1
|
Vollmers L, Zacharias M. Advanced sampling simulations of coupled folding and binding of phage P22 N-peptide to boxB RNA. Biophys J 2024; 123:3463-3477. [PMID: 39210596 PMCID: PMC11480772 DOI: 10.1016/j.bpj.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/08/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Protein-RNA interactions are crucially important for numerous cellular processes and often involve coupled folding and binding of peptide segments upon association. The Nut-utilization site (N)-protein of bacteriophages contains an N-terminal arginine-rich motif that undergoes such a folding transition upon binding to the boxB RNA hairpin loop target structure. Molecular dynamics free energy simulations were used to calculate the absolute binding free energy of the N-peptide of bacteriophage P22 in complex with the boxB RNA hairpin motif at different salt concentrations and using two different water force field models. We obtained good agreement with experiment also at different salt concentrations for the TIP4P-D water model that has a stabilizing effect on unfolded protein structures. It allowed us to estimate the free energy contribution resulting from restricting the molecules' spatial and conformational freedom upon binding, which makes a large opposing contribution to binding. In a second set of umbrella sampling simulations to dissociate/associate the complex along a separation coordinate, we analyzed the onset of preorientation of the N-peptide and onset of structure formation relative to the RNA and its dependence on the salt concentration. Peptide orientation and conformational transitions are significantly coupled to the first contact formation between peptide and RNA. The initial contacts are mostly formed between peptide residues and the boxB hairpin loop nucleotides. A complete transition to an α-helical bound peptide conformation occurs only at a late stage of the binding process a few angstroms before the complexed state has been reached. However, the N-peptide orients also at distances beyond the contact distance such that the sizable positive charge points toward the RNA's center-of-mass. Our result may have important implications for understanding protein- and peptide-RNA complex formation frequently involving coupled folding and association processes.
Collapse
Affiliation(s)
- Luis Vollmers
- Physics Department and Center of Protein Assemblies, Technical University Munich, Garching, Germany
| | - Martin Zacharias
- Physics Department and Center of Protein Assemblies, Technical University Munich, Garching, Germany.
| |
Collapse
|
2
|
Chen H, Gu Z, Yang L, Liu F, An R, Ge Y, Liang X. Direct dsRNA preparation by promoter-free RCT and RNase H cleavage using one circular dsDNA template with a mismatched bubble. RNA (NEW YORK, N.Y.) 2023; 29:1691-1702. [PMID: 37536954 PMCID: PMC10578470 DOI: 10.1261/rna.079670.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023]
Abstract
Double-stranded RNA (dsRNA) has aroused widespread interest due to its effects on immunity and applications based on RNAi. However, the in vitro preparation of dsRNA is costly and laborious. In this study, we have developed a novel and interesting method designated as pfRCT (promoter-free rolling-circle transcription) for direct, facile, and efficient dsRNA preparation. This method generates equal amounts of sense and antisense strands simultaneously from a single circular dsDNA template. To initiate transcription by T7 RNA polymerase without directional preference, a 9-15-bp bubble (mismatched duplex with strong sequence symmetry) is introduced into the template. During RCT, all the necessary reagents, including the template, NTPs, RNA polymerase, RNase H, and Helpers, are present in one pot; and the just-transcribed RNA is immediately truncated by RNase H to monomers with the desired size. The ends of the dsRNA product can also be simply sealed by T4 RNA ligase 1 after pfRCT. This new approach is expected to promote the applications of dsRNA.
Collapse
Affiliation(s)
- Hui Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266550, Shandong, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, Shandong, China
| | - Zhenzhu Gu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266550, Shandong, China
| | - Liu Yang
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Feng Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266550, Shandong, China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao 266550, Shandong, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, Shandong, China
| | - Yinlin Ge
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266550, Shandong, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, Shandong, China
| |
Collapse
|
3
|
Dong S, Liu X, Bi Y, Wang Y, Antony A, Lee D, Huntoon K, Jeong S, Ma Y, Li X, Deng W, Schrank BR, Grippin AJ, Ha J, Kang M, Chang M, Zhao Y, Sun R, Sun X, Yang J, Chen J, Tang SK, Lee LJ, Lee AS, Teng L, Wang S, Teng L, Kim BYS, Yang Z, Jiang W. Adaptive design of mRNA-loaded extracellular vesicles for targeted immunotherapy of cancer. Nat Commun 2023; 14:6610. [PMID: 37857647 PMCID: PMC10587228 DOI: 10.1038/s41467-023-42365-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
The recent success of mRNA therapeutics against pathogenic infections has increased interest in their use for other human diseases including cancer. However, the precise delivery of the genetic cargo to cells and tissues of interest remains challenging. Here, we show an adaptive strategy that enables the docking of different targeting ligands onto the surface of mRNA-loaded small extracellular vesicles (sEVs). This is achieved by using a microfluidic electroporation approach in which a combination of nano- and milli-second pulses produces large amounts of IFN-γ mRNA-loaded sEVs with CD64 overexpressed on their surface. The CD64 molecule serves as an adaptor to dock targeting ligands, such as anti-CD71 and anti-programmed cell death-ligand 1 (PD-L1) antibodies. The resulting immunogenic sEVs (imsEV) preferentially target glioblastoma cells and generate potent antitumour activities in vivo, including against tumours intrinsically resistant to immunotherapy. Together, these results provide an adaptive approach to engineering mRNA-loaded sEVs with targeting functionality and pave the way for their adoption in cancer immunotherapy applications.
Collapse
Affiliation(s)
- Shiyan Dong
- School of Life Science, Jilin University, Changchun, 130012, China
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xuan Liu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Chemical Engineering, Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, 71272, USA
| | - Ye Bi
- Practice Training Center, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Abin Antony
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - DaeYong Lee
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kristin Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Seongdong Jeong
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yifan Ma
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Xuefeng Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Weiye Deng
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Benjamin R Schrank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Adam J Grippin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - JongHoon Ha
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Minjeong Kang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mengyu Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yarong Zhao
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Rongze Sun
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Xiangshi Sun
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Jie Yang
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Jiayi Chen
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Sarah K Tang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - L James Lee
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Spot Biosystems Ltd., Palo Alto, CA, 94305, USA
| | - Andrew S Lee
- Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518055, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Lirong Teng
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Shengnian Wang
- Chemical Engineering, Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, 71272, USA.
| | - Lesheng Teng
- School of Life Science, Jilin University, Changchun, 130012, China.
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Zhaogang Yang
- School of Life Science, Jilin University, Changchun, 130012, China.
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Early antitermination in the atypical coliphage mEp021 mediated by the Gp17 protein. Arch Virol 2023; 168:92. [PMID: 36795170 DOI: 10.1007/s00705-023-05721-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/09/2023] [Indexed: 02/17/2023]
Abstract
The coliphage mEp021 belongs to a phage group with a unique immunity repressor, and its life cycle requires the host factor Nus. mEp021 has been classified as non-lambdoid based on its specific characteristics. The mEp021 genome carries a gene encoding an Nλ-like antiterminator protein, termed Gp17, and three nut sites (nutL, nutR1, and nutR2). Analysis of plasmid constructs containing these nut sites, a transcription terminator, and a GFP reporter gene showed high levels of fluorescence when Gp17 was expressed, but not in its absence. Like lambdoid N proteins, Gp17 has an arginine-rich motif (ARM), and mutations in its arginine codons inhibit its function. In infection assays using the mutant phage mEp021ΔGp17::Kan (where gp17 has been deleted), gene transcripts located downstream of transcription terminators were obtained only when Gp17 was expressed. In contrast to phage lambda, mEp021 virus particle production was partially restored (>1/3 relative to wild type) when nus mutants (nusA1, nusB5, nusC60, and nusE71) were infected with mEp021 and Gp17 was overexpressed. Our results suggest that RNA polymerase reads through the third nut site (nutR2), which is more than 7.9 kbp downstream of nutR1.
