1
|
Taylor RJ, Tagiltsev G, Briggs JAG. The structure of COPI vesicles and regulation of vesicle turnover. FEBS Lett 2023; 597:819-835. [PMID: 36513395 DOI: 10.1002/1873-3468.14560] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
COPI-coated vesicles mediate transport between Golgi stacks and retrograde transport from the Golgi to the endoplasmic reticulum. The COPI coat exists as a stable heptameric complex in the cytosol termed coatomer and is recruited en bloc to the membrane for vesicle formation. Recruitment of COPI onto membranes is mediated by the Arf family of small GTPases, which, in their GTP-bound state, bind both membrane and coatomer. Arf GTPases also influence cargo selection, vesicle scission and vesicle uncoating. Guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) regulate nucleotide binding by Arf GTPases. To understand the mechanism of COPI-coated vesicle trafficking, it is necessary to characterize the interplay between coatomer and Arf GTPases and their effectors. It is also necessary to understand interactions between coatomer and cargo, cargo adaptors/receptors and tethers facilitating binding to the target membrane. Here, we summarize current knowledge of COPI coat protein structure; we describe how structural and biochemical studies contributed to this knowledge; we review mechanistic insights into COPI vesicle biogenesis and disassembly; and we discuss the potential to answer open questions in the field.
Collapse
Affiliation(s)
- Rebecca J Taylor
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Grigory Tagiltsev
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - John A G Briggs
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
2
|
Zhang J, Li P, Lu R, Ouyang S, Chang MX. Structural and functional analysis of the small GTPase ARF1 reveals a pivotal role of its GTP-binding domain in controlling of the generation of viral inclusion bodies and replication of grass carp reovirus. Front Immunol 2022; 13:956587. [PMID: 36091067 PMCID: PMC9459132 DOI: 10.3389/fimmu.2022.956587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Grass carp reovirus (GCRV) is the most pathogenic double-stranded (ds) RNA virus among the isolated aquareoviruses. The molecular mechanisms by which GCRV utilizes host factors to generate its infectious compartments beneficial for viral replication and infection are poorly understood. Here, we discovered that the grass carp ADP ribosylation factor 1 (gcARF1) was required for GCRV replication since the knockdown of gcARF1 by siRNA or inhibiting its GTPase activity by treatment with brefeldin A (BFA) significantly impaired the yield of infectious viral progeny. GCRV infection recruited gcARF1 into viral inclusion bodies (VIBs) by its nonstructural proteins NS80 and NS38. The small_GTP domain of gcARF1 was confirmed to be crucial for promoting GCRV replication and infection, and the number of VIBs reduced significantly by the inhibition of gcARF1 GTPase activity. The analysis of gcARF1-GDP complex crystal structure revealed that the 27AAGKTT32 motif and eight amino acid residues (A27, G29, K30, T31, T32, N126, D129 and A160), which were located mainly within the GTP-binding domain of gcARF1, were crucial for the binding of gcARF1 with GDP. Furthermore, the 27AAGKTT32 motif and the amino acid residue T31 of gcARF1 were indispensable for the function of gcARF1 in promoting GCRV replication and infection. Taken together, it is demonstrated that the GTPase activity of gcARF1 is required for efficient replication of GCRV and that host GTPase ARF1 is closely related with the generation of VIBs.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Pengwei Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Riye Lu
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Songying Ouyang
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Ming Xian Chang, ; Songying Ouyang,
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Ming Xian Chang, ; Songying Ouyang,
| |
Collapse
|
3
|
ElMaghloob Y, Sot B, McIlwraith MJ, Garcia E, Yelland T, Ismail S. ARL3 activation requires the co-GEF BART and effector-mediated turnover. eLife 2021; 10:e64624. [PMID: 33438581 PMCID: PMC7817177 DOI: 10.7554/elife.64624] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/12/2021] [Indexed: 12/28/2022] Open
Abstract
The ADP-ribosylation factor-like 3 (ARL3) is a ciliopathy G-protein which regulates the ciliary trafficking of several lipid-modified proteins. ARL3 is activated by its guanine exchange factor (GEF) ARL13B via an unresolved mechanism. BART is described as an ARL3 effector which has also been implicated in ciliopathies, although the role of its ARL3 interaction is unknown. Here, we show that, at physiological GTP:GDP levels, human ARL3GDP is weakly activated by ARL13B. However, BART interacts with nucleotide-free ARL3 and, in concert with ARL13B, efficiently activates ARL3. In addition, BART binds ARL3GTP and inhibits GTP dissociation, thereby stabilising the active G-protein; the binding of ARL3 effectors then releases BART. Finally, using live cell imaging, we show that BART accesses the primary cilium and colocalises with ARL13B. We propose a model wherein BART functions as a bona fide co-GEF for ARL3 and maintains the active ARL3GTP, until it is recycled by ARL3 effectors.
Collapse
Affiliation(s)
| | - Begoña Sot
- Fundación IMDEA-Nanociencia, Campus de CantoblancoMadridSpain
- Unidad Asociada de Nanobiotecnología (CNB-CSIC e IMDEA Nanociencia), Campus de CantoblancoMadridSpain
| | | | | | | | - Shehab Ismail
- CRUK- Beatson InstituteGlasgowUnited Kingdom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Department of Chemistry, KU Leuven, CelestijnenlaanHeverleeBelgium
| |
Collapse
|
4
|
Wang W, Li K, Wan P, Lai F, Fu Q, Zhu T. Ras-like family small GTPases genes in Nilaparvata lugens: Identification, phylogenetic analysis, gene expression and function in nymphal development. PLoS One 2017; 12:e0172701. [PMID: 28241066 PMCID: PMC5328259 DOI: 10.1371/journal.pone.0172701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/08/2017] [Indexed: 01/13/2023] Open
Abstract
Twenty-nine cDNAs encoding Ras-like family small GTPases (RSGs) were cloned and sequenced from Nilaparvata lugens. Twenty-eight proteins are described here: 3 from Rho, 2 from Ras, 9 from Arf and 14 from Rabs. These RSGs from N.lugens have five conserved G-loop motifs and displayed a higher degree of sequence conservation with orthologues from insects. RT-qPCR analysis revealed NlRSGs expressed at all life stages and the highest expression was observed in hemolymph, gut or wing for most of NlRSGs. RNAi demonstrated that eighteen NlRSGs play a crucial role in nymphal development. Nymphs with silenced NlRSGs failed to molt, eclosion or development arrest. The qRT-PCR analysis verified the correlation between mortality and the down-regulation of the target genes. The expression level of nuclear receptors, Kr-h1, Hr3, FTZ-F1 and E93 involved in 20E and JH signal pathway was impacted in nymphs with silenced twelve NlRSGs individually. The expression of two halloween genes, Cyp314a1 and Cyp315a1 involved in ecdysone synthesis, decreased in nymphs with silenced NlSar1 or NlArf1. Cyp307a1 increased in nymphs with silenced NlArf6. In N.lugens with silenced NlSRβ, NlSar1 and NlRab2 at 9th day individually, 0.0% eclosion rate and almost 100.0% mortality was demonstrated. Further analysis showed NlSRβ could be served as a candidate target for dsRNA-based pesticides for N.lugens control.
Collapse
Affiliation(s)
- Weixia Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Kailong Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Pinjun Wan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Fengxiang Lai
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Qiang Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- * E-mail: (QF); (THZ)
| | - Tingheng Zhu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
- * E-mail: (QF); (THZ)
| |
Collapse
|
5
|
Nawrotek A, Zeghouf M, Cherfils J. Allosteric regulation of Arf GTPases and their GEFs at the membrane interface. Small GTPases 2016; 7:283-296. [PMID: 27449855 DOI: 10.1080/21541248.2016.1215778] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Arf GTPases assemble protein complexes on membranes to carry out major functions in cellular traffic. An essential step is their activation by guanine nucleotide exchange factors (GEFs), whose Sec7 domain stimulates GDP/GTP exchange. ArfGEFs form 2 major families: ArfGEFs with DCB, HUS and HDS domains (GBF1 and BIG1/BIG2 in humans), which act at the Golgi; and ArfGEFs with a C-terminal PH domain (cytohesin, EFA6 and BRAG), which function at the plasma membrane and endosomes. In addition, pathogenic bacteria encode an ArfGEF with a unique membrane-binding domain. Here we review the allosteric regulation of Arf GTPases and their GEFs at the membrane interface. Membranes contribute several regulatory layers: at the GTPase level, where activation by GTP is coupled to membrane recruitment by a built-in structural device; at the Sec7 domain, which manipulates this device to ensure that Arf-GTP is attached to membranes; and at the level of non-catalytic ArfGEF domains, which form direct or GTPase-mediated interactions with membranes that enable a spectacular diversity of regulatory regimes. Notably, we show here that membranes increase the efficiency of a large ArfGEF (human BIG1) by 32-fold by interacting directly with its N-terminal DCB and HUS domains. The diversity of allosteric regulatory regimes suggests that ArfGEFs can function in cascades and circuits to modulate the shape, amplitude and duration of Arf signals in cells. Because Arf-like GTPases feature autoinhibitory elements similar to those of Arf GTPases, we propose that their activation also requires allosteric interactions of these elements with membranes or other proteins.
