1
|
Enzymology of assembly line synthesis by modular polyketide synthases. Nat Chem Biol 2023; 19:401-415. [PMID: 36914860 DOI: 10.1038/s41589-023-01277-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/31/2023] [Indexed: 03/16/2023]
Abstract
Modular polyketide synthases (PKSs) run catalytic reactions over dozens of steps in a highly orchestrated manner. To accomplish this synthetic feat, they form megadalton multienzyme complexes that are among the most intricate proteins on earth. Polyketide products are of elaborate chemistry with molecular weights of usually several hundred daltons and include clinically important drugs such as erythromycin (antibiotic), rapamycin (immunosuppressant) and epothilone (anticancer drug). The term 'modular' refers to a hierarchical structuring of modules and domains within an overall assembly line arrangement, in which PKS organization is colinearly translated into the polyketide structure. New structural information obtained during the past few years provides substantial direct insight into the orchestration of catalytic events within a PKS module and leads to plausible models for synthetic progress along assembly lines. In light of these structural insights, the PKS engineering field is poised to enter a new era of engineering.
Collapse
|
2
|
Tittes YU, Herbst DA, Martin SFX, Munoz-Hernandez H, Jakob RP, Maier T. The structure of a polyketide synthase bimodule core. SCIENCE ADVANCES 2022; 8:eabo6918. [PMID: 36129979 PMCID: PMC9491710 DOI: 10.1126/sciadv.abo6918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Polyketide synthases (PKSs) are predominantly microbial biosynthetic enzymes. They assemble highly potent bioactive natural products from simple carboxylic acid precursors. The most versatile families of PKSs are organized as assembly lines of functional modules. Each module performs one round of precursor extension and optional modification, followed by directed transfer of the intermediate to the next module. While enzymatic domains and even modules of PKSs are well understood, the higher-order modular architecture of PKS assembly lines remains elusive. Here, we visualize a PKS bimodule core using cryo-electron microscopy and resolve a two-dimensional meshwork of the bimodule core formed by homotypic interactions between modules. The sheet-like organization provides the framework for efficient substrate transfer and for sequestration of trans-acting enzymes required for polyketide production.
Collapse
|
3
|
Bagde SR, Mathews II, Fromme JC, Kim CY. Modular polyketide synthase contains two reaction chambers that operate asynchronously. Science 2021; 374:723-729. [PMID: 34735234 DOI: 10.1126/science.abi8532] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Saket R Bagde
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA.,Department of Molecular Biology and Genetics/Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics/Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Chu-Young Kim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA.,Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
4
|
Dodge GJ, Maloney FP, Smith JL. Protein-protein interactions in "cis-AT" polyketide synthases. Nat Prod Rep 2018; 35:1082-1096. [PMID: 30188553 PMCID: PMC6207950 DOI: 10.1039/c8np00058a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to the end of 2018 Polyketides are a valuable source of bioactive and clinically important molecules. The biosynthesis of these chemically complex molecules has led to the discovery of equally complex polyketide synthase (PKS) pathways. Crystallography has yielded snapshots of individual catalytic domains, di-domains, and multi-domains from a variety of PKS megasynthases, and cryo-EM studies have provided initial views of a PKS module in a series of defined biochemical states. Here, we review the structural and biochemical results that shed light on the protein-protein interactions critical to catalysis by PKS systems with an embedded acyltransferase. Interactions include those that occur both within and between PKS modules, as well as with accessory enzymes.
Collapse
Affiliation(s)
- Greg J Dodge
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA 48109.
| | | | | |
Collapse
|
5
|
Synthetic biology of polyketide synthases. ACTA ACUST UNITED AC 2018; 45:621-633. [DOI: 10.1007/s10295-018-2021-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/03/2018] [Indexed: 12/31/2022]
Abstract
Abstract
Complex reduced polyketides represent the largest class of natural products that have applications in medicine, agriculture, and animal health. This structurally diverse class of compounds shares a common methodology of biosynthesis employing modular enzyme systems called polyketide synthases (PKSs). The modules are composed of enzymatic domains that share sequence and functional similarity across all known PKSs. We have used the nomenclature of synthetic biology to classify the enzymatic domains and modules as parts and devices, respectively, and have generated detailed lists of both. In addition, we describe the chassis (hosts) that are used to assemble, express, and engineer the parts and devices to produce polyketides. We describe a recently developed software tool to design PKS system and provide an example of its use. Finally, we provide perspectives of what needs to be accomplished to fully realize the potential that synthetic biology approaches bring to this class of molecules.
Collapse
|
6
|
Miyanaga A, Kudo F, Eguchi T. Protein–protein interactions in polyketide synthase–nonribosomal peptide synthetase hybrid assembly lines. Nat Prod Rep 2018; 35:1185-1209. [DOI: 10.1039/c8np00022k] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The protein–protein interactions in polyketide synthase–nonribosomal peptide synthetase hybrids are summarized and discussed.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551
- Japan
| | - Fumitaka Kudo
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551
- Japan
| | - Tadashi Eguchi
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551
- Japan
| |
Collapse
|
7
|
Abstract
X-ray scattering is uniquely suited to the study of disordered systems and thus has the potential to provide insight into dynamic processes where diffraction methods fail. In particular, while X-ray crystallography has been a staple of structural biology for more than half a century and will continue to remain so, a major limitation of this technique has been the lack of dynamic information. Solution X-ray scattering has become an invaluable tool in structural and mechanistic studies of biological macromolecules where large conformational changes are involved. Such systems include allosteric enzymes that play key roles in directing metabolic fluxes of biochemical pathways, as well as large, assembly-line type enzymes that synthesize secondary metabolites with pharmaceutical applications. Furthermore, crystallography has the potential to provide information on protein dynamics via the diffuse scattering patterns that are overlaid with Bragg diffraction. Historically, these patterns have been very difficult to interpret, but recent advances in X-ray detection have led to a renewed interest in diffuse scattering analysis as a way to probe correlated motions. Here, we will review X-ray scattering theory and highlight recent advances in scattering-based investigations of protein solutions and crystals, with a particular focus on complex enzymes.