Collapse
|
5
|
Zeke A, Schád É, Horváth T, Abukhairan R, Szabó B, Tantos A. Deep structural insights into RNA-binding disordered protein regions. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1714. [PMID: 35098694 PMCID: PMC9539567 DOI: 10.1002/wrna.1714] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 12/11/2022]
Abstract
Recent efforts to identify RNA binding proteins in various organisms and cellular contexts have yielded a large collection of proteins that are capable of RNA binding in the absence of conventional RNA recognition domains. Many of the recently identified RNA interaction motifs fall into intrinsically disordered protein regions (IDRs). While the recognition mode and specificity of globular RNA binding elements have been thoroughly investigated and described, much less is known about the way IDRs can recognize their RNA partners. Our aim was to summarize the current state of structural knowledge on the RNA binding modes of disordered protein regions and to propose a classification system based on their sequential and structural properties. Through a detailed structural analysis of the complexes that contain disordered protein regions binding to RNA, we found two major binding modes that represent different recognition strategies and, most likely, functions. We compared these examples with DNA binding disordered proteins and found key differences stemming from the nucleic acids as well as similar binding strategies, implying a broader substrate acceptance by these proteins. Due to the very limited number of known structures, we integrated molecular dynamics simulations in our study, whose results support the proposed structural preferences of specific RNA‐binding IDRs. To broaden the scope of our review, we included a brief analysis of RNA‐binding small molecules and compared their structural characteristics and RNA recognition strategies to the RNA‐binding IDRs. This article is categorized under:RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry RNA Interactions with Proteins and Other Molecules > Protein–RNA Recognition RNA Interactions with Proteins and Other Molecules > Small Molecule–RNA Interactions
Collapse
Affiliation(s)
- András Zeke
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Éva Schád
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tamás Horváth
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Rawan Abukhairan
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Beáta Szabó
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Agnes Tantos
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
6
|
Raad NG, Ghattas IR, Amano R, Watanabe N, Sakamoto T, Smith CA. Altered‐specificity mutants of the HIV Rev arginine‐rich motif‐RRE IIB interaction. J Mol Recognit 2020; 33:e2833. [DOI: 10.1002/jmr.2833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/08/2019] [Accepted: 12/20/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Nicole G. Raad
- Department of BiologyAmerican University of Beirut Beirut Lebanon
| | | | - Ryo Amano
- Department of Life ScienceChiba Institute of Technology Chiba Japan
| | - Natsuki Watanabe
- Department of Life ScienceChiba Institute of Technology Chiba Japan
| | - Taiichi Sakamoto
- Department of Life ScienceChiba Institute of Technology Chiba Japan
| | - Colin A. Smith
- Department of BiologyAmerican University of Beirut Beirut Lebanon
| |
Collapse
|
7
|
Kilchert C, Sträßer K, Kunetsky V, Änkö ML. From parts lists to functional significance-RNA-protein interactions in gene regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1582. [PMID: 31883228 DOI: 10.1002/wrna.1582] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/03/2019] [Accepted: 12/07/2019] [Indexed: 12/17/2022]
Abstract
Hundreds of canonical RNA binding proteins facilitate diverse and essential RNA processing steps in cells forming a central regulatory point in gene expression. However, recent discoveries including the identification of a large number of noncanonical proteins bound to RNA have changed our view on RNA-protein interactions merely as necessary steps in RNA biogenesis. As the list of proteins interacting with RNA has expanded, so has the scope of regulation through RNA-protein interactions. In addition to facilitating RNA metabolism, RNA binding proteins help to form subcellular structures and membraneless organelles, and provide means to recruit components of macromolecular complexes to their sites of action. Moreover, RNA-protein interactions are not static in cells but the ribonucleoprotein (RNP) complexes are highly dynamic in response to cellular cues. The identification of novel proteins in complex with RNA and ways cells use these interactions to control cellular functions continues to broaden the scope of RNA regulation in cells and the current challenge is to move from cataloguing the components of RNPs into assigning them functions. This will not only facilitate our understanding of cellular homeostasis but may bring in key insights into human disease conditions where RNP components play a central role. This review brings together the classical view of regulation accomplished through RNA-protein interactions with the novel insights gained from the identification of RNA binding interactomes. We discuss the challenges in combining molecular mechanism with cellular functions on the journey towards a comprehensive understanding of the regulatory functions of RNA-protein interactions in cells. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications aRNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition.
Collapse
Affiliation(s)
- Cornelia Kilchert
- Institute of Biochemistry, Justus-Liebig University Giessen, Giessen, Germany
| | - Katja Sträßer
- Institute of Biochemistry, Justus-Liebig University Giessen, Giessen, Germany
| | - Vladislav Kunetsky
- Institute of Biochemistry, Justus-Liebig University Giessen, Giessen, Germany
| | - Minna-Liisa Änkö
- Centre for Reproductive Health and Centre for Cancer Research, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Molecular and Translational Science, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Global pairwise RNA interaction landscapes reveal core features of protein recognition. Nat Commun 2018; 9:2511. [PMID: 29955037 PMCID: PMC6023938 DOI: 10.1038/s41467-018-04729-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/16/2018] [Indexed: 01/14/2023] Open
Abstract
RNA–protein interactions permeate biology. Transcription, translation, and splicing all hinge on the recognition of structured RNA elements by RNA-binding proteins. Models of RNA–protein interactions are generally limited to short linear motifs and structures because of the vast sequence sampling required to access longer elements. Here, we develop an integrated approach that calculates global pairwise interaction scores from in vitro selection and high-throughput sequencing. We examine four RNA-binding proteins of phage, viral, and human origin. Our approach reveals regulatory motifs, discriminates between regulated and non-regulated RNAs within their native genomic context, and correctly predicts the consequence of mutational events on binding activity. We design binding elements that improve binding activity in cells and infer mutational pathways that reveal permissive versus disruptive evolutionary trajectories between regulated motifs. These coupling landscapes are broadly applicable for the discovery and characterization of protein–RNA recognition at single nucleotide resolution. RNA–protein interactions often depend on the recognition of extended RNA elements but the identification of these motifs is challenging. Here, the authors present a global integrated approach to analyze RNA–protein binding landscapes, mapping extended RNA interaction motifs for four RNA-binding proteins.
Collapse
|
9
|
Prostova MA, Deviatkin AA, Tcelykh IO, Lukashev AN, Gmyl AP. Independent evolution of tetraloop in enterovirus oriL replicative element and its putative binding partners in virus protein 3C. PeerJ 2017; 5:e3896. [PMID: 29018627 PMCID: PMC5633025 DOI: 10.7717/peerj.3896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/16/2017] [Indexed: 12/18/2022] Open
Abstract
Background Enteroviruses are small non-enveloped viruses with a (+) ssRNA genome with one open reading frame. Enterovirus protein 3C (or 3CD for some species) binds the replicative element oriL to initiate replication. The replication of enteroviruses features a low-fidelity process, which allows the virus to adapt to the changing environment on the one hand, and requires additional mechanisms to maintain the genome stability on the other. Structural disturbances in the apical region of oriL domain d can be compensated by amino acid substitutions in positions 154 or 156 of 3C (amino acid numeration corresponds to poliovirus 3C), thus suggesting the co-evolution of these interacting sequences in nature. The aim of this work was to understand co-evolution patterns of two interacting replication machinery elements in enteroviruses, the apical region of oriL domain d and its putative binding partners in the 3C protein. Methods To evaluate the variability of the domain d loop sequence we retrieved all available full enterovirus sequences (>6, 400 nucleotides), which were present in the NCBI database on February 2017 and analysed the variety and abundance of sequences in domain d of the replicative element oriL and in the protein 3C. Results A total of 2,842 full genome sequences was analysed. The majority of domain d apical loops were tetraloops, which belonged to consensus YNHG (Y = U/C, N = any nucleotide, H = A/C/U). The putative RNA-binding tripeptide 154–156 (Enterovirus C 3C protein numeration) was less diverse than the apical domain d loop region and, in contrast to it, was species-specific. Discussion Despite the suggestion that the RNA-binding tripeptide interacts with the apical region of domain d, they evolve independently in nature. Together, our data indicate the plastic evolution of both interplayers of 3C-oriL recognition.
Collapse
Affiliation(s)
- Maria A Prostova
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia
| | - Andrei A Deviatkin
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia
| | - Irina O Tcelykh
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| | - Alexander N Lukashev
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia.,Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anatoly P Gmyl
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia.,Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
10
|
Basu S, Bahadur RP. A structural perspective of RNA recognition by intrinsically disordered proteins. Cell Mol Life Sci 2016; 73:4075-84. [PMID: 27229125 PMCID: PMC7079799 DOI: 10.1007/s00018-016-2283-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/13/2016] [Accepted: 05/20/2016] [Indexed: 11/24/2022]
Abstract
Protein-RNA recognition is essential for gene expression and its regulation, which is indispensable for the survival of the living organism at one hand, on the other hand, misregulation of this recognition may lead to their extinction. Polymorphic conformation of both the interacting partners is a characteristic feature of such molecular recognition that promotes the assembly. Many RNA binding proteins (RBP) or regions in them are found to be intrinsically disordered, and this property helps them to play a central role in the regulatory processes. Sequence composition and the length of the flexible linkers between RNA binding domains in RBPs are crucial in making significant contacts with its partner RNA. Polymorphic conformations of RBPs can provide thermodynamic advantage to its binding partner while acting as a chaperone. Prolonged extensions of the disordered regions in RBPs also contribute to the stability of the large cellular machines including ribosome and viral assemblies. The involvement of these disordered regions in most of the significant cellular processes makes RBPs highly associated with various human diseases that arise due to their misregulation.
Collapse
Affiliation(s)
- Sushmita Basu
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ranjit Prasad Bahadur
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
11
|
Basu S, Bahadur RP. A structural perspective of RNA recognition by intrinsically disordered proteins. CELLULAR AND MOLECULAR LIFE SCIENCES : CMLS 2016. [PMID: 27229125 DOI: 10.1007/s00018‐016‐2283‐1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Protein-RNA recognition is essential for gene expression and its regulation, which is indispensable for the survival of the living organism at one hand, on the other hand, misregulation of this recognition may lead to their extinction. Polymorphic conformation of both the interacting partners is a characteristic feature of such molecular recognition that promotes the assembly. Many RNA binding proteins (RBP) or regions in them are found to be intrinsically disordered, and this property helps them to play a central role in the regulatory processes. Sequence composition and the length of the flexible linkers between RNA binding domains in RBPs are crucial in making significant contacts with its partner RNA. Polymorphic conformations of RBPs can provide thermodynamic advantage to its binding partner while acting as a chaperone. Prolonged extensions of the disordered regions in RBPs also contribute to the stability of the large cellular machines including ribosome and viral assemblies. The involvement of these disordered regions in most of the significant cellular processes makes RBPs highly associated with various human diseases that arise due to their misregulation.