Collapse
Affiliation(s)
- Agata Nawrotek
- a Laboratoire de Biologie et Pharmacologie Appliquée, CNRS, Ecole Normale Supérieure de Cachan and Université Paris-Saclay , Cachan , France
| | - Mahel Zeghouf
- a Laboratoire de Biologie et Pharmacologie Appliquée, CNRS, Ecole Normale Supérieure de Cachan and Université Paris-Saclay , Cachan , France
| | - Jacqueline Cherfils
- a Laboratoire de Biologie et Pharmacologie Appliquée, CNRS, Ecole Normale Supérieure de Cachan and Université Paris-Saclay , Cachan , France
| |
Collapse
|
6
|
Muthamilarasan M, Mangu VR, Zandkarimi H, Prasad M, Baisakh N. Structure, organization and evolution of ADP-ribosylation factors in rice and foxtail millet, and their expression in rice. Sci Rep 2016; 6:24008. [PMID: 27097755 PMCID: PMC4838888 DOI: 10.1038/srep24008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/18/2016] [Indexed: 11/09/2022] Open
Abstract
ADP-ribosylation factors (ARFs) have been reported to function in diverse physiological and molecular activities. Recent evidences also demonstrate the involvement of ARFs in conferring tolerance to biotic and abiotic stresses in plant species. In the present study, 23 and 25 ARF proteins were identified in C3 model- rice and C4 model- foxtail millet, respectively. These proteins are classified into four classes (I-IV) based on phylogenetic analysis, with ARFs in classes I-III and ARF-like proteins (ARLs) in class IV. Sequence alignment and domain analysis revealed the presence of conserved and additional motifs, which may contribute to neo- and sub-functionalization of these proteins. Promoter analysis showed the presence of several cis-regulatory elements related to stress and hormone response, indicating their role in stress regulatory network. Expression analysis of rice ARFs and ARLs in different tissues, stresses and abscisic acid treatment highlighted temporal and spatial diversification of gene expression. Five rice cultivars screened for allelic variations in OsARF genes showed the presence of allelic polymorphisms in few gene loci. Altogether, the study provides insights on characteristics of ARF/ARL genes in rice and foxtail millet, which could be deployed for further functional analysis to extrapolate their precise roles in abiotic stress responses.
Collapse
Affiliation(s)
- Mehanathan Muthamilarasan
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Venkata R. Mangu
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Hana Zandkarimi
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Niranjan Baisakh
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| |
Collapse
|
7
|
Structure and Switch Cycle of SRβ as Ancestral Eukaryotic GTPase Associated with Secretory Membranes. Structure 2015; 23:1838-1847. [PMID: 26299945 DOI: 10.1016/j.str.2015.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/15/2015] [Accepted: 07/19/2015] [Indexed: 11/22/2022]
Abstract
G proteins of the Ras-family of small GTPases trace the evolution of eukaryotes. The earliest branching involves the closely related Arf, Sar1, and SRβ GTPases associated with secretory membranes. SRβ is an integral membrane component of the signal recognition particle (SRP) receptor that targets ribosome-nascent chain complexes to the ER. How SRβ integrates into the regulation of SRP-dependent membrane protein biogenesis is not known. Here we show that SRβ-GTP interacts with ribosomes only in presence of SRα and present crystal structures of SRβ in complex with the SRX domain of SRα in the GTP-bound state at 3.2 Å, and of GDP- and GDP · Mg(2+)-bound SRβ at 1.9 Å and 2.4 Å, respectively. We define the GTPase switch cycle of SRβ and identify specific differences to the Arf and Sar1 families with implications for GTPase regulation. Our data allow a better integration of SRβ into the scheme of protein targeting.
Collapse
|
8
|
Hernández-González M, Peñalva MA, Pantazopoulou A. Conditional inactivation ofAspergillus nidulans sarASAR1uncovers the morphogenetic potential of regulating endoplasmic reticulum (ER) exit. Mol Microbiol 2014; 95:491-508. [DOI: 10.1111/mmi.12880] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Miguel Hernández-González
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas CSIC; Ramiro de Maeztu 9 Madrid 28040 Spain
| | - Miguel A. Peñalva
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas CSIC; Ramiro de Maeztu 9 Madrid 28040 Spain
| | - Areti Pantazopoulou
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas CSIC; Ramiro de Maeztu 9 Madrid 28040 Spain
| |
Collapse
|
9
|
Pu Z, Chen G, Wang J, Liu Y, Jiang Q, Li W, Lan X, Dai S, Wei Y, Zheng Y. Characterization and chromosome location of ADP-ribosylation factors (ARFs) in wheat. Pak J Biol Sci 2014; 17:792-801. [PMID: 26035952 DOI: 10.3923/pjbs.2014.792.801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this study, the ARF genes were cloned, sequenced and located on the chromosomes. The gene expression of various stress conditions were analyzed through RT-PCR. Two important features of ARF in wheat were found: (1) High sequences homology among species in mammalian and plant and (2) Four exons and three introns were conserved in Poaceae. In this study the coding genes of ADP-ribosylation Factors (ARF) were characterized and they were located on chromosomes 3AL and 2DL in common wheat and its diploid progenitors. Forty-seven candidate SNPs in ARF were detected which were located in exons (17 SNPs) and introns (30 SNPs), respectively. As expected, most of the SNPs (66.34%) in ARF were transitions and the rest (33.66%) were transversions. The expression difference of ARF under various environmental stresses (low-temperature, Abscisic Acid (ABA), Polyethylene Glycol (PEG), NaCl, stripe rust), in two stages (seedling and maturity) and in different tissues (root, stem, flag leaf and immature embryo) of 15 days post-flowering were investigated. The results revealed that the expression levels of ARF were affected by environmental stresses. PEG stress induced the highest level of ARF expression, followed by the stripe rust and ABA stresses.
Collapse
|
10
|
Zeraik AE, Pereira HM, Santos YV, Brandão-Neto J, Spoerner M, Santos MS, Colnago LA, Garratt RC, Araújo APU, DeMarco R. Crystal structure of a Schistosoma mansoni septin reveals the phenomenon of strand slippage in septins dependent on the nature of the bound nucleotide. J Biol Chem 2014; 289:7799-811. [PMID: 24464615 DOI: 10.1074/jbc.m113.525352] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Septins are filament-forming GTP-binding proteins involved in important cellular events, such as cytokinesis, barrier formation, and membrane remodeling. Here, we present two crystal structures of the GTPase domain of a Schistosoma mansoni septin (SmSEPT10), one bound to GDP and the other to GTP. The structures have been solved at an unprecedented resolution for septins (1.93 and 2.1 Å, respectively), which has allowed for unambiguous structural assignment of regions previously poorly defined. Consequently, we provide a reliable model for functional interpretation and a solid foundation for future structural studies. Upon comparing the two complexes, we observe for the first time the phenomenon of a strand slippage in septins. Such slippage generates a front-back communication mechanism between the G and NC interfaces. These data provide a novel mechanistic framework for the influence of nucleotide binding to the GTPase domain, opening new possibilities for the study of the dynamics of septin filaments.
Collapse
Affiliation(s)
- Ana E Zeraik
- From the Instituto de Física de São Carlos, Universidade de São Paulo, 13563-120 São Carlos, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The Ras superfamily G-proteins are monomeric proteins of approximately 21kDa that act as a molecular switch to regulate a variety of cellular processes. The structure of the Ras superfamily G-proteins, their regulators as well as posttranslational modification of these proteins leading to their membrane association have been elucidated. The Ras superfamily G-proteins interact at their effector domains with their downstream effectors via protein-protein interactions. Mutational activation or overexpression of the Ras superfamily G-proteins has been observed in a number of human cancer cases. Over the years, a variety of approaches to inhibit the Ras superfamily G-proteins have been developed. These different approaches are discussed in this volume.
Collapse
Affiliation(s)
- Ashley L Tetlow
- Department of Microbiology, Immunology and Molecular Genetics, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology and Molecular Genetics, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
12
|
Rouhana J, Padilla A, Estaran S, Bakari S, Delbecq S, Boublik Y, Chopineau J, Pugnière M, Chavanieu A. Kinetics of interaction between ADP-ribosylation factor-1 (Arf1) and the Sec7 domain of Arno guanine nucleotide exchange factor, modulation by allosteric factors, and the uncompetitive inhibitor brefeldin A. J Biol Chem 2012; 288:4659-72. [PMID: 23255605 DOI: 10.1074/jbc.m112.391748] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The GDP/GTP nucleotide exchange of Arf1 is catalyzed by nucleotide exchange factors (GEF), such as Arno, which act through their catalytic Sec7 domain. This exchange is a complex mechanism that undergoes conformational changes and intermediate complex species involving several allosteric partners such as nucleotides, Mg(2+), and Sec7 domains. Using a surface plasmon resonance approach, we characterized the kinetic binding parameters for various intermediate complexes. We first confirmed that both GDP and GTP counteract equivalently to the free-nucleotide binary Arf1-Arno complex stability and revealed that Mg(2+) potentiates by a factor of 2 the allosteric effect of GDP. Then we explored the uncompetitive inhibitory mechanism of brefeldin A (BFA) that conducts to an abortive pentameric Arf1-Mg(2+)-GDP-BFA-Sec7 complex. With BFA, the association rate of the abortive complex is drastically reduced by a factor of 42, and by contrast, the 15-fold decrease of the dissociation rate concurs to stabilize the pentameric complex. These specific kinetic signatures have allowed distinguishing the level and nature as well as the fate in real time of formed complexes according to experimental conditions. Thus, we showed that in the presence of GDP, the BFA-resistant Sec7 domain of Arno can also associate to form a pentameric complex, which suggests that the uncompetitive inhibition by BFA and the nucleotide allosteric effect combine to stabilize such abortive complex.
Collapse
Affiliation(s)
- Jad Rouhana
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247 CNRS-Universités Montpellier 1 et 2 Faculté de Pharmacie, 15 avenue Charles Flahault BP14491, 34093 Montpellier cedex 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mbah AN, Kamga HL, Awofolu OR, Isokpehi RD. Drug Target Exploitable Structural Features of Adenylyl Cyclase Activity in Schistosoma mansoni. Drug Target Insights 2012; 6:41-58. [PMID: 23133313 PMCID: PMC3487612 DOI: 10.4137/dti.s10219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The draft genome sequence of the parasitic flatworm Schistosoma mansoni (S. mansoni), a cause of schistosomiasis, encodes a predicted guanosine triphosphate (GTP) binding protein tagged Smp_059340.1. Smp_059340.1 is predicted to be a member of the G protein alpha-s subunit responsible for regulating adenylyl cyclase activity in S. mansoni and a possible drug target against the parasite. Our structural bioinformatics analyses identified key amino acid residues (Ser53, Thr188, Asp207 and Gly210) in the two molecular switches responsible for cycling the protein between active (GTP bound) and inactive (GDP bound) states. Residue Thr188 is located on Switch I region while Gly210 is located on Switch II region with Switch II longer than Switch I. The Asp207 is located on the G3 box motif and Ser53 is the binding residue for magnesium ion. These findings offer new insights into the dynamic and functional determinants of the Smp_059340.1 protein in regulating the S. mansoni life cycle. The binding interfaces and their residues could be used as starting points for selective modulations of interactions within the pathway using small molecules, peptides or mutagenesis.
