1
|
Karimi-Farsijani S, Sharma K, Ugrina M, Kuhn L, Pfeiffer PB, Haupt C, Wiese S, Hegenbart U, Schönland SO, Schwierz N, Schmidt M, Fändrich M. Cryo-EM structure of a lysozyme-derived amyloid fibril from hereditary amyloidosis. Nat Commun 2024; 15:9648. [PMID: 39511224 PMCID: PMC11543692 DOI: 10.1038/s41467-024-54091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 11/01/2024] [Indexed: 11/15/2024] Open
Abstract
Systemic ALys amyloidosis is a debilitating protein misfolding disease that arises from the formation of amyloid fibrils from C-type lysozyme. We here present a 2.8 Å cryo-electron microscopy structure of an amyloid fibril, which was isolated from the abdominal fat tissue of a patient who expressed the D87G variant of human lysozyme. We find that the fibril possesses a stable core that is formed by all 130 residues of the fibril precursor protein. There are four disulfide bonds in each fibril protein that connect the same residues as in the globularly folded protein. As the conformation of lysozyme in the fibril is otherwise fundamentally different from native lysozyme, our data provide a structural rationale for the need of protein unfolding in the development of systemic ALys amyloidosis.
Collapse
Affiliation(s)
| | - Kartikay Sharma
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Marijana Ugrina
- Institute of Physics, University of Augsburg, Augsburg, Germany
| | - Lukas Kuhn
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | | | - Christian Haupt
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University, Ulm, Germany
| | - Ute Hegenbart
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan O Schönland
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Nadine Schwierz
- Institute of Physics, University of Augsburg, Augsburg, Germany
| | | | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| |
Collapse
|
2
|
Majumder S, Srivastava M, Alam P, Saha S, Kumari R, Chand AK, Asthana S, Sen S, Maiti TK. Hotspot site microenvironment in the deubiquitinase OTUB1 drives its stability and aggregation. J Biol Chem 2024; 300:107315. [PMID: 38663827 PMCID: PMC11154711 DOI: 10.1016/j.jbc.2024.107315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 05/30/2024] Open
Abstract
Lewy bodies (LB) are aberrant protein accumulations observed in the brain cells of individuals affected by Parkinson's disease (PD). A comprehensive analysis of LB proteome identified over a hundred proteins, many co-enriched with α-synuclein, a major constituent of LB. Within this context, OTUB1, a deubiquitinase detected in LB, exhibits amyloidogenic properties, yet the mechanisms underlying its aggregation remain elusive. In this study, we identify two critical sites in OTUB1-namely, positions 133 and 173-that significantly impact its amyloid aggregation. Substituting alanine at position 133 and lysine at position 173 enhances both thermodynamic and kinetic stability, effectively preventing amyloid aggregation. Remarkably, lysine at position 173 demonstrates the highest stability without compromising enzymatic activity. The increased stability and inhibition of amyloid aggregation are attributed mainly to the changes in the specific microenvironment at the hotspot. In our exploration of the in-vivo co-occurrence of α-synuclein and OTUB1 in LB, we observed a synergistic modulation of each other's aggregation. Collectively, our study unveils the molecular determinants influencing OTUB1 aggregation, shedding light on the role of specific residues in modulating aggregation kinetics and structural transition. These findings contribute valuable insights into the complex interplay of amino acid properties and protein aggregation, with potential implications for understanding broader aspects of protein folding and aggregation phenomena.
Collapse
Affiliation(s)
- Sushanta Majumder
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Mitul Srivastava
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Parvez Alam
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sandhini Saha
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Raniki Kumari
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Ajay Kumar Chand
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Sobhan Sen
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tushar Kanti Maiti
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
3
|
Fan J, Liang L, Zhou X, Ouyang Z. Accelerating protein aggregation and amyloid fibrillation for rapid inhibitor screening. Chem Sci 2024; 15:6853-6859. [PMID: 38725489 PMCID: PMC11077537 DOI: 10.1039/d4sc00437j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
The accumulation and deposition of amyloid fibrils, also known as amyloidosis, in tissues and organs of patients has been found to be linked to numerous devastating neurodegenerative diseases. The aggregation of proteins to form amyloid fibrils, however, is a slow pathogenic process, and is a major issue for the evaluation of the effectiveness of inhibitors in new drug discovery and screening. Here, we used microdroplet reaction technology to accelerate the amyloid fibrillation process, monitored the process to shed light on the fundamental mechanism of amyloid self-assembly, and demonstrated the value of the technology in the rapid screening of potential inhibitor drugs. Proteins in microdroplets accelerated to form fibrils in milliseconds, enabling an entire cycle of inhibitor screening for Aβ40 within 3 minutes. The technology would be of broad interest to drug discovery and therapeutic design to develop treatments for diseases associated with protein aggregation and fibrillation.
Collapse
Affiliation(s)
- Jingjin Fan
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University Beijing 100084 China
| | - Liwen Liang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University Beijing 100084 China
| | - Xiaoyu Zhou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University Beijing 100084 China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University Beijing 100084 China
| |
Collapse
|
4
|
Masroor A, Zaidi N, Nabi F, Malik S, Zehra S, Arjmand F, Naseem N, Khan RH. Biophysical insight into anti-amyloidogenic nature of novel ionic Co(II)(phen)(H 2O) 4] +[glycinate] - chemotherapeutic drug candidate against human lysozyme aggregation. Biophys Chem 2024; 308:107214. [PMID: 38428228 DOI: 10.1016/j.bpc.2024.107214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/10/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
In the recent past, there has been an ever-increasing interest in the search for metal-based therapeutic drug candidates for protein misfolding disorders (PMDs) particularly neurodegenerative disorders such as Alzheimer's, Parkinson's, Prion's diseases, and amyotrophic lateral sclerosis. Also, different amyloidogenic variants of human lysozyme (HL) are involved in hereditary systemic amyloidosis. Metallo-therapeutic agents are extensively studied as antitumor agents, however, they are relatively unexplored for the treatment of non-neuropathic amyloidoses. In this work, inhibition potential of a novel ionic cobalt(II) therapeutic agent (CoTA) of the formulation [Co(phen)(H2O)4]+[glycinate]- is evaluated against HL fibrillation. Various biophysical techniques viz., dye-binding assays, dynamic light scattering (DLS), differential scanning calorimetry (DSC), electron microscopy, and molecular docking experiments validate the proposed mechanism of inhibition of HL fibrillation by CoTA. The experimental corroborative results of these studies reveal that CoTA can suppress and slow down HL fibrillation at physiological temperature and pH. DLS and 1-anilino-8-naphthalenesulfonate (ANS) assay show that reduced fibrillation in the presence of CoTA is marked by a significant decrease in the size and hydrophobicity of the aggregates. Fluorescence quenching and molecular docking results demonstrate that CoTA binds moderately to the aggregation-prone region of HL (Kb = 6.6 × 104 M-1), thereby, inhibiting HL fibrillation. In addition, far-UV CD and DSC show that binding of CoTA to HL does not cause any change in the stability of HL. More importantly, CoTA attenuates membrane damaging effects of HL aggregates against RBCs. This study identifies inorganic metal complexes as a therapeutic intervention for systemic amyloidosis.
Collapse
Affiliation(s)
- Aiman Masroor
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P 202002, India
| | - Nida Zaidi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P 202002, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P 202002, India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P 202002, India
| | - Siffeen Zehra
- Department of Chemistry, Aligarh Muslim University, Aligarh, U.P 202002, India
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh, U.P 202002, India
| | - Nida Naseem
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P 202002, India.
| |
Collapse
|
5
|
Salmas R, Borysik AJ. Deep Learning Enables Automatic Correction of Experimental HDX-MS Data with Applications in Protein Modeling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:197-204. [PMID: 38262924 PMCID: PMC10853964 DOI: 10.1021/jasms.3c00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
Observed mass shifts associated with deuterium incorporation in hydrogen-deuterium exchange mass spectrometry (HDX-MS) frequently deviate from the initial signals due to back and forward exchange. In typical HDX-MS experiments, the impact of these disparities on data interpretation is generally low because relative and not absolute mass changes are investigated. However, for more advanced data processing including optimization, experimental error correction is imperative for accurate results. Here the potential for automatic HDX-MS data correction using models generated by deep neural networks is demonstrated. A multilayer perceptron (MLP) is used to learn a mapping between uncorrected HDX-MS data and data with mass shifts corrected for back and forward exchange. The model is rigorously tested at various levels including peptide level mass changes, residue level protection factors following optimization, and ability to correctly identify native protein folds using HDX-MS guided protein modeling. AI is shown to demonstrate considerable potential for amending HDX-MS data and improving fidelity across all levels. With access to big data, online tools may eventually be able to predict corrected mass shifts in HDX-MS profiles. This should improve throughput in workflows that require the reporting of real mass changes as well as allow retrospective correction of historic profiles to facilitate new discoveries with these data.