Collapse
Affiliation(s)
- Sushmita Basu
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ranjit Prasad Bahadur
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
12
|
HK022 Nun Requires Arginine-Rich Motif Residues Distinct from λ N. J Bacteriol 2015; 197:3573-82. [PMID: 26350130 DOI: 10.1128/jb.00466-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/24/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Bacteriophage λ N protein binds boxB RNA hairpins in the nut (N utilization) sites of immediate early λ transcripts and interacts with host factors to suppress transcriptional termination at downstream terminators. In opposition to λ N, the Nun protein of HK022 binds the boxBs of coinfecting λ transcripts, interacts with a similar or identical set of host factors, and terminates transcription to suppress λ replication. Comparison of N-boxB and Nun-boxB nuclear magnetic resonance (NMR) structural models suggests similar interactions, though limited mutagenesis of Nun is available. Here, libraries of Nun's arginine-rich motif (ARM) were screened for the ability to exclude λ coinfection, and mutants were assayed for Nun termination with a boxB plasmid reporter system. Several Nun ARM residues appear to be immutable: Asp26, Arg28, Arg29, Arg32, Trp33, and Arg36. Asp26 and Trp33 appear to be unable to contact boxB and are not found at equivalent positions in λ N ARM. To understand if the requirement of Asp26, Trp33, and Arg36 indicated differences between HK022 Nun termination and λ N antitermination complexes, the same Nun libraries were fused to the activation domain of λ N and screened for clones able to complement N-deficient λ. Mutants were assayed for N antitermination. Surprisingly, Asp26 and Trp33 were still essential when Nun ARM was fused to N. Docking suggests that Nun ARM contacts a hydrophobic surface of the NusG carboxy-terminal domain containing residues necessary for Nun function. These findings indicate that Nun ARM relies on distinct contacts in its ternary complex and illustrate how protein-RNA recognition can evolve new regulatory functions. IMPORTANCE λ N protein interacts with host factors to allow λ nut-containing transcripts to elongate past termination signals. A competing bacteriophage, HK022, expresses Nun protein, which causes termination of λ nut transcripts. λ N and HK022 Nun use similar arginine-rich motifs (ARMs) to bind the same boxB RNAs in nut transcripts. Screening libraries of Nun ARM mutants, both in HK022 Nun and in a λ N fusion, revealed amino acids essential to Nun that could bind one or more host factors. Docking suggests that NusG, which is present in both Nun termination and N antitermination, is a plausible partner. These findings could help understand how transcription elongation is regulated and illustrate how subtle differences allow ARMs to evolve new regulatory functions.
Collapse
|
13
|
Abdallah EY, Smith CA. Diverse mutants of HIV RRE IIB recognize wild-type Rev ARM or Rev ARM R35G-N40V. J Mol Recognit 2015; 28:710-21. [PMID: 26130028 DOI: 10.1002/jmr.2485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 05/07/2015] [Accepted: 05/23/2015] [Indexed: 01/22/2023]
Abstract
The binding of human immunodeficiency virus Rev protein via its arginine-rich motif (ARM) to an internal loop in the Rev-response element region IIB (RRE IIB) is necessary for viral replication. Many variant RNAs and ARMs that bind Rev and RRE IIB have been found. Despite the essential role of Rev asparagine 40 in recognition, the Rev ARM double-mutant R35G-N40V functions well in a Rev-RRE IIB reporter assay, indicating R35G-N40V uses a distinct recognition strategy. To examine how RRE IIB may evolve specificity to wild-type Rev ARM and R35G-N40V, 10 RRE IIB libraries, each completely randomized in overlapping regions, were screened with wild-type Rev ARM and R35G-N40V using a reporter system based on bacteriophage λ N antitermination. Consistent with previous studies, a core element of RRE IIB did not vary, and substitutions occurred at conserved residues only in the presence of other substitutions. Notably, the groove-widening, non-canonical base-pair G48:G71 was mutable to U48:G71 without strong loss of binding to wild-type Rev ARM, suggesting U48:G71 performs the same role by adopting the nearly isosteric, reverse wobble base pair. Originating from RRE IIB, as few as one or two substitutions are sufficient to confer specificity to wild-type Rev or Rev R35G-N40. The diversity of RRE IIB mutants that maintain binding to wild-type Rev ARM and R35G-N40V supports neutral theories of evolution and illustrates paths by which viral RNA-protein interactions can evolve new specificities. Rev-RRE offers an excellent model with which to study the fine structure of how specificity evolves.
Collapse
Affiliation(s)
- Emane Y Abdallah
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Colin A Smith
- Department of Biology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
14
|
Possik EJ, Bou Sleiman MS, Ghattas IR, Smith CA. Randomized codon mutagenesis reveals that the HIV Rev arginine-rich motif is robust to substitutions and that double substitution of two critical residues alters specificity. J Mol Recognit 2013; 26:286-96. [PMID: 23595810 DOI: 10.1002/jmr.2272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 02/09/2013] [Accepted: 02/10/2013] [Indexed: 02/05/2023]
Abstract
The binding of the arginine-rich motif (ARM) of HIV Rev protein to its high-affinity site in stem IIB in the Rev response element (RRE) initiates assembly of a ribonucleoprotein complex that mediates the export of essential, incompletely spliced viral transcripts. Many biochemical, genetic, and structural studies of Rev-RRE IIB have been published, yet the roles of many peptide residues in Rev ARM are unconfirmed by mutagenesis. Rev aptamer I (RAI) is an optimized RRE IIB that binds Rev with higher affinity and for which mutational data are sparse. Randomized-codon libraries of Rev ARM were assayed for their ability to bind RRE IIB and RAI using a bacterial reporter system based on bacteriophage λ N-nut antitermination. Most Rev ARM residues tolerated substitutions without strong loss of binding to RRE IIB, and all except arginine 39 tolerated substitution without strong loss of binding to RAI. The pattern of critical Rev residues is not the same for RRE IIB and RAI, suggesting important differences between the interactions. The results support and aid the interpretation of existing structural models. Observed clinical variation is consistent with additional constraints on Rev mutation. By chance, we found double mutants of two highly critical residues, arginine 35 (to glycine) and asparagine 40 (to valine or lysine), that bind RRE IIB well, but not RAI. That an apparently distinct binding mode occurs with only two mutations highlights the ability of ARMs to evolve new recognition strategies and supports the application of neutral theories of evolution to protein-RNA recognition.
Collapse
Affiliation(s)
- Elite J Possik
- McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
15
|
Thapar R, Denmon AP, Nikonowicz EP. Recognition modes of RNA tetraloops and tetraloop-like motifs by RNA-binding proteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:49-67. [PMID: 24124096 DOI: 10.1002/wrna.1196] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 08/13/2013] [Accepted: 08/18/2013] [Indexed: 12/19/2022]
Abstract
RNA hairpins are the most commonly occurring secondary structural elements in RNAs and serve as nucleation sites for RNA folding, RNA-RNA, and RNA-protein interactions. RNA hairpins are frequently capped by tetraloops, and based on sequence similarity, three broad classes of RNA tetraloops have been defined: GNRA, UNCG, and CUYG. Other classes such as the UYUN tetraloop in histone mRNAs, the UGAA in 16S rRNA, the AUUA tetraloop from the MS2 bacteriophage, and the AGNN tetraloop that binds RNase III have also been characterized. The tetraloop structure is compact and is usually characterized by a paired interaction between the first and fourth nucleotides. The two unpaired nucleotides in the loop are usually involved in base-stacking or base-phosphate hydrogen bonding interactions. Several structures of RNA tetraloops, free and complexed to other RNAs or proteins, are now available and these studies have increased our understanding of the diverse mechanisms by which this motif is recognized. RNA tetraloops can mediate RNA-RNA contacts via the tetraloop-receptor motif, kissing hairpin loops, A-minor interactions, and pseudoknots. While these RNA-RNA interactions are fairly well understood, how RNA-binding proteins recognize RNA tetraloops and tetraloop-like motifs remains unclear. In this review, we summarize the structures of RNA tetraloop-protein complexes and the general themes that have emerged on sequence- and structure-specific recognition of RNA tetraloops. We highlight how proteins achieve molecular recognition of this nucleic acid motif, the structural adaptations observed in the tetraloop to accommodate the protein-binding partner, and the role of dynamics in recognition.