Collapse
Affiliation(s)
- Andreas N Mbah
- Center for Bioinformatics & Computational Biology, Department of Biology, Jackson State University, Jackson, MS, USA. ; Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | | | | | | |
Collapse
|
14
|
Okamura H, Nishikiori M, Xiang H, Ishikawa M, Katoh E. Interconversion of two GDP-bound conformations and their selection in an Arf-family small G protein. Structure 2011; 19:988-98. [PMID: 21742265 DOI: 10.1016/j.str.2011.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 03/25/2011] [Accepted: 04/01/2011] [Indexed: 01/06/2023]
Abstract
ADP-ribosylation factor (Arf) and other Arf-family small G proteins participate in many cellular functions via their characteristic GTP/GDP conformational cycles, during which a nucleotide(∗)Mg(2+)-binding site communicates with a remote N-terminal helix. However, the conformational interplay between the nucleotides, the helix, the protein core, and Mg(2+) has not been fully delineated. Herein, we report a study of the dynamics of an Arf-family protein, Arl8, under various conditions by means of NMR relaxation spectroscopy. The data indicated that, when GDP is bound, the protein core, which does not include the N-terminal helix, reversibly transition between an Arf-family GDP form and another conformation that resembles the Arf-family GTP form. Additionally, we found that the N-terminal helix and Mg(2+), respectively, stabilize the aforementioned former and latter conformations in a population-shift manner. Given the dynamics of the conformational changes, we can describe the Arl8 GTP/GDP cycle in terms of an energy diagram.
Collapse
Affiliation(s)
- Hideyasu Okamura
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2, Kannondai, Tsukuba, Ibaraki 305-8602, Japan.
| | | | | | | | | |
Collapse
|
15
|
Cook WJ, Smith CD, Senkovich O, Holder AA, Chattopadhyay D. Structure of Plasmodium falciparum ADP-ribosylation factor 1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1426-31. [PMID: 21045287 DOI: 10.1107/s1744309110036997] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 09/15/2010] [Indexed: 12/12/2022]
Abstract
Vesicular trafficking may play a crucial role in the pathogenesis and survival of the malaria parasite. ADP-ribosylation factors (ARFs) are among the major components of vesicular trafficking pathways in eukaryotes. The crystal structure of ARF1 GTPase from Plasmodium falciparum has been determined in the GDP-bound conformation at 2.5 Å resolution and is compared with the structures of mammalian ARF1s.
Collapse
Affiliation(s)
- William J Cook
- University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
16
|
Buosi V, Placial JP, Leroy JL, Cherfils J, Guittet É, van Heijenoort C. Insight into the role of dynamics in the conformational switch of the small GTP-binding protein Arf1. J Biol Chem 2010; 285:37987-94. [PMID: 20861011 DOI: 10.1074/jbc.m110.134445] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the small GTP-binding protein Arf1, a major regulator of cellular traffic, follows an ordered sequence of structural events, which have been pictured by crystallographic snapshots. Combined with biochemical analysis, these data lead to a model of Arf1 activation, in which opening of its N-terminal helix first translocates Arf1-GDP to membranes, where it is then secured by a register shift of the interswitch β-strands, before GDP is eventually exchanged for GTP. However, how Arf1 rearranges its central β-sheet, an event that involves the loss and re-formation of H-bonds deep within the protein core, is not explained by available structural data. Here, we used Δ17Arf1, in which the N-terminal helix has been deleted, to address this issue by NMR structural and dynamics analysis. We first completed the assignment of Δ17Arf1 bound to GDP, GTP, and GTPγS and established that NMR data are fully consistent with the crystal structures of Arf1-GDP and Δ17Arf1-GTP. Our assignments allowed us to analyze the kinetics of both protein conformational transitions and nucleotide exchange by real-time NMR. Analysis of the dynamics over a very large range of timescale by (15)N relaxation, CPMG relaxation dispersion and H/D exchange reveals that while Δ17Arf1-GTP and full-length Arf1-GDP dynamics is restricted to localized fast motions, Δ17Arf1-GDP features unique intermediate and slow motions in the interswitch region. Altogether, the NMR data bring insight into how that membrane-bound Arf1-GDP, which is mimicked by the truncation of the N-terminal helix, acquires internal motions that enable the toggle of the interswitch.
Collapse
Affiliation(s)
- Vanessa Buosi
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
17
|
Köster S, Wehner M, Herrmann C, Kühlbrandt W, Yildiz O. Structure and function of the FeoB G-domain from Methanococcus jannaschii. J Mol Biol 2009; 392:405-19. [PMID: 19615379 DOI: 10.1016/j.jmb.2009.07.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 06/26/2009] [Accepted: 07/03/2009] [Indexed: 01/09/2023]
Abstract
FeoB in bacteria and archaea is involved in the uptake of ferrous iron (Fe(2+)), an important cofactor in biological electron transfer and catalysis. Unlike any other known prokaryotic membrane protein, FeoB contains a GTP-binding domain at its N-terminus. We determined high-resolution X-ray structures of the FeoB G-domain from Methanococcus jannaschii with and without bound GDP or Mg(2+)-GppNHp. The G-domain forms the same dimer in all three structures, with the nucleotide-binding pockets at the dimer interface, as in the ATP-binding domain of ABC transporters. The G-domain follows the typical fold of nucleotide-binding proteins, with a beta-strand inserted in switch I that becomes partially disordered upon GTP binding. Switch II does not contact the nucleotide directly and does not change its conformation in response to the bound nucleotide. Release of the nucleotide causes a rearrangement of loop L6, which we identified as the G5 region of FeoB. Together with the C-terminal helix, this loop may transmit the information about the nucleotide-bound state from the G-domain to the transmembrane region of FeoB.
Collapse
Affiliation(s)
- Stefan Köster
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
18
|
Zhang T, Li S, Zhang Y, Zhong C, Lai Z, Ding J. Crystal structure of the ARL2-GTP-BART complex reveals a novel recognition and binding mode of small GTPase with effector. Structure 2009; 17:602-10. [PMID: 19368893 DOI: 10.1016/j.str.2009.01.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 01/02/2009] [Accepted: 01/16/2009] [Indexed: 11/17/2022]
Abstract
ARL2 is a member of the ADP-ribosylation factor family but has unique biochemical features. BART is an effector of ARL2 that is essential for nuclear retention of STAT3 and may also be involved in mitochondria transport and apoptosis. Here we report the crystal structure and biochemical characterization of human ARL2-GTP-BART complex. ARL2-GTP assumes a typical small GTPase fold with a unique N-terminal alpha helix conformation. BART consists of a six alpha helix bundle. The interactions between ARL2 and BART involve two interfaces: a conserved N-terminal LLXIL motif of ARL2 is embedded in a hydrophobic cleft of BART and the switch regions of ARL2 interact with helix alpha3 of BART. Both interfaces are essential for the binding as verified by mutagenesis study. This novel recognition and binding mode is different from that of other small GTPase-effector interactions and provides molecular basis for the high specificity of ARL2 for BART.
Collapse
Affiliation(s)
- Tianlong Zhang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031, China
| | | | | | | | | | | |
Collapse
|
19
|
Yao Y, Ni Z, Du J, Han Z, Chen Y, Zhang Q, Sun Q. Ectopic overexpression of wheat adenosine diphosphate-ribosylation factor, TaARF, increases growth rate in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:35-44. [PMID: 19166492 DOI: 10.1111/j.1744-7909.2008.00792.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Differential gene expression between hybrids and their parents is considered to be associated with heterosis. However, the physiological functions and possible contribution to heterosis of these differentially expressed genes are unknown. We have isolated one hybrid upregulated gene encoding putative wheat ADP-ribosylation factor, designated TaARF. In this study, real-time quantitative reverse transcription-polymerase chain reaction analysis indicated that the TaARF transcript was preferentially expressed in root, node and crown, and the accumulation of TaARF mRNA in hybrid was more than 1.5-fold higher than that in two parents. In order to understand possible roles of the putative wheat ARF gene, TaARF was overexpressed in Arabidopsis, and the transgenic plants were characterized. We show that ectopic overexpression of TaARF in Arabidopsis leads to increased leaf area, increased growth rate and earlier transition to flowering, suggesting that TaARF plays significant roles in growth and development. This study provides evidence demonstrating that TaARF plays important roles in growth and development and we speculate that the upregulated expression of this gene might contribute to the heterosis observed in wheat root and leaf growth.
Collapse
Affiliation(s)
- Yingyin Yao
- Department of Plant Genetics & Breeding and State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Anders N, Nielsen M, Keicher J, Stierhof YD, Furutani M, Tasaka M, Skriver K, Jürgens G. Membrane association of the Arabidopsis ARF exchange factor GNOM involves interaction of conserved domains. THE PLANT CELL 2008; 20:142-51. [PMID: 18203920 PMCID: PMC2254928 DOI: 10.1105/tpc.107.056515] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 12/19/2007] [Accepted: 12/30/2007] [Indexed: 05/22/2023]
Abstract
The GNOM protein plays a fundamental role in Arabidopsis thaliana development by regulating endosome-to-plasma membrane trafficking required for polar localization of the auxin efflux carrier PIN1. GNOM is a family member of large ARF guanine nucleotide exchange factors (ARF-GEFs), which regulate vesicle formation by activating ARF GTPases on specific membranes in animals, plants, and fungi. However, apart from the catalytic exchange activity of the SEC7 domain, the functional significance of other conserved domains is virtually unknown. Here, we show that a distinct N-terminal domain of GNOM mediates dimerization and in addition interacts heterotypically with two other conserved domains in vivo. In contrast with N-terminal dimerization, the heterotypic interaction is essential for GNOM function, as mutations abolishing this interaction inactivate the GNOM protein and compromise its membrane association. Our results suggest a general model of large ARF-GEF function in which regulated changes in protein conformation control membrane association of the exchange factor and, thus, activation of ARFs.