Collapse
Affiliation(s)
- Steve P Meisburger
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - William C Thomas
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Maxwell B Watkins
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Nozomi Ando
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| |
Collapse
|
8
|
The structural biology of biosynthetic megaenzymes. Nat Chem Biol 2015; 11:660-70. [PMID: 26284673 DOI: 10.1038/nchembio.1883] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/02/2015] [Indexed: 01/27/2023]
Abstract
The modular polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) are among the largest and most complicated enzymes in nature. In these biosynthetic systems, independently folding protein domains, which are organized into units called 'modules', operate in assembly-line fashion to construct polymeric chains and tailor their functionalities. Products of PKSs and NRPSs include a number of blockbuster medicines, and this has motivated researchers to understand how they operate so that they can be modified by genetic engineering. Beginning in the 1990s, structural biology has provided a number of key insights. The emerging picture is one of remarkable dynamics and conformational programming in which the chemical states of individual catalytic domains are communicated to the others, configuring the modules for the next stage in the biosynthesis. This unexpected level of complexity most likely accounts for the low success rate of empirical genetic engineering experiments and suggests ways forward for productive megaenzyme synthetic biology.
Collapse
|
9
|
Harnessing natural product assembly lines: structure, promiscuity, and engineering. J Ind Microbiol Biotechnol 2015; 43:371-87. [PMID: 26527577 DOI: 10.1007/s10295-015-1704-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/18/2015] [Indexed: 10/22/2022]
Abstract
Many therapeutically relevant natural products are biosynthesized by the action of giant mega-enzyme assembly lines. By leveraging the specificity, promiscuity, and modularity of assembly lines, a variety of strategies has been developed that enables the biosynthesis of modified natural products. This review briefly summarizes recent structural advances related to natural product assembly lines, discusses chemical approaches to probing assembly line structures in the absence of traditional biophysical data, and surveys efforts that harness the inherent or engineered promiscuity of assembly lines for the synthesis of non-natural polyketides and non-ribosomal peptide analogues.
Collapse
|
10
|
Abstract
This conceptual review examines the ideal multistep synthesis from the perspective of nature. We suggest that besides step- and redox economies, one other key to efficiency is steady state processing with intermediates that are immediately transformed to the next intermediate when formed. We discuss four of nature's strategies (multicatalysis, domino reactions, iteration and compartmentation) that commonly proceed via short-lived intermediates and show that these strategies are also part of the chemist's portfolio. We particularly focus on compartmentation which in nature is found microscopically within cells (organelles) and between cells and on a molecular level on multiprotein scaffolds (e.g. in polyketide synthases) and demonstrate how compartmentation is manifested in modern multistep flow synthesis.
Collapse
Affiliation(s)
- Gerrit Jürjens
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, D-30167 Hannover, Germany.
| | | | | |
Collapse
|
11
|
Architecture of the polyketide synthase module: surprises from electron cryo-microscopy. Curr Opin Struct Biol 2015; 31:9-19. [PMID: 25791608 DOI: 10.1016/j.sbi.2015.02.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/18/2015] [Accepted: 02/23/2015] [Indexed: 01/16/2023]
Abstract
Modular polyketide synthases (PKS) produce a vast array of bioactive molecules that are the basis of many highly valued pharmaceuticals. The biosynthesis of these compounds is based on ordered assembly lines of multi-domain modules, each extending and modifying a specific chain-elongation intermediate before transfer to the next module for further processing. The first 3D structures of a full polyketide synthase module in different functional states were obtained recently by electron cryo-microscopy. The unexpected module architecture revealed a striking evolutionary divergence of the polyketide synthase compared to its metazoan fatty acid synthase homolog, as well as remarkable conformational rearrangements dependent on its biochemical state during the full catalytic cycle. The design and dynamics of the module are highly optimized for both catalysis and fidelity in the construction of complex, biologically active natural products.
Collapse
|
12
|
Abstract
This review covers a breakthrough in the structural biology of the gigantic modular polyketide synthases (PKS): the structural characterization of intact modules by single-particle cryo-electron microscopy and small-angle X-ray scattering.
Collapse
Affiliation(s)
- Kira J. Weissman
- Molecular and Structural Enzymology Group
- Université de Lorraine
- IMoPA
- UMR 7365
- Vandœuvre-lès-Nancy
| |
Collapse
|
13
|
|
14
|
Abstract
Polyketide natural products constitute a broad class of compounds with diverse structural features and biological activities. Their biosynthetic machinery, represented by type I polyketide synthases (PKSs), has an architecture in which successive modules catalyse two-carbon linear extensions and keto-group processing reactions on intermediates covalently tethered to carrier domains. Here we used electron cryo-microscopy to determine sub-nanometre-resolution three-dimensional reconstructions of a full-length PKS module from the bacterium Streptomyces venezuelae that revealed an unexpectedly different architecture compared to the homologous dimeric mammalian fatty acid synthase. A single reaction chamber provides access to all catalytic sites for the intramodule carrier domain. In contrast, the carrier from the preceding module uses a separate entrance outside the reaction chamber to deliver the upstream polyketide intermediate for subsequent extension and modification. This study reveals for the first time, to our knowledge, the structural basis for both intramodule and intermodule substrate transfer in polyketide synthases, and establishes a new model for molecular dissection of these multifunctional enzyme systems.
