1
|
Wu G, Dai Y, Hung I, Gan Z, Terskikh V. 1H/ 17O Chemical Shift Waves in Carboxyl-Bridged Hydrogen Bond Networks in Organic Solids. J Phys Chem A 2024; 128:4288-4296. [PMID: 38748612 DOI: 10.1021/acs.jpca.4c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
We report solid-state 1H and 17O NMR results for four 17O-labeled organic compounds each containing an extensive carboxyl-bridged hydrogen bond (CBHB) network in the crystal lattice: tetrabutylammonium hydrogen di-[17O2]salicylate (1), [17O4]quinolinic acid (2), [17O4]dinicotinic acid (3), and [17O2]Gly/[17O2]Gly·HCl cocrystal (4). The 1H isotropic chemical shifts found for protons involved in different CBHB networks are between 8.2 and 20.5 ppm, which reflect very different hydrogen-bonding environments. Similarly, the 17O isotropic chemical shifts found for the carboxylate oxygen atoms in CBHB networks, spanning a large range between 166 and 341 ppm, are also remarkably sensitive to the hydrogen-bonding environments. We introduced a simple graphical representation in which 1H and 17O chemical shifts are displayed along the H and O atomic chains that form the CBHB network. In such a depiction, because wavy patterns are often observed, we refer to these wavy patterns as 1H/17O chemical shift waves. Typical patterns of 1H/17O chemical shift waves in CBHB networks are discussed. The reported 1H and 17O NMR parameters for the CBHB network models examined in this study can serve as benchmarks to aid in spectral interpretation for CBHB networks in proteins.
Collapse
Affiliation(s)
- Gang Wu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston Ontario K7L 3N6, Canada
| | - Yizhe Dai
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston Ontario K7L 3N6, Canada
| | - Ivan Hung
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Zhehong Gan
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Victor Terskikh
- Metrology, National Research Council Canada, Ottawa K1A 0R6, Canada
| |
Collapse
|
2
|
Ma J, Jiang Z, Yan Q, Lv A, Li Y, Yang S. Structural and functional analysis of SpGlu64A: a novel glycoside hydrolase family 64 laminaripentaose-producing β-1,3-glucanase from Streptomyces pratensis. FEBS J 2024; 291:2009-2022. [PMID: 38380733 DOI: 10.1111/febs.17094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/05/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
Laminaripentaose (L5)-producing β-1,3-glucanases can preferentially cleave the triple-helix curdlan into β-1,3-glucooligosaccharides, especially L5. In this study, a newly identified member of the glycoside hydrolase family 64, β-1,3-glucanase from Streptomyces pratensis (SpGlu64A), was functionally and structurally characterized. SpGlu64A shared highest identity (30%) with a β-1,3-glucanase from Streptomyces matensis. The purified SpGlu64A showed maximal activity at pH 7.5 and 50 °C, and exhibited strict substrate specificity toward curdlan (83.1 U·mg-1). It efficiently hydrolyzed curdlan to produce L5 as the end product. The overall structure of SpGlu64A consisted of a barrel domain and a mixed (α/β) domain, which formed an unusually wide groove with a crescent-like structure. In the two complex structures (SpGlu64A-L3 and SpGlu64A-L4), two oligosaccharide chains were captured and the triple-helical structure was relatively compatible with the wide groove, which suggested the possibility of binding to the triple-helical β-1,3-glucan. A catalytic framework (β6-β9-β10) and the steric hindrance formed by the side chains of residues Y161, N163, and H393 in the catalytic groove were predicted to complete the exotype-like cleavage manner. On the basis of the structure, a fusion protein with the CBM56 domain (SpGlu64A-CBM) and a mutant (Y161F; by site-directed mutation) were obtained, with 1.2- and 1.7-fold increases in specific activity, respectively. Moreover, the combined expression of SpGlu64A-CBM and -Y161F improved the enzyme activity by 2.63-fold. The study will not only be helpful in understanding the reaction mechanism of β-1,3-glucanases but will also provide a basis for further enzyme engineering.
Collapse
Affiliation(s)
- Junwen Ma
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, Beijing, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qiaojuan Yan
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, Beijing, China
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, China
| | - Ang Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yanxiao Li
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, Beijing, China
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Wilson C, Karttunen M, de Groot BL, Gapsys V. Accurately Predicting Protein p Ka Values Using Nonequilibrium Alchemy. J Chem Theory Comput 2023; 19:7833-7845. [PMID: 37820376 PMCID: PMC10653114 DOI: 10.1021/acs.jctc.3c00721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Indexed: 10/13/2023]
Abstract
The stability, solubility, and function of a protein depend on both its net charge and the protonation states of its individual residues. pKa is a measure of the tendency for a given residue to (de)protonate at a specific pH. Although pKa values can be resolved experimentally, theory and computation provide a compelling alternative. To this end, we assess the applicability of a nonequilibrium (NEQ) alchemical free energy method to the problem of pKa prediction. On a data set of 144 residues that span 13 proteins, we report an average unsigned error of 0.77 ± 0.09, 0.69 ± 0.09, and 0.52 ± 0.04 pK for aspartate, glutamate, and lysine, respectively. This is comparable to current state-of-the-art predictors and the accuracy recently reached using free energy perturbation methods (e.g., FEP+). Moreover, we demonstrate that our open-source, pmx-based approach can accurately resolve the pKa values of coupled residues and observe a substantial performance disparity associated with the lysine partial charges in Amber14SB/Amber99SB*-ILDN, for which an underused fix already exists.
Collapse
Affiliation(s)
- Carter
J. Wilson
- Department
of Mathematics, The University of Western
Ontario, N6A 5B7 London, Canada
- Centre
for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, N6A 5B7 London, Canada
| | - Mikko Karttunen
- Centre
for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, N6A 5B7 London, Canada
- Department
of Physics & Astronomy, The University
of Western Ontario, N6A
5B7 London, Canada
- Department
of Chemistry, The University of Western
Ontario, N6A 5B7 London, Canada
| | - Bert L. de Groot
- Computational
Biomolecular Dynamics Group, Department of Theoretical and Computational
Biophysics, Max Planck Institute for Multidisciplinary
Sciences, 37077 Göttingen, Germany
| | - Vytautas Gapsys
- Computational
Biomolecular Dynamics Group, Department of Theoretical and Computational
Biophysics, Max Planck Institute for Multidisciplinary
Sciences, 37077 Göttingen, Germany
- Computational
Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| |
Collapse
|
4
|
Röhrig UF, Goullieux M, Bugnon M, Zoete V. Attracting Cavities 2.0: Improving the Flexibility and Robustness for Small-Molecule Docking. J Chem Inf Model 2023; 63:3925-3940. [PMID: 37285197 PMCID: PMC10305763 DOI: 10.1021/acs.jcim.3c00054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Indexed: 06/08/2023]
Abstract
Molecular docking is a computational approach for predicting the most probable position of a ligand in the binding site of a target macromolecule. Our docking algorithm Attracting Cavities (AC) has been shown to compare favorably to other widely used docking algorithms [Zoete, V.; et al. J. Comput. Chem. 2016, 37, 437]. Here we describe several improvements of AC, making the sampling more robust and providing more flexibility for either fast or high-accuracy docking. We benchmark the performance of AC 2.0 using the 285 complexes of the PDBbind Core set, version 2016. For redocking from randomized ligand conformations, AC 2.0 reaches a success rate of 73.3%, compared to 63.9% for GOLD and 58.0% for AutoDock Vina. Due to its force-field-based scoring function and its thorough sampling procedure, AC 2.0 also performs well for blind docking on the entire receptor surface. The accuracy of its scoring function allows for the detection of problematic experimental structures in the benchmark set. For cross-docking, the AC 2.0 success rate is about 30% lower than for redocking (42.5%), similar to GOLD (42.8%) and better than AutoDock Vina (33.1%), and it can be improved by an informed choice of flexible protein residues. For selected targets with a high success rate in cross-docking, AC 2.0 also achieves good enrichment factors in virtual screening.