Collapse
Affiliation(s)
| | - Antoni J. Borysik
- Department of Chemistry, King’s
College London, Britannia House, London SE1 1DB, U.K.
| |
Collapse
|
6
|
Moderer T, Puşcalău-Gîrţu I, Haupt C, Baur J, Rodríguez-Alfonso A, Wiese S, Schmidt CQ, Malešević M, Forssmann WG, Ständker L, Fändrich M. Human lysozyme inhibits the fibrillation of serum amyloid a protein from systemic AA amyloidosis. Amyloid 2023; 30:424-433. [PMID: 37431668 DOI: 10.1080/13506129.2023.2232518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Systemic AA amyloidosis is a world-wide occurring protein misfolding disease in humans and animals that arises from the formation of amyloid fibrils from serum amyloid A (SAA) protein and their deposition in multiple organs. OBJECTIVE To identify new agents that prevent fibril formation from SAA protein and to determine their mode of action. MATERIALS AND METHODS We used a cell model for the formation of amyloid deposits from SAA protein to screen a library of peptides and small proteins, which were purified from human hemofiltrate. To clarify the inhibitory mechanism the obtained inhibitors were characterised in cell-free fibril formation assays and other biochemical methods. RESULTS We identified lysozyme as an inhibitor of SAA fibril formation. Lysozyme antagonised fibril formation both in the cell model as well as in cell-free fibril formation assays. The protein binds SAA with a dissociation constant of 16.5 ± 0.6 µM, while the binding site on SAA is formed by segments of positively charged amino acids. CONCLUSION Our data imply that lysozyme acts in a chaperone-like fashion and prevents the aggregation of SAA protein through direct, physical interactions.
Collapse
Affiliation(s)
- Tim Moderer
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | | | - Christian Haupt
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Julian Baur
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Armando Rodríguez-Alfonso
- Core Facility for Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
- Core Unit Mass Spectrometry and Proteomics, Ulm University Medical Center, Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University Medical Center, Ulm, Germany
| | - Christoph Q Schmidt
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany
| | - Miroslav Malešević
- Max Planck Research Unit for Enzymology of Protein Folding, Halle, Germany
| | | | - Ludger Ständker
- Core Facility for Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| |
Collapse
|
7
|
Salmas R, Harris MJ, Borysik AJ. Mapping HDX-MS Data to Protein Conformations through Training Ensemble-Based Models. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1989-1997. [PMID: 37550799 PMCID: PMC10485923 DOI: 10.1021/jasms.3c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
An original approach that adopts machine learning inference to predict protein structural information using hydrogen-deuterium exchange mass spectrometry (HDX-MS) is described. The method exploits an in-house optimization program that increases the resolution of HDX-MS data from peptides to amino acids. A system is trained using Gradient Tree Boosting as a type of machine learning ensemble technique to assign a protein secondary structure. Using limited training data we generate a discriminative model that uses optimized HDX-MS data to predict protein secondary structure with an accuracy of 75%. This research could form the basis for new methods exploiting artificial intelligence to model protein conformations by HDX-MS.
Collapse
Affiliation(s)
| | | | - Antoni J. Borysik
- Department of Chemistry,
Britannia House, King’s College London, London SE1 1DB, U.K.
| |
Collapse
|
8
|
Ali SM, Nabi F, Hisamuddin M, Rizvi I, Ahmad A, Hassan MN, Paul P, Chaari A, Khan RH. Evaluating the inhibitory potential of natural compound luteolin on human lysozyme fibrillation. Int J Biol Macromol 2023; 233:123623. [PMID: 36773857 DOI: 10.1016/j.ijbiomac.2023.123623] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Numerous pathophysiological conditions known as amyloidosis, have been connected to protein misfolding leading to aggregation of proteins. Inhibition of cytotoxic aggregates or disaggregation of the preformed fibrils is thus one of the important strategies in the prevention of such diseases. Growing interest and exploration of identification of small molecules mainly natural compounds can prevent or delay amyloid fibril formation. We examined the mechanism of interaction and inhibition of human lysozyme (HL) aggregates with luteolin (LT). Biophysical and computational approaches have been employed to study the effect of LT on HL amyloid aggregation. Transmission Electronic Microscopy, Thioflavin T fluorescence, UV-vis spectroscopy, and RLS demonstrates that LT inhibit HL fibril formation. ANS fluorescence and hemolytic assay was also employed to examine the effect of the LT on toxicity of HL aggregation. Docking and molecular dynamics results showed that LT interacted with HL via hydrophobic and hydrogen interactions, thus reducing fibrillation levels. These findings highlight the benefit of polyphenols as safe therapy for preventing amyloid related diseases.
Collapse
Affiliation(s)
- Syed Moasfar Ali
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Malik Hisamuddin
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Irum Rizvi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Azeem Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Md Nadir Hassan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Pradipta Paul
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Ali Chaari
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Rizwan H Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India.
| |
Collapse
|
9
|
Conversion of the Native N-Terminal Domain of TDP-43 into a Monomeric Alternative Fold with Lower Aggregation Propensity. Molecules 2022; 27:molecules27134309. [PMID: 35807552 PMCID: PMC9268139 DOI: 10.3390/molecules27134309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 11/17/2022] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) forms intraneuronal cytoplasmic inclusions associated with amyotrophic lateral sclerosis and ubiquitin-positive frontotemporal lobar degeneration. Its N-terminal domain (NTD) can dimerise/oligomerise with the head-to-tail arrangement, which is essential for function but also favours liquid-liquid phase separation and inclusion formation of full-length TDP-43. Using various biophysical approaches, we identified an alternative conformational state of NTD in the presence of Sulfobetaine 3-10 (SB3-10), with higher content of α-helical structure and tryptophan solvent exposure. NMR shows a highly mobile structure, with partially folded regions and β-sheet content decrease, with a concomitant increase of α-helical structure. It is monomeric and reverts to native oligomeric NTD upon SB3-10 dilution. The equilibrium GdnHCl-induced denaturation shows a cooperative folding and a somewhat lower conformational stability. When the aggregation processes were compared with and without pre-incubation with SB3-10, but at the identical final SB3-10 concentration, a slower aggregation was found in the former case, despite the reversible attainment of the native conformation in both cases. This was attributed to protein monomerization and oligomeric seeds disruption by the conditions promoting the alternative conformation. Overall, the results show a high plasticity of TDP-43 NTD and identify strategies to monomerise TDP-43 NTD for methodological and biomedical applications.
Collapse
|
10
|
Dhayalan B, Weiss MA. Diabetes-Associated Mutations in Proinsulin Provide a "Molecular Rheostat" of Nascent Foldability. Curr Diab Rep 2022; 22:85-94. [PMID: 35119630 DOI: 10.1007/s11892-022-01447-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Diabetes mellitus (DM) due to toxic misfolding of proinsulin variants provides a monogenic model of endoplasmic reticulum (ER) stress. The mutant proinsulin syndrome (also designated MIDY; Mutant INS-gene-induced Diabetes of Youth or Maturity-onset diabetes of the young 10 (MODY10)) ordinarily presents as permanent neonatal-onset DM, but specific amino-acid substitutions may also present later in childhood or adolescence. This review highlights structural mechanisms of proinsulin folding as inferred from phenotype-genotype relationships. RECENT FINDINGS MIDY mutations most commonly add or remove a cysteine, leading to a variant polypeptide containing an odd number of thiol groups. Such variants are associated with aberrant intermolecular disulfide pairing, ER stress, and neonatal β-cell dysfunction. Non-cysteine-related (NCR) mutations (occurring in both the B and A domains of proinsulin) define distinct determinants of foldability and vary in severity. The range of ages of onset, therefore, reflects a "molecular rheostat" connecting protein biophysics to quality-control ER checkpoints. Because in most mammalian cell lines even wild-type proinsulin exhibits limited folding efficiency, molecular barriers to folding uncovered by NCR MIDY mutations may pertain to β-cell dysfunction in non-syndromic type 2 DM due to INS-gene overexpression in the face of peripheral insulin resistance. Recent studies of MIDY mutations and related NCR variants, combining molecular and cell-based approaches, suggest that proinsulin has evolved at the edge of non-foldability. Chemical protein synthesis promises to enable comparative studies of "non-foldable" proinsulin variants to define key steps in wild-type biosynthesis. Such studies may create opportunities for novel therapeutic approaches to non-syndromic type 2 DM.
Collapse
Affiliation(s)
- Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
11
|
Ramos J, Laux V, Haertlein M, Forsyth VT, Mossou E, Larsen S, Langkilde AE. The impact of folding modes and deuteration on the atomic resolution structure of hen egg-white lysozyme. Acta Crystallogr D Struct Biol 2021; 77:1579-1590. [PMID: 34866613 PMCID: PMC8647175 DOI: 10.1107/s2059798321010950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/20/2021] [Indexed: 11/10/2022] Open
Abstract
The biological function of a protein is intimately related to its structure and dynamics, which in turn are determined by the way in which it has been folded. In vitro refolding is commonly used for the recovery of recombinant proteins that are expressed in the form of inclusion bodies and is of central interest in terms of the folding pathways that occur in vivo. Here, biophysical data are reported for in vitro-refolded hydrogenated hen egg-white lysozyme, in combination with atomic resolution X-ray diffraction analyses, which allowed detailed comparisons with native hydrogenated and refolded perdeuterated lysozyme. Distinct folding modes are observed for the hydrogenated and perdeuterated refolded variants, which are determined by conformational changes to the backbone structure of the Lys97-Gly104 flexible loop. Surprisingly, the structure of the refolded perdeuterated protein is closer to that of native lysozyme than that of the refolded hydrogenated protein. These structural differences suggest that the observed decreases in thermal stability and enzymatic activity in the refolded perdeuterated and hydrogenated proteins are consequences of the macromolecular deuteration effect and of distinct folding dynamics, respectively. These results are discussed in the context of both in vitro and in vivo folding, as well as of lysozyme amyloidogenesis.
