IVs) and live attenuated vaccines (LAVs), were effective in preventing bacterial infections. However, they have shown reduced efficacy against emerging antibiotic-resistant bacteria, including MDR M. tuberculosis. Additionally, the large-scale production of LAVs and IVs requires the growth of live pathogenic microorganisms. A more promising approach for the accelerated development of vaccines against antibiotic-resistant bacteria involves the use of in silico immunoinformatics techniques and reverse vaccinology. The bioinformatics approach can identify highly conserved antigenic targets capable of providing broader protection against emerging drug-resistant bacteria. Multi-epitope vaccines, such as recombinant protein-, DNA-, or mRNA-based vaccines, which incorporate several antigenic targets, offer the potential for accelerated development timelines. This review evaluates the potential of next-generation vaccine development based on the reverse vaccinology approach and highlights the development of safe and immunogenic vaccines through relevant examples from successful preclinical and clinical studies.
Collapse
Affiliation(s)
- Kanwal Khalid
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Subang Jaya 47500, Malaysia
| |
Collapse
|
2
|
The Impact of Educational Intervention on Willingness to Enroll in a Clinical Trial of a Gonorrhea Vaccine. Vaccines (Basel) 2023; 11:vaccines11030648. [PMID: 36992233 DOI: 10.3390/vaccines11030648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Globally, >80 million new gonorrhea infections occur annually. Here, we assessed barriers to and influences on participation in a gonorrhea clinical trial and the impact of educational intervention. The survey was fielded in the US in March 2022. Higher enrollment of Black/African Americans and younger individuals than represented in the US demographic distribution reflected the higher incidence of gonorrhea in these groups. Behavioral characteristics and baseline attitudes toward vaccination were collected. Participants were probed on their knowledge of and likelihood to enroll in general and gonorrhea vaccine trials. Participants hesitant to enroll in a gonorrhea vaccine trial were given nine bullets of basic facts about the disease and asked again to rank their likelihood to enroll. Overall, 450 individuals completed the survey. Fewer participants were willing (quite/very likely) to join a gonorrhea versus a general vaccine trial (38.2% [172/450] vs. 57.8% [260/450]). The likelihood to enroll in any vaccine trial or a gonorrhea vaccine trial was greater with higher self-declared knowledge (Spearman’s ρ = 0.277 [p < 0.001] and 0.316 [p < 0.001], respectively) and baseline openness towards vaccination (p < 0.001 for both). Self-declared awareness of gonorrhea was associated with age (p = 0.001), education (p = 0.031), and ethnicity/race (p = 0.002), with older, more educated, and Black/African Americans having higher awareness. Males (p = 0.001) and those with more sexual partners (p < 0.001) were more likely to enroll in a gonorrhea vaccine trial. Educational intervention had a significant (p < 0.001) impact on hesitancy. Improvement in willingness to enroll in a gonorrhea vaccine trial was greatest in those initially marginally hesitant and lowest in those initially strongly hesitant. Basic educational intervention has the potential to improve recruitment into gonorrhea vaccine trials.
Collapse
|
3
|
Kissler SM, Mitchell M, Grad YH. Reduction in antibiotic prescribing attainable with a gonococcal vaccine. Clin Infect Dis 2021; 73:e1368-e1371. [PMID: 33786582 PMCID: PMC8522794 DOI: 10.1093/cid/ciab276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 11/13/2022] Open
Abstract
We estimated the fraction of antibiotic prescribing in the United States
attributable to gonorrhea. Gonorrhea contributes to an outsized proportion of
antibiotic prescriptions in young adults, males, and in the southern and western
United States. A gonococcal vaccine could substantially reduce antibiotic
prescribing in these populations.