Collapse
Affiliation(s)
- Ute F. Röhrig
- Molecular
Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Mathilde Goullieux
- Molecular
Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Marine Bugnon
- Molecular
Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Vincent Zoete
- Molecular
Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
- Department
of Oncology UNIL-CHUV, Lausanne University,
Ludwig Institute for Cancer Research Lausanne Branch, CH-1066 Epalinges, Switzerland
| |
Collapse
|
5
|
Petri YD, Gutierrez CS, Raines RT. Chemoselective Caging of Carboxyl Groups for On-Demand Protein Activation with Small Molecules. Angew Chem Int Ed Engl 2023; 62:e202215614. [PMID: 36964973 PMCID: PMC10243506 DOI: 10.1002/anie.202215614] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 03/27/2023]
Abstract
Tools for on-demand protein activation enable impactful gain-of-function studies in biological settings. Thus far, however, proteins have been chemically caged at primarily Lys, Tyr, and Sec, typically through the genetic encoding of unnatural amino acids. Herein, we report that the preferential reactivity of diazo compounds with protonated acids can be used to expand this toolbox to solvent-accessible carboxyl groups with an elevated pKa value. As a model protein, we employed lysozyme (Lyz), which has an active-site Glu35 residue with a pKa value of 6.2. A diazo compound with a bioorthogonal self-immolative handle esterified Glu35 selectively, inactivating Lyz. The hydrolytic activity of the caged Lyz on bacterial cell walls was restored with two small-molecule triggers. The decaging was more efficient by small molecules than by esterases. This simple chemical strategy was also applied to a hemeprotein and an aspartyl protease, setting the stage for broad applicability.
Collapse
Affiliation(s)
- Yana D. Petri
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | - Clair S. Gutierrez
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| |
Collapse
|
6
|
Dakshinamoorthy A, Asmita A, Senapati S. Comprehending the Structure, Dynamics, and Mechanism of Action of Drug-Resistant HIV Protease. ACS OMEGA 2023; 8:9748-9763. [PMID: 36969469 PMCID: PMC10034783 DOI: 10.1021/acsomega.2c08279] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Since the emergence of the Human Immunodeficiency Virus (HIV) in the 1980s, strategies to combat HIV-AIDS are continuously evolving. Among the many tested targets to tackle this virus, its protease enzyme (PR) was proven to be an attractive option that brought about numerous research publications and ten FDA-approved drugs to inhibit the PR activity. However, the drug-induced mutations in the enzyme made these small molecule inhibitors ineffective with prolonged usage. The research on HIV PR, therefore, remains a thrust area even today. Through this review, we reiterate the importance of understanding the various structural and functional components of HIV PR in redesigning the structure-based small molecule inhibitors. We also discuss at length the currently available FDA-approved drugs and how these drug molecules induced mutations in the enzyme structure. We then recapitulate the reported mechanisms on how these drug-resistant variants remain sufficiently active to cleave the natural substrates. We end with the future scope covering the recently proposed strategies that show promise to deal with the mutations.
Collapse
|
7
|
Su X, Zhang L, Zhao L, Pan B, Chen B, Chen J, Zhai C, Li B. Efficient Protein–Protein Couplings Mediated by Small Molecules under Mild Conditions. Angew Chem Int Ed Engl 2022; 61:e202205597. [DOI: 10.1002/anie.202205597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Xun‐Cheng Su
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Ling‐Yang Zhang
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Li‐Na Zhao
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Bin‐Bin Pan
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Ben‐Guang Chen
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Jia‐Liang Chen
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Cheng‐Liang Zhai
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Bin Li
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
8
|
Su XC, Zhang LY, Zhao LN, Pan BB, Chen BG, Chen JL, Zhai CL, Li B. Efficient Protein‐Protein Couplings Mediated by Small Molecules under Mild Conditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xun-Cheng Su
- Nankai University College of Chemistry Stat Key Laboratory of Elemento-organic Chemistry Weijing Road 94 300071 Tianjin CHINA
| | | | - Li-Na Zhao
- Nankai University college of chemistry CHINA
| | - Bin-Bin Pan
- Nankai University college of chemistry CHINA
| | | | | | | | - Bin Li
- Nankai University college of chemistry CHINA
| |
Collapse
|
9
|
Taguchi M, Oyama R, Kaneso M, Hayashi S. Hybrid QM/MM Free-Energy Evaluation of Drug-Resistant Mutational Effect on the Binding of an Inhibitor Indinavir to HIV-1 Protease. J Chem Inf Model 2022; 62:1328-1344. [PMID: 35212226 DOI: 10.1021/acs.jcim.1c01193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A human immunodeficiency virus-1 (HIV-1) protease is a homodimeric aspartic protease essential for the replication of HIV. The HIV-1 protease is a target protein in drug discovery for antiretroviral therapy, and various inhibitor molecules of transition state analogues have been developed. However, serious drug-resistant mutants have emerged. For understanding the molecular mechanism of the drug resistance, an accurate examination of the impacts of the mutations on ligand binding and enzymatic activity is necessary. Here, we present a molecular simulation study on the ligand binding of indinavir, a potent transition state analogue inhibitor, to the wild-type protein and a V82T/I84V drug-resistant mutant of the HIV-1 protease. We employed a hybrid ab initio quantum mechanical/molecular mechanical (QM/MM) free-energy optimization technique which combines a highly accurate QM description of the ligand molecule and its interaction with statistically ample conformational sampling of the MM protein environment by long-time molecular dynamics simulations. Through the free-energy calculations of protonation states of catalytic groups at the binding pocket and of the ligand-binding affinity changes upon the mutations, we successfully reproduced the experimentally observed significant reduction of the binding affinity upon the drug-resistant mutations and elucidated the underlying molecular mechanism. The present study opens the way for understanding the molecular mechanism of drug resistance through the direct quantitative comparison of ligand binding and enzymatic reaction with the same accuracy.
Collapse
Affiliation(s)
- Masahiko Taguchi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.,Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - Ryo Oyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masahiro Kaneso
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
10
|
Sohraby F, Aryapour H. Comparative analysis of the unbinding pathways of antiviral drug Indinavir from HIV and HTLV1 proteases by supervised molecular dynamics simulation. PLoS One 2021; 16:e0257916. [PMID: 34570822 PMCID: PMC8476009 DOI: 10.1371/journal.pone.0257916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
Determining the unbinding pathways of potential small molecule compounds from their target proteins is of great significance for designing efficacious treatment solutions. One of these potential compounds is the approved HIV-1 protease inhibitor, Indinavir, which has a weak effect on the HTLV-1 protease. In this work, by employing the SuMD method, we reconstructed the unbinding pathways of Indinavir from HIV and HTLV-1 proteases to compare and understand the mechanism of the unbinding and to discover the reasons for the lack of inhibitory activity of Indinavir against the HTLV-1 protease. We achieved multiple unbinding events from both HIV and HTLV-1 proteases in which the RMSD values of Indinavir reached over 40 Å. Also, we found that the mobility and fluctuations of the flap region are higher in the HTLV-1 protease, making the drug less stable. We realized that critically positioned aromatic residues such as Trp98/Trp98' and Phe67/Phe67' in the HTLV-1 protease could make strong π-Stacking interactions with Indinavir in the unbinding pathway, which are unfavorable for the stability of Indinavir in the active site. The details found in this study can make a reasonable explanation for the lack of inhibitory activity of this drug against HTLV-1 protease. We believe the details discovered in this work can help design more effective and selective inhibitors for the HTLV-1 protease.
Collapse
Affiliation(s)
- Farzin Sohraby
- Faculty of Science, Department of Biology, Golestan University, Gorgan, Iran
| | - Hassan Aryapour
- Faculty of Science, Department of Biology, Golestan University, Gorgan, Iran
- * E-mail:
| |
Collapse
|
11
|
Yu YX, Wang W, Sun HB, Zhang LL, Wu SL, Liu WT. Insights into effect of the Asp25/Asp25' protonation states on binding of inhibitors Amprenavir and MKP97 to HIV-1 protease using molecular dynamics simulations and MM-GBSA calculations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:615-641. [PMID: 34157882 DOI: 10.1080/1062936x.2021.1939149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
The protonation states of two aspartic acids in the catalytic strands of HIV-1 protease (PR) remarkably affect bindings of inhibitors to PR. It is requisite for the design of potent inhibitors towards PR to investigate the influences of Asp25/Asp25' protonated states on dynamics behaviour of PR and binding mechanism of inhibitors to PR. In this work, molecular dynamics (MD) simulations, MM-GBSA method and principal component (PC) analysis were coupled to explore the effect of Asp25/Asp25' protonation states on conformational changes of PR and bindings of Amprenavir and MKP97 to PR. The results show that the Asp25/Asp25' protonation states exert different impacts on structural fluctuations, flexibility and motion modes of PR. Dynamics analysis verifies that Asp25/Asp25' protonated states highly affect conformational dynamics of two flaps in PR. The binding free energy calculations results suggest that the Asp25/Asp25' protonated states obviously strengthen bindings of inhibitors to PR compared to the non-protonation state. Calculations of residue-based free energy decomposition indicate that the Asp25/Asp25' protonation not only disturbs the interaction network of inhibitors with PR but also stabilizes bindings of inhibitors to PR by cancelling the electrostatic repulsive interaction. Therefore, special attentions should be paid to the Asp25/Asp25' protonation in the design of potent inhibitors towards PR.