Collapse
Affiliation(s)
- Joao Ramos
- Life Sciences Group, Institute Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Valerie Laux
- Life Sciences Group, Institute Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Michael Haertlein
- Life Sciences Group, Institute Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - V. Trevor Forsyth
- Life Sciences Group, Institute Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
- Faculty of Natural Sciences, Keele University, Newcastle ST5 5BG, United Kingdom
- Faculty of Medicine, Lund University, 221 00 Lund, Sweden
- LINXS Institute for Advanced Neutron and X-ray Science, Scheelvagen 19, 223 70 Lund, Sweden
| | - Estelle Mossou
- Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, 38000 Grenoble, France
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Sine Larsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Annette E. Langkilde
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
12
|
Bhattacharjee R, Udgaonkar JB. Structural Characterization of the Cooperativity of Unfolding of a Heterodimeric Protein using Hydrogen Exchange-Mass Spectrometry. J Mol Biol 2021; 433:167268. [PMID: 34563547 DOI: 10.1016/j.jmb.2021.167268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/03/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Little is known about how the sequence of structural changes in one chain of a heterodimeric protein is coupled to those in the other chain during protein folding and unfolding reactions, and whether individual secondary structural changes in the two chains occur in one or many coordinated steps. Here, the unfolding mechanism of a small heterodimeric protein, double chain monellin, has been characterized using hydrogen exchange-mass spectrometry. Transient structure opening, which enables HX, was found to be describable by a five state N ↔ I1 ↔ I2 ↔ I3 ↔ U mechanism. Structural changes occur gradually in the first three steps, and cooperatively in the last step. β strands 2, 4 and 5, as well as the α-helix undergo transient unfolding during all three non-cooperative steps, while β1 and the two loops on both sides of the helix undergo transient unfolding during the first two steps. In the absence of GdnHCl, only β3 in chain A of the protein unfolds during the last cooperative step, while in the presence of 1 M GdnHCl, not only β3, but also β2 in chain B unfolds cooperatively. Hence, the extent of cooperative structural change and size of the cooperative unfolding unit increase when the protein is destabilized by denaturant. The naturally evolved two-chain variant of monellin folds and unfolds in a more cooperative manner than does a single chain variant created artificially, suggesting that increasing folding cooperativity, even at the cost of decreasing stability, may be a driving force in the evolution of proteins.
Collapse
Affiliation(s)
- Rupam Bhattacharjee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India; Indian Institute of Science Education and Research, Pune, India. https://twitter.com/Rupam_B01
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India; Indian Institute of Science Education and Research, Pune, India.
| |
Collapse
|
13
|
Palaniappan C, Narayanan RC, Sekar K. Mutation-Dependent Refolding of Prion Protein Unveils Amyloidogenic-Related Structural Ramifications: Insights from Molecular Dynamics Simulations. ACS Chem Neurosci 2021; 12:2810-2819. [PMID: 34296847 DOI: 10.1021/acschemneuro.1c00142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The main focus of prion structural biology studies is to understand the molecular basis of prion diseases caused by misfolding, and aggregation of the cellular prion protein PrPC remains elusive. Several genetic mutations are linked with human prion diseases and driven by the conformational conversion of PrPC to the toxic PrPSc. The main goal of this study is to gain a better insight into the molecular effect of disease-associated V210I mutation on this process by molecular dynamics simulations. This inherited mutation elicited copious structural changes in the β1-α1-β2 subdomain, including an unfolding of a helix α1 and the elongation of the β-sheet. These unusual structural changes likely appeared to detach the β1-α1-β2 subdomain from the α2-α3 core, an early misfolding event necessary for the conformational conversion of PrPC to PrPSc. Ultimately, the unfolded α1 and its prior β1-α1 loop further engaged with unrestrained conformational dynamics and were widely considered as amyloidogenic-inducing traits. Furthermore, the resulting folding intermediate possesses a highly unstable β1-α1-β2 subdomain, thereby enhancing the aggregation of misfolded PrPC through intermolecular interactions between frequently refolding regions. Briefly, these remarkable changes as seen in the mutant β1-α1-β2 subdomain are consistent with previous experimental results and thus provide a molecular basis of PrPC misfolding associated with the conformational conversion of PrPC to PrPSc.
Collapse
Affiliation(s)
| | - Rahul C. Narayanan
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560 012, India
| | - Kanagaraj Sekar
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
14
|
Abstract
Protein aggregation is a widespread phenomenon with important implications in many scientific areas. Although amyloid formation is typically considered as detrimental, functional amyloids that perform physiological roles have been identified in all kingdoms of life. Despite their functional and pathological relevance, the structural details of the majority of molecular species involved in the amyloidogenic process remains elusive. Here, we explore the application of AlphaFold, a highly accurate protein structure predictor, in the field of protein aggregation. While we envision a straightforward application of AlphaFold in assisting the design of globular proteins with improved solubility for biomedical and industrial purposes, the use of this algorithm for predicting the structure of aggregated species seems far from trivial. First, in amyloid diseases, the presence of multiple amyloid polymorphs and the heterogeneity of aggregation intermediates challenges the "one sequence, one structure" paradigm, inherent to sequence-based predictions. Second, aberrant aggregation is not the subject of positive selective pressure, precluding the use of evolutionary-based approaches, which are the core of the AlphaFold pipeline. Instead, amyloid polymorphism seems to be constrained by the need for a defined structure-activity relationship in functional amyloids. They may thus provide a starting point for the application of AlphaFold in the amyloid landscape.
Collapse
|
15
|
Abstract
Quantification of hydrogen deuterium exchange (HDX) kinetics can provide information on the stability of individual amino acids in proteins by finding the degree to which the local backbone environment corresponds to that of a random coil. When characterized by mass spectrometry, extraction of HDX kinetics is not possible because different residue exchange rates become merged depending on the peptides that are formed during proteolytic digestion. We have recently developed an advanced programming tool called HDXmodeller, which enables the exchange rates of individual amino acids to be understood by optimization of low-resolution HDX-mass spectrometry (MS) data. HDXmodeller is also uniquely able to appraise each optimization and quantify the accuracy of modeled exchange rates ab initio using a novel autovalidation method based on a covariance matrix. Here, we address the noise-handling capabilities of HDXmodeller and demonstrate the effectiveness of the algorithm on self-inconsistent datasets. Reference intervals for experimental HDX-MS data are also derived, and this information is presented in an updated online workflow for HDXmodeller, allowing users to evaluate the consistency of their data. The development of a modified version of HDXmodeller is also discussed with enhanced noise-handling capability brought about through loss function optimization. Changes in optimizer accuracy with different loss functions are also demonstrated along with the effectiveness of HDXmodeller to select the most effective optimizer for different data using currently embedded autovalidation criteria.
Collapse
|
16
|
Zhang C, Codina N, Tang J, Yu H, Chakroun N, Kozielski F, Dalby PA. Comparison of the pH- and thermally-induced fluctuations of a therapeutic antibody Fab fragment by molecular dynamics simulation. Comput Struct Biotechnol J 2021; 19:2726-2741. [PMID: 34093988 PMCID: PMC8131956 DOI: 10.1016/j.csbj.2021.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/15/2021] [Accepted: 05/01/2021] [Indexed: 11/27/2022] Open
Abstract
Successful development of protein therapeutics depends critically on achieving stability under a range of conditions. A deeper understanding of the drivers of instability across different stress conditions, will enable the engineering of more robust protein scaffolds. We compared the impacts of low pH and high temperature stresses on the structure of a humanized antibody fragment (Fab) A33, using atomistic molecular dynamics simulations, using a recent 2.5 Å crystal structure. This revealed that low-pH induced the loss of native contacts in the domain CL. By contrast, thermal stress led to 5-7% loss of native contacts in all four domains, and simultaneous loss of >30% of native contacts in the VL-VH and CL-CH interfaces. This revealed divergent destabilising pathways under the two different stresses. The underlying cause of instability was probed using FoldX and Rosetta mutation analysis, and packing density calculations. These agreed that mutations in the CL domain, and CL-CH1 interface have the greatest potential for stabilisation of Fab A33. Several key salt bridge losses underpinned the conformational change in CL at low pH, whereas at high temperature, salt bridges became more dynamic, thus contributing to an overall destabilization. Lastly, the unfolding events at the two stress conditions exposed different predicted aggregation-prone regions (APR) to solvent, which would potentially lead to different aggregation mechanisms. Overall, our results identified the early stages of unfolding and stability-limiting regions of Fab A33, and the VH and CL domains as interesting future targets for engineering stability to both pH- and thermal-stresses simultaneously.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Biochemical Engineering, University College London, Gordon Street, London WC1E 7JE, United Kingdom
| | - Nuria Codina
- Department of Biochemical Engineering, University College London, Gordon Street, London WC1E 7JE, United Kingdom
| | - Jiazhi Tang
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Haoran Yu
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Nesrine Chakroun
- Department of Biochemical Engineering, University College London, Gordon Street, London WC1E 7JE, United Kingdom
| | - Frank Kozielski
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Paul A Dalby
- Department of Biochemical Engineering, University College London, Gordon Street, London WC1E 7JE, United Kingdom
| |
Collapse
|
17
|
Divergence Entropy-Based Evaluation of Hydrophobic Core in Aggressive and Resistant Forms of Transthyretin. ENTROPY 2021; 23:e23040458. [PMID: 33924717 PMCID: PMC8070611 DOI: 10.3390/e23040458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/01/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022]
Abstract
The two forms of transthyretin differing slightly in the tertiary structure, despite the presence of five mutations, show radically different properties in terms of susceptibility to the amyloid transformation process. These two forms of transthyretin are the object of analysis. The search for the sources of these differences was carried out by means of a comparative analysis of the structure of these molecules in their native and early intermediate stage forms in the folding process. The criterion for assessing the degree of similarity and differences is the status of the hydrophobic core. The comparison of the level of arrangement of the hydrophobic core and its initial stages is possible thanks to the application of divergence entropy for the early intermediate stage and for the final forms. It was shown that the minimal differences observed in the structure of the hydrophobic core of the forms available in PDB, turned out to be significantly different in the early stage (ES) structure in folding process. The determined values of divergence entropy for both ES forms indicate the presence of the seed of hydrophobic core only in the form resistant to amyloid transformation. In the form of aggressively undergoing amyloid transformation, the structure lacking such a seed is revealed, being a stretched one with a high content of β-type structure. In the discussed case, the active presence of water in the structural transformation of proteins expressed in the fuzzy oil drop model (FOD) is of decisive importance for the generation of the final protein structure. It has been shown that the resistant form tends to generate a centric hydrophobic core with the possibility of creating a globular structure, i.e., a spherical micelle-like form. The aggressively transforming form reveals in the structure of its early intermediate, a tendency to form the ribbon-like micelle as observed in amyloid.