Collapse
Affiliation(s)
- Stephen M Kissler
- Department of Immunology and Infectious Diseases, Harvard. T.H. Chan School of Public Health, Boston MA, USA
| | - Moriah Mitchell
- Department of Epidemiology, Harvard. T.H. Chan School of Public Health, Boston MA, USA
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard. T.H. Chan School of Public Health, Boston MA, USA
| |
Collapse
|
4
|
Rubin DHF, Ross JDC, Grad YH. The frontiers of addressing antibiotic resistance in Neisseria gonorrhoeae. Transl Res 2020; 220:122-137. [PMID: 32119845 PMCID: PMC7293957 DOI: 10.1016/j.trsl.2020.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
The sexually transmitted infection gonorrhea, caused by the Gram-negative bacterium Neisseria gonorrhoeae, can cause urethritis, cervicitis, and systemic disease, among other manifestations. N. gonorrhoeae has rapidly rising incidence along with increasing levels of antibiotic resistance to a broad range of drugs including first-line treatments. The rise in resistance has led to fears of untreatable gonorrhea causing substantial disease globally. In this review, we will describe multiple approaches being undertaken to slow and control this spread of resistance. First, a number of old drugs have been repurposed and new drugs are being developed with activity against Neisseria gonorrhoeae. Second, vaccine development, long an important goal, is advancing. Third, new diagnostics promise rapid detection of antibiotic resistance and a shift from empiric to tailored treatment. The deployment of these new tools for addressing the challenge of antibiotic resistance will require careful consideration to provide optimal care for all patients while extending the lifespan of treatment regimens.
Collapse
Affiliation(s)
- Daniel H F Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Jonathan D C Ross
- Department of Sexual Health and HIV, Birmingham University Hospitals NHS Foundation Trust, Birmingham, UK
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Center for Communicable Disease Dynamics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
5
|
Abstract
The bacterium Neisseria gonorrhoeae causes the sexually transmitted infection (STI) gonorrhoea, which has an estimated global annual incidence of 86.9 million adults. Gonorrhoea can present as urethritis in men, cervicitis or urethritis in women, and in extragenital sites (pharynx, rectum, conjunctiva and, rarely, systemically) in both sexes. Confirmation of diagnosis requires microscopy of Gram-stained samples, bacterial culture or nucleic acid amplification tests. As no gonococcal vaccine is available, prevention relies on promoting safe sexual behaviours and reducing STI-associated stigma, which hinders timely diagnosis and treatment thereby increasing transmission. Single-dose systemic therapy (usually injectable ceftriaxone plus oral azithromycin) is the recommended first-line treatment. However, a major public health concern globally is that N. gonorrhoeae is evolving high levels of antimicrobial resistance (AMR), which threatens the effectiveness of the available gonorrhoea treatments. Improved global surveillance of the emergence, evolution, fitness, and geographical and temporal spread of AMR in N. gonorrhoeae, and improved understanding of the pharmacokinetics and pharmacodynamics for current and future antimicrobials in the treatment of urogenital and extragenital gonorrhoea, are essential to inform treatment guidelines. Key priorities for gonorrhoea control include strengthening prevention, early diagnosis, and treatment of patients and their partners; decreasing stigma; expanding surveillance of AMR and treatment failures; and promoting responsible antimicrobial use and stewardship. To achieve these goals, the development of rapid and affordable point-of-care diagnostic tests that can simultaneously detect AMR, novel therapeutic antimicrobials and gonococcal vaccine(s) in particular is crucial.
