1
|
Tong Y, Childs-Disney JL, Disney MD. Targeting RNA with small molecules, from RNA structures to precision medicines: IUPHAR review: 40. Br J Pharmacol 2024; 181:4152-4173. [PMID: 39224931 DOI: 10.1111/bph.17308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
RNA plays important roles in regulating both health and disease biology in all kingdoms of life. Notably, RNA can form intricate three-dimensional structures, and their biological functions are dependent on these structures. Targeting the structured regions of RNA with small molecules has gained increasing attention over the past decade, because it provides both chemical probes to study fundamental biology processes and lead medicines for diseases with unmet medical needs. Recent advances in RNA structure prediction and determination and RNA biology have accelerated the rational design and development of RNA-targeted small molecules to modulate disease pathology. However, challenges remain in advancing RNA-targeted small molecules towards clinical applications. This review summarizes strategies to study RNA structures, to identify small molecules recognizing these structures, and to augment the functionality of RNA-binding small molecules. We focus on recent advances in developing RNA-targeted small molecules as potential therapeutics in a variety of diseases, encompassing different modes of actions and targeting strategies. Furthermore, we present the current gaps between early-stage discovery of RNA-binding small molecules and their clinical applications, as well as a roadmap to overcome these challenges in the near future.
Collapse
Affiliation(s)
- Yuquan Tong
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, USA
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Jessica L Childs-Disney
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, USA
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| |
Collapse
|
2
|
Feng S, Xiao W, Yu Y, Liu G, Zhang Y, Chen T, Lu C. Linker-Mediated Inactivation of the SAM-II Domain in the Tandem SAM-II/SAM-V Riboswitch. Int J Mol Sci 2024; 25:11288. [PMID: 39457069 PMCID: PMC11508383 DOI: 10.3390/ijms252011288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Tandem SAM-II/SAM-V riboswitch belongs to a class of riboswitches found in the marine bacterium 'Candidatus Pelagibacter ubique'. Previous studies have demonstrated that these riboswitches have the potential for digital modulation of gene expression at both the transcriptional and translational levels. In this study, we investigate the conformational changes in the tandem SAM-II/SAM-V riboswitch binding to S-adenosylmethionine (SAM) using selective 2'-hydroxyl acylation analyzed by the primer extension (SHAPE) assay, small-angle X-ray scattering (SAXS), and oligos depressing probing. Our findings reveal that the linker between SAM-II/SAM-V aptamers blocks the SAM response of the SAM-II domain. This result proposes a new mechanism for gene expression regulation, where the ligand-binding functions of tandem riboswitches can be selectively masked or released through a linker.
Collapse
Affiliation(s)
- Shanshan Feng
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| | - Wenwen Xiao
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| | - Yingying Yu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| | - Guangfeng Liu
- National Center for Protein Science Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China;
| | - Yunlong Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| | - Ting Chen
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| | - Changrui Lu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (W.X.); (Y.Y.); (Y.Z.); (T.C.)
| |
Collapse
|
3
|
Mishra A, Mishra S. Metastasis-Associated Lung Adenocarcinoma Transcript 1 ( MALAT1) lncRNA Conformational Dynamics in Complex with RNA-Binding Protein with Serine-Rich Domain 1 (RNPS1) in the Pan-cancer Splicing and Gene Expression. ACS OMEGA 2024; 9:42212-42226. [PMID: 39431102 PMCID: PMC11483381 DOI: 10.1021/acsomega.4c04467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024]
Abstract
Alternative splicing events increase the transcriptomic and proteomic complexity in cancers. Overexpression of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a highly conserved lncRNA, is widely known to promote cancer development, one mechanism for which may be through the regulation of alternative splicing and, thereby, gene expression. Its regulatory interactions with proteins have been a subject of much interest, yet little research has been carried out on the mechanisms adopted. It has been observed that MALAT1 binds to RNA-binding protein with serine-rich domain 1 (RNPS1), being colocalized in the nuclear speckles, and together, these two binding partners may regulate alternative splicing. Upregulated RNPS1 is predicted to play a key role in the pan-cancer development. Experimental tertiary structure of full-length MALAT1 is currently lacking despite the availability of the 3D structure of 3' expression and nuclear retention element. We hypothesize that the computationally modeled tertiary structures of the specific binding motifs in the M-region, E-region, and full-length structures of MALAT1 may adopt a modular structure and bind to the RNPS1 loop region of RS/P domain involved in exon skipping, interacting in a manner fully consistent with the biochemical experiments. Extensive observations using the powerful molecular dynamics (MD) simulations of MALAT1 regions bound to RNPS1 suggested that all three regions form interactive, yet stable complexes. The ranking of the MM-GBSA- and MM-PBSA-derived binding free energies between these complexes corroborated well in the MD simulations and experiments. Energy decomposition analyses suggested that arginines in the RNPS1 protein are among the major contributors toward the binding free energies as calculated by MM-GBSA present in the Amber package; while among the nucleotides, the major contributors were nucleotides with G and A nucleobases, with more contributory effect in comparison to arginines, across the bound M-region, E-region, and full-length MALAT1. This suggests that specific purines play a greater role in the complex formation, in a loop-specific manner, and the more proactive approach in complexation tilts toward MALAT1. To the best of our knowledge, our studies are the first studies taking a unique approach, utilizing the binding motifs to deduce a tertiary structure of MALAT1, toward our understanding of the lncRNA-protein interactions, stability, and binding on a structural basis. The therapeutic implications of targeting this complex formation to regulate splicing and hence, oncogenesis, is further envisaged.