Collapse
|
18
|
Vettore N, Moray J, Brans A, Herman R, Charlier P, Kumita JR, Kerff F, Dobson CM, Dumoulin M. Characterisation of the structural, dynamic and aggregation properties of the W64R amyloidogenic variant of human lysozyme. Biophys Chem 2021; 271:106563. [PMID: 33640796 DOI: 10.1016/j.bpc.2021.106563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
Abstract
The accumulation in vital organs of amyloid fibrils made of mutational variants of lysozyme (HuL) is associated with a human systemic amyloid disease. The detailed comparison of the in vitro properties of the I56T and D67H amyloidogenic variants to those of the T70N non-amyloidogenic variant and the wild-type (WT) protein suggested that the deposition of large amounts of aggregated disease-related lysozyme variants is initiated by the formation of transient intermediate species. The ability to populate such intermediates is essentially due to the destabilisation of the protein and the loss of the global structural cooperativity under physiologically relevant conditions. Here, we report the characterisation of a third naturally occurring amyloidogenic lysozyme variant, W64R, in comparison with the I56T and WT proteins. The X-ray crystal structure of the W64R variant at 1.15 Å resolution is very similar to that of the WT protein; a few interactions within the β-domain and at the interface between the α- and β-domains differ, however, from those in the WT protein. Consequently, the W64R mutation destabilizes the protein to an extent that is similar to that observed for the I56T and D67H mutations. The ΔG°NU(H2O) is reduced by 24 kJ·mol-1 and the Tm is about 12 °C lower than that of the WT protein. Under native conditions, the W64R and I56T proteins are readily digested by proteinase K, while the WT protein remains intact. These results suggest that the two variant proteins transiently populate similar partially unfolded states in which proteinase K cleavage sites are accessible to the protease. Moreover, the in vitro aggregation properties of the W64R protein are similar to those of the I56T variant. Altogether, these results indicate that the properties of the W64R protein are astonishingly similar to those of the I56T variant. They further corroborate the idea that HuL variants associated with the disease are those whose stability and global structural cooperativity are sufficiently reduced to allow the formation of aggregation prone partially folded intermediates under physiological conditions.
Collapse
Affiliation(s)
- Nicola Vettore
- Centre for Protein Engineering, InBioS, Department of Life Sciences, University of Liège, (Sart-Tilman) 4000 Liège, Belgium
| | - Joël Moray
- Centre for Protein Engineering, InBioS, Department of Life Sciences, University of Liège, (Sart-Tilman) 4000 Liège, Belgium
| | - Alain Brans
- Centre for Protein Engineering, InBioS, Department of Life Sciences, University of Liège, (Sart-Tilman) 4000 Liège, Belgium
| | - Raphaël Herman
- Centre for Protein Engineering, InBioS, Department of Life Sciences, University of Liège, (Sart-Tilman) 4000 Liège, Belgium
| | - Paulette Charlier
- Centre for Protein Engineering, InBioS, Department of Life Sciences, University of Liège, (Sart-Tilman) 4000 Liège, Belgium
| | - Janet R Kumita
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Frédéric Kerff
- Centre for Protein Engineering, InBioS, Department of Life Sciences, University of Liège, (Sart-Tilman) 4000 Liège, Belgium
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Mireille Dumoulin
- Centre for Protein Engineering, InBioS, Department of Life Sciences, University of Liège, (Sart-Tilman) 4000 Liège, Belgium.
| |
Collapse
|
19
|
Jin L, Gao W, Liu C, Zhang N, Mukherjee S, Zhang R, Dong H, Bhunia A, Bednarikova Z, Gazova Z, Liu M, Han J, Siebert HC. Investigating the inhibitory effects of entacapone on amyloid fibril formation of human lysozyme. Int J Biol Macromol 2020; 161:1393-1404. [DOI: 10.1016/j.ijbiomac.2020.07.296] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/01/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022]
|
20
|
Monhemi H, Tabaee SS. The effects of mutation and modification on the structure and stability of human lysozyme: A molecular link between carbamylation and atherosclerosis. J Mol Graph Model 2020; 100:107703. [PMID: 32799051 DOI: 10.1016/j.jmgm.2020.107703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/01/2020] [Accepted: 07/18/2020] [Indexed: 01/09/2023]
Abstract
Amino acid mutations in some proteins such as lysozyme lead to genetically disorder variants and adverse pathogenic consequences. Recently, amino acid modifications were known as a risk factor in many related diseases such as uremia and atherosclerosis, showing the importance of these surface-structure changes. Although the structural consequences of the hereditary proteins have been examined extensively, such effects for the protein modifications are known to a lesser extent. One drawback in the examination of protein modifications is hardness in experimental detection of modifications by techniques such as NMR and crystallography. Molecular modeling and simulation can help to understand such phenomena at the molecular levels. It is more rational that the effects of both mutation and modification can be compared in a single protein model. Here, molecular dynamics simulation is used to compare the effects of a disease-related carbamylation modification and an amyloidogenic mutation (D67H) in human lysozyme as a model protein. The results show that the carbamylation adversely effects on the tertiary structure, leading to the similar unfolding pathway to the hereditary amyloidogenic form. The carbamylation leads to the instability of the overall protein conformation, especially on the β-domain, which is a characteristic of hereditary amyloidosis in human lysozymes. The aggregation behaviors of both modified and mutant lysozyme were examined by molecular docking calculations. The results showed that the partially unfolded lysozyme might form tight protein aggregates upon carbamylation similar to the amyloidogenic variant. Both single and all-residues carbamylations impose serious conformational changes to the tertiary structure of lysozyme. It was obtained that carbamylation of lysozyme strongly effects on the stability of N-terminal β-sheet, which can produce a highly unstable conformation. The results of this study not only show the adverse structural consequences of a disease-associated post-translational modification, but it also may be very helpful to understand the molecular basis for many carbamylation-related diseases such as atherosclerosis in ESRD patients. The results show that non-native post-translational modifications may be as structurally important as hereditary mutations.
Collapse
Affiliation(s)
- Hassan Monhemi
- Department of Chemistry, University of Neyshabur, Neyshabur, Iran.
| | - Seyedeh Samaneh Tabaee
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran; Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
21
|
The Structure of Amyloid Versus the Structure of Globular Proteins. Int J Mol Sci 2020; 21:ijms21134683. [PMID: 32630137 PMCID: PMC7370054 DOI: 10.3390/ijms21134683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/21/2020] [Accepted: 06/27/2020] [Indexed: 12/19/2022] Open
Abstract
The issue of changing the structure of globular proteins into an amyloid form is in the focus of researchers' attention. Numerous experimental studies are carried out, and mathematical models to define the essence of amyloid transformation are sought. The present work focuses on the issue of the hydrophobic core structure in amyloids. The form of ordering the hydrophobic core in globular proteins is described by a 3D Gaussian distribution analog to the distribution of hydrophobicity in a spherical micelle. Amyloid fibril is a ribbon-like micelle made up of numerous individual chains, each representing a flat structure. The distribution of hydrophobicity within a single chain included in the fibril describes the 2D Gaussian distribution. Such a description expresses the location of polar residues on a circle with a center with a high level of hydrophobicity. The presence of this type of order in the amyloid forms available in Preotin Data Bank (PDB) (both in proto- and superfibrils) is demonstrated in the present work. In this system, it can be assumed that the amyloid transformation is a chain transition from 3D Gauss ordering to 2D Gauss ordering. This means changing the globular structure to a ribbon-like structure. This observation can provide a simple mathematical model for simulating the amyloid transformation of proteins.
Collapse
|
22
|
Robinson CV. Christopher Dobson, 1949-2019: Mentor, Friend, Scientist Extraordinaire. Annu Rev Biochem 2020; 89:1-19. [PMID: 32343910 DOI: 10.1146/annurev-biochem-011520-105226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is impossible to do justice in one review article to a researcher of the stature of Christopher Dobson. His career spanned almost five decades, resulting in more than 870 publications and a legacy that will continue to influence the lives of many for decades to come. In this review, I have attempted to capture Chris's major contributions: his early work, dedicated to understanding protein-folding mechanisms; his collaborative work with physicists to understand the process of protein aggregation; and finally, his later career in which he developed strategies to prevent misfolding. However, it is not only this body of work but also the man himself who inspired an entire generation of scientists through his patience, ability to mentor, and innate generosity. These qualities remain a hallmark of the way in which he conducted his research-research that will leave a lasting imprint on science.