Collapse
Affiliation(s)
- Roopa Thapar
- Department of Structural Biology, Hauptman-Woodward Medical Research Institute, Buffalo, NY, USA; Department of Structural Biology, SUNY at Buffalo, Buffalo, NY, USA; Department of Biochemistry and Cell Biology, Rice University, Houston, TX, USA
| | | | | |
Collapse
|
16
|
Penas C, Pazos E, Mascareñas JL, Vázquez ME. A Folding-Based Approach for the Luminescent Detection of a Short RNA Hairpin. J Am Chem Soc 2013; 135:3812-4. [DOI: 10.1021/ja400270a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Cristina Penas
- Centro Singular
de Investigación en Química
Biolóxica e Materiais Moleculares (CIQUS), Departamento de
Química Orgánica and Unidad Asociada al CSIC, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Elena Pazos
- Centro Singular
de Investigación en Química
Biolóxica e Materiais Moleculares (CIQUS), Departamento de
Química Orgánica and Unidad Asociada al CSIC, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - José L. Mascareñas
- Centro Singular
de Investigación en Química
Biolóxica e Materiais Moleculares (CIQUS), Departamento de
Química Orgánica and Unidad Asociada al CSIC, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - M. Eugenio Vázquez
- Centro Singular
de Investigación en Química
Biolóxica e Materiais Moleculares (CIQUS), Departamento de
Química Orgánica and Unidad Asociada al CSIC, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| |
Collapse
|
17
|
Yamashita K, Tanaka T, Furuta H, Ikawa Y. TectoRNP: self-assembling RNAs with peptide recognition motifs as templates for chemical peptide ligation. J Pept Sci 2012; 18:635-42. [DOI: 10.1002/psc.2444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 07/07/2012] [Accepted: 07/16/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Kohei Yamashita
- Department of Chemistry and Biochemistry; Graduate School of Engineering, Kyushu University; Moto-oka 744, Nishi-ku; Fukuoka; 819-0395; Japan
| | - Takahiro Tanaka
- Department of Chemistry and Biochemistry; Graduate School of Engineering, Kyushu University; Moto-oka 744, Nishi-ku; Fukuoka; 819-0395; Japan
| | | | | |
Collapse
|
18
|
Ishikawa J, Fujita Y, Maeda Y, Furuta H, Ikawa Y. GNRA/receptor interacting modules: Versatile modular units for natural and artificial RNA architectures. Methods 2011; 54:226-38. [DOI: 10.1016/j.ymeth.2010.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 12/08/2010] [Accepted: 12/08/2010] [Indexed: 12/25/2022] Open
|
19
|
Harris RC, Bredenberg JH, Silalahi ARJ, Boschitsch AH, Fenley MO. Understanding the physical basis of the salt dependence of the electrostatic binding free energy of mutated charged ligand-nucleic acid complexes. Biophys Chem 2011; 156:79-87. [PMID: 21458909 DOI: 10.1016/j.bpc.2011.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 02/08/2011] [Accepted: 02/21/2011] [Indexed: 12/01/2022]
Abstract
The predictions of the derivative of the electrostatic binding free energy of a biomolecular complex, ΔG(el), with respect to the logarithm of the 1:1 salt concentration, d(ΔG(el))/d(ln[NaCl]), SK, by the Poisson-Boltzmann equation, PBE, are very similar to those of the simpler Debye-Hückel equation, DHE, because the terms in the PBE's predictions of SK that depend on the details of the dielectric interface are small compared to the contributions from long-range electrostatic interactions. These facts allow one to obtain predictions of SK using a simplified charge model along with the DHE that are highly correlated with both the PBE and experimental binding data. The DHE-based model developed here, which was derived from the generalized Born model, explains the lack of correlation between SK and ΔG(el) in the presence of a dielectric discontinuity, which conflicts with the popular use of this supposed correlation to parse experimental binding free energies into electrostatic and nonelectrostatic components. Moreover, the DHE model also provides a clear justification for the correlations between SK and various empirical quantities, like the number of ion pairs, the ligand charge on the interface, the Coulomb binding free energy, and the product of the charges on the complex's components, but these correlations are weak, questioning their usefulness.
Collapse
Affiliation(s)
- Robert C Harris
- Department of Physics, Institute of Molecular Biophysics, Florida State University, Tallahasse, 32306, USA.
| | | | | | | | | |
Collapse
|
20
|
Dominguez C, Schubert M, Duss O, Ravindranathan S, Allain FHT. Structure determination and dynamics of protein-RNA complexes by NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2011; 58:1-61. [PMID: 21241883 DOI: 10.1016/j.pnmrs.2010.10.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 04/24/2010] [Indexed: 05/30/2023]
Affiliation(s)
- Cyril Dominguez
- Institute for Molecular Biology and Biophysics, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
21
|
Suryawanshi H, Sabharwal H, Maiti S. Thermodynamics of peptide-RNA recognition: the binding of a Tat peptide to TAR RNA. J Phys Chem B 2010; 114:11155-63. [PMID: 20687526 DOI: 10.1021/jp1000545] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
RNA-peptide interactions have been intensively studied at the structural level; however, in the absence of thermodynamic studies, the molecular forces that dictate the binding specificities and affinities remain elusive. Here we evaluate the thermodynamics (DeltaG, DeltaH, DeltaS) of HIV-1 TAR RNA hairpin and Tat peptide interaction as well as the hydration changes that accompany these interactions, through a series of calorimetric, spectroscopic, and osmotic stress studies. Tat peptide binding enhances the thermal stability of the TAR RNA hairpin; however, the thermal enhancement decreases with increasing Na(+) concentration. The equilibrium association constant (K(a)) is determined by fluorescence titrations and examined as a function of Na(+) concentration and temperature. The binding constant (K(a)) decreases with increasing Na(+) concentration. The binding free energy (DeltaG) is found to have a large nonpolyelectrolyte component with release of a single counterion upon binding. The ITC profiles showed two independent sites binding, indicating specific as well as nonspecific interactions. The enthalpy changes associated with both the binding sites are found to be more negative for the binding process at lower salt concentration of 20 mM Na(+). Our binding studies under osmotic stress conditions show that there is a release of 28 (+/-4) and 21 (+/-3) water molecules upon complex formation at 20 and 80 mM Na(+) concentration supporting the observed positive entropy contributions and accounting for discrepancies between DeltaH(cal) and DeltaH(vH). In aggregate, our results suggest that the hydrogen bonding of arginine to TAR RNA dictates the binding interaction.
Collapse
Affiliation(s)
- Hemant Suryawanshi
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India
| | | | | |
Collapse
|
22
|
Zhang X, Lee SW, Zhao L, Xia T, Qin PZ. Conformational distributions at the N-peptide/boxB RNA interface studied using site-directed spin labeling. RNA (NEW YORK, N.Y.) 2010; 16:2474-2483. [PMID: 20980674 PMCID: PMC2995408 DOI: 10.1261/rna.2360610] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 09/11/2010] [Indexed: 05/30/2023]
Abstract
In bacteriophage λ, interactions between a 22-amino acid peptide (called the N-peptide) and a stem-loop RNA element (called boxB) play a critical role in transcription anti-termination. The N-peptide/boxB complex has been extensively studied, and serves as a paradigm for understanding mechanisms of protein/RNA recognition. Particularly, ultrafast spectroscopy techniques have been applied to monitor picosecond fluorescence decay behaviors of 2-aminopurines embedded at various positions of the boxB RNA. The studies have led to a model in which the bound N-peptide exists in dynamic equilibrium between two states, with peptide C-terminal fragment either stacking on (i.e., the stacked state) or peeling away from (i.e., the unstacked state) the RNA loop. The function of the N-peptide/boxB complex seems to correlate with the fraction of the stacked state. Here, the N-peptide/boxB system is studied using the site-directed spin labeling technique, in which X-band electron paramagnetic resonance spectroscopy is applied to monitor nanosecond rotational behaviors of stable nitroxide radicals covalently attached to different positions of the N-peptide. The data reveal that in the nanosecond regime the C-terminal fragment of bound N-peptide adopts multiple discrete conformations within the complex. The characteristics of these conformations are consistent with the proposed stacked and unstacked states, and their distributions vary upon mutations within the N-peptide. These results suggest that the dynamic two-state model remains valid in the nanosecond regime, and represents a unique mode of function in the N-peptide/boxB RNA complex. It also demonstrates a connection between picosecond and nanosecond dynamics in a biological complex.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0744, USA
| | | | | | | | | |
Collapse
|
23
|
Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 2010; 329:1355-8. [PMID: 20829488 PMCID: PMC3133607 DOI: 10.1126/science.1192272] [Citation(s) in RCA: 522] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many bacteria and archaea contain clustered regularly interspaced short palindromic repeats (CRISPRs) that confer resistance to invasive genetic elements. Central to this immune system is the production of CRISPR-derived RNAs (crRNAs) after transcription of the CRISPR locus. Here, we identify the endoribonuclease (Csy4) responsible for CRISPR transcript (pre-crRNA) processing in Pseudomonas aeruginosa. A 1.8 angstrom crystal structure of Csy4 bound to its cognate RNA reveals that Csy4 makes sequence-specific interactions in the major groove of the crRNA repeat stem-loop. Together with electrostatic contacts to the phosphate backbone, these enable Csy4 to bind selectively and cleave pre-crRNAs using phylogenetically conserved serine and histidine residues in the active site. The RNA recognition mechanism identified here explains sequence- and structure-specific processing by a large family of CRISPR-specific endoribonucleases.