Collapse
|
15
|
Edwards AL, Matsui T, Weiss TM, Khosla C. Architectures of whole-module and bimodular proteins from the 6-deoxyerythronolide B synthase. J Mol Biol 2014; 426:2229-45. [PMID: 24704088 PMCID: PMC4284093 DOI: 10.1016/j.jmb.2014.03.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
The 6-deoxyerythronolide B synthase (DEBS) is a prototypical assembly line polyketide synthase produced by the actinomycete Saccharopolyspora erythraea that synthesizes the macrocyclic core of the antibiotic erythromycin 6-deoxyerythronolide B. The megasynthase is a 2-MDa trimeric complex composed of three unique homodimers assembled from the gene products DEBS1, DEBS2, and DEBS3, which are housed within the erythromycin biosynthetic gene cluster. Each homodimer contains two clusters of catalytically independent enzymatic domains, each referred to as a module, which catalyzes one round of polyketide chain extension and modification. Modules are named sequentially to indicate the order in which they are utilized during synthesis of 6-deoxyerythronolide B. We report small-angle X-ray scattering (SAXS) analyses of a whole module and a bimodule from DEBS, as well as a set of domains for which high-resolution structures are available. In all cases, the solution state was probed under previously established conditions ensuring that each protein is catalytically active. SAXS data are consistent with atomic-resolution structures of DEBS fragments. Therefore, we used the available high-resolution structures of DEBS domains to model the architectures of the larger protein assemblies using rigid-body refinement. Our data support a model in which the third module of DEBS forms a disc-shaped structure capable of caging the acyl carrier protein domain proximal to each active site. The molecular envelope of DEBS3 is a thin elongated ellipsoid, and the results of rigid-body modeling suggest that modules 5 and 6 stack collinearly along the 2-fold axis of symmetry.
Collapse
Affiliation(s)
- Andrea L Edwards
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, 14 2575 Sand Hill Road, MS69, Menlo Park, CA 94025, USA
| | - Thomas M Weiss
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, 14 2575 Sand Hill Road, MS69, Menlo Park, CA 94025, USA
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Whicher JR, Smaga SS, Hansen DA, Brown WC, Gerwick WH, Sherman DH, Smith JL. Cyanobacterial polyketide synthase docking domains: a tool for engineering natural product biosynthesis. ACTA ACUST UNITED AC 2013; 20:1340-51. [PMID: 24183970 DOI: 10.1016/j.chembiol.2013.09.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/09/2013] [Accepted: 09/20/2013] [Indexed: 11/25/2022]
Abstract
Modular type I polyketide synthases (PKSs) are versatile biosynthetic systems that initiate, successively elongate, and modify acyl chains. Intermediate transfer between modules is mediated via docking domains, which are attractive targets for PKS pathway engineering to produce natural product analogs. We identified a class 2 docking domain in cyanobacterial PKSs and determined crystal structures for two docking domain pairs, revealing a distinct class 2 docking strategy for promoting intermediate transfer. The selectivity of class 2 docking interactions, demonstrated in binding and biochemical assays, could be altered by mutagenesis. We determined the ideal fusion location for exchanging class 1 and class 2 docking domains and demonstrated effective polyketide chain transfer in heterologous modules. Thus, class 2 docking domains are tools for rational bioengineering of a broad range of PKSs containing either class 1 or 2 docking domains.
Collapse
Affiliation(s)
- Jonathan R Whicher
- Chemical Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Yuzawa S, Eng CH, Katz L, Keasling JD. Broad substrate specificity of the loading didomain of the lipomycin polyketide synthase. Biochemistry 2013; 52:3791-3. [PMID: 23692164 DOI: 10.1021/bi400520t] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
LipPks1, a polyketide synthase subunit of the lipomycin synthase, is believed to catalyze the polyketide chain initiation reaction using isobutyryl-CoA as a substrate, followed by an elongation reaction with methylmalonyl-CoA to start the biosynthesis of antibiotic α-lipomycin in Streptomyces aureofaciens Tü117. Recombinant LipPks1, containing the thioesterase domain from the 6-deoxyerythronolide B synthase, was produced in Escherichia coli, and its substrate specificity was investigated in vitro. Surprisingly, several different acyl-CoAs, including isobutyryl-CoA, were accepted as the starter substrates, while no product was observed with acetyl-CoA. These results demonstrate the broad substrate specificity of LipPks1 and may be applied to producing new antibiotics.
Collapse
Affiliation(s)
- Satoshi Yuzawa
- QB3 Institute, University of California, Berkeley, California 94270, United States
| | | | | | | |
Collapse
|
19
|
Zheng J, Keatinge-Clay AT. The status of type I polyketide synthase ketoreductases. MEDCHEMCOMM 2013. [DOI: 10.1039/c2md20191g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The functional dissection of type I polyketide synthases has established that ketoreductases most commonly set the orientations of the hydroxyl and alkyl substituents of complex polyketides. Here we review the biochemical, structural biology, and engineering studies that have helped elucidate how stereocontrol is enforced by these enzymes.
Collapse
Affiliation(s)
- Jianting Zheng
- Department of Chemistry and Biochemistry
- The University of Texas at Austin
- USA
| | | |
Collapse
|
20
|
Caffrey P. Dissecting complex polyketide biosynthesis. Comput Struct Biotechnol J 2012; 3:e201210010. [PMID: 24688670 PMCID: PMC3962154 DOI: 10.5936/csbj.201210010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/06/2012] [Accepted: 11/07/2012] [Indexed: 12/17/2022] Open
Abstract
Numerous bioactive natural products are synthesised by modular polyketide synthases. These compounds can be made in high yield by native multienzyme assembly lines. However, formation of analogues by genetically engineered systems is often considerably less efficient. Biochemical studies on intact polyketide synthase proteins have amassed a body of knowledge that is substantial but still incomplete. Recently, the constituent enzymes have been structurally characterised as discrete domains or didomains. These recombinant proteins have been used to reconstitute single extension cycles in vitro. This has given further insights into how the final stereochemistry of chiral centres in polyketides is determined. In addition, this approach has revealed how domains co-operate to ensure efficient transfer of growing intermediates along the assembly line. This work is leading towards more effective re-programming of these enzymes for use in synthesis of new medicinal compounds.