Collapse
Affiliation(s)
- Y X Yu
- School of Science, Shandong Jiaotong University, Jinan, China
| | - W Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - H B Sun
- School of Science, Shandong Jiaotong University, Jinan, China
| | - L L Zhang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - S L Wu
- School of Science, Shandong Jiaotong University, Jinan, China
| | - W T Liu
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
12
|
Combining Molecular Dynamic Information and an Aspherical-Atom Data Bank in the Evaluation of the Electrostatic Interaction Energy in Multimeric Protein-Ligand Complex: A Case Study for HIV-1 Protease. Molecules 2021; 26:molecules26133872. [PMID: 34202892 PMCID: PMC8270314 DOI: 10.3390/molecules26133872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
Computational analysis of protein–ligand interactions is of crucial importance for drug discovery. Assessment of ligand binding energy allows us to have a glimpse of the potential of a small organic molecule to be a ligand to the binding site of a protein target. Available scoring functions, such as in docking programs, all rely on equations that sum each type of protein–ligand interactions in order to predict the binding affinity. Most of the scoring functions consider electrostatic interactions involving the protein and the ligand. Electrostatic interactions constitute one of the most important part of total interactions between macromolecules. Unlike dispersion forces, they are highly directional and therefore dominate the nature of molecular packing in crystals and in biological complexes and contribute significantly to differences in inhibition strength among related enzyme inhibitors. In this study, complexes of HIV-1 protease with inhibitor molecules (JE-2147 and darunavir) were analyzed by using charge densities from the transferable aspherical-atom University at Buffalo Databank (UBDB). Moreover, we analyzed the electrostatic interaction energy for an ensemble of structures, using molecular dynamic simulations to highlight the main features of electrostatic interactions important for binding affinity.
Collapse
|
13
|
Sanusi ZK, Lawal MM, Gupta PL, Govender T, Baijnath S, Naicker T, Maguire GEM, Honarparvar B, Roitberg AE, Kruger HG. Exploring the concerted mechanistic pathway for HIV-1 PR-substrate revealed by umbrella sampling simulation. J Biomol Struct Dyn 2020; 40:1736-1747. [PMID: 33073714 DOI: 10.1080/07391102.2020.1832578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
HIV-1 protease (HIV-1 PR) is an essential enzyme for the replication process of its virus, and therefore considered an important target for the development of drugs against the acquired immunodeficiency syndrome (AIDS). Our previous study shows that the catalytic mechanism of subtype B/C-SA HIV-1 PR follows a one-step concerted acyclic hydrolysis reaction process using a two-layered ONIOM B3LYP/6-31++G(d,p) method. This present work is aimed at exploring the proposed mechanism of the proteolysis catalyzed by HIV-1 PR and to ensure our proposed mechanism is not an artefact of a single theoretical technique. Hence, we present umbrella sampling method that is suitable for calculating potential mean force (PMF) for non-covalent ligand/substrate-enzyme association/dissociation interactions which provide thermodynamic details for molecular recognition. The free activation energy results were computed in terms of PMF analysis within the hybrid QM(DFTB)/MM approach. The theoretical findings suggest that the proposed mechanism corresponds in principle with experimental data. Given our observations, we suggest that the QM/MM MD method can be used as a reliable computational technique to rationalize lead compounds against specific targets such as the HIV-1 protease.
Collapse
Affiliation(s)
- Zainab K Sanusi
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Monsurat M Lawal
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Pancham Lal Gupta
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | | | - Sooraj Baijnath
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Tricia Naicker
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Adrian E Roitberg
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
14
|
Lawal MM, Sanusi ZK, Govender T, Maguire GE, Honarparvar B, Kruger HG. From Recognition to Reaction Mechanism: An Overview on the Interactions between HIV-1 Protease and its Natural Targets. Curr Med Chem 2020; 27:2514-2549. [DOI: 10.2174/0929867325666181113122900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/04/2018] [Accepted: 11/07/2018] [Indexed: 12/28/2022]
Abstract
Current investigations on the Human Immunodeficiency Virus Protease (HIV-1
PR) as a druggable target towards the treatment of AIDS require an update to facilitate further
development of promising inhibitors with improved inhibitory activities. For the past two
decades, up to 100 scholarly reports appeared annually on the inhibition and catalytic mechanism
of HIV-1 PR. A fundamental literature review on the prerequisite of HIV-1 PR action
leading to the release of the infectious virion is absent. Herein, recent advances (both computationally
and experimentally) on the recognition mode and reaction mechanism of HIV-1 PR
involving its natural targets are provided. This review features more than 80 articles from
reputable journals. Recognition of the natural Gag and Gag-Pol cleavage junctions by this
enzyme and its mutant analogs was first addressed. Thereafter, a comprehensive dissect of
the enzymatic mechanism of HIV-1 PR on its natural polypeptide sequences from literature
was put together. In addition, we highlighted ongoing research topics in which in silico
methods could be harnessed to provide deeper insights into the catalytic mechanism of the
HIV-1 protease in the presence of its natural substrates at the molecular level. Understanding
the recognition and catalytic mechanism of HIV-1 PR leading to the release of an infective
virion, which advertently affects the immune system, will assist in designing mechanismbased
inhibitors with improved bioactivity.
Collapse
Affiliation(s)
- Monsurat M. Lawal
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Zainab K. Sanusi
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Glenn E.M. Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Hendrik G. Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
15
|
Hofer F, Kraml J, Kahler U, Kamenik AS, Liedl KR. Catalytic Site p Ka Values of Aspartic, Cysteine, and Serine Proteases: Constant pH MD Simulations. J Chem Inf Model 2020; 60:3030-3042. [PMID: 32348143 PMCID: PMC7312390 DOI: 10.1021/acs.jcim.0c00190] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Enzymatic function and activity of
proteases is closely controlled
by the pH value. The protonation states of titratable residues in
the active site react to changes in the pH value, according to their
pKa, and thereby determine the functionality
of the enzyme. Knowledge of the titration behavior of these residues
is crucial for the development of drugs targeting the active site
residues. However, experimental pKa data
are scarce, since the systems’ size and complexity make determination
of these pKa values inherently difficult.
In this study, we use single pH constant pH MD simulations as a fast
and robust tool to estimate the active site pKa values of a set of aspartic, cysteine, and serine proteases.
We capture characteristic pKa shifts of
the active site residues, which dictate the experimentally determined
activity profiles of the respective protease family. We find clear
differences of active site pKa values
within the respective families, which closely match the experimentally
determined pH preferences of the respective proteases. These shifts
are caused by a distinct network of electrostatic interactions characteristic
for each protease family. While we find convincing agreement with
experimental data for serine and aspartic proteases, we observe clear
deficiencies in the description of the titration behavior of cysteines
within the constant pH MD framework and highlight opportunities for
improvement. Consequently, with this work, we provide a concise set
of active site pKa values of aspartic
and serine proteases, which could serve as reference for future theoretical
as well as experimental studies.
Collapse
Affiliation(s)
- Florian Hofer
- Institute for General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Johannes Kraml
- Institute for General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Ursula Kahler
- Institute for General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Anna S Kamenik
- Institute for General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Klaus R Liedl
- Institute for General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| |
Collapse
|
16
|
Ghosh AK, Kovela S, Osswald HL, Amano M, Aoki M, Agniswamy J, Wang YF, Weber IT, Mitsuya H. Structure-Based Design of Highly Potent HIV-1 Protease Inhibitors Containing New Tricyclic Ring P2-Ligands: Design, Synthesis, Biological, and X-ray Structural Studies. J Med Chem 2020; 63:4867-4879. [PMID: 32348139 PMCID: PMC7425579 DOI: 10.1021/acs.jmedchem.0c00202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We describe here design, synthesis, and biological evaluation of a series of highly potent HIV-1 protease inhibitors containing stereochemically defined and unprecedented tricyclic furanofuran derivatives as P2 ligands in combination with a variety of sulfonamide derivatives as P2' ligands. These inhibitors were designed to enhance the ligand-backbone binding and van der Waals interactions in the protease active site. A number of inhibitors containing the new P2 ligand, an aminobenzothiazole as the P2' ligand and a difluorophenylmethyl as the P1 ligand, displayed very potent enzyme inhibitory potency and also showed excellent antiviral activity against a panel of highly multidrug-resistant HIV-1 variants. The tricyclic P2 ligand has been synthesized efficiently in an optically active form using enzymatic desymmetrization of meso-1,2-(dihydroxymethyl)cyclohex-4-ene as the key step. We determined high-resolution X-ray structures of inhibitor-bound HIV-1 protease. These structures revealed extensive interactions with the backbone atoms of HIV-1 protease and provided molecular insights into the binding properties of these new inhibitors.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of Chemistry, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Satish Kovela
- Department of Chemistry, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Heather L. Osswald
- Department of Chemistry, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Masayuki Amano
- Departments of Infectious Diseases and Hematology, Kumamoto University Graduate School of Biomedical Sciences, Kumamoto 860-8556, Japan
| | - Manabu Aoki
- Department of Medical Technology, Kumamoto Health Science University, Kumamoto 861-5598, Japan; Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States; Department of Clinical Sciences, Kumamoto University Hospital, Kumamoto 860-8556, Japan
| | - Johnson Agniswamy
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yuan-Fang Wang
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Irene T. Weber
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infection, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan; Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States; Department of Clinical Sciences, Kumamoto University Hospital, Kumamoto 860-8556, Japan
| |
Collapse
|
17
|
A simple and reliable method for determination of optimum pH in coupled enzyme assays. Biotechniques 2020; 68:200-203. [DOI: 10.2144/btn-2019-0126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Determination of the optimum pH in a coupled enzyme assay poses significant challenges because altering the pH of the reaction mixture can affect the performance of both enzymes. Here, we demonstrate a simple and reliable method to determine the pH optimum for pyruvate kinase using the pyruvate kinase/lactate dehydrogenase coupled enzyme assay. This simple and reliable method can be broadly adapted to determine the pH optimum for various enzymes that are assayed using a coupled enzyme assay.