Collapse
Affiliation(s)
- Rachel E. Haurwitz
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Martin Jinek
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Blake Wiedenheft
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Kaihong Zhou
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Jennifer A. Doudna
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Department of Chemistry, University of California, Berkeley, CA 94720
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
24
|
Lebars I, Martinez-Zapien D, Durand A, Coutant J, Kieffer B, Dock-Bregeon AC. HEXIM1 targets a repeated GAUC motif in the riboregulator of transcription 7SK and promotes base pair rearrangements. Nucleic Acids Res 2010; 38:7749-63. [PMID: 20675720 PMCID: PMC2995076 DOI: 10.1093/nar/gkq660] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
7SK snRNA, an abundant RNA discovered in human nucleus, regulates transcription by RNA polymerase II (RNAPII). It sequesters and inhibits the transcription elongation factor P-TEFb which, by phosphorylation of RNAPII, switches transcription from initiation to processive elongation and relieves pauses of transcription. This regulation process depends on the association between 7SK and a HEXIM protein, neither isolated partner being able to inhibit P-TEFb alone. In this work, we used a combined NMR and biochemical approach to determine 7SK and HEXIM1 elements that define their binding properties. Our results demonstrate that a repeated GAUC motif located in the upper part of a hairpin on the 5'-end of 7SK is essential for specific HEXIM1 recognition. Binding of a peptide comprising the HEXIM Arginine Rich Motif (ARM) induces an opening of the GAUC motif and stabilization of an internal loop. A conserved proline-serine sequence in the middle of the ARM is shown to be essential for the binding specificity and the conformational change of the RNA. This work provides evidences for a recognition mechanism involving a first event of induced fit, suggesting that 7SK plasticity is involved in the transcription regulation.
Collapse
Affiliation(s)
- Isabelle Lebars
- IGBMC, BP10142, 1 rue Laurent Fries, 67404 Illkirch Cedex, France.
| | | | | | | | | | | |
Collapse
|
25
|
Janas T, Widmann JJ, Knight R, Yarus M. Simple, recurring RNA binding sites for L-arginine. RNA (NEW YORK, N.Y.) 2010; 16:805-816. [PMID: 20194519 PMCID: PMC2844627 DOI: 10.1261/rna.1979410] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 12/09/2009] [Indexed: 05/28/2023]
Abstract
Seven new arginine binding motifs have been selected from a heterogeneous RNA pool containing 17, 25, and 50mer randomized tracts, yielding 131 independently derived binding sites that are multiply isolated. The shortest 17mer random region is sufficient to build varied arginine binding sites using five different conserved motifs (motifs 1a, 1b, 1c, 2, and 4). Dissociation constants are in the fractional millimolar to millimolar range. Binding sites are amino acid side-chain specific and discriminate moderately between L- and D-stereoisomers of arginine, suggesting a molecular focus on side-chain guanidinium. An arginine coding triplet (codon/anticodon) is highly conserved within the largest family of Arg sites (72% of all sequences), as has also been found in minimal, most prevalent RNA binding sites for Ile, His, and Trp.
Collapse
Affiliation(s)
- Teresa Janas
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | | | | | | |
Collapse
|
26
|
Bahadur RP, Kannan S, Zacharias M. Binding of the bacteriophage P22 N-peptide to the boxB RNA motif studied by molecular dynamics simulations. Biophys J 2010; 97:3139-49. [PMID: 20006951 DOI: 10.1016/j.bpj.2009.09.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 08/28/2009] [Accepted: 09/01/2009] [Indexed: 11/30/2022] Open
Abstract
Protein-RNA interactions are important for many cellular processes. The Nut-utilization site (N)-protein of bacteriophages contains an N-terminal arginine-rich motif that undergoes a folding transition upon binding to the boxB RNA hairpin loop target structure. Molecular dynamics simulations were used to investigate the dynamics of the P22 N-peptide-boxB complex and to elucidate the energetic contributions to binding. In addition, the free-energy changes of RNA and peptide conformational adaptation to the bound forms, as well as the role of strongly bound water molecules at the peptide-RNA interface, were studied. The influence of peptide amino acid substitutions and the salt dependence of interaction were investigated and showed good agreement with available experimental results. Several tightly bound water molecules were found at the RNA-binding interface in both the presence and absence of N-peptide. Explicit consideration of the waters resulted in shifts of calculated contributions during the energetic analysis, but overall similar binding energy contributions were found. Of interest, it was found that the electrostatic field of the RNA has a favorable influence on the coil-to-alpha-helix transition of the N-peptide already outside of the peptide-binding site. This result may have important implications for understanding peptide-RNA complex formation, which often involves coupled folding and association processes. It indicates that electrostatic interactions near RNA molecules can lead to a shift in the equilibrium toward the bound form of an interacting partner before it enters the binding pocket.
Collapse
Affiliation(s)
- Ranjit P Bahadur
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| | | | | |
Collapse
|
27
|
Horiya S, Inaba M, Koh CS, Uehara H, Masui N, Mizuguchi M, Ishibashi M, Matsufuji S, Harada K. Replacement of the λ boxB RNA-N peptide with heterologous RNA-peptide interactions relaxes the strict spatial requirements for the formation of a transcription anti-termination complex. Mol Microbiol 2009; 74:85-97. [DOI: 10.1111/j.1365-2958.2009.06852.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Michael LA, Chenault JA, Miller BR, Knolhoff AM, Nagan MC. Water, Shape Recognition, Salt Bridges, and Cation–Pi Interactions Differentiate Peptide Recognition of the HIV Rev-Responsive Element. J Mol Biol 2009; 392:774-86. [DOI: 10.1016/j.jmb.2009.07.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 07/06/2009] [Accepted: 07/16/2009] [Indexed: 10/20/2022]
|
29
|
Dual roles for an arginine-rich motif in specific genome recognition and localization of viral coat protein to RNA replication sites in flock house virus-infected cells. J Virol 2009; 83:2872-82. [PMID: 19158251 DOI: 10.1128/jvi.01780-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Assembly of many RNA viruses entails the encapsidation of multiple genome segments into a single virion, and underlying mechanisms for this process are still poorly understood. In the case of the nodavirus Flock House virus (FHV), a bipartite positive-strand RNA genome consisting of RNA1 and RNA2 is copackaged into progeny virions. In this study, we investigated whether the specific packaging of FHV RNA is dependent on an arginine-rich motif (ARM) located in the N terminus of the coat protein. Our results demonstrate that the replacement of all arginine residues within this motif with alanines rendered the resultant coat protein unable to package RNA1, suggesting that the ARM represents an important determinant for the encapsidation of this genome segment. In contrast, replacement of all arginines with lysines had no effect on RNA1 packaging. Interestingly, confocal microscopic analysis demonstrated that the RNA1 packaging-deficient mutant did not localize to mitochondrial sites of FHV RNA replication as efficiently as wild-type coat protein. In addition, gain-of-function analyses showed that the ARM by itself was sufficient to target green fluorescent protein to RNA replication sites. These data suggest that the packaging of RNA1 is dependent on trafficking of coat protein to mitochondria, the presumed site of FHV assembly, and that this trafficking requires a high density of positive charge in the N terminus. Our results are compatible with a model in which recognition of RNA1 and RNA2 for encapsidation occurs sequentially and in distinct cellular microenvironments.
Collapse
|
30
|
Sugaya M, Nishino N, Katoh A, Harada K. Amino acid requirement for the high affinity binding of a selected arginine-rich peptide with the HIV Rev-response element RNA. J Pept Sci 2008; 14:924-35. [PMID: 18351707 DOI: 10.1002/psc.1027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The arginine-rich motif is a class of short arginine-rich peptides that bind to specific RNA structures that has been found to be a versatile framework for the design and selection of RNA-binding peptides. We previously identified novel peptides that bind to the Rev-response element (RRE) RNA of the HIV from an arginine-rich polypeptide library (ARPL) consisting of a polyarginine (15 mer) randomized at the N-terminal 10 positions. The selected peptides bound more strongly to the RRE than the natural binding partner, Rev, and contained glutamine residues that were assumed to be important for recognition of the G-A base pair. In addition, the peptides were predicted to bind to the RRE in an alpha-helical conformation. In this study, in order to understand the mechanism of the interaction between the RRE and the putative alpha-helical glutamine-containing peptides, the amino acid requirements for high affinity binding were analyzed by a combinatorial approach using a bacterial system for detecting RNA-peptide interactions. A consensus peptide, the DLA peptide, was elucidated, which consists of a single glutamine residue within a polyarginine context with the glutamine residue flanked at specific positions by three nonarginine residues, two of which appear to be important for alpha-helix stabilization. In addition, the DLA peptide was found to bind extremely tightly to the RRE with an affinity 50-fold higher than that of the Rev peptide as determined by a gel shift assay. A working model for the interaction of the DLA peptide to the RRE is proposed, which should aid in the development of peptide-based drugs that inhibit HIV replication, as well as in our understanding of polypeptide-RNA interactions.