Collapse
Affiliation(s)
- Patrick Caffrey
- School of Biomolecular and Biomedical Science, Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
21
|
Crosby J, Crump MP. The structural role of the carrier protein--active controller or passive carrier. Nat Prod Rep 2012; 29:1111-37. [PMID: 22930263 DOI: 10.1039/c2np20062g] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Common to all FASs, PKSs and NRPSs is a remarkable component, the acyl or peptidyl carrier protein (A/PCP). These take the form of small individual proteins in type II systems or discrete folded domains in the multi-domain type I systems and are characterized by a fold consisting of three major α-helices and between 60-100 amino acids. This protein is central to these biosynthetic systems and it must bind and transport a wide variety of functionalized ligands as well as mediate numerous protein-protein interactions, all of which contribute to efficient enzyme turnover. This review covers the structural and biochemical characterization of carrier proteins, as well as assessing their interactions with different ligands, and other synthase components. Finally, their role as an emerging tool in biotechnology is discussed.
Collapse
Affiliation(s)
- John Crosby
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | | |
Collapse
|
22
|
Busch B, Ueberschaar N, Sugimoto Y, Hertweck C. Interchenar Retrotransfer of Aureothin Intermediates in an Iterative Polyketide Synthase Module. J Am Chem Soc 2012; 134:12382-5. [DOI: 10.1021/ja304454r] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Benjamin Busch
- Leibniz Institute for
Natural Product Research and
Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany,
and Friedrich Schiller University, Jena,
Germany
| | - Nico Ueberschaar
- Leibniz Institute for
Natural Product Research and
Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany,
and Friedrich Schiller University, Jena,
Germany
| | - Yuki Sugimoto
- Leibniz Institute for
Natural Product Research and
Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany,
and Friedrich Schiller University, Jena,
Germany
| | - Christian Hertweck
- Leibniz Institute for
Natural Product Research and
Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany,
and Friedrich Schiller University, Jena,
Germany
| |
Collapse
|
23
|
Zheng J, Gay DC, Demeler B, White MA, Keatinge-Clay AT. Divergence of multimodular polyketide synthases revealed by a didomain structure. Nat Chem Biol 2012; 8:615-21. [PMID: 22634636 PMCID: PMC3477503 DOI: 10.1038/nchembio.964] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 03/30/2012] [Indexed: 01/15/2023]
Abstract
The enoylreductase (ER) is the final common enzyme from modular polyketide synthases (PKSs) to be structurally characterized. The 3.0 Å-resolution structure of the didomain comprising the ketoreductase (KR) and ER from the second module of the spinosyn PKS reveals that ER shares an ∼600-Å(2) interface with KR distinct from that of the related mammalian fatty acid synthase (FAS). In contrast to the ER domains of the mammalian FAS, the ER domains of the second module of the spinosyn PKS do not make contact across the two-fold axis of the synthase. This monomeric organization may have been necessary in the evolution of multimodular PKSs to enable acyl carrier proteins to access each of their cognate enzymes. The isolated ER domain showed activity toward a substrate analog, enabling us to determine the contributions of its active site residues.
Collapse
Affiliation(s)
- Jianting Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Austin
| | - Darren C. Gay
- Department of Chemistry and Biochemistry, The University of Texas at Austin
| | - Borries Demeler
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio
| | - Mark A. White
- Sealy Center for Structural and Molecular Biophysics, UTMB Galveston
| | | |
Collapse
|
24
|
|
25
|
Hong H, Leadlay PF, Staunton J. The changing patterns of covalent active site occupancy during catalysis on a modular polyketide synthase multienzyme revealed by ion-trap mass spectrometry. FEBS J 2009; 276:7057-69. [PMID: 19860832 DOI: 10.1111/j.1742-4658.2009.07418.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A catalytically competent, homodimeric diketide synthase comprising the first extension module of the erythromycin polyketide synthase was analysed using MS, after limited proteolysis to release functional domains, to determine the pattern of covalent attachment of substrates and intermediates to active sites during catalysis. Using the natural substrates, the acyltransferase and acylcarrier protein of the loading module were found to be heavily loaded with propionyl starter groups, while the ketosynthase was fully propionylated. The acylcarrier protein of the extension module was partly occupied by the product diketide, and the adjacent chain-releasing thioesterase domain was vacant, implying that the rate-limiting step is transfer of the diketide from the acylcarrier protein to the thioesterase domain. The data suggest an attractive model for preventing iterative chain extension by efficient repriming of the ketosynthase domain after condensation. Use of the alternative starter unit valeryl-CoA produced an altered pattern, in which a significant proportion of the extension acylcarrier protein was loaded with methylmalonate, not diketide, consistent with the condensation step having become an additional slow step. Strikingly, when NADPH was omitted, the extension acylcarrier protein contained methylmalonate and none of the expected keto diketide, in contrast to results obtained previously by mixing individual recombinant domains, showing the importance of also studying intact modules. The detailed patterns of loading of the extension acylcarrier protein (of which there are two in the homodimer) also provided the first evidence for simultaneous loading of both acylcarrier proteins and for the coordination of timing between the two active centres for chain extension.