Collapse
|
18
|
Inhibition of the activity of HIV-1 protease through antibody binding and mutations probed by molecular dynamics simulations. Sci Rep 2020; 10:5501. [PMID: 32218488 PMCID: PMC7098958 DOI: 10.1038/s41598-020-62423-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 03/12/2020] [Indexed: 01/31/2023] Open
Abstract
HIV-1 protease is an essential enzyme in the life cycle of the HIV-1 virus. The conformational dynamics of the flap region of the protease is critical for the ligand binding mechanism, as well as for the catalytic activity. The monoclonal antibody F11.2.32 raised against HIV-1 protease inhibits its activity on binding. We have studied the conformational dynamics of protease in its free, inhibitor ritonavir and antibody bound forms using molecular dynamics simulations. We find that upon Ab binding to the epitope region (residues 36-46) of protease, the overall flexibility of the protease is decreased including the flap region and the active site, which is similar to the decrease in flexibility observed by inhibitor binding to the protease. This suggests an allosteric mechanism to inhibit protease activity. Further, the protease mutants G40E and G40R are known to have decreased activity and were also subjected to MD simulations. We find that the loss of flexibility in the mutants is similar to that observed in the protease bound to the Ab/inhibitor. These insights highlight the role played by dynamics in the function of the protease and how control of flexibility through Ab binding and site specific mutations can inhibit protease activity.
Collapse
|
19
|
Synthesis and evaluation of potent human immunodeficiency virus 1 protease inhibitors with epimeric isopropanol as novel P1' ligands. Future Med Chem 2020; 12:775-794. [PMID: 32125179 DOI: 10.4155/fmc-2019-0331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: HIV-1 protease inhibitors regimens suffered from a number of drawbacks, among which, the most egregious issue was the growing emergence of drug-resistant strains. Materials & methods: The design strategy of maximizing the protease active site interactions with the inhibitor, especially promoting extensive hydrogen bonding with the protein backbone atoms, might be in favor of combating drug resistance. A series of HIV-1 protease inhibitors that incorporated enantiomeric isopropanols as the P1' ligands in combination with phenols as the P2 ligands were reported herein. Results: A number of inhibitors displayed potent protease enzyme inhibition activity. In particular, inhibitor 14c showed comparable potency as darunavir with IC50 value of 1.91 nM and activity against darunavir-resistant HIV-1 variants. Conclusion: The new kind of HIV-1 protease inhibitors deserves further study.
Collapse
|
20
|
Kovalevsky A, Gerlits O, Beltran K, Weiss KL, Keen DA, Blakeley MP, Louis JM, Weber IT. Proton transfer and drug binding details revealed in neutron diffraction studies of wild-type and drug resistant HIV-1 protease. Methods Enzymol 2020; 634:257-279. [PMID: 32093836 PMCID: PMC11414022 DOI: 10.1016/bs.mie.2019.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
HIV-1 protease is an essential therapeutic target for the design and development of antiviral inhibitors to treat AIDS. We used room temperature neutron crystallography to accurately determine hydrogen atom positions in several protease complexes with clinical drugs, amprenavir and darunavir. Hydrogen bonding interactions were carefully mapped to provide an unprecedented picture of drug binding to the protease target. We demonstrate that hydrogen atom positions within the enzyme catalytic site can be altered by introducing drug resistant mutations and by protonating surface residues that trigger proton transfer reactions between the catalytic Asp residues and the hydroxyl group of darunavir. When protein perdeuteration is not feasible, we validate the use of initial H/D exchange with unfolded protein and partial deuteration in pure D2O with hydrogenous glycerol to maximize deuterium incorporation into the protein, with no detrimental effects on the growth of quality crystals suitable for neutron diffraction experiments.
Collapse
Affiliation(s)
- Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.
| | - Oksana Gerlits
- Department of Natural Sciences, Tennessee Wesleyan University, Athens, TN, United States
| | - Kaira Beltran
- Department of Natural Sciences, Tennessee Wesleyan University, Athens, TN, United States
| | - Kevin L Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, United Kingdom
| | | | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, United States
| | - Irene T Weber
- Department of Biology, Georgia State University, Atlanta, GA, United States; Department of Chemistry, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
21
|
Sanusi ZK, Lawal MM, Govender T, Maguire GEM, Honarparvar B, Kruger HG. Theoretical Model for HIV-1 PR That Accounts for Substrate Recognition and Preferential Cleavage of Natural Substrates. J Phys Chem B 2019; 123:6389-6400. [DOI: 10.1021/acs.jpcb.9b02207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zainab K. Sanusi
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Monsurat M. Lawal
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | | | - Glenn E. M. Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Hendrik G. Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
22
|
Ghosh AK, Williams JN, Ho RY, Simpson HM, Hattori SI, Hayashi H, Agniswamy J, Wang YF, Weber IT, Mitsuya H. Design and Synthesis of Potent HIV-1 Protease Inhibitors Containing Bicyclic Oxazolidinone Scaffold as the P2 Ligands: Structure-Activity Studies and Biological and X-ray Structural Studies. J Med Chem 2018; 61:9722-9737. [PMID: 30354121 PMCID: PMC6541917 DOI: 10.1021/acs.jmedchem.8b01227] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have designed, synthesized, and evaluated a new class of potent HIV-1 protease inhibitors with novel bicyclic oxazolidinone derivatives as the P2 ligand. We have developed an enantioselective synthesis of these bicyclic oxazolidinones utilizing a key o-iodoxybenzoic acid mediated cyclization. Several inhibitors displayed good to excellent activity toward HIV-1 protease and significant antiviral activity in MT-4 cells. Compound 4k has shown an enzyme Ki of 40 pM and antiviral IC50 of 31 nM. Inhibitors 4k and 4l were evaluated against a panel of highly resistant multidrug-resistant HIV-1 variants, and their fold-changes in antiviral activity were similar to those observed with darunavir. Additionally, two X-ray crystal structures of the related inhibitors 4a and 4e bound to HIV-1 protease were determined at 1.22 and 1.30 Å resolution, respectively, and revealed important interactions in the active site that have not yet been explored.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States,Corresponding Author Phone: (765) 494-5323. Fax: (765) 496-1612.
| | - Jacqueline N. Williams
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Rachel Y. Ho
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Hannah M. Simpson
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Shin-ichiro Hattori
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
| | - Hironori Hayashi
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
| | - Johnson Agniswamy
- Department of Biology, Molecular Basis of Disease, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yuan-Fang Wang
- Department of Biology, Molecular Basis of Disease, Georgia State University, Atlanta, Georgia 30303, United States
| | - Irene T. Weber
- Department of Biology, Molecular Basis of Disease, Georgia State University, Atlanta, Georgia 30303, United States
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan, Departments of Infectious Diseases and Hematology, Kumamoto University Graduate School of Biomedical Sciences, Kumamoto 860-8556, Japan, Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
23
|
Vadhadiya PM, Jean MA, Bouzriba C, Tremblay T, Lagüe P, Fortin S, Boukouvalas J, Giguère D. Diversity-Oriented Synthesis of Diol-Based Peptidomimetics as Potential HIV Protease Inhibitors and Antitumor Agents. Chembiochem 2018; 19:1779-1791. [PMID: 29858881 DOI: 10.1002/cbic.201800247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/15/2022]
Abstract
Peptidomimetic HIV protease inhibitors are an important class of drugs used in the treatment of AIDS. The synthesis of a new type of diol-based peptidomimetics is described. Our route is flexible, uses d-glucal as an inexpensive starting material, and makes minimal use of protection/deprotection cycles. Binding affinities from molecular docking simulations suggest that these compounds are potential inhibitors of HIV protease. Moreover, the antiproliferative activities of compounds 33 a, 35 a, and 35 b on HT-29, M21, and MCF7 cancer cell lines are in the low micromolar range. The results provide a platform that could facilitate the development of medically relevant asymmetrical diol-based peptidomimetics.