Collapse
Affiliation(s)
- Nadine Anders
- Center of Molecular Biology of Plants, University of Tübingen, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Molecular cloning and expression analyses of a novel swine gene--ARF4. Mol Biol Rep 2007; 36:455-60. [PMID: 18157702 DOI: 10.1007/s11033-007-9201-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Accepted: 12/14/2007] [Indexed: 10/22/2022]
Abstract
The mRNA differential display technique was performed to investigate the differences of gene expression in the longissimus muscle tissues from Meishan and Large White pigs. One novel gene that was differentially expressed was identified through semi-quantitative RT-PCR and the cDNA complete sequence was then obtained using the rapid amplification of cDNA ends (RACE) method. The nucleotide sequence of the gene is not homologous to any of the known porcine genes. The sequence prediction analysis revealed that the open reading frame of this gene encodes a protein of 180 amino acids that contains the putative conserved domain of ADP-ribosylation factor (ARF) which has high homology with the ADP-ribosylation factor 4 (ARF4) of six species-bovine (98%), human and orangutan (96%), African clawed frog (96%), mouse and rat (98%)-so that it can be defined as swine ADP-ribosylation factor 4 (ARF4). This novel porcine gene was finally assigned to GeneID:595108. The phylogenetic tree analysis revealed that the swine ARF4 has a closer genetic relationship with the rat and mouse ARF4 than with those of human and African clawed frog. The tissue expression analysis indicated that the swine ARF4 gene is over expressed in muscle, fat, heart, spleen, liver, and ovary and moderately expressed in lung and kidney but weakly expressed in small intestine. Our experiment is the first to establish the primary foundation for further research on the swine ARF4 gene.
Collapse
|
22
|
Wang ZX, Shi L, Liu JF, An XM, Chang WR, Liang DC. 2.0 A crystal structure of human ARL5-GDP3'P, a novel member of the small GTP-binding proteins. Biochem Biophys Res Commun 2005; 332:640-5. [PMID: 15896705 DOI: 10.1016/j.bbrc.2005.04.168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 04/29/2005] [Indexed: 10/25/2022]
Abstract
ARL5 is a member of ARLs, which is widespread in high eukaryotes and homologous between species. But no structure or biological function of this member is reported. We expressed, purified, and resolved the structure of human ARL5 with bound GDP3'P at 2.0 A resolution. A comparison with the known structures of ARFs shows that besides the typical features of ARFs, human ARL5 has specific features of its own. Bacterially expressed human ARL5 contains bound GDP3'P which is seldom seen in other structures. The hydrophobic tail of the introduced detergent Triton X-305 binds at the possible myristoylation site of Gly2, simulating the myristoylated state of N-terminal amphipathic helix in vivo. The structural features of the nucleotide binding motifs and the switch regions prove that ARL5 will undergo the typical GDP/GTP structural cycle as other members of ARLs, which is the basis of their biological functions.
Collapse
Affiliation(s)
- Zhan-Xin Wang
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, PR China
| | | | | | | | | | | |
Collapse
|
23
|
Huber SK, Scheidig AJ. High resolution crystal structures of human Rab4a in its active and inactive conformations. FEBS Lett 2005; 579:2821-9. [PMID: 15907487 DOI: 10.1016/j.febslet.2005.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 04/14/2005] [Accepted: 04/14/2005] [Indexed: 01/10/2023]
Abstract
The Ras-related human GTPase Rab4a is involved in the regulation of endocytosis through the sorting and recycling of early endosomes. Towards further insight, we have determined the three-dimensional crystal structure of human Rab4a in its GppNHp-bound state to 1.6 Angstroms resolution and in its GDP-bound state to 1.8 Angstroms resolution, respectively. Despite the similarity of the overall structure with other Rab proteins, Rab4a displays significant differences. The structures are discussed with respect to the recently determined structure of human Rab5a and its complex with the Rab5-binding domain of the bivalent effector Rabaptin-5. The Rab4 specific residue His39 modulates the nucleotide binding pocket giving rise to a reduced rate for nucleotide hydrolysis and exchange. In comparison to Rab5, Rab4a has a different GDP-bound conformation within switch 1 region and displays shifts in position and orientation of the hydrophobic triad. The observed differences at the S2-L3-S3 region represent a new example of structural plasticity among Rab proteins and may provide a structural basis to understand the differential binding of similar effector proteins.
Collapse
Affiliation(s)
- Silke K Huber
- Max-Planck Institut für Molekulare Physiologie, Abteilung für Physikalische Biochemie, Dortmund, Germany
| | | |
Collapse
|
24
|
Leung AKW, Lucile White E, Ross LJ, Reynolds RC, DeVito JA, Borhani DW. Structure of Mycobacterium tuberculosis FtsZ reveals unexpected, G protein-like conformational switches. J Mol Biol 2004; 342:953-70. [PMID: 15342249 DOI: 10.1016/j.jmb.2004.07.061] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 07/12/2004] [Accepted: 07/12/2004] [Indexed: 10/26/2022]
Abstract
We report three crystal structures of the Mycobacterium tuberculosis cell division protein FtsZ, as the citrate, GDP, and GTPgammaS complexes, determined at 1.89, 2.60, and 2.08A resolution. MtbFtsZ crystallized as a tight, laterally oriented dimer distinct from the longitudinal polymer observed for alphabeta-tubulin. Mutational data on Escherichia coli FtsZ suggest that this dimer interface is important for proper protofilament and "Z-ring" assembly and function. An alpha-to-beta secondary structure conformational switch at the dimer interface is spatially analogous to, and has many of the hallmarks of, the Switch I conformational changes exhibited by G-proteins upon activation. The presence of a gamma-phosphate in the FtsZ active site modulates the conformation of the "tubulin" loop T3 (spatially analogous to the G-protein Switch II); T3 switching upon gamma-phosphate ligation is directly coupled to the alpha-to-beta switch by steric overlap. The dual conformational switches observed here for the first time in an FtsZ link GTP binding and hydrolysis to FtsZ (and tubulin) lateral assembly and Z-ring contraction, and they are suggestive of an underappreciated functional analogy between FtsZ, tubulin and G-proteins.
Collapse
Affiliation(s)
- Adelaine K W Leung
- Drug Discovery Division, Southern Research Institute, Birmingham, AL 35205, USA
| | | | | | | | | | | |
Collapse
|
25
|
Zhu G, Zhai P, Liu J, Terzyan S, Li G, Zhang XC. Structural basis of Rab5-Rabaptin5 interaction in endocytosis. Nat Struct Mol Biol 2004; 11:975-83. [PMID: 15378032 DOI: 10.1038/nsmb832] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 07/07/2004] [Indexed: 11/08/2022]
Abstract
Rab5 is a small GTPase that regulates early endosome fusion. We present here the crystal structure of the Rab5 GTPase domain in complex with a GTP analog and the C-terminal domain of effector Rabaptin5. The proteins form a dyad-symmetric Rab5-Rabaptin5(2)-Rab5 ternary complex with a parallel coiled-coil Rabaptin5 homodimer in the middle. Two Rab5 molecules bind independently to the Rabaptin5 dimer using their switch and interswitch regions. The binding does not involve the Rab complementarity-determining regions. We also present the crystal structures of two distinct forms of GDP-Rab5 complexes, both of which are incompatible with Rabaptin5 binding. One has a dislocated and disordered switch I but a virtually intact switch II, whereas the other has its beta-sheet and both switch regions reorganized. Biochemical and functional analyses show that the crystallographically observed Rab5-Rabaptin5 complex also exists in solution, and disruption of this complex by mutation abrogates endosome fusion.
Collapse
Affiliation(s)
- Guangyu Zhu
- Crystallography Research Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | |
Collapse
|
26
|
Memon AR. The role of ADP-ribosylation factor and SAR1 in vesicular trafficking in plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1664:9-30. [PMID: 15238254 DOI: 10.1016/j.bbamem.2004.04.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2003] [Revised: 03/22/2004] [Accepted: 04/19/2004] [Indexed: 12/27/2022]
Abstract
Ras-like small GTP binding proteins regulate a wide variety of intracellular signalling and vesicular trafficking pathways in eukaryotic cells including plant cells. They share a common structure that operates as a molecular switch by cycling between active GTP-bound and inactive GDP-bound conformational states. The active GTP-bound state is regulated by guanine nucleotide exchange factors (GEF), which promote the exchange of GDP for GTP. The inactive GDP-bound state is promoted by GTPase-activating proteins (GAPs) which accelerate GTP hydrolysis by orders of magnitude. Two types of small GTP-binding proteins, ADP-ribosylation factor (Arf) and secretion-associated and Ras-related (Sar), are major regulators of vesicle biogenesis in intracellular traffic and are founding members of a growing family that also includes Arf-related proteins (Arp) and Arf-like (Arl) proteins. The most widely involved small GTPase in vesicular trafficking is probably Arf1, which not only controls assembly of COPI- and AP1, AP3, and AP4/clathrin-coated vesicles but also recruits other proteins to membranes, including some that may be components of further coats. Recent molecular, structural and biochemical studies have provided a wealth of detail of the interactions between Arf and the proteins that regulate its activity as well as providing clues for the types of effector molecules which are controlled by Arf. Sar1 functions as a molecular switch to control the assembly of protein coats (COPII) that direct vesicle budding from ER. The crystallographic analysis of Sar1 reveals a number of structurally unique features that dictate its function in COPII vesicle formation. In this review, I will summarize the current knowledge of Arf and Sar regulation in vesicular trafficking in mammalian and yeast cells and will highlight recent advances in identifying the elements involved in vesicle formation in plant cells. Additionally, I will briefly discuss the similarities and dissimilarities of vesicle traffic in plant, mammalian and yeast cells.