Collapse
|
6
|
Unemo M, Lahra MM, Cole M, Galarza P, Ndowa F, Martin I, Dillon JAR, Ramon-Pardo P, Bolan G, Wi T. World Health Organization Global Gonococcal Antimicrobial Surveillance Program (WHO GASP): review of new data and evidence to inform international collaborative actions and research efforts. Sex Health 2019; 16:412-425. [PMID: 31437420 PMCID: PMC7035961 DOI: 10.1071/sh19023] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a serious public health problem, compromising the management and control of gonorrhoea globally. Resistance in N. gonorrhoeae to ceftriaxone, the last option for first-line empirical monotherapy of gonorrhoea, has been reported from many countries globally, and sporadic failures to cure especially pharyngeal gonorrhoea with ceftriaxone monotherapy and dual antimicrobial therapies (ceftriaxone plus azithromycin or doxycycline) have been confirmed in several countries. In 2018, the first gonococcal isolates with ceftriaxone resistance plus high-level azithromycin resistance were identified in England and Australia. The World Health Organization (WHO) Global Gonococcal Antimicrobial Surveillance Program (GASP) is essential to monitor AMR trends, identify emerging AMR and provide evidence for refinements of treatment guidelines and public health policy globally. Herein we describe the WHO GASP data from 67 countries in 2015-16, confirmed gonorrhoea treatment failures with ceftriaxone with or without azithromycin or doxycycline, and international collaborative actions and research efforts essential for the effective management and control of gonorrhoea. In most countries, resistance to ciprofloxacin is exceedingly high, azithromycin resistance is present and decreased susceptibility or resistance to ceftriaxone has emerged. Enhanced global collaborative actions are crucial for the control of gonorrhoea, including improved prevention, early diagnosis, treatment of index patient and partner (including test-of-cure), improved and expanded AMR surveillance (including surveillance of antimicrobial use and treatment failures), increased knowledge of correct antimicrobial use and the pharmacokinetics and pharmacodynamics of antimicrobials and effective drug regulations and prescription policies (including antimicrobial stewardship). Ultimately, rapid, accurate and affordable point-of-care diagnostic tests (ideally also predicting AMR and/or susceptibility), new therapeutic antimicrobials and, the only sustainable solution, gonococcal vaccine(s) are imperative.
Collapse
Affiliation(s)
- Magnus Unemo
- World Health Organization Collaborating Centre for Gonorrhoea and Other STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, SE-701 85 Örebro, Sweden; and Corresponding author.
| | - Monica M Lahra
- World Health Organization Collaborating Centre for Sexually Transmitted Infections and Antimicrobial Resistance, New South Wales Health Pathology, Microbiology, Randwick, NSW, Australia
| | - Michelle Cole
- National Infection Service, Public Health England, London, UK
| | - Patricia Galarza
- National Reference Laboratory for STDs, National Institute of Infectious Diseases - ANLIS 'Dr Carlos G. Malbrán', Buenos Aires, Argentina
| | - Francis Ndowa
- Skin and Genitourinary Medicine Clinic, Harare, Zimbabwe
| | - Irene Martin
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB, Canada
| | | | - Pilar Ramon-Pardo
- Communicable Diseases and Environmental Determinants of Health Department Pan American Health Organization/World Health Organization, Washington, DC, USA
| | - Gail Bolan
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Teodora Wi
- Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| |
Collapse
|
7
|
El-Rami FE, Zielke RA, Wi T, Sikora AE, Unemo M. Quantitative Proteomics of the 2016 WHO Neisseria gonorrhoeae Reference Strains Surveys Vaccine Candidates and Antimicrobial Resistance Determinants. Mol Cell Proteomics 2019; 18:127-150. [PMID: 30352803 PMCID: PMC6317477 DOI: 10.1074/mcp.ra118.001125] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/23/2018] [Indexed: 12/27/2022] Open
Abstract
The sexually transmitted disease gonorrhea (causative agent: Neisseria gonorrhoeae) remains an urgent public health threat globally because of its reproductive health repercussions, high incidence, widespread antimicrobial resistance (AMR), and absence of a vaccine. To mine gonorrhea antigens and enhance our understanding of gonococcal AMR at the proteome level, we performed the first large-scale proteomic profiling of a diverse panel (n = 15) of gonococcal strains, including the 2016 World Health Organization (WHO) reference strains. These strains show all existing AMR profiles - established through phenotypic characterization and reference genome publication - and are intended for quality assurance in laboratory investigations. Herein, these isolates were subjected to subcellular fractionation and labeling with tandem mass tags coupled to mass spectrometry and multi-combinatorial bioinformatics. Our analyses detected 904 and 723 common proteins in cell envelope and cytoplasmic subproteomes, respectively. We identified nine novel gonorrhea vaccine candidates. Expression and conservation of new and previously selected antigens were investigated. In addition, established gonococcal AMR determinants were evaluated for the first time using quantitative proteomics. Six new proteins, WHO_F_00238, WHO_F_00635c, WHO_F_00745, WHO_F_01139, WHO_F_01144c, and WHO_F_01126, were differentially expressed in all strains, suggesting that they represent global proteomic AMR markers, indicate a predisposition toward developing or compensating gonococcal AMR, and/or act as new antimicrobial targets. Finally, phenotypic clustering based on the isolates' defined antibiograms and common differentially expressed proteins yielded seven matching clusters between established and proteome-derived AMR signatures. Together, our investigations provide a reference proteomics data bank for gonococcal vaccine and AMR research endeavors, which enables microbiological, clinical, or epidemiological projects and enhances the utility of the WHO reference strains.