Collapse
Affiliation(s)
- Paresh M Vadhadiya
- Département de Chimie, Université Laval-RQRM, 1045 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| | - Marc-Alexandre Jean
- Département de Chimie, Université Laval-RQRM, 1045 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| | - Chahrazed Bouzriba
- CHU de Québec-Université Laval Research Center, Oncology Division, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Quebec City, QC, G1L 3L5, Canada
- Faculté de Pharmacie, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Thomas Tremblay
- Département de Chimie, Université Laval-RQRM, 1045 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| | - Patrick Lagüe
- Départment de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, 1045, Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| | - Sébastien Fortin
- CHU de Québec-Université Laval Research Center, Oncology Division, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Quebec City, QC, G1L 3L5, Canada
- Faculté de Pharmacie, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - John Boukouvalas
- Département de Chimie, Université Laval-RQRM, 1045 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| | - Denis Giguère
- Département de Chimie, Université Laval-RQRM, 1045 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| |
Collapse
|
24
|
Abstract
Chemical methods have enabled the total synthesis of protein molecules of ever-increasing size and complexity. However, methods to engineer synthetic proteins comprising noncanonical amino acids have not kept pace, even though this capability would be a distinct advantage of the total synthesis approach to protein science. In this work, we report a platform for protein engineering based on the screening of synthetic one-bead one-compound protein libraries. Screening throughput approaching that of cell surface display was achieved by a combination of magnetic bead enrichment, flow cytometry analysis of on-bead screens, and high-throughput MS/MS-based sequencing of identified active compounds. Direct screening of a synthetic protein library by these methods resulted in the de novo discovery of mirror-image miniprotein-based binders to a ∼150-kDa protein target, a task that would be difficult or impossible by other means.
Collapse
|
25
|
Sanusi ZK, Govender T, Maguire GEM, Maseko SB, Lin J, Kruger HG, Honarparvar B. An insight to the molecular interactions of the FDA approved HIV PR drugs against L38L↑N↑L PR mutant. J Comput Aided Mol Des 2018; 32:459-471. [PMID: 29397520 DOI: 10.1007/s10822-018-0099-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/16/2018] [Indexed: 01/12/2023]
Abstract
The aspartate protease of the human immune deficiency type-1 virus (HIV-1) has become a crucial antiviral target in which many useful antiretroviral inhibitors have been developed. However, it seems the emergence of new HIV-1 PR mutations enhances drug resistance, hence, the available FDA approved drugs show less activity towards the protease. A mutation and insertion designated L38L↑N↑L PR was recently reported from subtype of C-SA HIV-1. An integrated two-layered ONIOM (QM:MM) method was employed in this study to examine the binding affinities of the nine HIV PR inhibitors against this mutant. The computed binding free energies as well as experimental data revealed a reduced inhibitory activity towards the L38L↑N↑L PR in comparison with subtype C-SA HIV-1 PR. This observation suggests that the insertion and mutations significantly affect the binding affinities or characteristics of the HIV PIs and/or parent PR. The same trend for the computational binding free energies was observed for eight of the nine inhibitors with respect to the experimental binding free energies. The outcome of this study shows that ONIOM method can be used as a reliable computational approach to rationalize lead compounds against specific targets. The nature of the intermolecular interactions in terms of the host-guest hydrogen bond interactions is discussed using the atoms in molecules (AIM) analysis. Natural bond orbital analysis was also used to determine the extent of charge transfer between the QM region of the L38L↑N↑L PR enzyme and FDA approved drugs. AIM analysis showed that the interaction between the QM region of the L38L↑N↑L PR and FDA approved drugs are electrostatic dominant, the bond stability computed from the NBO analysis supports the results from the AIM application. Future studies will focus on the improvement of the computational model by considering explicit water molecules in the active pocket. We believe that this approach has the potential to provide information that will aid in the design of much improved HIV-1 PR antiviral drugs.
Collapse
Affiliation(s)
- Zainab K Sanusi
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.,School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Sibusiso B Maseko
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Johnson Lin
- School of Life Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| |
Collapse
|
26
|
Hajiebrahimi A, Ghasemi Y, Sakhteman A. FLIP: An assisting software in structure based drug design using fingerprint of protein-ligand interaction profiles. J Mol Graph Model 2017; 78:234-244. [PMID: 29121561 DOI: 10.1016/j.jmgm.2017.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 11/29/2022]
Abstract
With the growing number of labor-intensive data in the pharmaceutical industries and public domain for protein-ligand complexes, a significant challenge is still remaining in managing and leveraging this vast information. Here, a standalone application is presented for analysis, organization, and illustration of structural data and molecular interactions for exploiting 3D-structures into simple 1D fingerprints. The utility of the approach was shown in unraveling a feasible solution for post-processing of docking results in parallel with providing fruitful analysis for users in order to investigate molecular interactions. Remarkably, all interaction possibilities including (hydrogen bond, water-bridged, electrostatic, and hydrophobic as well as π- π and cation-π interactions) are supported both in the form of fingerprints and compelling reports. These investigations are mainly considered based on right orientation, location, and geometry of the interacting pairs rather than the acquisition of the energy terms. The reasonable efficiency of our application in different models was comparable to recent methods It is clearly presented that FLIP provides a faster way to generate usable fingerprints for ligand and protein binding modes. FLIP is free for academic use and is available at: http://zistrayan.com/development/download/flip/package.zip.
Collapse
Affiliation(s)
- Ali Hajiebrahimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amirhossein Sakhteman
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
27
|
Sanusi ZK, Govender T, Maguire GEM, Maseko SB, Lin J, Kruger HG, Honarparvar B. Investigation of the binding free energies of FDA approved drugs against subtype B and C-SA HIV PR: ONIOM approach. J Mol Graph Model 2017; 76:77-85. [PMID: 28711760 DOI: 10.1016/j.jmgm.2017.06.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 01/15/2023]
Abstract
Human immune virus subtype C is the most widely spread HIV subtype in Sub-Sahara Africa and South Africa. A profound structural insight on finding potential lead compounds is therefore necessary for drug discovery. The focus of this study is to rationalize the nine Food and Drugs Administration (FDA) HIV antiviral drugs complexed to subtype B and C-SA PR using ONIOM approach. To achieve this, an integrated two-layered ONIOM model was used to optimize the geometrics of the FDA approved HIV-1 PR inhibitors for subtype B. In our hybrid ONIOM model, the HIV-1 PR inhibitors as well as the ASP 25/25' catalytic active residues were treated at high level quantum mechanics (QM) theory using B3LYP/6-31G(d), and the remaining HIV PR residues were considered using the AMBER force field. The experimental binding energies of the PR inhibitors were compared to the ONIOM calculated results. The theoretical binding free energies (?Gbind) for subtype B follow a similar trend to the experimental results, with one exemption. The computational model was less suitable for C-SA PR. Analysis of the results provided valuable information about the shortcomings of this approach. Future studies will focus on the improvement of the computational model by considering explicit water molecules in the active pocket. We believe that this approach has the potential to provide much improved binding energies for complex enzyme drug interactions.