Collapse
Affiliation(s)
- Carol V Robinson
- Department of Physical and Theoretical Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| |
Collapse
|
23
|
Sakaguchi T, Wada T, Kasai T, Shiratori T, Minami Y, Shimada Y, Otsuka Y, Komatsu K, Goto S. Effects of ionic and reductive atmosphere on the conformational rearrangement in hen egg white lysozyme prior to amyloid formation. Colloids Surf B Biointerfaces 2020; 190:110845. [DOI: 10.1016/j.colsurfb.2020.110845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/08/2020] [Accepted: 02/04/2020] [Indexed: 12/20/2022]
|
24
|
Unravelling the inhibitory and cytoprotective potential of diuretics towards amyloid fibrillation. Int J Biol Macromol 2020; 150:1258-1271. [DOI: 10.1016/j.ijbiomac.2019.10.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/26/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022]
|
25
|
Gancar M, Ho K, Mohid SA, Thai NQ, Bednarikova Z, Nguyen HL, Bhunia A, Nepovimova E, Li MS, Gazova Z. 7-Methoxytacrine and 2-Aminobenzothiazole Heterodimers: Structure-Mechanism Relationship of Amyloid Inhibitors Based on Rational Design. ACS Chem Neurosci 2020; 11:715-729. [PMID: 32011847 DOI: 10.1021/acschemneuro.9b00419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The formation and accumulation of amyloid aggregates are the phenomena that accompany amyloidoses, which are currently untreatable and include Alzheimer's and Parkinson's diseases, diabetes mellitus, non-neuropathic lysozyme systemic amyloidosis, and others. One of the very promising therapeutic approaches seems to be an inhibition of amyloid formation and/or clearance of amyloid aggregates. Small molecules have a great potential to interfere with amyloid fibrillation of peptides and polypeptides, which can be improved by connection of cyclic structures into single multicyclic molecules and their dimerization. In our study, we focused on heterodimers consisting of 7-methoxytacrine (7-MEOTA) and 2-aminobenzothiazole (BTZ) parent molecules connected by an aliphatic linker. Using in vitro and in silico methods, we investigated the ability of studied compounds to inhibit the amyloid aggregation of hen egg white lysozyme. Heterodimerization led to significant improvement of inhibitory activity compared to that of the parent molecules. The efficiency of the heterodimers varied; the most effective inhibitor contained the longest linker, eight carbons long. We suggest that binding of a heterodimer to a lysozyme blocks the interaction between the β-domain and C-helix region essential for the formation of amyloid cross-β structure. Elongation of the linker ultimately enhances the compound's ability to prevent this interaction by allowing the BTZ part of the heterodimer to bind more effectively, increasing the compound's binding affinity, and also by greater steric obstruction. This study represents an important contribution to the recent rational design of potential lead small molecules with anti-amyloid properties, and the heterodimers studied are prospective candidates for the treatment of systemic lysozyme amyloidosis and other amyloid-related diseases.
Collapse
Affiliation(s)
- Miroslav Gancar
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
| | - Kiet Ho
- Life Science Lab, Institute of Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
| | - Sk. Abdul Mohid
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, Ghose Bagan, CIT Road Scheme VIIM, West Bengal 700054, Kolkata, India
| | - Nguyen Quoc Thai
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City 700000, Dong Thap, Vietnam
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
| | - H. Linh Nguyen
- Life Science Lab, Institute of Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, Ghose Bagan, CIT Road Scheme VIIM, West Bengal 700054, Kolkata, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
| |
Collapse
|
26
|
Ratha BN, Kar RK, Bednarikova Z, Gazova Z, Kotler SA, Raha S, De S, Maiti NC, Bhunia A. Molecular Details of a Salt Bridge and Its Role in Insulin Fibrillation by NMR and Raman Spectroscopic Analysis. J Phys Chem B 2020; 124:1125-1136. [PMID: 31958230 DOI: 10.1021/acs.jpcb.9b10349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insulin, a simple polypeptide hormone with huge biological importance, has long been known to self-assemble in vitro and form amyloid-like fibrillar aggregates. Utilizing high-resolution NMR, Raman spectroscopy, and computational analysis, we demonstrate that the fluctuation of the carboxyl terminal (C-ter) residues of the insulin B-chain plays a key role in the growth phase of insulin aggregation. By comparing the insulin sourced from bovine, human, and the modified glargine (GI), we observed reduced aggregation propensity in the GI variant, resulting from two additional Arg residues at its C-ter. NMR analysis showed atomic contacts and residue-specific interactions, particularly the salt bridge and H-bond formed among the C-ter residues Arg31B, Lys29B, and Glu4A. These inter-residue interactions were reflected in strong nuclear Overhauser effects among Arg31BδH-Glu4AδH and Lys29BδHs-Glu4AδH in GI, as well as the associated downfield chemical shift of several A-chain amino terminal (N-ter) residues. The two additional Arg residues of GI, Arg31B and Arg32B, enhanced the stability of the GI native structure by strengthening the Arg31B, Lys29B, and Glu4A salt bridge, thus reducing extensive thermal distortion and fluctuation of the terminal residues. The high stability of the salt bridge retards tertiary collapse, a crucial biochemical event for oligomerization and subsequent fibril formation. Circular dichroism and Raman spectroscopic measurement also suggest slow structural distortion in the early phase of the aggregation of GI because of the restricted mobility of the C-ter residues as explained by NMR. In addition, the structural and dynamic parameters derived from molecular dynamics simulations of insulin variants highlight the role of residue-specific contacts in aggregation and amyloid-like fibril formation.
Collapse
Affiliation(s)
- Bhisma N Ratha
- Department of Biophysics , Bose Institute , P-1/12 CIT Scheme VII (M) , Kolkata 700054 , India
| | - Rajiv K Kar
- Department of Biophysics , Bose Institute , P-1/12 CIT Scheme VII (M) , Kolkata 700054 , India
| | - Zuzana Bednarikova
- Department of Biophysics , Institute of Experimental Physics Slovak Academy of Sciences , Kosice 040 01 , Slovakia
| | - Zuzana Gazova
- Department of Biophysics , Institute of Experimental Physics Slovak Academy of Sciences , Kosice 040 01 , Slovakia
| | - Samuel A Kotler
- National Center for Advancing Translational Sciences , National Institutes of Health , Rockville , Maryland 20850 , United States
| | - Sreyan Raha
- Department of Physics , Bose Institute , 93/1 APC Road , Kolkata 700009 , India
| | - Soumya De
- School of Bioscience , IIT Kharagpur , Kharagpur 721302 , India
| | - Nakul C Maiti
- Division Structural Biology and Bioinformatics , CSIR-Indian Institute of Chemical Biology , Kolkata 700032 , India
| | - Anirban Bhunia
- Department of Biophysics , Bose Institute , P-1/12 CIT Scheme VII (M) , Kolkata 700054 , India
| |
Collapse
|
27
|
Dumoulin M. Reflections on professor Sir Christopher M. Dobson (1949-2019). Biophys Rev 2020; 12:13-18. [PMID: 31981089 DOI: 10.1007/s12551-020-00612-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2020] [Indexed: 12/11/2022] Open
Abstract
I have been invited to summarize my career with an emphasis on the time I spent in the laboratory of Prof Christopher M. Dobson, who sadly passed away on September 8th 2019, and to describe his role as a mentor. I accepted this slightly unusual request as it constitutes a unique way for me to express my deep gratitude and admiration for Chris.
Collapse
Affiliation(s)
- Mireille Dumoulin
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBios, Departement of Life Sciences, University of Liege, Liege, Belgium.
| |
Collapse
|
28
|
Prabhu MPT, Sarkar N. Quantum Dots as Promising Theranostic Tools Against Amyloidosis: A Review. Protein Pept Lett 2019; 26:555-563. [PMID: 30543158 DOI: 10.2174/0929866526666181212113855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 01/01/2023]
Abstract
Amyloids are highly ordered beta sheet rich stable protein aggregates, which have been found to play a significant role in the onset of several degenerative diseases such as Alzheimer's disease, Huntington's disease, Parkinson's disease, Type II diabetes mellitus and so on. Aggregation of proteins leading to amyloid fibril formation via intermediate(s), is thought to be a nucleated condensation polymerization process associated with many pathological conditions. There has been extensive research to identify inhibitors of these disease oriented aggregation processes. In recent times, quantum dots, with their unique physico-chemical properties have grabbed the attention of scientific community due to its applications in medical sciences. Quantum dots are nano-particles usually made of semiconductor materials which emit fluorescence upon radiation. The wavelength of fluorescence emission varies with changes in size of quantum dots. Several studies have reported significant inhibitory effects of these quantum dots towards amyloidogenesis, thereby presenting themselves as promising candidates against amyloidosis. Further, studies have also revealed amyloid detection capacity of quantum dots with sensitivity and specificity better than conventional probes. In the current review, we will discuss the various effects of quantum dots on protein aggregation pathways, their mechanism of actions and their potentials as effective therapeutics against amyloidosis.
Collapse
Affiliation(s)
- M P Taraka Prabhu
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| |
Collapse
|
29
|
Protein misfolding, aggregation and mechanism of amyloid cytotoxicity: An overview and therapeutic strategies to inhibit aggregation. Int J Biol Macromol 2019; 134:1022-1037. [PMID: 31128177 DOI: 10.1016/j.ijbiomac.2019.05.109] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/18/2019] [Accepted: 05/18/2019] [Indexed: 12/18/2022]
Abstract
Protein and peptides are converted from their soluble forms into highly ordered fibrillar aggregates under various conditions inside the cell. Such transitions confer diverse neurodegenerative diseases including Alzheimer's disease, Huntington's disease Prion's disease, Parkinson's disease, polyQ and share abnormal folding of potentially cytotoxic protein species linked with degeneration and death of precise neuronal populations. Presently, major advances are made to understand and get detailed insight into the structural basis and mechanism of amyloid formation, cytotoxicity and therapeutic approaches to combat them. Here we highlight classifies and summarizes the detailed overview of protein misfolding and aggregation at their molecular level including the factors that promote protein aggregation under in vivo and in vitro conditions. In addition, we describe the recent technologies that aid the characterization of amyloid aggregates along with several models that might be responsible for amyloid induced cytotoxicity to cells. Overview on the inhibition of amyloidosis by targeting different small molecules (both natural and synthetic origin) have been also discussed, that provides important approaches to identify novel targets and develop specific therapeutic strategies to combat protein aggregation related neurodegenerative diseases.