Collapse
Affiliation(s)
- Aanchal Mishra
- Department of Biochemistry, School
of Life Sciences, University of Hyderabad-500046 Hyderabad, India
| | - Seema Mishra
- Department of Biochemistry, School
of Life Sciences, University of Hyderabad-500046 Hyderabad, India
| |
Collapse
|
4
|
Błaszczyk L, Ryczek M, Das B, Mateja-Pluta M, Bejger M, Śliwiak J, Nakatani K, Kiliszek A. Antisense RNA C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms a triplex-like structure and binds small synthetic ligand. Nucleic Acids Res 2024; 52:6707-6717. [PMID: 38738637 PMCID: PMC11194091 DOI: 10.1093/nar/gkae376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/05/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
The abnormal expansion of GGGGCC/GGCCCC hexanucleotide repeats (HR) in C9orf72 is associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Structural polymorphisms of HR result in the multifactorial pathomechanism of ALS/FTD. Consequently, many ongoing studies are focused at developing therapies targeting pathogenic HR RNA. One of them involves small molecules blocking sequestration of important proteins, preventing formation of toxic nuclear foci. However, rational design of potential therapeutics is hindered by limited number of structural studies of RNA-ligand complexes. We determined the crystal structure of antisense HR RNA in complex with ANP77 ligand (1.1 Å resolution) and in the free form (0.92 and 1.5 Å resolution). HR RNA folds into a triplex structure composed of four RNA chains. ANP77 interacted with two neighboring single-stranded cytosines to form pseudo-canonical base pairs by adopting sandwich-like conformation and adjusting the position of its naphthyridine units to the helical twist of the RNA. In the unliganded structure, the cytosines formed a peculiar triplex i-motif, assembled by trans C•C+ pair and a third cytosine located at the Hoogsteen edge of the C•C+ pair. These results extend our knowledge of the structural polymorphisms of HR and can be used for rational design of small molecules targeting disease-related RNAs.
Collapse
Affiliation(s)
- Leszek Błaszczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poland
| | - Marcin Ryczek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poland
| | - Bimolendu Das
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Martyna Mateja-Pluta
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poland
| | - Magdalena Bejger
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poland
| | - Joanna Śliwiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poland
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Agnieszka Kiliszek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poland
| |
Collapse
|
5
|
Xiao W, Liu G, Chen T, Zhang Y, Lu C. Bifidobacterium bifidum SAM-VI Riboswitch Conformation Change Requires Peripheral Helix Formation. Biomolecules 2024; 14:742. [PMID: 39062457 PMCID: PMC11274715 DOI: 10.3390/biom14070742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
The Bifidobacterium bifidum SAM-VI riboswitch undergoes dynamic conformational changes that modulate downstream gene expression. Traditional structural methods such as crystallography capture the bound conformation at high resolution, and additional efforts would reveal details from the dynamic transition. Here, we revealed a transcription-dependent conformation model for Bifidobacterium bifidum SAM-VI riboswitch. In this study, we combine small-angle X-ray scattering, chemical probing, and isothermal titration calorimetry to unveil the ligand-binding properties and conformational changes of the Bifidobacterium bifidum SAM-VI riboswitch and its variants. Our results suggest that the SAM-VI riboswitch contains a pre-organized ligand-binding pocket and stabilizes into the bound conformation upon binding to SAM. Whether the P1 stem formed and variations in length critically influence the conformational dynamics of the SAM-VI riboswitch. Our study provides the basis for artificially engineering the riboswitch by manipulating its peripheral sequences without modifying the SAM-binding core.