Collapse
Affiliation(s)
- Abdul R Memon
- TUBITAK, Research Institute for Genetic Engineering and Biotechnology, P.O. Box 21, 41470 Gebze, Kocaeli, Turkey.
| |
Collapse
|
27
|
Seidel RD, Amor JC, Kahn RA, Prestegard JH. Conformational changes in human Arf1 on nucleotide exchange and deletion of membrane-binding elements. J Biol Chem 2004; 279:48307-18. [PMID: 15308674 DOI: 10.1074/jbc.m402109200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conformational changes associated with nucleotide exchange or truncation of the N-terminal alpha-helix of human Arf1 have been investigated by using forms of easily acquired NMR data, including residual dipolar couplings and amide proton exchange rates. ADP-ribosylation factors (Arfs) are 21-kDa GTPases that regulate aspects of membrane traffic in all eukaryotic cells. An essential component of the biological actions of Arfs is their ability to reversibly bind to membranes, a process that involves exposure of the myristoylated N-terminal amphipathic alpha-helix upon activation and GTP binding. Deletion of this helix results in a protein, termed Delta17Arf1, that has a reduced affinity for GDP and the ability to bind GTP in the absence of lipids or detergents. Previous studies, comparing crystal structures for Arf1.GDP and Delta17Arf1.GTP, identified several regions of structural variation and suggested that these be associated with nucleotide exchange rather than removal of the N-terminal helix. However, separation of conformational changes because of nucleotide binding and N-terminal truncation cannot be addressed in comparing these structures, because both the bound nucleotide and the N terminus differ. Resolving the two effects is important as any structural changes involving the N terminus may represent membrane-mediated conformational adjustments that precede GTP binding. Results from NMR experiments presented here on Arf1.GDP and Delta17Arf1.GDP in solution reveal substantial structural differences that can only be associated with N-terminal truncation.
Collapse
Affiliation(s)
- Ronald D Seidel
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712, USA
| | | | | | | |
Collapse
|
28
|
Robert CH, Cherfils J, Mouawad L, Perahia D. Integrating three views of Arf1 activation dynamics. J Mol Biol 2004; 337:969-83. [PMID: 15033364 DOI: 10.1016/j.jmb.2004.01.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 01/21/2004] [Accepted: 01/28/2004] [Indexed: 10/26/2022]
Abstract
The proteins Arno and Gea2 of the Sec7 family can promote GDP-GTP exchange on Arf1, a small GTP-binding protein, which coordinates coated vesicle formation for protein transport within the cell. Crystal structures of the essential Sec7 domain (Sec7d) of Gea2 in the free and Arf1-bound forms suggest that conformational dynamics of the Sec7d as well as those of the G-protein play a role in nucleotide exchange. Starting from a set of complementary crystal structures, we compared the collective movements of unbound Gea2 and Arno Sec7 domains, Arf1-GDP, and the Arf1-Gea2(Sec7d) nucleotide-free complex using normal modes analyses. In all unbound Sec7d analyses, significant low-energy movements were found to lead to closure of the hydrophobic groove towards the form seen in the Arf1-Gea2(Sec7d) complex, suggesting that groove closure is a general feature of the Sec7 family. Low-energy movements in Arf1-GDP implicate critical switch 1 and 2 residues which are coupled to modifications in the myristoylated N-terminal-helix binding site at the other end of the "interswitch" beta hairpin. It is suggested that Sec7d groove closure upon docking of the two molecules may permit extraction of switch 1 from Arf1-GDP and prepare the complex for movement of the interswitch, which is central to the membrane-linked exchange activity. Large-scale collective movements in the Arf1-Sec7d complex appear to participate in the insertion of the Sec7d Glu finger into the GDP binding site to promote actual nucleotide release.
Collapse
Affiliation(s)
- Charles H Robert
- Modélisation et Ingénierie des Protéines, CNRS UMR 8619, Bât. 430, Université de Paris-Sud 91405 Orsay, France
| | | | | | | |
Collapse
|
29
|
Thiyagarajan MM, Stracquatanio RP, Pronin AN, Evanko DS, Benovic JL, Wedegaertner PB. A predicted amphipathic helix mediates plasma membrane localization of GRK5. J Biol Chem 2004; 279:17989-95. [PMID: 14976207 DOI: 10.1074/jbc.m310738200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
G protein-coupled receptor kinases (GRKs) specifically phosphorylate agonist-occupied G protein-coupled receptors at the inner surface of the plasma membrane (PM), leading to receptor desensitization. GRKs utilize a variety of mechanisms to bind tightly, and sometimes reversibly, to cellular membranes. Previous studies demonstrated the presence of a membrane binding domain in the C terminus of GRK5. Here we define a mechanism by which this short C-terminal stretch of amino acids of GRK5 mediates PM localization. Secondary structure predictions suggest that a region contained within amino acids 546-565 of GRK5 forms an amphipathic helix, with the key features of the predicted helix being a hydrophobic patch of amino acids on one face of the helix, hydrophilic amino acids on the opposite face, and a number of basic amino acids surrounding the hydrophobic patch. We show that amino acids 546-565 of GRK5 are sufficient to target the cytoplasmic green fluorescent protein (GFP) to the PM, and the hydrophobic amino acids are necessary for PM targeting of GFP-546-565. Moreover, full-length GRK5-GFP is localized to the PM, but mutation of the hydrophobic patch or the surrounding basic amino acids prevents PM localization of GRK5-GFP. Last, we show that mutation of the hydrophobic residues severely diminishes phospholipid-dependent autophosphorylation of GRK5 and phosphorylation of membrane-bound rhodopsin by GRK5. The findings in this report thus suggest the presence of a membrane binding motif in GRK5 and define the importance of a group of hydrophobic amino acids within this motif in mediating its PM localization.
Collapse
Affiliation(s)
- Manimekalai M Thiyagarajan
- Department of Microbiology and Immunology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
30
|
Kremer W, Steiner G, Béraud-Dufour S, Kalbitzer HR. Conformational states of the small G protein Arf-1 in complex with the guanine nucleotide exchange factor ARNO-Sec7. J Biol Chem 2004; 279:17004-12. [PMID: 14739276 DOI: 10.1074/jbc.m312780200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arf1 is a small G protein involved in vesicular trafficking, and although it is only distantly related to Ras, it adopts a similar three-dimensional structure. In the present work, we study Arf1 bound to GDP and GTP and its interactions with one of its guanosine nucleotide exchange factors, ARNO-Sec7. The (31)P NMR spectra of Arf1.GDP.Mg(2+) and Arf1.GTP.Mg(2+) share the general features typical for all small G proteins studied so far. Especially, the beta-phosphate resonances of the bound nucleotide are shifted strongly downfield compared with the resonance positions of the free magnesium complexes of GDP and GTP. However, no evidence for an equilibrium between two conformational states of Arf1.GDP.Mg(2+) or Arf1.GTP.Mg(2+) could be observed as it was described earlier for Ras and Ran. Glu(156) of ARNO-Sec7 has been suggested to play as "glutamic acid finger" an important role in the nucleotide exchange mechanism. In the millimolar concentration range used in the NMR experiments, wild type ARNO-Sec7 and ARNO-Sec7(E156D) do weakly interact with Arf1.GDP.Mg(2+) but do not form a strong complex with magnesium-free Arf1.GDP. Only wild type ARNO-Sec7 competes weakly with GDP on Arf1.GDP.Mg(2+) and leads to a release of GDP when added to the solution. The catalytically inactive mutants ARNO-Sec7(E156A) and ARNO-Sec7(E156K) induce a release of magnesium from Arf1.GDP.Mg(2+) but do not promote GDP release. In addition, ARNO-Sec7 does not interact or only very weakly interacts with the GTP-bound form of Arf1, opposite to the observation made earlier for Ran, where the nucleotide exchange factor RCC1 forms a complex with Ran.GTP.Mg(2+) and is able to displace the bound GTP.
Collapse
Affiliation(s)
- Werner Kremer
- Institut für Biophysik und physikalische Biochemie, Universität Regensburg, D-93040 Regensburg, Germany
| | | | | | | |
Collapse
|
31
|
Wu M, Lu L, Hong W, Song H. Structural basis for recruitment of GRIP domain golgin-245 by small GTPase Arl1. Nat Struct Mol Biol 2003; 11:86-94. [PMID: 14718928 DOI: 10.1038/nsmb714] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Accepted: 11/20/2003] [Indexed: 11/08/2022]
Abstract
Recruitment of the GRIP domain golgins to the trans-Golgi network is mediated by Arl1, a member of the ARF/Arl small GTPase family, through interaction between their GRIP domains and Arl1-GTP. The crystal structure of Arl1-GTP in complex with the GRIP domain of golgin-245 shows that Arl1-GTP interacts with the GRIP domain predominantly in a hydrophobic manner, with the switch II region conferring the main recognition surface. The involvement of the switch and interswitch regions in the interaction between Arl1-GTP and GRIP accounts for the specificity of GRIP domain for Arl1-GTP. Mutations that abolished the Arl1-mediated Golgi localization of GRIP domain golgins have been mapped on the interface between Arl1-GTP and GRIP. Notably, the GRIP domain forms a homodimer in which each subunit interacts separately with one Arl1-GTP. Mutations disrupting the GRIP domain dimerization also abrogated its Golgi targeting, suggesting that the dimeric form of GRIP domain is a functional unit.
Collapse
Affiliation(s)
- Mousheng Wu
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609
| | | | | | | |
Collapse
|
32
|
Abstract
Arf GTP-binding proteins regulate membrane traffic and actin remodeling. Similar to other GTP-binding proteins, a complex of Arf-GTP with an effector protein mediates Arf function. Arf interacts with at least three qualitatively different types of effectors. First, it interacts with structural proteins, the vesicle coat proteins. The second type of effector is lipid-metabolizing enzymes, and the third comprises those proteins that bind to Arf-GTP but whose biochemical or biological functions are not yet clearly defined. Arf interacts with two other families of proteins, the exchange factors and the GTPase-activating proteins. Recent work examining the functional relationships among the diverse Arf interactors has led to reconsideration of the prevailing paradigms for Arf action.