Collapse
Affiliation(s)
- Maki Sugaya
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, Musashino, Tokyo 180-8633, Japan
| | | | | | | |
Collapse
|
31
|
Conformational changes in the solution structure of the dengue virus 5' end in the presence and absence of the 3' untranslated region. J Virol 2008; 83:1161-6. [PMID: 19004957 DOI: 10.1128/jvi.01362-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dengue virus (DENV) is an approximately 10.7-kb positive-sense RNA virus that circularizes via RNA-RNA interactions between sequences in the 5' and 3' terminal regions. Complementarity between the cyclization sequence (CS) and the upstream AUG region (UAR) has been shown to be necessary for viral replication. Here, we present the solution structure of the 5' end of DENV type 2 in the presence and absence of the 3' end. We demonstrate that hybridization between the 5' and 3' CSs is independent of the UAR while the 5' UAR-3' UAR hybridization is dependent upon the 5' CS-3' CS interaction.
Collapse
|
32
|
The RNA-binding domain of bacteriophage P22 N protein is highly mutable, and a single mutation relaxes specificity toward lambda. J Bacteriol 2008; 190:7699-708. [PMID: 18820025 DOI: 10.1128/jb.00997-08] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antitermination in bacteriophage P22, a lambdoid phage, uses the arginine-rich domain of the N protein to recognize boxB RNAs in the nut site of two regulated transcripts. Using an antitermination reporter system, we screened libraries in which each nonconserved residue in the RNA-binding domain of P22 N was randomized. Mutants were assayed for the ability to complement N-deficient virus and for antitermination with P22 boxB(left) and boxB(right) reporters. Single amino acid substitutions complementing P22 N(-) virus were found at 12 of the 13 positions examined. We found evidence for defined structural roles for seven nonconserved residues, which was generally compatible with the nuclear magnetic resonance model. Interestingly, a histidine can be replaced by any other aromatic residue, although no planar partner is obvious. Few single substitutions showed bias between boxB(left) and boxB(right), suggesting that the two RNAs impose similar constraints on genetic drift. A separate library comprising only hybrids of the RNA-binding domains of P22, lambda, and phi21 N proteins produced mutants that displayed bias. P22 N(-) plaque size plotted against boxB(left) and boxB(right) reporter activities suggests that lytic viral fitness depends on balanced antitermination. A few N proteins were able to complement both lambda N- and P22 N-deficient viruses, but no proteins were found to complement both P22 N- and phi21 N-deficient viruses. A single tryptophan substitution allowed P22 N to complement both P22 and lambda N(-). The existence of relaxed-specificity mutants suggests that conformational plasticity provides evolutionary transitions between distinct modes of RNA-protein recognition.
Collapse
|
33
|
Bacteriophage P22 antitermination boxB sequence requirements are complex and overlap with those of lambda. J Bacteriol 2008; 190:4263-71. [PMID: 18424516 DOI: 10.1128/jb.00059-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription antitermination in phages lambda and P22 uses N proteins that bind to similar boxB RNA hairpins in regulated transcripts. In contrast to the lambda N-boxB interaction, the P22 N-boxB interaction has not been extensively studied. A nuclear magnetic resonance structure of the P22 N peptide boxB(left) complex and limited mutagenesis have been reported but do not reveal a consensus sequence for boxB. We have used a plasmid-based antitermination system to screen boxBs with random loops and to test boxB mutants. We find that P22 N requires boxB to have a GNRA-like loop with no simple requirements on the remaining sequences in the loop or stem. U:A or A:U base pairs are strongly preferred adjacent to the loop and appear to modulate N binding in cooperation with the loop and distal stem. A few GNRA-like hexaloops have moderate activity. Some boxB mutants bind P22 and lambda N, indicating that the requirements imposed on boxB by P22 N overlap those imposed by lambda N. Point mutations can dramatically alter boxB specificity between P22 and lambda N. A boxB specific for P22 N can be mutated to lambda N specificity by a series of single mutations via a bifunctional intermediate, as predicted by neutral theories of evolution.
Collapse
|
34
|
Kawakami J, Sugimoto N, Tokitoh H, Tanabe Y. A novel stable RNA pentaloop that interacts specifically with a motif peptide of lambda-N protein. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 25:397-416. [PMID: 16838834 DOI: 10.1080/15257770600684027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
To achieve a novel specific peptide-nucleic acid binding model, we designed an in vitro selection procedure to decrease the energetic contribution of the electrostatic interaction in the total binding energy and to increase the contribution of hydrogen bonding and pi-pi stacking. After the selection of hairpin-loop RNAs that specifically bound to a model peptide of lambda N protein (N peptide), a new thermostable pentaloop RNA motif (N binding thermostable RNA hairpin: NTS RNA) was revealed. The obtained NTS RNA was able to bind to the N peptide with superior specificity to the boxB RNA, which is the naturally occurring partner of the lambda N protein.
Collapse
Affiliation(s)
- Junji Kawakami
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Higashinada-ku, Kobe, Japan.
| | | | | | | |
Collapse
|
35
|
Melchers WJG, Zoll J, Tessari M, Bakhmutov DV, Gmyl AP, Agol VI, Heus HA. A GCUA tetranucleotide loop found in the poliovirus oriL by in vivo SELEX (un)expectedly forms a YNMG-like structure: Extending the YNMG family with GYYA. RNA (NEW YORK, N.Y.) 2006; 12:1671-82. [PMID: 16894217 PMCID: PMC1557697 DOI: 10.1261/rna.113106] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 06/10/2006] [Indexed: 05/11/2023]
Abstract
The cloverleaf structure in the 5'-untranslated region of enterovirus RNA that regulates viral RNA replication contains an evolutionarily conserved YNMG tetraloop closed by a Y-G base pair. This loop is believed to interact specifically with the viral protease 3C. To further characterize the specificity of this interaction, the tetraloop and two flanking base pairs of the poliovirus RNA were randomized, and viable viral clones were obtained using in vivo SELEX. Among many different mutants with the canonical YNMG sequences to be described elsewhere, a large-plaque-forming clone contained a deviating uGCUAg sequence. The NMR structure of a small hairpin capped with uGCUAg that we present here shows that the GCUA tetraloop adopts a novel fold, which is highly similar to that of the YNMG tetraloop with common stacking properties and hydrogen-bond interactions including an unusual syn conformation of the adenosine. Thermodynamic studies show moderate stabilities of hairpins with canonical YNMG and the novel GCUA loops, which, together with the similarity of spatial structures, illustrates that the tetraloop structure itself is crucial for the RNA-protein interaction required for the viral replication. A re-evaluation of the ribosomal secondary structure database reveals a hairpin containing a GCUA loop, which covaries with YNMG and is involved in a tertiary interaction, and in the 50S ribosomal subunit from Haloarcula marismortui the structurally comparable apex of stem-loop 35a is a recognition site for protein L2. These observations show a more general occurrence and importance of the so-far unrecognized GYYA hairpin loops.
Collapse
Affiliation(s)
- Willem J G Melchers
- NCMLS, Department of Medical Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
36
|
Hobson D, Uhlenbeck OC. Alanine scanning of MS2 coat protein reveals protein-phosphate contacts involved in thermodynamic hot spots. J Mol Biol 2005; 356:613-24. [PMID: 16380130 DOI: 10.1016/j.jmb.2005.11.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 11/10/2005] [Accepted: 11/14/2005] [Indexed: 10/25/2022]
Abstract
The co-crystal structure of the MS2 coat protein dimer with its RNA operator reveals eight amino acid side-chains contacting seven of the RNA phosphates. These eight amino acids and five nearby control positions were individually changed to an alanine residue and the binding affinities of the mutant proteins to the RNA were determined. In general, the data agreed well with the crystal structure and previous RNA modification data. Interestingly, amino acid residues that are energetically most important for complex formation cluster in the middle of the RNA binding interface, forming thermodynamic hot spots, and are surrounded by energetically less relevant amino acids. In order to evaluate whether or not a given alanine mutation causes a global change in the RNA-protein interface, the affinities of the mutant proteins to RNAs containing one of 14 backbone modifications spanning the entire interface were determined. In three of six protein mutations tested, thermodynamic coupling between the site of the mutation and RNA groups that can be even more than 16 A away was detected. This suggests that, in some cases, the mutation may subtly alter the entire protein-RNA interface.
Collapse
Affiliation(s)
- Dagmar Hobson
- Department of Biochemistry, Molecular Biology, Cell Biology, Northwestern University 2205 Tech Drive, Hogan 2-100, Evanston, IL 60208, USA
| | | |
Collapse
|
37
|
Landt SG, Ramirez A, Daugherty MD, Frankel AD. A simple motif for protein recognition in DNA secondary structures. J Mol Biol 2005; 351:982-94. [PMID: 16055152 DOI: 10.1016/j.jmb.2005.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 06/29/2005] [Accepted: 07/01/2005] [Indexed: 11/18/2022]
Abstract
DNA in a single-stranded form (ssDNA) exists transiently within the cell and comprises the telomeres of linear chromosomes and the genomes of some DNA viruses. As with RNA, in the single-stranded state, some DNA sequences are able to fold into complex secondary and tertiary structures that may be recognized by proteins and participate in gene regulation. To better understand how such DNA elements might fold and interact with proteins, and to compare recognition features to those of a structured RNA, we used in vitro selection to identify ssDNAs that bind an RNA-binding peptide from the HIV Rev protein with high affinity and specificity. The large majority of selected binders contain a non-Watson-Crick G.T base-pair and an adjacent C:G base-pair and both are essential for binding. This GT motif can be presented in different DNA contexts, including a nearly perfect duplex and a branched three-helix structure, and appears to be recognized in large part by arginine residues separated by one turn of an alpha-helix. Interestingly, a very similar GT motif is necessary also for protein binding and function of a well-characterized model ssDNA regulatory element from the proenkephalin promoter.