Collapse
Affiliation(s)
- Hui Hong
- Department of Chemistry, University of Cambridge, UK.
| | | | | |
Collapse
|
26
|
Kellenberger L, Galloway IS, Sauter G, Böhm G, Hanefeld U, Cortés J, Staunton J, Leadlay PF. A polylinker approach to reductive loop swaps in modular polyketide synthases. Chembiochem 2009; 9:2740-9. [PMID: 18937219 DOI: 10.1002/cbic.200800332] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Multiple versions of the DEBS 1-TE gene, which encodes a truncated bimodular polyketide synthase (PKS) derived from the erythromycin-producing PKS, were created by replacing the DNA encoding the ketoreductase (KR) domain in the second extension module by either of two synthetic oligonucleotide linkers. This made available a total of nine unique restriction sites for engineering. The DNA for donor "reductive loops," which are sets of contiguous domains comprising either KR or KR and dehydratase (DH), or KR, DH and enoylreductase (ER) domains, was cloned from selected modules of five natural PKS multienzymes and spliced into module 2 of DEBS 1-TE using alternative polylinker sites. The resulting hybrid PKSs were tested for triketide production in vivo. Most of the hybrid multienzymes were active, vindicating the treatment of the reductive loop as a single structural unit, but yields were dependent on the restriction sites used. Further, different donor reductive loops worked optimally with different splice sites. For those reductive loops comprising DH, ER and KR domains, premature TE-catalysed release of partially reduced intermediates was sometimes seen, which provided further insight into the overall stereochemistry of reduction in those modules. Analysis of loops containing KR only, which should generate stereocentres at both C-2 and C-3, revealed that the 3-hydroxy configuration (but not the 2-methyl configuration) could be altered by appropriate choice of a donor loop. The successful swapping of reductive loops provides an interesting parallel to a recently suggested pathway for the natural evolution of modular PKSs by recombination.
Collapse
Affiliation(s)
- Laurenz Kellenberger
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB21GA, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Meier JL, Burkart MD. The chemical biology of modular biosynthetic enzymes. Chem Soc Rev 2009; 38:2012-45. [DOI: 10.1039/b805115c] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Weissman KJ, Müller R. Protein–Protein Interactions in Multienzyme Megasynthetases. Chembiochem 2008; 9:826-48. [DOI: 10.1002/cbic.200700751] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Richter CD, Nietlispach D, Broadhurst RW, Weissman KJ. Multienzyme docking in hybrid megasynthetases. Nat Chem Biol 2007; 4:75-81. [DOI: 10.1038/nchembio.2007.61] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 10/30/2007] [Indexed: 11/09/2022]
|
30
|
Traitcheva N, Jenke-Kodama H, He J, Dittmann E, Hertweck C. Non-Colinear Polyketide Biosynthesis in the Aureothin and Neoaureothin Pathways: An Evolutionary Perspective. Chembiochem 2007; 8:1841-9. [PMID: 17763486 DOI: 10.1002/cbic.200700309] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Aureothin and neoaureothin (spectinabilin) represent rare nitroaryl-substituted polyketide metabolites from Streptomyces thioluteus and Streptomyces orinoci, respectively, which only differ in the lengths of the polyene backbones. Cloning and sequencing of the 39 kb neoaureothin (nor) biosynthesis gene cluster and its comparison with the aureothin (aur) pathway genes revealed that both polyketide synthase (PKS) assembly lines are remarkably similar. In both cases the module architecture breaks with the principle of colinearity, as individual PKS modules are used in an iterative fashion. Parsimony and neighbour-joining phylogenetic studies provided insights into the evolutionary process that led to the programming of these unusual type I PKS systems and to prediction of which modules act iteratively. The iterative function of the first module in the neoaureothin pathway, NorA, was confirmed by a successful cross-complementation.
Collapse
Affiliation(s)
- Nelly Traitcheva
- Department of Biomolecular Chemistry, Leibniz-Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
| | | | | | | | | |
Collapse
|
31
|
Abstract
This review chronicles the synergistic growth of the fields of fatty acid and polyketide synthesis over the last century. In both animal fatty acid synthases and modular polyketide synthases, similar catalytic elements are covalently linked in the same order in megasynthases. Whereas in fatty acid synthases the basic elements of the design remain immutable, guaranteeing the faithful production of saturated fatty acids, in the modular polyketide synthases, the potential of the basic design has been exploited to the full for the elaboration of a wide range of secondary metabolites of extraordinary structural diversity.
Collapse
Affiliation(s)
- Stuart Smith
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, California 94609, USA.
| | | |
Collapse
|
32
|
Crawford JM, Dancy BCR, Hill EA, Udwary DW, Townsend CA. Identification of a starter unit acyl-carrier protein transacylase domain in an iterative type I polyketide synthase. Proc Natl Acad Sci U S A 2006; 103:16728-33. [PMID: 17071746 PMCID: PMC1636523 DOI: 10.1073/pnas.0604112103] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyketides are a class of natural products that exhibit a wide range of functional and structural diversity. They include antibiotics, immunosuppressants, antifungals, antihypercholesterolemics, and cytotoxins. Polyketide synthases (PKSs) use chemistry similar to fatty acid synthases (FASs), although building block variation and differing extents of reduction of the growing polyketide chain underlie their biosynthetic versatility. In contrast to the well studied sequential modular type I PKSs, less is known about how the iterative type I PKSs carry out and control chain initiation, elongation, folding, and cyclization during polyketide processing. Domain structure analysis of a group of related fungal, nonreducing PKSs has revealed well defined N-terminal domains longer than commonly seen for FASs and modular PKSs. Predicted structure of this domain disclosed a region similar to malonyl-CoA:acyl-carrier protein (ACP) transacylases (MATs). MATs play a key role transferring precursor CoA thioesters from solution onto FASs and PKSs for chain elongation. On the basis of site-directed mutagenesis, radiolabeling, and kinetics experiments carried out with individual domains of the norsolorinic acid PKS, we propose that the N-terminal domain is a starter unit:ACP transacylase (SAT domain) that selects a C(6) fatty acid from a dedicated yeast-like FAS and transfers this unit onto the PKS ACP, leading to the production of the aflatoxin precursor, norsolorinic acid. These findings could indicate a much broader role for SAT domains in starter unit selection among nonreducing iterative, fungal PKSs, and they provide a biochemical rationale for the classical acetyl "starter unit effect."