Collapse
Affiliation(s)
- Wenwen Xiao
- College of Biological and Medical Engineering, Donghua University, Shanghai 201620, China; (W.X.); (T.C.); (Y.Z.)
| | - Guangfeng Liu
- National Center for Protein Science Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China;
| | - Ting Chen
- College of Biological and Medical Engineering, Donghua University, Shanghai 201620, China; (W.X.); (T.C.); (Y.Z.)
| | - Yunlong Zhang
- College of Biological and Medical Engineering, Donghua University, Shanghai 201620, China; (W.X.); (T.C.); (Y.Z.)
| | - Changrui Lu
- College of Biological and Medical Engineering, Donghua University, Shanghai 201620, China; (W.X.); (T.C.); (Y.Z.)
| |
Collapse
|
6
|
Krause NM, Bains JK, Blechar J, Richter C, Bessi I, Grote P, Leisegang MS, Brandes RP, Schwalbe H. Biophysical Investigation of RNA ⋅ DNA : DNA Triple Helix and RNA : DNA Heteroduplex Formation by the lncRNAs MEG3 and Fendrr. Chembiochem 2024; 25:e202400049. [PMID: 38456652 DOI: 10.1002/cbic.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/09/2024]
Abstract
Long non-coding RNAs (lncRNAs) are important regulators of gene expression and can associate with DNA as RNA : DNA heteroduplexes or RNA ⋅ DNA : DNA triple helix structures. Here, we review in vitro biochemical and biophysical experiments including electromobility shift assays (EMSA), circular dichroism (CD) spectroscopy, thermal melting analysis, microscale thermophoresis (MST), single-molecule Förster resonance energy transfer (smFRET) and nuclear magnetic resonance (NMR) spectroscopy to investigate RNA ⋅ DNA : DNA triple helix and RNA : DNA heteroduplex formation. We present the investigations of the antiparallel triplex-forming lncRNA MEG3 targeting the gene TGFB2 and the parallel triplex-forming lncRNA Fendrr with its target gene Emp2. The thermodynamic properties of these oligonucleotides lead to concentration-dependent heterogeneous mixtures, where a DNA duplex, an RNA : DNA heteroduplex and an RNA ⋅ DNA : DNA triplex coexist and their relative populations are modulated in a temperature-dependent manner. The in vitro data provide a reliable readout of triplex structures, as RNA ⋅ DNA : DNA triplexes show distinct features compared to DNA duplexes and RNA : DNA heteroduplexes. Our experimental results can be used to validate computationally predicted triple helix formation between novel disease-relevant lncRNAs and their DNA target genes.
Collapse
Affiliation(s)
- Nina M Krause
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße7, 60438, Frankfurt am Main, Germany
| | - Jasleen K Bains
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße7, 60438, Frankfurt am Main, Germany
| | - Julius Blechar
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße7, 60438, Frankfurt am Main, Germany
| | - Christian Richter
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße7, 60438, Frankfurt am Main, Germany
| | - Irene Bessi
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße7, 60438, Frankfurt am Main, Germany
- Institute for Organic Chemistry, Julius-Maximilians-University, Würzburg, Bavaria, 97074, Germany
| | - Phillip Grote
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Frankfurt am Main, Hesse, 60590, Germany
- Georg-Speyer-Haus, Frankfurt am Main, Hesse, 60590, Germany
| | - Matthias S Leisegang
- Institute for Cardiovascular Physiology, Johann Wolfgang Goethe University, Frankfurt, Hesse, 60596, Germany
- German Centre of Cardiovascular Research (DZHK), Partner site Rhine-Main, Frankfurt, Hesse, 60596, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Johann Wolfgang Goethe University, Frankfurt, Hesse, 60596, Germany
- German Centre of Cardiovascular Research (DZHK), Partner site Rhine-Main, Frankfurt, Hesse, 60596, Germany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße7, 60438, Frankfurt am Main, Germany
| |
Collapse
|
7
|
Kadam MS, Burra VLSP. S-adenosyl-l-methionine interaction signatures in methyltransferases. J Biomol Struct Dyn 2024; 42:3166-3176. [PMID: 37261836 DOI: 10.1080/07391102.2023.2217679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/01/2023] [Indexed: 06/02/2023]
Abstract
The switching on or off of methylation, a change from a normal methylation to hyper or hypo methylation is implicated in many diseases that include cancers, infectious, neurodegenerative diseases and others. Methyltransferases are one of the most sought targets that have diversified for the methylation of a variety of substrates. However, without S-adenosyl-l-methionine (SAM), the universal methyl donor, the majority of the methyltransferases remain functionally inactive. In this article, we did a comprehensive analysis of all available SAM-receptor crystal structures at atom, moiety and structure levels to gain deeper insights into the structure and function of SAM. SAM demonstrated flexibility in binding to a variety of receptors irrespective of the size of the binding pockets. Further analysis