Collapse
|
30
|
Ruggeri FS, Šneideris T, Vendruscolo M, Knowles TPJ. Atomic force microscopy for single molecule characterisation of protein aggregation. Arch Biochem Biophys 2019; 664:134-148. [PMID: 30742801 PMCID: PMC6420408 DOI: 10.1016/j.abb.2019.02.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 12/22/2022]
Abstract
The development of atomic force microscopy (AFM) has opened up a wide range of novel opportunities in nanoscience and new modalities of observation in complex biological systems. AFM imaging has been widely employed to resolve the complex and heterogeneous conformational states involved in protein aggregation at the single molecule scale and shed light onto the molecular basis of a variety of human pathologies, including neurodegenerative disorders. The study of individual macromolecules at nanoscale, however, remains challenging, especially when fully quantitative information is required. In this review, we first discuss the principles of AFM with a special emphasis on the fundamental factors defining its sensitivity and accuracy. We then review the fundamental parameters and approaches to work at the limit of AFM resolution in order to perform single molecule statistical analysis of biomolecules and nanoscale protein aggregates. This single molecule statistical approach has proved to be powerful to unravel the molecular and hierarchical assembly of the misfolded species present transiently during protein aggregation, to visualise their dynamics at the nanoscale, as well to study the structural properties of amyloid-inspired functional nanomaterials.
Collapse
Affiliation(s)
- Francesco Simone Ruggeri
- Centre for Misfolding Disease, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom.
| | - Tomas Šneideris
- Centre for Misfolding Disease, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom; Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Michele Vendruscolo
- Centre for Misfolding Disease, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| | - Tuomas P J Knowles
- Centre for Misfolding Disease, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom; Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, United Kingdom.
| |
Collapse
|
31
|
An Expanded Conformation of an Antibody Fab Region by X-Ray Scattering, Molecular Dynamics, and smFRET Identifies an Aggregation Mechanism. J Mol Biol 2019; 431:1409-1425. [PMID: 30776431 DOI: 10.1016/j.jmb.2019.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 11/20/2022]
Abstract
Protein aggregation is the underlying cause of many diseases, and also limits the usefulness of many natural and engineered proteins in biotechnology. Better mechanistic understanding and characterization of aggregation-prone states is needed to guide protein engineering, formulation, and drug-targeting strategies that prevent aggregation. While several final aggregated states-notably amyloids-have been characterized structurally, very little is known about the native structural conformers that initiate aggregation. We used a novel combination of small-angle x-ray scattering (SAXS), atomistic molecular dynamic simulations, single-molecule Förster resonance energy transfer, and aggregation-prone region predictions, to characterize structural changes in a native humanized Fab A33 antibody fragment, that correlated with the experimental aggregation kinetics. SAXS revealed increases in the native state radius of gyration, Rg, of 2.2% to 4.1%, at pH 5.5 and below, concomitant with accelerated aggregation. In a cutting-edge approach, we fitted the SAXS data to full MD simulations from the same conditions and located the conformational changes in the native state to the constant domain of the light chain (CL). This CL displacement was independently confirmed using single-molecule Förster resonance energy transfer measurements with two dual-labeled Fabs. These conformational changes were also found to increase the solvent exposure of a predicted APR, suggesting a likely mechanism through which they promote aggregation. Our findings provide a means by which aggregation-prone conformational states can be readily determined experimentally, and thus potentially used to guide protein engineering, or ligand binding strategies, with the aim of stabilizing the protein against aggregation.
Collapse
|
32
|
Raskar T, Koh CY, Niebling S, Kini RM, Hosur MV. X-ray crystallographic analysis of time-dependent binding of guanidine hydrochloride to HEWL: First steps during protein unfolding. Int J Biol Macromol 2018; 122:903-913. [PMID: 30412756 DOI: 10.1016/j.ijbiomac.2018.11.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/24/2018] [Accepted: 11/05/2018] [Indexed: 01/02/2023]
Abstract
Time-dependent binding of guanidine hydrochloride (GuHCl) to hen egg-white lysozyme (HEWL), and effects of this binding on the protein structure have been investigated by solving X-ray structures of crystalline complexes. The complexes have been prepared by soaking, for different periods of time, native lysozyme crystals in solutions containing 2.5M GuHCl. In the refined structures, the number of water molecules in the protein's first solvent shell has progressively decreased from 152 to 115, showing protein's preference for guanidinium over water. Guanidinium ions preferentially hydrogen bond with the backbone carbonyl oxygen atoms. In their van der Waals interactions, they do not show any preference for apolar residues. Guanidinium ions have replaced water molecules that form cages around exposed hydrophobic residues. Guanidinium binding has decreased the average length of water-water hydrogen bond by 0.1Å. The hydrogen bonds between main chain atoms have been weakened by GuHCl, and this may be the reason for increased potency of GuHCl compared to urea. Guanidinium binding destabilizes the β-domain by causing loss of hydrogen bonds involving Asn 59 side chain. Interestingly, this loss is almost identical to that observed in structures of amyloidogenic variants of human lysozyme. Compounds preventing this loss could be anti-amyloidogenic.
Collapse
Affiliation(s)
- Tushar Raskar
- Ultrafast Molecular Dynamics Group, Centre for Hybrid Nanostructures (ChyN), University of Hamburg, Germany
| | - Cho Yeow Koh
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Stephan Niebling
- Ultrafast Molecular Dynamics Group, Centre for Hybrid Nanostructures (ChyN), University of Hamburg, Germany
| | - R M Kini
- Department of Biological Sciences, National University of Singapore, Singapore
| | - M V Hosur
- National Institute of Advanced Studies, IISc campus, Bengaluru 560012, India.
| |
Collapse
|
33
|
Peng X, Cashman NR, Plotkin SS. Prediction of Misfolding-Specific Epitopes in SOD1 Using Collective Coordinates. J Phys Chem B 2018; 122:11662-11676. [PMID: 30351123 DOI: 10.1021/acs.jpcb.8b07680] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We introduce a global, collective coordinate bias into molecular dynamics simulations that partially unfolds a protein, in order to predict misfolding-specific epitopes based on the regions that locally unfold. Several metrics are used to measure local disorder, including solvent exposed surface area (SASA), native contacts ( Q), and root mean squared fluctuations (RMSF). The method is applied to Cu, Zn superoxide dismutase (SOD1). For this protein, the processes of monomerization, metal loss, and conformational unfolding due to microenvironmental stresses are all separately taken into account. Several misfolding-specific epitopes are predicted, and consensus epitopes are calculated. These predicted epitopes are consistent with the "lower-resolution" peptide sequences used to raise disease-specific antibodies, but the epitopes derived from collective coordinates contain shorter, more refined sequences for the key residues constituting the epitope.
Collapse
Affiliation(s)
- Xubiao Peng
- Department of Physics and Astronomy , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada.,Center for Quantum Technology Research, School of Physics , Beijing Institute of Technology , Haidian, Beijing 100081 , China
| | - Neil R Cashman
- Brain Research Centre , University of British Columbia , Vancouver , British Columbia V6T 2B5 , Canada
| | - Steven S Plotkin
- Department of Physics and Astronomy, and Genome Sciences and Technology Program , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| |
Collapse
|
34
|
Siefker J, Biehl R, Kruteva M, Feoktystov A, Coppens MO. Confinement Facilitated Protein Stabilization As Investigated by Small-Angle Neutron Scattering. J Am Chem Soc 2018; 140:12720-12723. [PMID: 30260637 PMCID: PMC6187370 DOI: 10.1021/jacs.8b08454] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
While
mesoporous silicas have been shown to be a compelling candidate
for drug delivery and the implementation of biotechnological applications
requiring protein confinement and immobilization, the understanding
of protein behavior upon physical adsorption into silica pores is
limited. Many indirect methods are available to assess general adsorbed
protein stability, such as Fourier-transform infrared spectroscopy
and activity assays. However, the limitation of these methods is that
spatial protein arrangement within the pores cannot be assessed. Mesoporous
silicas pose a distinct challenge to direct methods, such as transmission
electron microscopy, which lacks the contrast and resolution required
to adequately observe immobilized protein structure, and nuclear magnetic
resonance, which is computationally intensive and requires knowledge
of the primary structure a priori. Small-angle neutron
scattering can surmount these limitations and observe spatial protein
arrangement within pores. Hereby, we observe the stabilization of
fluid-like protein arrangement, facilitated by geometry-dependent
crowding effects in cylindrical pores of ordered mesoporous silica,
SBA-15. Stabilization is induced from a fluid-like structure factor,
which is observed for samples at maximum protein loading in SBA-15
with pore diameters of 6.4 and 8.1 nm. Application of this effect
for prevention of irreversible aggregation in high concentration environments
is proposed.