Collapse
Affiliation(s)
- Jason M. Crawford
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Blair C. R. Dancy
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Eric A. Hill
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Daniel W. Udwary
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Craig A. Townsend
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Moriguchi T, Ebizuka Y, Fujii I. Analysis of Subunit Interactions in the Iterative Type I Polyketide Synthase ATX from Aspergillus terreus. Chembiochem 2006; 7:1869-74. [PMID: 17004275 DOI: 10.1002/cbic.200600235] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tomomi Moriguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
34
|
Weissman KJ, Hong H, Popovic B, Meersman F. Evidence for a protein-protein interaction motif on an acyl carrier protein domain from a modular polyketide synthase. ACTA ACUST UNITED AC 2006; 13:625-36. [PMID: 16793520 DOI: 10.1016/j.chembiol.2006.04.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 04/24/2006] [Accepted: 04/25/2006] [Indexed: 11/19/2022]
Abstract
During biosynthesis on modular polyketide synthases (PKSs), chain extension intermediates are tethered to acyl carrier protein (ACP) domains through phosphopantetheinyl prosthetic groups. Each ACP must therefore interact with every other domain within the module, and also with a downstream acceptor domain. The nature of these interactions is key to our understanding of the topology and operation of these multienzymes. Sequence analysis and homology modeling implicates a potential helical region (helix II) on the ACPs as a protein-protein interaction motif. Using site-directed mutagenesis, we show that residues along this putative helix lie at the interface between the ACP and the phosphopantetheinyl transferase that catalyzes its activation. Our results accord with previous studies of discrete ACP proteins from fatty acid and aromatic polyketide biosynthesis, suggesting that helix II may also serve as a universal interaction motif in modular PKSs.
Collapse
Affiliation(s)
- Kira J Weissman
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom.
| | | | | | | |
Collapse
|
35
|
Chiocchini C, Linne U, Stachelhaus T. In Vivo Biocombinatorial Synthesis of Lipopeptides by COM Domain-Mediated Reprogramming of the Surfactin Biosynthetic Complex. ACTA ACUST UNITED AC 2006; 13:899-908. [PMID: 16931339 DOI: 10.1016/j.chembiol.2006.06.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2006] [Revised: 05/30/2006] [Accepted: 06/26/2006] [Indexed: 10/24/2022]
Abstract
The intermolecular communication within NRPS complexes relies on the coordinated interplay of donor and acceptor communication-mediating (COM) domains. In this study, the potential of COM domains was exploited in vivo by establishing a system for the true biocombinatorial synthesis of lipopeptides via directed reprogramming of a natural NRP biosynthetic assembly line (i.e., surfactin). By means of COM domain swapping, these experiments verified the decisive role of COM domains for the control of protein-protein interactions between NRPSs, demonstrated the functionality of COM domain pairs even in the context of a heterologous host and NRPS system, and allowed for the intended skipping of a biosynthetic enzyme within a multienzymatic biosynthetic complex. Ultimately, abrogation of the selectivity barrier provided by COM domains afforded the successful simultaneous, biocombinatorial synthesis of distinct lipopeptide products.
Collapse
Affiliation(s)
- Claudia Chiocchini
- Philipps-University Marburg, Faculty of Chemistry/Biochemistry, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
| | | | | |
Collapse
|
36
|
Hicks LM, Balibar CJ, Walsh CT, Kelleher NL, Hillson NJ. Probing intra- versus interchain kinetic preferences of L-Thr acylation on dimeric VibF with mass spectrometry. Biophys J 2006; 91:2609-19. [PMID: 16815901 PMCID: PMC1562378 DOI: 10.1529/biophysj.106.084848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a method to probe intra- and interchain activities within dimeric nonribosomal peptide synthetases. Utilizing domain inactivation and analytical mass mutants in conjunction with rapid-quench, mass spectrometry, and a probabilistic kinetic model, we have elucidated the pre-steady-state intra- and interchain rates and the corresponding flux of the acylation of L-Thr onto VibF. Although the intra rate is significantly faster than the inter rate, the data are most consistent with an even flux of covalent substrate loading where neither pathway dominates. These pre-steady-state results confirm previous steady-state in vitro mutant complementation studies of VibF. Extension of this methodology to other dimeric nonribosomal peptide synthetases, and to the related fatty acid and polyketide synthases, will further our biophysical understanding of their acyl-intermediate-processing pathways.
Collapse
Affiliation(s)
- Leslie M Hicks
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
Two recent papers in Science reported the X-ray structures of the large, organizationally distinct animal and fungal fatty acid synthases at 5 A. These new structural insights have unexpected implications for enzyme function for the other "iterative" and "assembly line" megasynthases.
Collapse
Affiliation(s)
- Craig A Townsend
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
38
|
Keatinge-Clay AT, Stroud RM. The Structure of a Ketoreductase Determines the Organization of the β-Carbon Processing Enzymes of Modular Polyketide Synthases. Structure 2006; 14:737-48. [PMID: 16564177 DOI: 10.1016/j.str.2006.01.009] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 01/11/2006] [Accepted: 01/17/2006] [Indexed: 11/18/2022]
Abstract
The structure of the ketoreductase (KR) from the first module of the erythromycin synthase with NADPH bound was solved to 1.79 A resolution. The 51 kDa domain has two subdomains, each similar to a short-chain dehydrogenase/reductase (SDR) monomer. One subdomain has a truncated Rossmann fold and serves a purely structural role stabilizing the other subdomain, which catalyzes the reduction of the beta-carbonyl of a polyketide and possibly the epimerization of an alpha-substituent. The structure enabled us to define the domain boundaries of KR, the dehydratase (DH), and the enoylreductase (ER). It also constrains the three-dimensional organization of these domains within a module, revealing that KR does not make dimeric contacts across the 2-fold axis of the module. The quaternary structure elucidates how substrates are shuttled between the active sites of polyketide synthases (PKSs), as well as related fatty acid synthases (FASs), and suggests how domains can be swapped to make hybrid synthases that produce novel polyketides.