of the binding pockets resulted in all SAM conformations clustering into four natural shapes. The conserved interaction analysis provides an unambiguous orientation of SAM binding to receptors which has been elusive till now. SAM peptide moiety (SPM) and SAM nucleobase moiety (SNM) show up to 89% interactions with receptors whereas only 11% interactions with SAM ribose moiety (SRM). It is found that SPM and SNM terminal atoms anchor to the highly conserved receptor subsites creating a workbench for catalysis. It is seen that every interacting atom and its position is crucial in the methyl transfer phenomenon. A very unique observation is that the methyl group of SAM does not have even one interaction with the receptor. The deep insights gained help in the design and development of novel drugs against the methyltransferases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mangal S Kadam
- Center for Advanced Research and Innovation in Structural Biology of Diseases (CARISBD), Department of Biotechnology, KLEF University, Vaddeswaram, Andhra Pradesh, India
| | - V L S Prasad Burra
- Center for Advanced Research and Innovation in Structural Biology of Diseases (CARISBD), Department of Biotechnology, KLEF University, Vaddeswaram, Andhra Pradesh, India
| |
Collapse
|
8
|
Olenginski LT, Spradlin SF, Batey RT. Flipping the script: Understanding riboswitches from an alternative perspective. J Biol Chem 2024; 300:105730. [PMID: 38336293 PMCID: PMC10907184 DOI: 10.1016/j.jbc.2024.105730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Riboswitches are broadly distributed regulatory elements most frequently found in the 5'-leader sequence of bacterial mRNAs that regulate gene expression in response to the binding of a small molecule effector. The occupancy status of the ligand-binding aptamer domain manipulates downstream information in the message that instructs the expression machinery. Currently, there are over 55 validated riboswitch classes, where each class is defined based on the identity of the ligand it binds and/or sequence and structure conservation patterns within the aptamer domain. This classification reflects an "aptamer-centric" perspective that dominates our understanding of riboswitches. In this review, we propose a conceptual framework that groups riboswitches based on the mechanism by which RNA manipulates information directly instructing the expression machinery. This scheme does not replace the established aptamer domain-based classification of riboswitches but rather serves to facilitate hypothesis-driven investigation of riboswitch regulatory mechanisms. Based on current bioinformatic, structural, and biochemical studies of a broad spectrum of riboswitches, we propose three major mechanistic groups: (1) "direct occlusion", (2) "interdomain docking", and (3) "strand exchange". We discuss the defining features of each group, present representative examples of riboswitches from each group, and illustrate how these RNAs couple small molecule binding to gene regulation. While mechanistic studies of the occlusion and docking groups have yielded compelling models for how these riboswitches function, much less is known about strand exchange processes. To conclude, we outline the limitations of our mechanism-based conceptual framework and discuss how critical information within riboswitch expression platforms can inform gene regulation.
Collapse
Affiliation(s)
| | | | - Robert T Batey
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA.
| |
Collapse
|
9
|
Fu X, Zuo X, Zhao X, Zhang H, Zhang C, Lu W. Characterization and designing of an SAM riboswitch to establish a high-throughput screening platform for SAM overproduction in Saccharomyces cerevisiae. Biotechnol Bioeng 2023; 120:3622-3637. [PMID: 37691180 DOI: 10.1002/bit.28551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
S-adenosyl- l-methionine (SAM) is a high-value compound widely used in the treatment of various diseases. SAM can be produced through fermentation, but further enhancing the microbial production of SAM requires novel high-throughput screening methods for rapid detection and screening of mutant libraries. In this work, an SAM-OFF riboswitch capable of responding to the SAM concentration was obtained and a high-throughput platform for screening SAM overproducers was established. SAM synthase was engineered by semirational design and directed evolution, which resulted in the SAM2S203F,W164R,T251S,Y285F,S365R mutant with almost twice higher catalytic activity than the parental enzyme. The best mutant was then introduced into Saccharomyces cerevisiae BY4741, and the resulting strain BSM8 produced a sevenfold higher SAM titer in shake-flask fermentation, reaching 1.25 g L-1 . This work provides a reference for designing biosensors to dynamically detect metabolite concentrations for high-throughput screening and the construction of effective microbial cell factories.