Collapse
Affiliation(s)
- Zhongzhen Nie
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Building 37, Room 4118, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
33
|
Pasqualato S, Renault L, Cherfils J. Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for 'front-back' communication. EMBO Rep 2002; 3:1035-41. [PMID: 12429613 PMCID: PMC1307594 DOI: 10.1093/embo-reports/kvf221] [Citation(s) in RCA: 260] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Arf proteins are important regulators of cellular traffic and the founding members of an expanding family of homologous proteins and genomic sequences. They depart from other small GTP-binding proteins by a unique structural device, which we call the 'interswitch toggle', that implements front-back communication from the N-terminus to the nucleotide binding site. Here we define the sequence and structural determinants that propagate information across the protein and identify them in all of the Arf family proteins other than Arl6 and Arl4/Arl7. The positions of these determinants lead us to propose that Arf family members with the interswitch toggle device are activated by a bipartite mechanism acting on opposite sides of the protein. The presence of this communication device might provide a more useful basis for unifying Arf homologs as a family than do the cellular functions of these proteins, which are mostly unrelated. We review available genomic sequences and functional data from this perspective, and identify a novel subfamily that we call Arl8.
Collapse
Affiliation(s)
- Sebastiano Pasqualato
- Laboratoire d'Enzymologie et Biochimie Structurales, UPR 9063 CNRS, 1 avenue de la Terrasse, 91198 Gif sur Yvette cedex, France
| | - Louis Renault
- Laboratoire d'Enzymologie et Biochimie Structurales, UPR 9063 CNRS, 1 avenue de la Terrasse, 91198 Gif sur Yvette cedex, France
| | - Jacqueline Cherfils
- Laboratoire d'Enzymologie et Biochimie Structurales, UPR 9063 CNRS, 1 avenue de la Terrasse, 91198 Gif sur Yvette cedex, France
- Tel: +33 1 69 82 34 92; Fax: +33 1 69 82 31 29;
| |
Collapse
|
34
|
Abstract
Studies of GTPase function often employ expression of dominant negative or constitutively active mutants. Dominant negative mutants cannot bind GTP and thus cannot be activated. Constitutively active mutants cannot hydrolyze GTP and therefore accumulate a large pool of GTP-bound GTPase. These mutations block the normal cycle of GTP binding, hydrolysis, and release. Therefore, although the GTPase-deficient mutants are in the active conformation, they do not fully imitate all the actions of the GTPase. This is particularly true for the ADP-ribosylation factors (ARFs), GTPases that regulate vesicular trafficking events. In Ras and Rho GTPases replacement of phenylalanine 28 with a leucine residue produces a "fast cycling" mutant that can undergo spontaneous GTP-GDP exchange and retains the ability to hydrolyze GTP. Unfortunately this phenylalanine residue is not conserved in the ARF family of GTPases. Here we report the design and characterization of a novel activated mutant of ARF6, ARF6 T157A. In vitro studies show that ARF6 T157A can spontaneously bind and release GTP more quickly than the wild-type protein suggesting that it is a fast cycling mutant. This mutant has enhanced activity in vivo and induces cortical actin rearrangements in HeLa cells and enhanced motility in Madin-Darby canine kidney cells.
Collapse
Affiliation(s)
- Lorraine C Santy
- Department of Cell Biology, Health Sciences Center, University of Virginia, PO Box 800732, Charlottesville, VA 22908, USA.
| |
Collapse
|
35
|
Hanzal-Bayer M, Renault L, Roversi P, Wittinghofer A, Hillig RC. The complex of Arl2-GTP and PDE delta: from structure to function. EMBO J 2002; 21:2095-106. [PMID: 11980706 PMCID: PMC125981 DOI: 10.1093/emboj/21.9.2095] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Arf-like (Arl) proteins are close relatives of the Arf regulators of vesicular transport, but their function is unknown. Here, we present the crystal structure of full-length Arl2-GTP in complex with its effector PDE delta solved in two crystal forms (Protein Data Bank codes 1KSG, 1KSH and 1KSJ). Arl2 shows a dramatic conformational change from the GDP-bound form, which suggests that it is reversibly membrane associated. PDE delta is structurally closely related to RhoGDI and contains a deep empty hydrophobic pocket. Further experiments show that H-Ras, Rheb, Rho6 and G alpha(i1) interact with PDE delta and that, at least for H-Ras, the intact C-terminus is required. We suggest PDE delta to be a specific soluble transport factor for certain prenylated proteins and Arl2-GTP a regulator of PDE delta-mediated transport.
Collapse
Affiliation(s)
- Michael Hanzal-Bayer
- Max-Planck-Institut für molekulare Physiologie, Abteilung Strukturelle Biologie, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany and GlobalPhasing Ltd, Sheraton House, Castle Park, Cambridge CB3 0AX, UK Present address: Laboratoire d’Enzymologie et Biochimie Structurales, CNRS, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France Present address: Schering AG Research Laboratories, D-13342 Berlin, Germany Corresponding authors e-mail: or
| | - Louis Renault
- Max-Planck-Institut für molekulare Physiologie, Abteilung Strukturelle Biologie, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany and GlobalPhasing Ltd, Sheraton House, Castle Park, Cambridge CB3 0AX, UK Present address: Laboratoire d’Enzymologie et Biochimie Structurales, CNRS, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France Present address: Schering AG Research Laboratories, D-13342 Berlin, Germany Corresponding authors e-mail: or
| | - Pietro Roversi
- Max-Planck-Institut für molekulare Physiologie, Abteilung Strukturelle Biologie, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany and GlobalPhasing Ltd, Sheraton House, Castle Park, Cambridge CB3 0AX, UK Present address: Laboratoire d’Enzymologie et Biochimie Structurales, CNRS, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France Present address: Schering AG Research Laboratories, D-13342 Berlin, Germany Corresponding authors e-mail: or
| | - Alfred Wittinghofer
- Max-Planck-Institut für molekulare Physiologie, Abteilung Strukturelle Biologie, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany and GlobalPhasing Ltd, Sheraton House, Castle Park, Cambridge CB3 0AX, UK Present address: Laboratoire d’Enzymologie et Biochimie Structurales, CNRS, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France Present address: Schering AG Research Laboratories, D-13342 Berlin, Germany Corresponding authors e-mail: or
| | - Roman C. Hillig
- Max-Planck-Institut für molekulare Physiologie, Abteilung Strukturelle Biologie, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany and GlobalPhasing Ltd, Sheraton House, Castle Park, Cambridge CB3 0AX, UK Present address: Laboratoire d’Enzymologie et Biochimie Structurales, CNRS, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France Present address: Schering AG Research Laboratories, D-13342 Berlin, Germany Corresponding authors e-mail: or
| |
Collapse
|
36
|
Huang M, Weissman JT, Beraud-Dufour S, Luan P, Wang C, Chen W, Aridor M, Wilson IA, Balch WE. Crystal structure of Sar1-GDP at 1.7 A resolution and the role of the NH2 terminus in ER export. J Cell Biol 2001; 155:937-48. [PMID: 11739406 PMCID: PMC2150902 DOI: 10.1083/jcb.200106039] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2001] [Revised: 10/17/2001] [Accepted: 10/17/2001] [Indexed: 11/22/2022] Open
Abstract
The Sar1 GTPase is an essential component of COPII vesicle coats involved in export of cargo from the ER. We report the 1.7-A structure of Sar1 and find that consistent with the sequence divergence of Sar1 from Arf family GTPases, Sar1 is structurally distinct. In particular, we show that the Sar1 NH2 terminus contains two regions: an NH2-terminal extension containing an evolutionary conserved hydrophobic motif that facilitates membrane recruitment and activation by the mammalian Sec12 guanine nucleotide exchange factor, and an alpha1' amphipathic helix that contributes to interaction with the Sec23/24 complex that is responsible for cargo selection during ER export. We propose that the hydrophobic Sar1 NH2-terminal activation/recruitment motif, in conjunction with the alpha1' helix, mediates the initial steps in COPII coat assembly for export from the ER.
Collapse
Affiliation(s)
- M Huang
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92130, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gommel DU, Memon AR, Heiss A, Lottspeich F, Pfannstiel J, Lechner J, Reinhard C, Helms J, Nickel W, Wieland FT. Recruitment to Golgi membranes of ADP-ribosylation factor 1 is mediated by the cytoplasmic domain of p23. EMBO J 2001; 20:6751-60. [PMID: 11726511 PMCID: PMC125325 DOI: 10.1093/emboj/20.23.6751] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Binding to Golgi membranes of ADP ribosylation factor 1 (ARF1) is the first event in the initiation of COPI coat assembly. Based on binding studies, a proteinaceous receptor has been proposed to be critical for this process. We now report that p23, a member of the p24 family of Golgi-resident transmembrane proteins, is involved in ARF1 binding to membranes. Using a cross-link approach based on a photolabile peptide corresponding to the cytoplasmic domain of p23, the GDP form of ARF1 (ARF1-GDP) is shown to interact with p23 whereas ARF1-GTP has no detectable affinity to p23. The p23 binding is shown to localize specifically to a 22 amino acid C-terminal fragment of ARF1. While a monomeric form of a non-photolabile p23 peptide does not significantly inhibit formation of the cross-link product, the corresponding dimeric form does compete efficiently for this interaction. Consistently, the dimeric p23 peptide strongly inhibits ARF1 binding to native Golgi membranes suggesting that an oligomeric form of p23 acts as a receptor for ARF1 before nucleotide exchange takes place.