Collapse
Affiliation(s)
- Z K Sanusi
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - T Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - G E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa; School of Chemistry and Physics, University of KwaZulu-Natal, 4001 Durban, South Africa
| | - S B Maseko
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - J Lin
- School of Life Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - H G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa.
| | - B Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa.
| |
Collapse
|
28
|
Krzemińska A, Moliner V, Świderek K. Dynamic and Electrostatic Effects on the Reaction Catalyzed by HIV-1 Protease. J Am Chem Soc 2016; 138:16283-16298. [PMID: 27935692 DOI: 10.1021/jacs.6b06856] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
HIV-1 Protease (HIV-1 PR) is one of the three enzymes essential for the replication process of HIV-1 virus, which explains why it has been the main target for design of drugs against acquired immunodeficiency syndrome (AIDS). This work is focused on exploring the proteolysis reaction catalyzed by HIV-1 PR, with special attention to the dynamic and electrostatic effects governing its catalytic power. Free energy surfaces for all possible mechanisms have been computed in terms of potentials of mean force (PMFs) within hybrid QM/MM potentials, with the QM subset of atoms described at semiempirical (AM1) and DFT (M06-2X) level. The results suggest that the most favorable reaction mechanism involves formation of a gem-diol intermediate, whose decomposition into the product complex would correspond to the rate-limiting step. The agreement between the activation free energy of this step with experimental data, as well as kinetic isotope effects (KIEs), supports this prediction. The role of the protein dynamic was studied by protein isotope labeling in the framework of the Variational Transition State Theory. The predicted enzyme KIEs, also very close to the values measured experimentally, reveal a measurable but small dynamic effect. Our calculations show how the contribution of dynamic effects to the effective activation free energy appears to be below 1 kcal·mol-1. On the contrary, the electric field created by the protein in the active site of the enzyme emerges as being critical for the electronic reorganization required during the reaction. These electrostatic properties of the active site could be used as a mold for future drug design.
Collapse
Affiliation(s)
- Agnieszka Krzemińska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology , Zeromskiego 116, 90-924 Lodz, Poland
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I , 12071 Castelló, Spain
| | - Katarzyna Świderek
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology , Zeromskiego 116, 90-924 Lodz, Poland.,Departament de Química Física i Analítica, Universitat Jaume I , 12071 Castelló, Spain
| |
Collapse
|
29
|
Mándity IM, Ötvös SB, Szőlősi G, Fülöp F. Harnessing the Versatility of Continuous-Flow Processes: Selective and Efficient Reactions. CHEM REC 2016; 16:1018-33. [PMID: 26997251 DOI: 10.1002/tcr.201500286] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Indexed: 12/19/2022]
Abstract
There is a great need for effective transformations and a broad range of novel chemical entities. Continuous-flow (CF) approaches are of considerable current interest: highly efficient and selective reactions can be performed in CF reactors. The reaction setup of CF reactors offers a wide variety of possible points where versatility can be introduced. This article presents a number of selective and highly efficient gas-liquid-solid and liquid-solid reactions involving a range of reagents and immobilized catalysts. Enantioselective transformations through catalytic hydrogenation and organocatalytic reactions are included, and isotopically labelled compounds and pharmaceutically relevant 1,2,3-triazoles are synthesized in CF reactors. Importantly, the catalyst bed can be changed to a solid-phase peptide synthesis resin, with which peptide synthesis can be performed with the utilization of only 1.5 equivalents of the amino acid.
Collapse
Affiliation(s)
- István M Mándity
- Institute of Pharmaceutical Chemistry University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Sándor B Ötvös
- Institute of Pharmaceutical Chemistry University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,MTA-SZTE Stereochemistry Research Group Hungarian Academy of Sciences, H-6720, Szeged, Eötvös u. 6, Hungary
| | - György Szőlősi
- MTA-SZTE Stereochemistry Research Group Hungarian Academy of Sciences, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,MTA-SZTE Stereochemistry Research Group Hungarian Academy of Sciences, H-6720, Szeged, Eötvös u. 6, Hungary
| |
Collapse
|
30
|
Kim MO, McCammon JA. Computation of pH-dependent binding free energies. Biopolymers 2016; 105:43-9. [PMID: 26202905 PMCID: PMC4623928 DOI: 10.1002/bip.22702] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 07/20/2015] [Indexed: 01/21/2023]
Abstract
Protein-ligand binding accompanies changes in the surrounding electrostatic environments of the two binding partners and may lead to changes in protonation upon binding. In cases where the complex formation results in a net transfer of protons, the binding process is pH-dependent. However, conventional free energy computations or molecular docking protocols typically employ fixed protonation states for the titratable groups in both binding partners set a priori, which are identical for the free and bound states. In this review, we draw attention to these important yet largely ignored binding-induced protonation changes in protein-ligand association by outlining physical origins and prevalence of the protonation changes upon binding. Following a summary of various theoretical methods for pKa prediction, we discuss the theoretical framework to examine the pH dependence of protein-ligand binding processes.
Collapse
Affiliation(s)
- M. Olivia Kim
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - J. Andrew McCammon
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
- National Biomedical Computation Resource, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
31
|
Wiley AP, Williams SL, Essex JW. Conformational Motions of HIV-1 Protease Identified Using Reversible Digitally Filtered Molecular Dynamics. J Chem Theory Comput 2015; 5:1117-28. [PMID: 26609621 DOI: 10.1021/ct800152d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIV-1 protease performs a vital step in the propagation of the HIV virus and is therefore an important drug target in the treatment of AIDS. It consists of a homodimer, with access to the active site limited by two protein flaps. NMR studies have identified two time scales of motions that occur in these flaps, and it is thought that the slower of these is responsible for a conformational change that makes the protein ligand-accessible. This motion occurs on a time scale outside that achievable using traditional molecular dynamics simulations. Reversible Digitally Filtered Molecular Dynamics (RDFMD) is a method that amplifies low frequency motions associated with conformational change and has recently been applied to, among others, E. coli dihydrofolate reductase, inducing a conformational change between known crystal structures. In this paper, the conformational motions of HIV-1 protease produced during MD and RDFMD simulations are presented, including movement between the known semiopen and closed conformations, and the opening and closing of the protein flaps.
Collapse
Affiliation(s)
- Adrian P Wiley
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K
| | - Sarah L Williams
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K
| | - Jonathan W Essex
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K
| |
Collapse
|
32
|
Non-infectious in-cell HIV-1 protease assay utilizing translocalization of a fluorescent reporter protein and apoptosis induction. Arch Pharm Res 2015; 38:2201-7. [DOI: 10.1007/s12272-015-0651-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022]
|
33
|
Characterizing the protonation states of the catalytic residues in apo and substrate-bound human T-cell leukemia virus type 1 protease. Comput Biol Chem 2015; 56:61-70. [PMID: 25889320 DOI: 10.1016/j.compbiolchem.2015.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 03/22/2015] [Accepted: 04/03/2015] [Indexed: 11/23/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) protease is an attractive target when developing inhibitors to treat HTLV-1 associated diseases. To study the catalytic mechanism and design novel HTLV-1 protease inhibitors, the protonation states of the two catalytic aspartic acid residues must be determined. Free energy simulations have been conducted to study the proton transfer reaction between the catalytic residues of HTLV-1 protease using a combined quantum mechanical and molecular mechanical (QM/MM) molecular dynamics simulation. The free energy profiles for the reaction in the apo-enzyme and in an enzyme - substrate complex have been obtained. In the apo-enzyme, the two catalytic residues are chemically equivalent and are expected to be both unprotonated. Upon substrate binding, the catalytic residues of HTLV-1 protease evolve to a singly protonated state, in which the OD1 of Asp32 is protonated and forms a hydrogen bond with the OD1 of Asp32', which is unprotonated. The HTLV-1 protease-substrate complex structure obtained from this simulation can serve as the Michaelis complex structure for further mechanistic studies of HTLV-1 protease while providing a receptor structure with the correct protonation states for the active site residues toward the design of novel HTLV-1 protease inhibitors through virtual screening.
Collapse
|
34
|
Honarparvar B, Pawar SA, Alves CN, Lameira J, Maguire GE, Silva JRA, Govender T, Kruger HG. Pentacycloundecane lactam vs lactone norstatine type protease HIV inhibitors: binding energy calculations and DFT study. J Biomed Sci 2015; 22:15. [PMID: 25889635 PMCID: PMC4387594 DOI: 10.1186/s12929-015-0115-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/16/2015] [Indexed: 01/12/2023] Open
Abstract
Background Novel pentacycloundecane (PCU)-lactone-CO-EAIS peptide inhibitors were designed, synthesized, and evaluated against wild-type C-South African (C-SA) HIV-1 protease. Three compounds are reported herein, two of which displayed IC50 values of less than 1.00 μM. A comparative MM-PB(GB)SA binding free energy of solvation values of PCU-lactam and lactone models and their enantiomers as well as the PCU-lactam-NH-EAIS and lactone-CO-EAIS peptide inhibitors and their corresponding diastereomers complexed with South African HIV protease (C-SA) was performed. This will enable us to rationalize the considerable difference between inhibitory concentration (IC50) of PCU-lactam-NH-EAIS and PCU-lactone-CO-EAIS peptides. Results The PCU-lactam model exhibited more negative calculated binding free energies of solvation than the PCU-lactone model. The same trend was observed for the PCU-peptide inhibitors, which correspond to the experimental activities for the PCU-lactam-NH-EAIS peptide (IC50 = 0.076 μM) and the PCU-lactone-CO-EAIS peptide inhibitors (IC50 = 0.850 μM). Furthermore, a density functional theory (DFT) study on the natural atomic charges of the nitrogen and oxygen atoms of the three PCU-lactam, PCU-lactim and PCU-lactone models were performed using natural bond orbital (NBO) analysis. Electrostatic potential maps were also used to visualize the electron density around electron-rich regions. The asymmetry parameter (η) and quadrupole coupling constant (χ) values of the nitrogen and oxygen nuclei of the model compounds were calculated at the same level of theory. Electronic molecular properties including polarizability and electric dipole moments were also calculated and compared. The Gibbs theoretical free solvation energies of solvation (∆Gsolv) were also considered. Conclusions A general trend is observed that the lactam species appears to have a larger negative charge distribution around the heteroatoms, larger quadrupole constant, dipole moment and better solvation energy, in comparison to the PCU-lactone model. It can be argued that these characteristics will ensure better eletronic interaction between the lactam and the receptor, corresponding to the observed HIV protease activities in terms of experimental IC50 data. Electronic supplementary material The online version of this article (doi:10.1186/s12929-015-0115-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| | - Sachin A Pawar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| | - Cláudio Nahum Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 11101, 66075-110, Belém, PA, Brazil.