Collapse
Affiliation(s)
- Justin Siefker
- Centre for Nature Inspired Engineering (CNIE) and Department of Chemical Engineering , University College London , London WC1E 7JE , United Kingdom
| | - Ralf Biehl
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Complex Systems (ICS-1) , Forschungszentrum Jülich GmbH , Jülich 52425 , Germany
| | - Margarita Kruteva
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Complex Systems (ICS-1) , Forschungszentrum Jülich GmbH , Jülich 52425 , Germany
| | - Artem Feoktystov
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) , Forschungszentrum Jülich GmbH , Garching 85747 , Germany
| | - Marc-Olivier Coppens
- Centre for Nature Inspired Engineering (CNIE) and Department of Chemical Engineering , University College London , London WC1E 7JE , United Kingdom
| |
Collapse
|
35
|
Jethva PN, Udgaonkar JB. The Osmolyte TMAO Modulates Protein Folding Cooperativity by Altering Global Protein Stability. Biochemistry 2018; 57:5851-5863. [DOI: 10.1021/acs.biochem.8b00698] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Prashant N. Jethva
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B. Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
- Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
36
|
Pujols J, Peña-Díaz S, Ventura S. AGGRESCAN3D: Toward the Prediction of the Aggregation Propensities of Protein Structures. Methods Mol Biol 2018; 1762:427-443. [PMID: 29594784 DOI: 10.1007/978-1-4939-7756-7_21] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Protein aggregation is responsible for the onset and spread of many human diseases, ranging from neurodegenerative disorders to cancer and diabetes. Moreover, it is one of the major bottlenecks for the production of protein-based therapeutics such as antibodies or enzymes. AGGRESCAN3D (A3D) is a web server aimed to identify and evaluate structural aggregation prone regions, overcoming the limitations of sequence-based algorithms in the prediction of the aggregation propensity of globular proteins. A3D allows the redesign of protein solubility by predicting in silico the impact of mutations and protein conformational fluctuations on the aggregation of native polypeptides.
Collapse
Affiliation(s)
- Jordi Pujols
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
37
|
Katina NS, Balobanov VA, Ilyina NB, Vasiliev VD, Marchenkov VV, Glukhov AS, Nikulin AD, Bychkova VE. sw ApoMb Amyloid Aggregation under Nondenaturing Conditions: The Role of Native Structure Stability. Biophys J 2017; 113:991-1001. [PMID: 28877500 DOI: 10.1016/j.bpj.2017.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/17/2022] Open
Abstract
Investigation of the molecular mechanisms underlying amyloid-related human diseases attracts close attention. These diseases, the number of which currently is above 40, are characterized by formation of peptide or protein aggregates containing a cross-β structure. Most of the amyloidogenesis mechanisms described so far are based on experimental studies of aggregation of short peptides, intrinsically disordered proteins, or proteins under denaturing conditions, and studies of amyloid aggregate formations by structured globular proteins under conditions close to physiological ones are still in the initial stage. We investigated the effect of amino acid substitutions on propensity of the completely helical protein sperm whale apomyoglobin (sw ApoMb) for amyloid formation from its structured state in the absence of denaturing agents. Stability and aggregation of mutated sw ApoMb were studied using circular dichroism, Fourier transform infrared spectroscopy, x-ray diffraction, native electrophoresis, and electron microscopy techniques. Here, we demonstrate that stability of the protein native state determines both protein aggregation propensity and structural peculiarities of formed aggregates. Specifically, structurally stable mutants show low aggregation propensity and moderately destabilized sw ApoMb variants form amyloids, whereas their strongly destabilized mutants form both amyloids and nonamyloid aggregates.
Collapse
Affiliation(s)
- Natalya S Katina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Vitalii A Balobanov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Nelly B Ilyina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Victor D Vasiliev
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Victor V Marchenkov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Anatoly S Glukhov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Alexey D Nikulin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Valentina E Bychkova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| |
Collapse
|
38
|
Application of Lysine-specific Labeling to Detect Transient Interactions Present During Human Lysozyme Amyloid Fibril Formation. Sci Rep 2017; 7:15018. [PMID: 29101328 PMCID: PMC5670245 DOI: 10.1038/s41598-017-14739-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/16/2017] [Indexed: 11/08/2022] Open
Abstract
Populating transient and partially unfolded species is a crucial step in the formation and accumulation of amyloid fibrils formed from pathogenic variants of human lysozyme linked with a rare but fatal hereditary systemic amyloidosis. The partially unfolded species possess an unstructured β-domain and C-helix with the rest of the α-domain remaining native-like. Here we use paramagnetic relaxation enhancement (PRE) measured by NMR spectroscopy to study the transient intermolecular interactions between such intermediate species. Nitroxide spin labels, introduced specifically at three individual lysine residues, generate distinct PRE profiles, indicating the presence of intermolecular interactions between residues within the unfolded β-domain. This study describes the applicability to PRE NMR measurements of selective lysine labeling, at different sites within a protein, as an alternative to the introduction of spin labels via engineered cysteine residues. These results reveal the importance of the β-sheet region of lysozyme for initiating self-assembly into amyloid fibrils.
Collapse
|
39
|
Safari MS, Byington MC, Conrad JC, Vekilov PG. Polymorphism of Lysozyme Condensates. J Phys Chem B 2017; 121:9091-9101. [DOI: 10.1021/acs.jpcb.7b05425] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mohammad S. Safari
- Department
of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4004, United States
| | - Michael C. Byington
- Department
of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4004, United States
| | - Jacinta C. Conrad
- Department
of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4004, United States
| | - Peter G. Vekilov
- Department
of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4004, United States
- Department
of Chemistry, University of Houston, 3585 Cullen Blvd., Houston, Texas 77204-5003, United States
| |
Collapse
|
40
|
Biophysical evaluation of amyloid fibril formation in bovine cytochrome c by sodium lauroyl sarcosinate (sarkosyl) in acidic conditions. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.06.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Prakash A, Kumar V, Pandey P, Bharti DR, Vishwakarma P, Singh R, Hassan MI, Lynn AM. Solvent sensitivity of protein aggregation in Cu, Zn superoxide dismutase: a molecular dynamics simulation study. J Biomol Struct Dyn 2017; 36:2605-2617. [PMID: 28782426 DOI: 10.1080/07391102.2017.1364670] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Misfolding and aggregation of Cu, Zn Superoxide Dismutase (SOD1) is often found in amyotrophic lateral sclerosis (ALS) patients. The central apo SOD1 barrel was involved in protein maturation and pathological aggregation in ALS. In this work, we employed atomistic molecular dynamics (MD) simulations to study the conformational dynamics of SOD1barrel monomer in different concentrations of trifluoroethanol (TFE). We find concentration dependence unusual structural and dynamical features, characterized by the local unfolding of SOD1barrel. This partially unfolded structure is characterized by the exposure of hydrophobic core, is highly dynamic in nature, and is the precursor of aggregation seen in SOD1barrel. Our computational studies supports the hypothesis of the formation of aggregation 'building blocks' by means of local unfolding of apo monomer as the mechanism of SOD1 fibrillar aggregation. The non-monotonic TFE concentration dependence of protein conformational changes was explored through simulation studies. Our results suggest that altered protein conformation and dynamics within its structure may underlie the aggregation of SOD1 in ALS.
Collapse
Affiliation(s)
- Amresh Prakash
- a School of Computational & Integrative Sciences , Jawaharlal Nehru University , New Delhi , 110067 , India
| | - Vijay Kumar
- b Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi , 110025 , India
| | - Preeti Pandey
- a School of Computational & Integrative Sciences , Jawaharlal Nehru University , New Delhi , 110067 , India
| | - Deepak R Bharti
- a School of Computational & Integrative Sciences , Jawaharlal Nehru University , New Delhi , 110067 , India
| | - Poonam Vishwakarma
- a School of Computational & Integrative Sciences , Jawaharlal Nehru University , New Delhi , 110067 , India
| | - Ruhar Singh
- a School of Computational & Integrative Sciences , Jawaharlal Nehru University , New Delhi , 110067 , India
| | - Md Imtaiyaz Hassan
- b Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi , 110025 , India
| | - Andrew M Lynn
- a School of Computational & Integrative Sciences , Jawaharlal Nehru University , New Delhi , 110067 , India
| |
Collapse
|
42
|
Singh R, Bansal R, Rathore AS, Goel G. Equilibrium Ensembles for Insulin Folding from Bias-Exchange Metadynamics. Biophys J 2017; 112:1571-1585. [PMID: 28445749 DOI: 10.1016/j.bpj.2017.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/03/2017] [Accepted: 03/20/2017] [Indexed: 12/29/2022] Open
Abstract
Earliest events in the aggregation process, such as single molecule reconfiguration, are extremely important and the most difficult to characterize in experiments. To this end, we have used well-tempered bias exchange metadynamics simulations to determine the equilibrium ensembles of an insulin molecule under amyloidogenic conditions of low pH and high temperature. A bin-based clustering method that uses statistics accumulated in bias exchange metadynamics trajectories was employed to construct a detailed thermodynamic and kinetic model of insulin folding. The highest lifetime, lowest free-energy ensemble identified consisted of native conformations adopted by a folded insulin monomer in solution, namely, the R-, the Rf-, and the T-states of insulin. The lowest free-energy structure had a root mean square deviation of only 0.15 nm from native x-ray structure. The second longest-lived metastable state was an unfolded, compact monomer with little similarity to the native structure. We have identified three additional long-lived, metastable states from the bin-based model. We then carried out an exhaustive structural characterization of metastable states on the basis of tertiary contact maps and per-residue accessible surface areas. We have also determined the lowest free-energy path between two longest-lived metastable states and confirm earlier findings of non-two-state folding for insulin through a folding intermediate. The ensemble containing the monomeric intermediate retained 58% of native hydrophobic contacts, however, accompanied by a complete loss of native secondary structure. We have discussed the relative importance of nativelike versus nonnative tertiary contacts for the folding transition. We also provide a simple measure to determine the importance of an individual residue for folding transition. Finally, we have compared and contrasted this intermediate with experimental data obtained in spectroscopic, crystallographic, and calorimetric measurements during early stages of insulin aggregation. We have also determined stability of monomeric insulin by incubation at a very low concentration to isolate protein-protein interaction effects.