Collapse
Affiliation(s)
- Stephen G Landt
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143-2280, USA
| | | | | | | |
Collapse
|
38
|
Iwazaki T, Li X, Harada K. Evolvability of the mode of peptide binding by an RNA. RNA (NEW YORK, N.Y.) 2005; 11:1364-73. [PMID: 16043495 PMCID: PMC1370820 DOI: 10.1261/rna.2560905] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The HIV Rev-response element (RRE) RNA binds strongly to two unrelated peptides, the HIV Rev peptide and an RRE-binding aptamer, the RSG-1.2 peptide, at a similar site, but using distinct sets of interactions. In this study, the nucleotide base requirements for the binding of the RRE to the Rev and RSG-1.2 peptides were determined by selection of Rev- and RSG-1.2-binding RRE variants using a bacterial reporter system. As a result, distinct differences in the bases necessary for binding the two peptides were found in the upper stem of the RRE. Strikingly, single nucleotide changes in this region were found to switch the peptide-binding specificity of the RRE from a bifunctional Rev- and RSG-1.2-binding mode to either a Rev-specific or a RSG-1.2- specific mode, demonstrating how an RNA can evolve alternative binding strategies in discrete steps without intermediate loss of function. This evolvability of the mode of peptide binding by an RNA presumably reflects the multidimensionality of conformational space that a given RNA has available for ligand recognition, which may have been utilized in the evolution of RNA-polypeptide complexes.
Collapse
Affiliation(s)
- Tetsuya Iwazaki
- Department of Life Science, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
| | | | | |
Collapse
|
39
|
Calabro V, Daugherty MD, Frankel AD. A single intermolecular contact mediates intramolecular stabilization of both RNA and protein. Proc Natl Acad Sci U S A 2005; 102:6849-54. [PMID: 15857951 PMCID: PMC1100766 DOI: 10.1073/pnas.0409282102] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An arginine-rich peptide from the Jembrana disease virus (JDV) Tat protein is a structural "chameleon" that binds bovine immunodeficiency virus (BIV) or HIV TAR RNAs in two different binding modes, with an affinity for BIV TAR even higher than the cognate BIV peptide. We determined the NMR structure of the JDV Tat-BIV TAR high-affinity complex and found that the C-terminal tyrosine in JDV Tat forms a network of inter- and intramolecular hydrogen bonding and stacking interactions that simultaneously stabilize the beta-hairpin conformation of the peptide and a base triple in the RNA. A neighboring histidine also appears to help stabilize the peptide conformation. Induced fit binding is recurrent in protein-protein and protein-nucleic acid interactions, and the JDV Tat complex demonstrates how high affinity can be achieved not only by optimization of the binding interface but also by inducing new intramolecular contacts that stabilize each binding partner. Comparison to the cognate BIV Tat peptide-TAR complex shows how such a costabilization mechanism can evolve with only small changes to the peptide sequence. In addition, the bound structure of BIV TAR in the chameleon peptide complex is strikingly similar to the bound conformation of HIV TAR, suggesting new strategies for the development of HIV TAR binding molecules.
Collapse
Affiliation(s)
- Valerie Calabro
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-2280, USA
| | | | | |
Collapse
|
40
|
Landt SG, Tipton AR, Frankel AD. Localized Influence of 2‘-Hydroxyl Groups and Helix Geometry on Protein Recognition in the RNA Major Groove. Biochemistry 2005; 44:6547-58. [PMID: 15850388 DOI: 10.1021/bi047916t] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The local geometry of a DNA helix can influence protein recognition, but the sequence-specific features that contribute to helix structure are not fully understood, and even less is known about how RNA helix geometry may affect protein recognition. To begin to understand how local or global helix structure may influence binding in an RNA model system, we generated a series of DNA analogues of HIV and BIV TAR RNAs in which ribose sugars were systematically substituted in and around the known binding sites for argininamide and a BIV Tat arginine-rich peptide, respectively, and measured their corresponding binding affinities. For each TAR interaction, binding occurs in the RNA major groove with high specificity, whereas binding to the all-DNA analogue is weak and nonspecific. Relatively few substitutions are needed to convert either DNA analogue of TAR into a high-affinity binder, with the ribose requirements being restricted largely to regions that directly contact the ligand. Substitutions at individual positions show up to 70-fold differences in binding affinity, even at adjacent base pairs, while two base pairs at the core of the BIV Tat peptide-RNA interface are largely unaffected by deoxyribose substitution. These results suggest that the helix geometries and unique conformational features required for binding are established locally and are relatively insulated from effects more than one base pair away. It seems plausible that arginine-rich peptides are able to adapt to a mosaic helical architecture in which segments as small as single base steps may be considered as modular recognition units.
Collapse
Affiliation(s)
- Stephen G Landt
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-2280, USA
| | | | | |
Collapse
|
41
|
Franklin NC. Morphing molecular specificities between Arm-peptide and NUT-RNA in the antitermination complexes of bacteriophages lambda and P22. Mol Microbiol 2004; 52:815-22. [PMID: 15101986 DOI: 10.1111/j.1365-2958.2004.04018.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacteriophage lambda's N-protein includes a 17-amino-acid segment, Arm, rich in arginine and having specific affinity for a 15-nucleotide RNA stem-loop called BOX-B. Parallel but different Arm/BOX-B sequences in lambda's cousin, phage P22, account for some of the type specificity that distinguishes lambda from P22: the N of each works only with its cognate BOX-B in vivo. We find that the specificity of N(lambda) can be shifted gradually to that of N(22) by substituting sets of particular amino acids from Arm(22) into Arm of N(lambda). The determinative amino acids are generally those shown by nuclear magnetic resonance to contact BOX-B RNA; gain or loss of these contact amino acids is reasonably expected to contribute to the affinity of each amino acid sequence. Intermediate sequences may show no function with either BOX-B, or weak function with both BOX-B(lambda) and BOX-B(22), the latter suggesting possible evolutionary paths for specificity shifts.
Collapse
Affiliation(s)
- Naomi C Franklin
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA.
| |
Collapse
|
42
|
Klosterman PS, Hendrix DK, Tamura M, Holbrook SR, Brenner SE. Three-dimensional motifs from the SCOR, structural classification of RNA database: extruded strands, base triples, tetraloops and U-turns. Nucleic Acids Res 2004; 32:2342-52. [PMID: 15121895 PMCID: PMC419439 DOI: 10.1093/nar/gkh537] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Release 2.0.1 of the Structural Classification of RNA (SCOR) database, http://scor.lbl.gov, contains a classification of the internal and hairpin loops in a comprehensive collection of 497 NMR and X-ray RNA structures. This report discusses findings of the classification that have not been reported previously. The SCOR database contains multiple examples of a newly described RNA motif, the extruded helical single strand. Internal loop base triples are classified in SCOR according to their three-dimensional context. These internal loop triples contain several examples of a frequently found motif, the minor groove AGC triple. SCOR also presents the predominant and alternate conformations of hairpin loops, as shown in the most well represented tetraloops, with consensus sequences GNRA, UNCG and ANYA. The ubiquity of the GNRA hairpin turn motif is illustrated by its presence in complex internal loops.
Collapse
Affiliation(s)
- Peter S Klosterman
- Department of Plant and Microbial Biology, University of California at Berkeley, 111 Koshland Hall, Berkeley, CA 94720-3102, USA
| | | | | | | | | |
Collapse
|
43
|
Ohlenschläger O, Wöhnert J, Bucci E, Seitz S, Häfner S, Ramachandran R, Zell R, Görlach M. The structure of the stemloop D subdomain of coxsackievirus B3 cloverleaf RNA and its interaction with the proteinase 3C. Structure 2004; 12:237-48. [PMID: 14962384 DOI: 10.1016/j.str.2004.01.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2003] [Revised: 10/24/2003] [Accepted: 10/24/2003] [Indexed: 11/25/2022]
Abstract
Stemloop D (SLD) of the 5' cloverleaf RNA is the cognate ligand of the coxsackievirus B3 (CVB3) 3C proteinase (3Cpro). Both are indispensable components of the viral replication initiation complex. SLD is a structurally autonomous subunit of the 5' cloverleaf. The SLD structure was solved by NMR spectroscopy to an rms deviation of 0.66 A (all heavy atoms). SLD contains a novel triple pyrimidine mismatch motif with a central Watson-Crick type C:U pair. SLD is capped by an apical uCACGg tetraloop adopting a structure highly similar to stable cUNCGg tetraloops. Binding of CVB3 3Cpro induces changes in NMR spectra for nucleotides adjacent to the triple pyrimidine mismatch and of the tetraloop implying them as sites of specific SLD:3Cpro interaction. The binding of 3Cpro to SLD requires the integrity of those structural elements, strongly suggesting that 3Cpro recognizes a structural motif instead of a specific sequence.