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 11101, 66075-110, Belém, PA, Brazil.
| | - Glenn Em Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| | - José Rogério A Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 11101, 66075-110, Belém, PA, Brazil.
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| |
Collapse
|
35
|
Yu W, Lakkaraju SK, Raman EP, Fang L, MacKerell AD. Pharmacophore modeling using site-identification by ligand competitive saturation (SILCS) with multiple probe molecules. J Chem Inf Model 2015; 55:407-20. [PMID: 25622696 DOI: 10.1021/ci500691p] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Receptor-based pharmacophore modeling is an efficient computer-aided drug design technique that uses the structure of the target protein to identify novel leads. However, most methods consider protein flexibility and desolvation effects in a very approximate way, which may limit their use in practice. The Site-Identification by Ligand Competitive Saturation (SILCS) assisted pharmacophore modeling protocol (SILCS-Pharm) was introduced recently to address these issues, as SILCS naturally takes both protein flexibility and desolvation effects into account by using full molecular dynamics simulations to determine 3D maps of the functional group-affinity patterns on a target receptor. In the present work, the SILCS-Pharm protocol is extended to use a wider range of probe molecules including benzene, propane, methanol, formamide, acetaldehyde, methylammonium, acetate and water. This approach removes the previous ambiguity brought by using water as both the hydrogen-bond donor and acceptor probe molecule. The new SILCS-Pharm protocol is shown to yield improved screening results, as compared to the previous approach based on three target proteins. Further validation of the new protocol using five additional protein targets showed improved screening compared to those using common docking methods, further indicating improvements brought by the explicit inclusion of additional feature types associated with the wider collection of probe molecules in the SILCS simulations. The advantage of using complementary features and volume constraints, based on exclusion maps of the protein defined from the SILCS simulations, is presented. In addition, reranking using SILCS-based ligand grid free energies is shown to enhance the diversity of identified ligands for the majority of targets. These results suggest that the SILCS-Pharm protocol will be of utility in rational drug design.
Collapse
Affiliation(s)
- Wenbo Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | | | | | | | | |
Collapse
|
36
|
McGee TD, Edwards J, Roitberg AE. pH-REMD Simulations Indicate That the Catalytic Aspartates of HIV-1 Protease Exist Primarily in a Monoprotonated State. J Phys Chem B 2014; 118:12577-85. [DOI: 10.1021/jp504011c] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- T. Dwight McGee
- Department
of Chemistry, Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| | - Jesse Edwards
- Department
of Chemistry, Florida Agricultural and Mechanical University, Tallahassee, Florida 32307, United States
| | - Adrian E. Roitberg
- Department
of Chemistry, Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
37
|
Bobovská A, Tvaroška I, Kóňa J. Theoretical study of enzymatic catalysis explains why the trapped covalent intermediate in the E303C mutant of glycosyltransferase GTB was not detected in the wild-type enzyme. Glycobiology 2014; 25:3-7. [DOI: 10.1093/glycob/cwu085] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
38
|
Graham JD, Buytendyk AM, Wang D, Bowen KH, Collins KD. Strong, low-barrier hydrogen bonds may be available to enzymes. Biochemistry 2014; 53:344-9. [PMID: 24359447 DOI: 10.1021/bi4014566] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The debate over the possible role of strong, low-barrier hydrogen bonds in stabilizing reaction intermediates at enzyme active sites has taken place in the absence of an awareness of the upper limits to the strengths of low-barrier hydrogen bonds involving amino acid side chains. Hydrogen bonds exhibit their maximal strengths in isolation, i.e., in the gas phase. In this work, we measured the ionic hydrogen bond strengths of three enzymatically relevant model systems in the gas phase using anion photoelectron spectroscopy; we calibrated these against the hydrogen bond strength of HF2(-), measured using the same technique, and we compared our results with other gas-phase experimental data. The model systems studied here, the formate-formic acid, acetate-acetic acid, and imidazolide-imidazole anionic complexes, all exhibit very strong hydrogen bonds, whose strengths compare favorably with that of the hydrogen bifluoride anion, the strongest known hydrogen bond. The hydrogen bond strengths of these gas-phase complexes are stronger than those typically estimated as being required to stabilize enzymatic intermediates. If there were to be enzyme active site environments that can facilitate the retention of a significant fraction of the strengths of these isolated (gas-phase), hydrogen bonded couples, then low-barrier hydrogen bonding interactions might well play important roles in enzymatic catalysis.
Collapse
Affiliation(s)
- Jacob D Graham
- Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | | | | | | | | |
Collapse
|
39
|
Liu F, Mayer JP. Protein Chemical Synthesis in Drug Discovery. PROTEIN LIGATION AND TOTAL SYNTHESIS I 2014; 362:183-228. [DOI: 10.1007/128_2014_598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Naicker P, Achilonu I, Fanucchi S, Fernandes M, Ibrahim MA, Dirr HW, Soliman ME, Sayed Y. Structural insights into the South African HIV-1 subtype C protease: impact of hinge region dynamics and flap flexibility in drug resistance. J Biomol Struct Dyn 2013; 31:1370-80. [DOI: 10.1080/07391102.2012.736774] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Raman EP, Yu W, Lakkaraju SK, MacKerell AD. Inclusion of multiple fragment types in the site identification by ligand competitive saturation (SILCS) approach. J Chem Inf Model 2013; 53:3384-98. [PMID: 24245913 DOI: 10.1021/ci4005628] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The site identification by ligand competitive saturation (SILCS) method identifies the location and approximate affinities of small molecular fragments on a target macromolecular surface by performing molecular dynamics (MD) simulations of the target in an aqueous solution of small molecules representative of different chemical functional groups. In this study, we introduce a set of small molecules to map potential interactions made by neutral hydrogen bond donors and acceptors and charged donor and acceptor fragments in addition to nonpolar fragments. The affinity pattern is obtained in the form of discretized probability or, equivalently, free energy maps, called FragMaps, which can be visualized with the target surface. We performed SILCS simulations for four proteins for which structural and thermodynamic data is available for multiple diverse ligands. Good overlap is shown between high affinity regions identified by the FragMaps and the crystallographic positions of ligand functional groups with similar chemical functionality, thus demonstrating the validity of the qualitative information obtained from the simulations. To test the ability of FragMaps in providing quantitative predictions, we calculate the previously introduced ligand grid free energy (LGFE) metric and observe its correspondence with experimentally measured binding affinity. LGFE is computed for different conformational ensembles and improvement in prediction is shown with increasing ligand conformational sampling. Ensemble generation includes a Monte Carlo sampling approach that uses the GFE FragMaps directly as the energy function. The results show that some but not all experimental trends are predicted and warrant improvements in the scoring methodology. In addition, the potential utility of atom-based free energy contributions to the LGFE scores and the use of multiple ligands in SILCS to identify displaceable water molecules during ligand design are discussed.
Collapse
Affiliation(s)
- E Prabhu Raman
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy , 20 Penn Street HSF II, Baltimore, Maryland 21201 United States
| | | | | | | |
Collapse
|
42
|
Weber IT, Waltman MJ, Mustyakimov M, Blakeley MP, Keen DA, Ghosh AK, Langan P, Kovalevsky AY. Joint X-ray/neutron crystallographic study of HIV-1 protease with clinical inhibitor amprenavir: insights for drug design. J Med Chem 2013; 56:5631-5. [PMID: 23772563 DOI: 10.1021/jm400684f] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
HIV-1 protease is an important target for the development of antiviral inhibitors to treat AIDS. A room-temperature joint X-ray/neutron structure of the protease in complex with clinical drug amprenavir has been determined at 2.0 Å resolution. The structure provides direct determination of hydrogen atom positions in the enzyme active site. Analysis of the enzyme-drug interactions suggests that some hydrogen bonds may be weaker than deduced from the non-hydrogen interatomic distances. This information may be valuable for the design of improved protease inhibitors.