Collapse
Affiliation(s)
- Adrian T Keatinge-Clay
- Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16(th) Street, San Francisco, California 94107, USA.
| | | |
Collapse
|
39
|
Abstract
The homodimeric mammalian fatty acid synthase is one of the most complex cellular multienzymes, in that each 270-kilodalton polypeptide chain carries all seven functional domains required for fatty acid synthesis. We have calculated a 4.5 angstrom-resolution x-ray crystallographic map of porcine fatty acid synthase, highly homologous to the human multienzyme, and placed homologous template structures of all individual catalytic domains responsible for the cyclic elongation of fatty acid chains into the electron density. The positioning of domains reveals the complex architecture of the multienzyme forming an intertwined dimer with two lateral semicircular reaction chambers, each containing a full set of catalytic domains required for fatty acid elongation. Large distances between active sites and conformational differences between the reaction chambers demonstrate that mobility of the acyl carrier protein and general flexibility of the multienzyme must accompany handover of the reaction intermediates during the reaction cycle.
Collapse
Affiliation(s)
- Timm Maier
- Institute of Molecular Biology and Biophysics, Department of Biology, Swiss Federal Institute of Technology (ETH Zurich), 8093 Zurich, Switzerland
| | | | | |
Collapse
|
40
|
Fontana A. Biogenetic proposals and biosynthetic studies on secondary metabolites of opisthobranch molluscs. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2006; 43:303-32. [PMID: 17153349 DOI: 10.1007/978-3-540-30880-5_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Marine chemical diversity is generated by a large number of transformations often not noted in terrestrial counterparts. Life in the oceans differs in most respects from life on land and our knowledge of the genetics and biochemistry of marine organisms is still very limited to a small number of species. Biosynthetic studies and biogenetic speculations can therefore be crucial in predicting relevant enzymes and their encoding genes, with a view to setting the stage for rational engineering of marine natural products. A further useful outcome to the identification of biosynthetic pathways is the resulting classification of natural products, which can serve to correlate chemical diversity and biodiversity. This review summarizes the present knowledge on secondary metabolites biogenesis in marine opisthobranchs, a class of organisms that has been emerging as a prolific source of structurally diverse metabolites possessing a broad variety of biological activities.
Collapse
Affiliation(s)
- A Fontana
- Instituto di Chimica Biomolecolare (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (Naples), Italy
| |
Collapse
|
41
|
Abstract
The bacterial multienzyme polyketide synthases (PKSs) produce a diverse array of products that have been developed into medicines, including antibiotics and anticancer agents. The modular genetic architecture of these PKSs suggests that it might be possible to engineer the enzymes to produce novel drug candidates, a strategy known as 'combinatorial biosynthesis'. So far, directed engineering of modular PKSs has resulted in the production of more than 200 new polyketides, but key challenges remain before the potential of combinatorial biosynthesis can be fully realized.
Collapse
Affiliation(s)
- Kira J Weissman
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.
| | | |
Collapse
|
42
|
Hong H, Appleyard AN, Siskos AP, Garcia-Bernardo J, Staunton J, Leadlay PF. Chain initiation on type I modular polyketide synthases revealed by limited proteolysis and ion-trap mass spectrometry. FEBS J 2005; 272:2373-87. [PMID: 15885088 DOI: 10.1111/j.1742-4658.2005.04615.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Limited proteolysis in combination with liquid chromatography-ion trap mass spectrometry (LC-MS) was used to analyze engineered or natural proteins derived from a type I modular polyketide synthase (PKS), the 6-deoxyerythronolide B synthase (DEBS), and comprising either the first two extension modules linked to the chain-terminating thioesterase (TE) (DEBS1-TE); or the last two extension modules (DEBS3) or the first extension module linked to TE (diketide synthase, DKS). Functional domains were released by controlled proteolysis, and the exact boundaries of released domains were obtained through mass spectrometry and N-terminal sequencing analysis. The acyltransferase-acyl carrier protein required for chain initiation (AT(L)-ACP(L)), was released as a didomain from both DEBS1-TE and DKS, as well as the off-loading TE as a didomain with the adjacent ACP. Mass spectrometry was used successfully to monitor in detail both the release of individual domains, and the patterns of acylation of both intact and digested DKS when either propionyl-CoA or n-butyryl-CoA were used as initiation substrates. In particular, both loading domains and the ketosynthase domain of the first extension module (KS1) were directly observed to be simultaneously primed. The widely available and simple MS methodology used here offers a convenient approach to the proteolytic mapping of PKS multienzymes and to the direct monitoring of enzyme-bound intermediates.
Collapse
Affiliation(s)
- Hui Hong
- Department of Chemistry, University of Cambridge, UK
| | | | | | | | | | | |
Collapse
|
43
|
Sieber SA, Marahiel MA. Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem Rev 2005; 105:715-38. [PMID: 15700962 DOI: 10.1021/cr0301191] [Citation(s) in RCA: 446] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stephan A Sieber
- Philipps-Universität Marburg, Fachbereich Chemie/Biochemie, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | | |
Collapse
|
44
|
Affiliation(s)
- Leonard Katz
- Kosan Biosciences, Incorporated, 3832 Bay Center Place, Hayward, California 94545, USA.