Collapse
Affiliation(s)
- Daniel U. Gommel
- Biochemie-Zentrum Heidelberg, Ruprecht-Karls-Universität, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany Present address: Marmara Research Center, Institute for Genetic Engineering and Biotechnology, 41470 Gebze, Kocaeli, Turkey Present address: Max-Planck-Institute for Biochemistry, Am Klopferspitz, D-82152 Martinsried, Germany Corresponding authors e-mail: or D.U.Gommel and A.R.Memon contributed equally to this work
| | - Abdul R. Memon
- Biochemie-Zentrum Heidelberg, Ruprecht-Karls-Universität, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany Present address: Marmara Research Center, Institute for Genetic Engineering and Biotechnology, 41470 Gebze, Kocaeli, Turkey Present address: Max-Planck-Institute for Biochemistry, Am Klopferspitz, D-82152 Martinsried, Germany Corresponding authors e-mail: or D.U.Gommel and A.R.Memon contributed equally to this work
| | - Armin Heiss
- Biochemie-Zentrum Heidelberg, Ruprecht-Karls-Universität, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany Present address: Marmara Research Center, Institute for Genetic Engineering and Biotechnology, 41470 Gebze, Kocaeli, Turkey Present address: Max-Planck-Institute for Biochemistry, Am Klopferspitz, D-82152 Martinsried, Germany Corresponding authors e-mail: or D.U.Gommel and A.R.Memon contributed equally to this work
| | - Friedrich Lottspeich
- Biochemie-Zentrum Heidelberg, Ruprecht-Karls-Universität, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany Present address: Marmara Research Center, Institute for Genetic Engineering and Biotechnology, 41470 Gebze, Kocaeli, Turkey Present address: Max-Planck-Institute for Biochemistry, Am Klopferspitz, D-82152 Martinsried, Germany Corresponding authors e-mail: or D.U.Gommel and A.R.Memon contributed equally to this work
| | - Jens Pfannstiel
- Biochemie-Zentrum Heidelberg, Ruprecht-Karls-Universität, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany Present address: Marmara Research Center, Institute for Genetic Engineering and Biotechnology, 41470 Gebze, Kocaeli, Turkey Present address: Max-Planck-Institute for Biochemistry, Am Klopferspitz, D-82152 Martinsried, Germany Corresponding authors e-mail: or D.U.Gommel and A.R.Memon contributed equally to this work
| | - Johannes Lechner
- Biochemie-Zentrum Heidelberg, Ruprecht-Karls-Universität, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany Present address: Marmara Research Center, Institute for Genetic Engineering and Biotechnology, 41470 Gebze, Kocaeli, Turkey Present address: Max-Planck-Institute for Biochemistry, Am Klopferspitz, D-82152 Martinsried, Germany Corresponding authors e-mail: or D.U.Gommel and A.R.Memon contributed equally to this work
| | - Constanze Reinhard
- Biochemie-Zentrum Heidelberg, Ruprecht-Karls-Universität, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany Present address: Marmara Research Center, Institute for Genetic Engineering and Biotechnology, 41470 Gebze, Kocaeli, Turkey Present address: Max-Planck-Institute for Biochemistry, Am Klopferspitz, D-82152 Martinsried, Germany Corresponding authors e-mail: or D.U.Gommel and A.R.Memon contributed equally to this work
| | - J.Bernd Helms
- Biochemie-Zentrum Heidelberg, Ruprecht-Karls-Universität, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany Present address: Marmara Research Center, Institute for Genetic Engineering and Biotechnology, 41470 Gebze, Kocaeli, Turkey Present address: Max-Planck-Institute for Biochemistry, Am Klopferspitz, D-82152 Martinsried, Germany Corresponding authors e-mail: or D.U.Gommel and A.R.Memon contributed equally to this work
| | - Walter Nickel
- Biochemie-Zentrum Heidelberg, Ruprecht-Karls-Universität, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany Present address: Marmara Research Center, Institute for Genetic Engineering and Biotechnology, 41470 Gebze, Kocaeli, Turkey Present address: Max-Planck-Institute for Biochemistry, Am Klopferspitz, D-82152 Martinsried, Germany Corresponding authors e-mail: or D.U.Gommel and A.R.Memon contributed equally to this work
| | - Felix T. Wieland
- Biochemie-Zentrum Heidelberg, Ruprecht-Karls-Universität, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany Present address: Marmara Research Center, Institute for Genetic Engineering and Biotechnology, 41470 Gebze, Kocaeli, Turkey Present address: Max-Planck-Institute for Biochemistry, Am Klopferspitz, D-82152 Martinsried, Germany Corresponding authors e-mail: or D.U.Gommel and A.R.Memon contributed equally to this work
| |
Collapse
|
38
|
Amor JC, Horton JR, Zhu X, Wang Y, Sullards C, Ringe D, Cheng X, Kahn RA. Structures of yeast ARF2 and ARL1: distinct roles for the N terminus in the structure and function of ARF family GTPases. J Biol Chem 2001; 276:42477-84. [PMID: 11535602 DOI: 10.1074/jbc.m106660200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structures were determined by x-ray crystallography for two members of the ADP-ribosylation factor (ARF) family of regulatory GTPases, yeast ARF1 and ARL1, and were compared with previously determined structures of human ARF1 and ARF6. These analyses revealed an overall conserved fold but differences in primary sequence and length, particularly in an N-terminal loop, lead to differences in nucleotide and divalent metal binding. Packing of hydrophobic residues is central to the interplay between the N-terminal alpha-helix, switch I, and the interswitch region, which along with differences in surface electrostatics provide explanations for the different biophysical and biochemical properties of ARF and ARF-like proteins.
Collapse
Affiliation(s)
- J C Amor
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322-3050, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Gombos Z, Jeromin A, Mal TK, Chakrabartty A, Ikura M. Calexcitin B is a new member of the sarcoplasmic calcium-binding protein family. J Biol Chem 2001; 276:22529-36. [PMID: 11306567 DOI: 10.1074/jbc.m010508200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calexcitin (CE) is a calcium sensor protein that has been implicated in associative learning. The CE gene was previously cloned from the long-finned squid, Loligo pealei, and the gene product was shown to bind GTP and modulate K(+) channels and ryanodine receptors in a Ca(2+)-dependent manner. We cloned a new gene from L. pealei, which encodes a CE-like protein, here named calexcitin B (CE(B)). CE(B) has 95% amino acid identity to the original form. Our sequence analyses indicate that CEs are homologous to the sarcoplasmic calcium-binding protein subfamily of the EF-hand superfamily. Far and near UV circular dichroism and nuclear magnetic resonance studies demonstrate that CE(B) binds Ca(2+) and undergoes a conformational change. CE(B) is phosphorylated by protein kinase C, but not by casein kinase II. CE(B) does not bind GTP. Western blot experiments using polyclonal antibodies generated against CE(B) showed that CE(B) is expressed in the L. pealei optic lobe. Taken together, the neuronal protein CE represents the first example of a Ca(2+) sensor in the sarcoplasmic calcium-binding protein family.
Collapse
Affiliation(s)
- Z Gombos
- Division of Molecular and Structural Biology, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | |
Collapse
|
40
|
Béraud-Dufour S, Balch WE. Structural and functional organization of ADP-ribosylation factor (ARF) proteins. Methods Enzymol 2001; 329:245-7. [PMID: 11210540 DOI: 10.1016/s0076-6879(01)29084-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- S Béraud-Dufour
- Department of Molecular and Cell Biology, Scripps Research Institute, LaJolla, California 92037, USA
| | | |
Collapse
|
41
|
Vitale N, Moss J, Vaughan M. Purification and properties of ARD1, an ADP-ribosylation factor (ARF)-related protein with GTPase-activating domain. Methods Enzymol 2001; 329:324-34. [PMID: 11210552 DOI: 10.1016/s0076-6879(01)29094-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- N Vitale
- Center de Neurochimie, INSERM U-338, Strasbourg 67084, France
| | | | | |
Collapse
|
42
|
Abstract
The small GTP-binding protein Arf6 coordinates membrane traffic at the plasma membrane with aspects of cytoskeleton organization. This function does not overlap with that of other members of the ADP-ribosylation factor (Arf) family, although their switch regions, which are their major sites of interaction with regulators and effectors, have virtually identical sequences. Here we report the crystal structure of full-length, non-myristoylated human Arf6 bound to GTPgammaS. Unlike their GDP-bound forms, the active forms of Arf6 and Arf1 are very similar. Thus, the switch regions are discriminatory elements between Arf isoforms in their inactive but not in their active forms, a property that may generalize to other families of small G proteins. This suggests that GTP-bound Arfs may establish specific interactions outside the switch regions and/or be recognized in their cellular context rather than as isolated proteins. The structure also allows further insight into the lack of spontaneous GTPase activity of Arf proteins.
Collapse
Affiliation(s)
- S Pasqualato
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 1, avenue de la Terrasse, 91198 Gif sur Yvette cedex and Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, 660 route des Lucioles, 06560 Valbonne, France
| | | | | | | |
Collapse
|
43
|
Hillig RC, Hanzal-Bayer M, Linari M, Becker J, Wittinghofer A, Renault L. Structural and biochemical properties show ARL3-GDP as a distinct GTP binding protein. Structure 2000; 8:1239-45. [PMID: 11188688 DOI: 10.1016/s0969-2126(00)00531-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Based on sequence similarities, Arf-like (ARL) proteins have been assigned to the Arf subfamily of the superfamily of Ras-related GTP binding proteins. They have been identified in several isoforms in a wide variety of species. Their cellular function is unclear, but they are proposed to regulate intracellular transport. RESULTS The 1.7 A crystal structure of murine ARL3-GDP provides a first insight into the structural features of this subgroup of Ar proteins. The N-terminal extension of ARL3 folds into an elongated loop region that is hydrophobically anchored onto the surface by burying 1440 A2. The features observed suggest that ARL3 releases its N terminus and undergoes a beta sheet register shift upon the binding of GTP. The structure and kinetic experiments with fluorescent mGDP demonstrate that tight GDP (but not GTP) binding is achieved in the absence of a magnesium ion. This is due to a lysine residue in the active site, close to the canonical Mg2+ site found in other GTP binding proteins. This is a distinct feature separating ARL2 and ARL3 from Arf proteins. CONCLUSION The disturbed magnesium binding site and the independence of GDP coordination from the presence of Mg2+ separate ARL2 and ARL3 from Arf proteins. The D sheet register shift, which is similar to that of Arf, that is observed in the present structure, along with the postulated release of the N-terminal extension and the concomitant exposure of a patch of conserved hydrophobic residues in this region suggest that ARL proteins might be localized to target membranes upon exchange of GDP to GTP. Contrary to the situation in Arf, however, the conformational change to ARL-GTP does not require the presence of membranes and might thus be energetically unfavored. Together with the very low affinity described for the interaction of ARL3 with Mg-GTP, this suggests that ARL protein activation requires the presence of effectors stabilizing the GTP coordination rather than guanine nucleotide exchange factors (GEFs).