Collapse
Affiliation(s)
- Richa Singh
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Rohit Bansal
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Anurag Singh Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Gaurav Goel
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
43
|
Ahn M, Hagan CL, Bernardo-Gancedo A, De Genst E, Newby FN, Christodoulou J, Dhulesia A, Dumoulin M, Robinson CV, Dobson CM, Kumita JR. The Significance of the Location of Mutations for the Native-State Dynamics of Human Lysozyme. Biophys J 2017; 111:2358-2367. [PMID: 27926837 PMCID: PMC5153563 DOI: 10.1016/j.bpj.2016.10.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/09/2016] [Accepted: 10/19/2016] [Indexed: 11/27/2022] Open
Abstract
The conversion of human lysozyme into amyloid fibrils is associated with a rare but fatal hereditary form of nonneuropathic systemic amyloidosis. The accumulation of large amounts of aggregated protein is thought to be initiated by the formation of transient intermediate species of disease-related lysozyme variants, essentially due to the loss of global cooperativity under physiologically relevant conditions. Interestingly, all five naturally occurring, amyloidogenic, single-point mutations are located in the β-domain of lysozyme, the region that is predominantly unfolded during the formation of the transient intermediate species. Given the lack of known naturally occurring, amyloidogenic, single-point mutations in the α-domain, we chose three specific mutations to address the effects that location may have on native-state dynamics, as studied by hydrogen-deuterium (HD) exchange experiments analyzed by NMR spectroscopy, and mass spectrometry. We compared the effect of a destabilizing α-domain mutation (I23A) with that of the well-characterized I59T β-domain variant. We also investigated the effect of a mutation that has minor effects on native-state stability at the domain interface (I56V) and compared it with that of a variant with similar stability within the C-helix (I89V). We show that when variants have similar reduced native-state stabilities, the location of the mutation (I23A versus I59T) is crucial to the native-state dynamics, with the α-domain mutation having a significantly lower ability to populate transient intermediate species under physiologically relevant conditions. Interestingly, the mutation at the interface (I56V) has a greater effect in facilitating the formation of transient intermediate species at elevated temperatures compared with the variants containing α-domain mutations, even though this mutation results in only minor changes to the native-state stability of lysozyme. These findings reveal that the location of specific mutations is an important factor in determining the native-state dynamical properties of human lysozyme in the context of its propensity to populate the aggregation-prone transient intermediate species associated with pathogenic amyloid formation.
Collapse
Affiliation(s)
- Minkoo Ahn
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Christine L Hagan
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Erwin De Genst
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Francisco N Newby
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, United Kingdom
| | - Anne Dhulesia
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Mireille Dumoulin
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBios, Institute of Chemistry, University of Liege, Liege (Sart Tilman), Belgium
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom
| | | | - Janet R Kumita
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
44
|
Chiti F, Dobson CM. Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade. Annu Rev Biochem 2017; 86:27-68. [DOI: 10.1146/annurev-biochem-061516-045115] [Citation(s) in RCA: 1807] [Impact Index Per Article: 225.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Peptides and proteins have been found to possess an inherent tendency to convert from their native functional states into intractable amyloid aggregates. This phenomenon is associated with a range of increasingly common human disorders, including Alzheimer and Parkinson diseases, type II diabetes, and a number of systemic amyloidoses. In this review, we describe this field of science with particular reference to the advances that have been made over the last decade in our understanding of its fundamental nature and consequences. We list the proteins that are known to be deposited as amyloid or other types of aggregates in human tissues and the disorders with which they are associated, as well as the proteins that exploit the amyloid motif to play specific functional roles in humans. In addition, we summarize the genetic factors that have provided insight into the mechanisms of disease onset. We describe recent advances in our knowledge of the structures of amyloid fibrils and their oligomeric precursors and of the mechanisms by which they are formed and proliferate to generate cellular dysfunction. We show evidence that a complex proteostasis network actively combats protein aggregation and that such an efficient system can fail in some circumstances and give rise to disease. Finally, we anticipate the development of novel therapeutic strategies with which to prevent or treat these highly debilitating and currently incurable conditions.
Collapse
Affiliation(s)
- Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” Section of Biochemistry, Università di Firenze, 50134 Firenze, Italy
| | - Christopher M. Dobson
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
45
|
Elia F, Cantini F, Chiti F, Dobson CM, Bemporad F. Direct Conversion of an Enzyme from Native-like to Amyloid-like Aggregates within Inclusion Bodies. Biophys J 2017; 112:2540-2551. [PMID: 28636911 PMCID: PMC5479110 DOI: 10.1016/j.bpj.2017.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 01/29/2023] Open
Abstract
The acylphosphatase from Sulfolobus solfataricus (Sso AcP) is a globular protein able to aggregate in vitro from a native-like conformational ensemble without the need for a transition across the major unfolding energy barrier. This process leads to the formation of assemblies in which the protein retains its native-like structure, which subsequently convert into amyloid-like aggregates. Here, we investigate the mechanism by which Sso AcP aggregates in vivo to form bacterial inclusion bodies after expression in E. coli. Shortly after the initiation of expression, Sso AcP is incorporated into inclusion bodies as a native-like protein, still exhibiting small but significant enzymatic activity. Additional experiments revealed that this overall process of aggregation is enhanced by the presence of the unfolded N-terminal region of the sequence and by destabilization of the globular segment of the protein. At later times, the Sso AcP molecules in the inclusion bodies lose their native-like properties and convert into β-sheet-rich amyloid-like structures, as indicated by their ability to bind thioflavin T and Congo red. These results show that the aggregation behavior of this protein is similar in vivo to that observed in vitro, and that, at least for a predominant part of the protein population, the transition from a native to an amyloid-like structure occurs within the aggregate state.
Collapse
Affiliation(s)
- Francesco Elia
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Firenze, Italy
| | - Francesca Cantini
- Centro Risonanze Magnetiche (CERM) and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Firenze, Italy
| | | | - Francesco Bemporad
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Firenze, Italy.
| |
Collapse
|
46
|
Nusrat S, Zaidi N, Siddiqi MK, Zaman M, Siddique IA, Ajmal MR, Abdelhameed AS, Khan RH. Anti-Parkinsonian L-Dopa can also act as anti-systemic amyloidosis—A mechanistic exploration. Int J Biol Macromol 2017; 99:630-640. [DOI: 10.1016/j.ijbiomac.2017.03.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 01/15/2023]
|
47
|
Understanding the Effect of Disease-Related Mutations on Human Prion Protein Structure: Insights From NMR Spectroscopy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:83-103. [DOI: 10.1016/bs.pmbts.2017.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
48
|
Malhotra P, Udgaonkar JB. How cooperative are protein folding and unfolding transitions? Protein Sci 2016; 25:1924-1941. [PMID: 27522064 PMCID: PMC5079258 DOI: 10.1002/pro.3015] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 11/12/2022]
Abstract
A thermodynamically and kinetically simple picture of protein folding envisages only two states, native (N) and unfolded (U), separated by a single activation free energy barrier, and interconverting by cooperative two-state transitions. The folding/unfolding transitions of many proteins occur, however, in multiple discrete steps associated with the formation of intermediates, which is indicative of reduced cooperativity. Furthermore, much advancement in experimental and computational approaches has demonstrated entirely non-cooperative (gradual) transitions via a continuum of states and a multitude of small energetic barriers between the N and U states of some proteins. These findings have been instrumental towards providing a structural rationale for cooperative versus noncooperative transitions, based on the coupling between interaction networks in proteins. The cooperativity inherent in a folding/unfolding reaction appears to be context dependent, and can be tuned via experimental conditions which change the stabilities of N and U. The evolution of cooperativity in protein folding transitions is linked closely to the evolution of function as well as the aggregation propensity of the protein. A large activation energy barrier in a fully cooperative transition can provide the kinetic control required to prevent the accumulation of partially unfolded forms, which may promote aggregation. Nevertheless, increasing evidence for barrier-less "downhill" folding, as well as for continuous "uphill" unfolding transitions, indicate that gradual non-cooperative processes may be ubiquitous features on the free energy landscape of protein folding.
Collapse
Affiliation(s)
- Pooja Malhotra
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India.
| |
Collapse
|
49
|
Bemporad F, Ramazzotti M. From the Evolution of Protein Sequences Able to Resist Self-Assembly to the Prediction of Aggregation Propensity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 329:1-47. [PMID: 28109326 DOI: 10.1016/bs.ircmb.2016.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Folding of polypeptide chains into biologically active entities is an astonishingly complex process, determined by the nature and the sequence of residues emerging from ribosomes. While it has been long believed that evolution has pressed genomes so that specific sequences could adopt unique, functional three-dimensional folds, it is now clear that complex protein machineries act as quality control system and supervise folding. Notwithstanding that, events such as erroneous folding, partial folding, or misfolding are frequent during the life of a cell or a whole organism, and they can escape controls. One of the possible outcomes of this misbehavior is cross-β aggregation, a super secondary structure which represents the hallmark of self-assembled, well organized, and extremely ordered structures termed amyloid fibrils. What if evolution would have not taken into account such possibilities? Twenty years of research point toward the idea that, in fact, evolution has constantly supervised the risk of errors and minimized their impact. In this review we tried to survey the major findings in the amyloid field, trying to describe what the real pitfalls of protein folding are-from an evolutionary perspective-and how sequence and structural features have evolved to balance the need for perfect, dynamic, functionally efficient structures, and the detrimental effects implicit in the dangerous process of folding. We will discuss how the knowledge obtained from these studies has been employed to produce computational methods able to assess, predict, and discriminate the aggregation properties of protein sequences.
Collapse
Affiliation(s)
- F Bemporad
- Università degli Studi di Firenze, Firenze, Italy.
| | - M Ramazzotti
- Università degli Studi di Firenze, Firenze, Italy.
| |
Collapse
|
50
|
Lyophilized protein powders: A review of analytical tools for root cause analysis of lot-to-lot variability. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|