Collapse
Affiliation(s)
- Fadi E El-Rami
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Ryszard A Zielke
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Teodora Wi
- §Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Aleksandra E Sikora
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon;; ¶Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon;.
| | - Magnus Unemo
- ‖World Health Organization Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| |
Collapse
|
8
|
Baarda BI, Zielke RA, Nicholas RA, Sikora AE. PubMLST for Antigen Allele Mining to Inform Development of Gonorrhea Protein-Based Vaccines. Front Microbiol 2018; 9:2971. [PMID: 30581422 PMCID: PMC6292995 DOI: 10.3389/fmicb.2018.02971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/19/2018] [Indexed: 02/02/2023] Open
Abstract
Neisseria gonorrhoeae (Ng) is a human-specific pathogen and the etiological agent of gonorrhea, a sexually transmitted infection with a significant global health burden. While often asymptomatic, untreated gonorrhea can lead to pelvic inflammatory disease, ectopic pregnancy, infertility, and increased transmission/acquisition of HIV. A protective gonorrhea vaccine may be the only way to control disease transmission in the future due to the inexorable development of antibiotic resistance. Subunit antigens are proven candidates for vaccine development due to their safety, cost-effectiveness, and rapid preparation. To inform protein-based gonorrhea vaccine design by including different antigen variants, herein we present bioinformatics mining of alleles and single nucleotide/amino acid polymorphisms using DNA/protein sequences of all Ng isolates deposited into the PubMLST database and MtrE and BamA as model antigens. We also present phylogenetic analyses that can be performed using sequence data to gain insights into the evolutionary relationships between the polymorphisms found among the population of isolates using a convenient tool: Molecular Evolutionary Genetics Analysis (MEGA) software. Finally, we perform antigen polymorphism mapping onto the MtrE and BamA structures. This methodology can be applied for rational vaccine design to increase vaccine coverage and cross-protection by heteroligand presentation achieved via inclusion of diverse antigen variants and is relevant to over 100 different species and genera deposited into the PubMLST family of databases.
Collapse
Affiliation(s)
- Benjamin I. Baarda
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Ryszard A. Zielke
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Robert A. Nicholas
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Aleksandra E. Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| |
Collapse
|
9
|
Baarda BI, Martinez FG, Sikora AE. Proteomics, Bioinformatics and Structure-Function Antigen Mining For Gonorrhea Vaccines. Front Immunol 2018; 9:2793. [PMID: 30564232 PMCID: PMC6288298 DOI: 10.3389/fimmu.2018.02793] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
Expanding efforts to develop preventive gonorrhea vaccines is critical because of the serious health consequences combined with the prevalence and the dire possibility of untreatable gonorrhea. Reverse vaccinology, which includes genome and proteome mining, has proven successful in the discovery of vaccine candidates against many pathogenic bacteria. Here, we describe proteomic applications including comprehensive, quantitative proteomic platforms and immunoproteomics coupled with broad-ranging bioinformatics that have been applied for antigen mining to develop gonorrhea vaccine(s). We further focus on outlining the vaccine candidate decision tree, describe the structure-function of novel proteome-derived antigens as well as ways to gain insights into their roles in the cell envelope, and underscore new lessons learned about the fascinating biology of Neisseria gonorrhoeae.
Collapse
Affiliation(s)
- Benjamin I. Baarda
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Fabian G. Martinez
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Aleksandra E. Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| |
Collapse
|