Egelman EH. Problems in fitting high resolution structures into electron microscopic reconstructions.
HFSP JOURNAL 2008;
2:324-31. [PMID:
19436497 DOI:
10.2976/1.2992221]
[Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Indexed: 11/19/2022]
Abstract
Great advances have been made in electron microscopy (EM) over the past decade, with the result that a number of protein complexes have been solved at near-atomic resolution using EM imaging. However, only a limited number of such complexes are expected to have the high degree of internal order needed to achieve this type of resolution. Many other complexes and polymers will be visualized and reconstructed by EM at an intermediate level of resolution, where the polypeptide chain cannot be directly traced. Crystal and nuclear magnetic resonance structures for components or subunits of these higher-order assemblies are frequently available. One of the greatest strengths of EM continues to be the ability to dock high-resolution structures of components into low or intermediate resolution reconstructions of assemblies to build pseudoatomic models for quaternary structure. This review discusses the strengths and limitations of this approach, with particular emphasis on protein polymers. I discuss how limitations in resolution can lead to ambiguities in building models, and these cannot be always be resolved with available data. The use of homology models for quaternary structure are particularly problematic, given accumulating evidence for the divergence of quaternary structures at the same time that tertiary structure can be conserved.
Collapse