Collapse
Affiliation(s)
- Oliver Ohlenschläger
- Institut für Molekulare Biotechnologie eV, Bentenbergstr 100813, D-07745 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Theimer CA, Finger LD, Feigon J. YNMG tetraloop formation by a dyskeratosis congenita mutation in human telomerase RNA. RNA (NEW YORK, N.Y.) 2003; 9:1446-55. [PMID: 14624001 PMCID: PMC1370499 DOI: 10.1261/rna.5152303] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Autosomal dominant dyskeratosis congenita (DKC) has been linked to mutations in the RNA component of telomerase, the ribonucleoprotein responsible for telomere maintenance. Recent studies have investigated the role of the GC (107-108) --> AG mutation in the conserved P3 helix in the pseudoknot domain of human telomerase RNA. The mutation was found to significantly destabilize the pseudoknot conformation, resulting in a shift in the thermodynamic equilibrium to favor formation of a P2b hairpin intermediate. In the wild-type sequence, the hairpin intermediate was found to form a novel sequence of pyrimidine base pairs in a continuous stem capped by a structured pentaloop. The DKC mutant hairpin was observed to be slightly more stable than the wild-type hairpin, further shifting the pseudoknot-hairpin equilibrium to favor the mutant P2b hairpin. Here we examined the solution structure of the DKC mutant hairpin to identify the reason for this additional stability. We found that the mutant hairpin forms the same stem structure as wild-type and that the additional stabilization observed using optical melting can be explained by the formation of a YNMG-type tetraloop structure, with the last nucleotide of the pentaloop bulged out into the major groove. Our results provide a structural explanation for the increased stability of the mutant hairpin and further our understanding of the effect of this mutation on the structure and stability of the dominant conformation of the pseudoknot domain in this type of DKC.
Collapse
Affiliation(s)
- Carla A Theimer
- Department of Chemistry and Biochemistry, and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
45
|
Wiegand HL, Lu S, Cullen BR. Exon junction complexes mediate the enhancing effect of splicing on mRNA expression. Proc Natl Acad Sci U S A 2003; 100:11327-32. [PMID: 12972633 PMCID: PMC208756 DOI: 10.1073/pnas.1934877100] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intron-containing genes are generally expressed more effectively in human cells than are intronless versions of the same gene. We have asked whether this effect is due directly to splicing or instead reflects the action of components of the exon junction complex (EJC) that is assembled at splice junctions after splicing is completed. Here, we show that intron removal does not enhance gene expression if EJC formation is blocked. Conversely, RNA tethering of the EJC components SRm160 or RNPS1 boosts the expression of intronless mRNAs but not of spliced mRNAs. Splicing and RNPS1 tethering are shown to enhance the same steps in mRNA biogenesis and function, including mRNA 3' end processing and translation. Together, these data argue that the EJC is primarily responsible for the positive effect of splicing on gene expression.
Collapse
Affiliation(s)
- Heather L Wiegand
- Howard Hughes Medical Institute and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
46
|
Xia T, Frankel A, Takahashi TT, Ren J, Roberts RW. Context and conformation dictate function of a transcription antitermination switch. Nat Struct Mol Biol 2003; 10:812-9. [PMID: 14502268 DOI: 10.1038/nsb983] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2003] [Accepted: 07/23/2003] [Indexed: 11/08/2022]
Abstract
In bacteriophage l, transcription elongation is regulated by the N protein, which binds a nascent mRNA hairpin (termed boxB) and enables RNA polymerase to read through distal terminators. We have examined the structure, energetics and in vivo function of a number of N-boxB complexes derived from in vitro protein selection. Trp18 fully stacks on the RNA loop in the wild-type structure, and can become partially or completely unstacked when the sequence context is changed three or four residues away, resulting in a recognition interface in which the best binding residues depend on the sequence context. Notably, in vivo antitermination activity correlates with the presence of a stacked aromatic residue at position 18, but not with N-boxB binding affinity. Our work demonstrates that RNA polymerase responds to subtle conformational changes in cis-acting regulatory complexes and that approximation of components is not sufficient to generate a fully functional transcription switch.
Collapse
Affiliation(s)
- Tianbing Xia
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
Studies of RNA-binding peptides, and recent combinatorial library experiments in particular, have demonstrated that diverse peptide sequences and structures can be used to recognize specific RNA sites. The identification of large numbers of sequences capable of binding to a particular site has provided extensive phylogenetic information used to deduce basic principles of recognition. The high frequency at which RNA-binding peptides are found in large sequence libraries suggests plausible routes to evolve sequence-specific binders, facilitating the design of new binding molecules and perhaps reflecting characteristics of natural evolution.
Collapse
Affiliation(s)
- Chandreyee Das
- Department of Biochemistry and Biophysics, 600 16th Street University of California, San Francisco, CA 94143-2280, USA
| | | |
Collapse
|
48
|
Cilley CD, Williamson JR. Structural mimicry in the phage phi21 N peptide-boxB RNA complex. RNA (NEW YORK, N.Y.) 2003; 9:663-676. [PMID: 12756325 PMCID: PMC1370434 DOI: 10.1261/rna.2189203] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2002] [Accepted: 02/14/2003] [Indexed: 05/24/2023]
Abstract
We determined the solution structure of a 22-amino-acid peptide from the amino-terminal domain of the bacteriophage phi21 N protein in complex with its cognate 24-mer boxB RNA hairpin using heteronuclear magnetic resonance spectroscopy. The N peptide binds as an alpha-helix and interacts predominately with the major groove side of the 5' half of the boxB RNA stem-loop. This binding interface is defined by surface complementarity of polar and nonpolar interactions, and little sequence-specific recognition. The phi21 boxB loop (CUAACC) has hydrogen bond and backbone torsions typical of the "U-turn" motif, as well as base stacking of the last 4 nt, and a hydrogen bonded C:C pair closing the loop. The exposed face of the phi21 boxB loop, in complex with the N peptide, is strikingly similar to the GNRA tetraloop-like folds of the related lambda and P22 bacteriophage N peptide-boxB RNA complexes. The N peptide-boxB complexes of the various phage, while individually distinct, provide similar structural features for interactions with the Escherichia coli host factors to enable antitermination.
Collapse
Affiliation(s)
- Christopher D Cilley
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
49
|
Peled-Zehavi H, Horiya S, Das C, Harada K, Frankel AD. Selection of RRE RNA binding peptides using a kanamycin antitermination assay. RNA (NEW YORK, N.Y.) 2003; 9:252-61. [PMID: 12554868 PMCID: PMC1370391 DOI: 10.1261/rna.2152303] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2002] [Accepted: 10/29/2002] [Indexed: 05/20/2023]
Abstract
The arginine-rich domains of several RNA-binding proteins have been shown to bind their cognate RNAs with high affinities and specificities as isolated peptides, adopting different conformations within different complexes. The sequence simplicity and structural diversity of the arginine-rich motif has made it a good framework for constructing combinatorial libraries and identifying novel RNA-binding peptides, including those targeted to the HIV Rev response element (RRE). Here we describe a modified transcription antitermination reporter assay engineered with kanamycin resistance that enables larger in vivo screens (approximately 10(9) sequences) than previously possible. We show that the assay detects only specific RNA-protein complexes, and that binders are enriched at least 300-fold per round of selection. We screened a large peptide library in which amino acids with charged, polar, and small side chains were randomly distributed within a polyarginine framework and identified a set of high affinity RRE-binding peptides. Most contain glutamine at one particular peptide position, and the best peptides display significantly higher antitermination activities than Rev or other previously described high-affinity RRE-binding peptides. The kanamycin antitermination (KAN) assay should be useful for screening relatively large libraries and thereby facilitate identification of novel RNA binders.
Collapse
Affiliation(s)
- Hadas Peled-Zehavi
- Department of Biochemistry and Biophysics, University of California-San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0448, USA
| | | | | | | | | |
Collapse
|
50
|
Austin RJ, Xia T, Ren J, Takahashi TT, Roberts RW. Designed arginine-rich RNA-binding peptides with picomolar affinity. J Am Chem Soc 2002; 124:10966-7. [PMID: 12224929 DOI: 10.1021/ja026610b] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Arginine-rich peptide motifs (ARMs) capable of binding unique RNA structures play critical roles in transcription, translation, RNA trafficking, and RNA packaging. Bacteriophage ARMs necessary for transcription antitermination bind to distinct boxB RNA hairpin sequences with a characteristic induced alpha-helical structure. Characterization of ARMs from lambdoid phages reveals that the dissociation constant of the P22 bacteriophage model-antitermination complex (P22(N21)-P22boxB) is 200 +/- 56 pM in free solution at physiologic concentrations of monovalent cation, significantly stronger than previously determined by gel mobility shift and polyacrylamide gel coelectophoresis, and 2 orders of magnitude stronger than the tightest known native ARM-RNA interaction at physiological salt. Here, we use a reciprocal design approach to enhance the binding affinity of two separate alpha-helical ARM-RNA interactions; one derived from the native lambda phage antitermination complex and a second isolated using mRNA display selection experiments targeting boxB RNA.
Collapse
Affiliation(s)
- Ryan J Austin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|