| | | |
Collapse
|
45
|
Asturias FJ, Chadick JZ, Cheung IK, Stark H, Witkowski A, Joshi AK, Smith S. Structure and molecular organization of mammalian fatty acid synthase. Nat Struct Mol Biol 2005; 12:225-32. [PMID: 15711565 DOI: 10.1038/nsmb899] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Accepted: 01/19/2005] [Indexed: 11/09/2022]
Abstract
De novo synthesis of fatty acids in the cytosol of animal cells is carried out by the multifunctional, homodimeric fatty acid synthase (FAS). Cryo-EM analysis of single FAS particles imaged under conditions that limit conformational variability, combined with gold labeling of the N termini and structural analysis of the FAS monomers, reveals two coiled monomers in an overlapping arrangement. Comparison of dimeric FAS structures related to different steps in the fatty acid synthesis process indicates that only limited local rearrangements are required for catalytic interaction among different functional domains. Monomer coiling probably contributes to FAS efficiency and provides a structural explanation for the reported activity of a FAS monomer dimerized to a catalytically inactive partner. The new FAS structure provides a new paradigm for understanding the architecture of FAS and the related modular polyketide synthases.
Collapse
Affiliation(s)
- Francisco J Asturias
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Weissman KJ. Polyketide synthases: mechanisms and models. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2005:43-78. [PMID: 15645716 DOI: 10.1007/3-540-27055-8_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- K J Weissman
- Department of Biochemistry, University of Cambridge, UK.
| |
Collapse
|
47
|
Abstract
Bacteria and fungi use large multifunctional enzymes, the so-called nonribosomal peptide synthetases (NRPSs), to produce peptides of broad structural and biological activity. Biochemical studies have contributed substantially to the understanding of the key principles of these modular enzymes that can draw on a much larger number of catalytic tools for the incorporation of unusual features compared with the ribosomal system. Several crystal structures of NRPS-domains have yielded deep insight into the catalytic mechanisms involved and have led to a better prediction of the products assembled and to the construction of hybrid enzymes. In addition to the structure-function relationship of the core- and tailoring-domains of NRPSs, which is the main focus of this review, different biosynthetic strategies and essential enzymes for posttranslational modification and editing are discussed.
Collapse
Affiliation(s)
- Robert Finking
- Philipps-Universität Marburg, Fachbereich Chemie/Biochemie, Hans-Meerwein-Strasse, 35043 Marburg, Germany.
| | | |
Collapse
|
48
|
Weissman KJ. Polyketide biosynthesis: understanding and exploiting modularity. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2004; 362:2671-2690. [PMID: 15539364 DOI: 10.1098/rsta.2004.1470] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Polyketide-based pharmaceuticals are some of our most important medicines. They are constructed in micro-organisms (typically bacteria and fungi) by gigantic enzyme catalysts called polyketide synthases (PKSs). The organization of PKSs into molecular assembly lines makes them particularly appealing targets for genetic engineering because, in principle, an alteration in the enzyme organization might translate into a predictable change in polyketide structure. Excitingly, this has been shown repeatedly to work in practice, but the efficiency of the engineered PKSs is frequently too low to be useful for large-scale drug synthesis. To reach this goal, researchers need a deeper understanding of the structure and function of these proteins, which are among the most complex in nature. This review highlights some recent experiments which are providing key information about the molecular organization, mechanism and orchestration of these magnificent catalysts, and opening up fresh prospects of truly combinatorial biosynthesis of novel polyketides as leads in drug discovery.
Collapse
Affiliation(s)
- Kira J Weissman
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
49
|
Witkowski A, Ghosal A, Joshi AK, Witkowska HE, Asturias FJ, Smith S. Head-to-Head Coiled Arrangement of the Subunits of the Animal Fatty Acid Synthase. ACTA ACUST UNITED AC 2004; 11:1667-76. [PMID: 15610851 DOI: 10.1016/j.chembiol.2004.09.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 09/25/2004] [Accepted: 09/30/2004] [Indexed: 10/26/2022]
Abstract
The role of the beta-ketoacyl synthase domains in dimerization of the 2505 residue subunits of the multifunctional animal FAS has been evaluated by a combination of crosslinking and characterization of several truncated forms of the protein. Polypeptides containing only the N-terminal 971 residues can form dimers, but polypeptides lacking only the N-terminal 422 residue beta-ketoacyl synthase domain cannot. FAS subunits can be crosslinked with spacer lengths as short as 6 A, via cysteine residues engineered near the N terminus of the full-length polypeptides. The proximity of the N-terminal beta-ketoacyl synthase domains and their essential role in dimerization is consistent with a revised model for the FAS in which a head-to-head arrangement of two coiled subunits facilitates functional interactions between the dimeric beta-ketoacyl synthase and the acyl carrier protein domains of either subunit.
Collapse
Affiliation(s)
- Andrzej Witkowski
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, California 94609, USA
| | | | | | | | | | | |
Collapse
|
50
|
Rao A, Ranganathan A. Interaction studies on proteins encoded by the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Mol Genet Genomics 2004; 272:571-9. [PMID: 15668773 DOI: 10.1007/s00438-004-1088-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Accepted: 10/29/2004] [Indexed: 10/26/2022]
Abstract
Polyketide synthases (PKSs) of Mycobacterium tuberculosis are increasingly being seen as producers of virulence factors that are important for pathogenesis by the bacterium. Thus, the phenolphthiocerol synthase PKS cluster of M. tuberculosis is responsible, in part, for the synthesis of a virulence determinant called phthiocerol dimycocerosate (PDIM). Here, we provide evidence that the PpsE protein, which is part of that cluster, interacts with the type II thioesterase TesA of M. tuberculosis. The interaction was demonstrated by employing a two-hybrid system, and confirmed using a GST (glutathione S-transferase) pull-down' assay after both proteins had been purified to homogeneity. Based on the present findings, a revised model for the processing of polyketides during the synthesis of PDIM is presented.
Collapse
Affiliation(s)
- A Rao
- Recombinant Gene Products Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, PO Box 10504, 110067 New Delhi, India
| | | |
Collapse
|