Collapse
Affiliation(s)
- R C Hillig
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Strukturelle Biologie, Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Fisher EW, Rojnuckarin A, Kim S. Evaluation of the kinetics of electrostatically steered protein dimerization using Weighted-Ensemble Brownian dynamics. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0166-1280(00)00545-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Robineau S, Chabre M, Antonny B. Binding site of brefeldin A at the interface between the small G protein ADP-ribosylation factor 1 (ARF1) and the nucleotide-exchange factor Sec7 domain. Proc Natl Acad Sci U S A 2000; 97:9913-8. [PMID: 10954741 PMCID: PMC27624 DOI: 10.1073/pnas.170290597] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2000] [Accepted: 06/23/2000] [Indexed: 11/18/2022] Open
Abstract
Sec7 domains (Sec7d) catalyze the exchange of guanine nucleotide on ARFs. Recent studies indicated that brefeldin A (BFA) inhibits Sec7d-catalyzed nucleotide exchange on ARF1 in an uncompetitive manner by trapping an early intermediate of the reaction: a complex between GDP-bound ARF1 and Sec7d. Using (3)H-labeled BFA, we show that BFA binds to neither isolated Sec7d nor isolated ARF1-GDP, but binds to the transitory Sec7d-ARF1-GDP complex and stabilizes it. Two pairs of residues at positions 190-191 and 198-208 (Arno numbering) in Sec7d contribute equally to the stability of BFA binding, which is also sensitive to mutation of H80 in ARF1. The catalytic glutamic (E156) residue of Sec7d is not necessary for BFA binding. In contrast, BFA does not bind to the intermediate catalytic complex between nucleotide-free ARF1 and Sec7d. These results suggest that, on initial docking steps between ARF1-GDP and Sec7d, BFA inserts like a wedge between the switch II region of ARF1-GDP and a surface encompassing residues 190-208, at the border of the characteristic hydrophobic groove of Sec7d. Bound BFA would prevent the switch regions of ARF1-GDP from reorganizing and forming tighter contacts with Sec7d and thereby would maintain the bound GDP of ARF1 at a distance from the catalytic glutamic finger of Sec7d.
Collapse
Affiliation(s)
- S Robineau
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | | | | |
Collapse
|
46
|
Austin C, Hinners I, Tooze SA. Direct and GTP-dependent interaction of ADP-ribosylation factor 1 with clathrin adaptor protein AP-1 on immature secretory granules. J Biol Chem 2000; 275:21862-9. [PMID: 10807927 DOI: 10.1074/jbc.m908875199] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ADP-ribosylation factor 1 (ARF1) mediates clathrin coat formation on PC12 immature secretory granules (ISGs). We have used two approaches to investigate whether ARF1 interacts directly with the clathrin adaptor protein, AP-1. Using an in vitro recruitment assay and co-immunoprecipitation, we could isolate an AP-1.ARF1 complex. Then we used a site-directed photocross-linking approach to determine the components that act downstream of ARF1 in clathrin coat formation on ISGs. Myristoylated ARF1, with a photolabile phenylalanine analogue incorporated into its putative effector domain (switch 1), showed a specific, GTP-dependent interaction with both the gamma- and beta-adaptin subunits of AP-1 on ISGs. These experiments provide evidence for a direct interaction of ARF1 with AP-1. On mature secretory granules myristoylated ARF1 does not bind, and hence clathrin coat formation cannot be initiated, supporting the hypothesis that molecules involved in coat recruitment are removed during ISG maturation.
Collapse
Affiliation(s)
- C Austin
- Secretory Pathway Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London, WC2A 3PX, United Kingdom
| | | | | |
Collapse
|
47
|
Vitale N, Pacheco-Rodriguez G, Ferrans VJ, Riemenschneider W, Moss J, Vaughan M. Specific functional interaction of human cytohesin-1 and ADP-ribosylation factor domain protein (ARD1). J Biol Chem 2000; 275:21331-9. [PMID: 10748148 DOI: 10.1074/jbc.m909642199] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of ADP-ribosylation factors (ARFs) is mediated by guanine nucleotide-exchange proteins, which accelerate conversion of inactive ARF-GDP to active ARF-GTP. ARF domain protein (ARD1), a 64-kDa GTPase with a C-terminal ADP-ribosylation factor domain, is localized to lysosomes and the Golgi apparatus. When ARD1 was used as bait to screen a human liver cDNA library using the yeast two-hybrid system, a cDNA for cytohesin-1, a approximately 50-kDa protein with ARF guanine nucleotide-exchange protein activity, was isolated. In this system, ARD1-GDP interacted well with cytohesin-1 but very poorly with cytohesin-2. In agreement, cytohesin-1, but not cytohesin-2, markedly accelerated [(35)S]guanosine 5'-3-O-(thio)triphosphate binding to ARD1. The effector region of the ARF domain of ARD1 appeared to be critical for the specific interaction with cytohesin-1. Replacement of single amino acids in the Sec7 domains of cytohesin-1 and -2 showed that residue 30 is critical for specificity. In transfected COS-7 cells, overexpressed ARD1 and cytohesin-1 were partially colocalized, as determined by confocal fluorescence microscopy. It was concluded that cytohesin-1 is likely to be involved in ARD1 activation, consistent with a role for ARD1 in the regulation of vesicular trafficking.
Collapse
Affiliation(s)
- N Vitale
- Pulmonary-Critical Care Medicine Branch and the Pathology Section, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
48
|
Ménétrey J, Macia E, Pasqualato S, Franco M, Cherfils J. Structure of Arf6-GDP suggests a basis for guanine nucleotide exchange factors specificity. NATURE STRUCTURAL BIOLOGY 2000; 7:466-9. [PMID: 10881192 DOI: 10.1038/75863] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Arf6 is an isoform of Arf that localizes at the periphery of the cell where it has an essential role in endocytotic pathways. Its function does not overlap with that of Arf1, although the two proteins share approximately 70% sequence identity and they have switch regions, whose conformation depends on the nature of the guanine nucleotide, with almost identical sequences. The crystal structure of Arf6-GDP at 2.3 A shows that it has a conformation similar to that of Arf1-GDP, which cannot bind membranes with high affinity. Significantly, the switch regions of Arf6 deviate by 2-5 A from those of Arf1. These differences are a consequence of the shorter N-terminal linker of Arf6 and of discrete sequence changes between Arf6 and Arf1. Mutational analysis shows that one of the positions which differs between Arf1 and Arf6 affects the configuration of the nucleotide binding site and thus the nucleotide binding properties of the Arf variant. Altogether, our results provide a structural basis for understanding how Arf1 and Arf6 can be distinguished by their guanine nucleotide exchange factors and suggest a model for the nucleotide/membrane cycle of Arf6.
Collapse
Affiliation(s)
- J Ménétrey
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
49
|
Béraud-Dufour S, Paris S, Chabre M, Antonny B. Dual interaction of ADP ribosylation factor 1 with Sec7 domain and with lipid membranes during catalysis of guanine nucleotide exchange. J Biol Chem 1999; 274:37629-36. [PMID: 10608818 DOI: 10.1074/jbc.274.53.37629] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Sec7 domains catalyze the replacement of GDP by GTP on the G protein ADP-ribosylation factor 1 (myrARF1) by interacting with its switch I and II regions and by destabilizing, through a glutamic finger, the beta-phosphate of the bound GDP. The myristoylated N-terminal helix that allows myrARF1 to interact with membrane lipids in a GTP-dependent manner is located some distance from the Sec7 domain-binding region. However, these two regions are connected. Measuring the binding to liposomes of functional or abortive complexes between myrARF1 and the Sec7 domain of ARNO demonstrates that myrARF1, in complex with the Sec7 domain, adopts a high affinity state for membrane lipids, similar to that of the free GTP-bound form. This tight membrane attachment does not depend on the release of GDP induced by the Sec7 domain but is partially inhibited by the uncompetitive inhibitor brefeldin A. These results suggest that the conformational switch of the N-terminal helix of myrARF1 to the membrane-bound form is an early event in the nucleotide exchange pathway and is a prerequisite for a structural rearrangement at the myrARF1-GDP/Sec7 domain interface that allows the glutamic finger to expel GDP from myrARF1.
Collapse
Affiliation(s)
- S Béraud-Dufour
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | | | | | | |
Collapse
|
50
|
Abstract
We report a novel crystal form of the small G protein Rap2A in complex with GTP which has no GTPase activity in the crystal. The asymmetric unit contains two complexes which show that a conserved switch I residue, Tyr 32, contributes an extra hydrogen bond to the gamma-phosphate of GTP as compared to related structures with GTP analogs. Since GTP is not hydrolyzed in the crystal, this interaction is unlikely to contribute to the intrinsic GTPase activity. The comparison of other G protein structures to the Rap2-GTP complex suggests that an equivalent interaction is likely to exist in their GTP form, whether unbound or bound to an effector. This interaction has to be released to allow the GAP-activated GTPase, and presumably the intrinsic GTPase activity as well. We also discuss the definition of the flexible regions and their hinges in the light of this structure and the expanding database of G protein structures. We propose that the switch I and switch II undergo either partial or complete disorder-to-order transitions according to their cellular status, thus defining a complex energy landscape comprising more than two conformational states. We observe in addition that the region connecting the switch I and switch II is flexible in Rap2 and other G proteins. This region may be important for protein-protein interactions and possibly behave as a conformational lever arm, as characterized for Arf. Taken together, these observations suggest that the structural mechanisms of small G proteins are significantly driven by entropy-based free energy changes.
Collapse
Affiliation(s)
- J Ménétrey
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, Gif sur Yvette, France
| | | |
Collapse
|