Collapse
Affiliation(s)
- Irene T Weber
- Departments of Chemistry and Biology, Georgia State University , Atlanta, Georgia, United States
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Formation of protein-ligand complexes causes various changes in both the receptor and the ligand. This review focuses on changes in pK and protonation states of ionizable groups that accompany protein-ligand binding. Physical origins of these effects are outlined, followed by a brief overview of the computational methods to predict them and the associated corrections to receptor-ligand binding affinities. Statistical prevalence, magnitude and spatial distribution of the pK and protonation state changes in protein-ligand binding are discussed in detail, based on both experimental and theoretical studies. While there is no doubt that these changes occur, they do not occur all the time; the estimated prevalence varies, both between individual complexes and by method. The changes occur not only in the immediate vicinity of the interface but also sometimes far away. When receptor-ligand binding is associated with protonation state change at particular pH, the binding becomes pH dependent: we review the interplay between sub-cellular characteristic pH and optimum pH of receptor-ligand binding. It is pointed out that there is a tendency for protonation state changes upon binding to be minimal at physiologically relevant pH for each complex (no net proton uptake/release), suggesting that native receptor-ligand interactions have evolved to reduce the energy cost associated with ionization changes. As a result, previously reported statistical prevalence of these changes - typically computed at the same pH for all complexes - may be higher than what may be expected at optimum pH specific to each complex. We also discuss whether proper account of protonation state changes appears to improve practical docking and scoring outcomes relevant to structure-based drug design. An overview of some of the existing challenges in the field is provided in conclusion.
Collapse
Affiliation(s)
- Alexey V Onufriev
- Department of Computer Science and Physics, 2050 Torgersen Hall, Virginia Tech, Blacksburg, VA 24061, USA.
| | | |
Collapse
|
44
|
Experimental and ‘in silico’ analysis of the effect of pH on HIV-1 protease inhibitor affinity: Implications for the charge state of the protein ionogenic groups. Bioorg Med Chem 2012; 20:4838-47. [DOI: 10.1016/j.bmc.2012.05.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/21/2012] [Accepted: 05/25/2012] [Indexed: 11/21/2022]
|
45
|
Guo J, Tolstoy PM, Koeppe B, Golubev NS, Denisov GS, Smirnov SN, Limbach HH. Hydrogen Bond Geometries and Proton Tautomerism of Homoconjugated Anions of Carboxylic Acids Studied via H/D Isotope Effects on 13C NMR Chemical Shifts. J Phys Chem A 2012; 116:11180-8. [DOI: 10.1021/jp304943h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Guo
- Institut für Chemie und
Biochemie, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany
| | - Peter M. Tolstoy
- Department of Chemistry, St. Petersburg State University, Universitetsky Pr.
26, 198504, St. Petersburg, Russia
| | - Benjamin Koeppe
- Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, D-12489 Berlin, Germany
| | - Nikolai S. Golubev
- Department of Physics, St. Petersburg State University, Uljanovskaja 1, 198504,
St. Petersburg, Russia
| | - Gleb S. Denisov
- Department of Physics, St. Petersburg State University, Uljanovskaja 1, 198504,
St. Petersburg, Russia
| | - Sergei N. Smirnov
- Department of Chemistry, St. Petersburg State University, Universitetsky Pr.
26, 198504, St. Petersburg, Russia
| | - Hans-Heinrich Limbach
- Institut für Chemie und
Biochemie, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany
| |
Collapse
|
46
|
Synthesis and molecular modelling studies of novel carbapeptide analogs for inhibition of HIV-1 protease. Eur J Med Chem 2012; 53:13-21. [DOI: 10.1016/j.ejmech.2012.03.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 11/23/2022]
|
47
|
Torbeev VY, Kent SBH. Ionization state of the catalytic dyad Asp25/25' in the HIV-1 protease: NMR studies of site-specifically 13C labelled HIV-1 protease prepared by total chemical synthesis. Org Biomol Chem 2012; 10:5887-91. [PMID: 22659831 DOI: 10.1039/c2ob25569c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Total chemical synthesis was used to site-specifically (13)C-label active site Asp25 and Asp25' residues in HIV-1 protease and in several chemically synthesized analogues of the enzyme molecule. (13)C NMR measurements were consistent with a monoprotonated state for the catalytic dyad formed by the interacting Asp25, Asp25' side chain carboxyls.
Collapse
Affiliation(s)
- Vladimir Yu Torbeev
- Institute for Biophysical Dynamics, Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | | |
Collapse
|
48
|
Honarparvar B, Makatini MM, Pawar SA, Petzold K, Soliman MES, Arvidsson PI, Sayed Y, Govender T, Maguire GEM, Kruger HG. Pentacycloundecane-diol-Based HIV-1 Protease Inhibitors: Biological Screening, 2D NMR, and Molecular Simulation Studies. ChemMedChem 2012; 7:1009-19. [DOI: 10.1002/cmdc.201100512] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 03/22/2012] [Indexed: 11/11/2022]
|
49
|
Benedetti F, Berti F, Budal S, Campaner P, Dinon F, Tossi A, Argirova R, Genova P, Atanassov V, Hinkov A. Synthesis and biological activity of potent HIV-1 protease inhibitors based on Phe-Pro dihydroxyethylene isosteres. J Med Chem 2012; 55:3900-10. [PMID: 22458611 DOI: 10.1021/jm3001136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Peptidomimetic inhibitors of HIV-1 PR are still a key resource in the fight against AIDS. Here we describe the synthesis and biological activity of HIV-1 PR inhibitors based on four novel dihydroxyethylene isosteres of the Phe-Pro and Pro-Pro dipeptides. The isosteres, containing four stereogenic centers, were synthesized in high yield and excellent stereoselectivity via the cyclization of epoxy amines derived from α-amino acids. The inhibitors were assembled by coupling the isosteres with suitable flanking groups and were screened against recombinant HIV PR showing activities in the subnanomolar to micromolar range. Two Phe-Pro-based inhibitors active at the nanomolar level were further investigated: both inhibitors combine the ability to suppress HIV-1 replication in infected MT-2 cells with low cytotoxicity against the same cells, thereby displaying a high therapeutic index. These results demonstrate the potential of the new Phe-Pro dihydroxyethylene isostere as a core unit of powerful HIV-1 PR inhibitors.
Collapse
Affiliation(s)
- Fabio Benedetti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Giorgieri 1. 34127 Trieste, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Transition states of native and drug-resistant HIV-1 protease are the same. Proc Natl Acad Sci U S A 2012; 109:6543-8. [PMID: 22493227 DOI: 10.1073/pnas.1202808109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
HIV-1 protease is an important target for the treatment of HIV/AIDS. However, drug resistance is a persistent problem and new inhibitors are needed. An approach toward understanding enzyme chemistry, the basis of drug resistance, and the design of powerful inhibitors is to establish the structure of enzymatic transition states. Enzymatic transition structures can be established by matching experimental kinetic isotope effects (KIEs) with theoretical predictions. However, the HIV-1 protease transition state has not been previously resolved using these methods. We have measured primary (14)C and (15)N KIEs and secondary (3)H and (18)O KIEs for native and multidrug-resistant HIV-1 protease (I84V). We observed (14)C KIEs ((14)V/K) of 1.029 ± 0.003 and 1.025 ± 0.005, (15)N KIEs ((15)V/K) of 0.987 ± 0.004 and 0.989 ± 0.003, (18)O KIEs ((18)V/K) of 0.999 ± 0.003 and 0.993 ± 0.003, and (3)H KIEs ((3)V/K) KIEs of 0.968 ± 0.001 and 0.976 ± 0.001 for the native and I84V enzyme, respectively. The chemical reaction involves nucleophilic water attack at the carbonyl carbon, proton transfer to the amide nitrogen leaving group, and C-N bond cleavage. A transition structure consistent with the KIE values involves proton transfer from the active site Asp-125 (1.32 Å) with partial hydrogen bond formation to the accepting nitrogen (1.20 Å) and partial bond loss from the carbonyl carbon to the amide leaving group (1.52 Å). The KIEs measured for the native and I84V enzyme indicate nearly identical transition states, implying that a true transition-state analogue should be effective against both enzymes.
Collapse
|