Collapse
Affiliation(s)
- Xiaomeng Fu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiaoru Zuo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiaomeng Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Huizhi Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, China
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, China
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, China
| |
Collapse
|
10
|
Liao TW, Huang L, Wilson TJ, Ganser LR, Lilley DMJ, Ha T. Linking folding dynamics and function of SAM/SAH riboswitches at the single molecule level. Nucleic Acids Res 2023; 51:8957-8969. [PMID: 37522343 PMCID: PMC10516623 DOI: 10.1093/nar/gkad633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
Riboswitches are regulatory elements found in bacterial mRNAs that control downstream gene expression through ligand-induced conformational changes. Here, we used single-molecule FRET to map the conformational landscape of the translational SAM/SAH riboswitch and probe how co-transcriptional ligand-induced conformational changes affect its translation regulation function. Riboswitch folding is highly heterogeneous, suggesting a rugged conformational landscape that allows for sampling of the ligand-bound conformation even in the absence of ligand. The addition of ligand shifts the landscape, favoring the ligand-bound conformation. Mutation studies identified a key structural element, the pseudoknot helix, that is crucial for determining ligand-free conformations and their ligand responsiveness. We also investigated ribosomal binding site accessibility under two scenarios: pre-folding and co-transcriptional folding. The regulatory function of the SAM/SAH riboswitch involves kinetically favoring ligand binding, but co-transcriptional folding reduces this preference with a less compact initial conformation that exposes the Shine-Dalgarno sequence and takes min to redistribute to more compact conformations of the pre-folded riboswitch. Such slow equilibration decreases the effective ligand affinity. Overall, our study provides a deeper understanding of the complex folding process and how the riboswitch adapts its folding pattern in response to ligand, modulates ribosome accessibility and the role of co-transcriptional folding in these processes.
Collapse
Affiliation(s)
- Ting-Wei Liao
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Timothy J Wilson
- Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Laura R Ganser
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - David M J Lilley
- Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Taekjip Ha
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Baltimore, MD, USA
| |
Collapse
|
11
|
Kumar A, Vashisth H. Mechanism of Ligand Discrimination by the NMT1 Riboswitch. J Chem Inf Model 2023; 63:4864-4874. [PMID: 37486304 PMCID: PMC11088486 DOI: 10.1021/acs.jcim.3c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Riboswitches are conserved functional domains in mRNA that almost exclusively exist in bacteria. They regulate the biosynthesis and transport of amino acids and essential metabolites such as coenzymes, nucleobases, and their derivatives by specifically binding small molecules. Due to their ability to precisely discriminate between different cognate molecules as well as their common existence in bacteria, riboswitches have become potential antibacterial drug targets that could deliver urgently needed antibiotics with novel mechanisms of action. In this work, we report the recognition mechanisms of four oxidization products (XAN, AZA, UAC, and HPA) generated during purine degradation by an RNA motif termed the NMT1 riboswitch. Specifically, we investigated the physical interactions between the riboswitch and the oxidized metabolites by computing the changes in the free energy on mutating key nucleobases in the ligand binding pocket of the riboswitch. We discovered that the electrostatic interactions are central to ligand discrimination by this riboswitch. The relative binding free energies of the mutations further indicated that some of the mutations can also strengthen the binding affinities of the ligands (AZA, UAC, and HPA). These mechanistic details are also potentially relevant in the design of novel compounds targeting riboswitches.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
12
|
Najeh S, Zandi K, Kharma N, Perreault J. Computational design and experimental verification of pseudoknotted ribozymes. RNA (NEW YORK, N.Y.) 2023; 29:764-776. [PMID: 36868786 PMCID: PMC10187678 DOI: 10.1261/rna.079148.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/27/2022] [Indexed: 05/18/2023]
Abstract
The design of new RNA sequences that retain the function of a model RNA structure is a challenge in bioinformatics because of the structural complexity of these molecules. RNA can fold into its secondary and tertiary structures by forming stem-loops and pseudoknots. A pseudoknot is a set of base pairs between a region within a stem-loop and nucleotides outside of this stem-loop; this motif is very important for numerous functional structures. It is important for any computational design algorithm to take into account these interactions to give a reliable result for any structures that include pseudoknots. In our study, we experimentally validated synthetic ribozymes designed by Enzymer, which implements algorithms allowing for the design of pseudoknots. Enzymer is a program that uses an inverse folding approach to design pseudoknotted RNAs; we used it in this study to design two types of ribozymes. The ribozymes tested were the hammerhead and the glmS, which have a self-cleaving activity that allows them to liberate the new RNA genome copy during rolling-circle replication or to control the expression of the downstream genes, respectively. We demonstrated the efficiency of Enzymer by showing that the pseudoknotted hammerhead and glmS ribozymes sequences it designed were extensively modified compared to wild-type sequences and were still active.
Collapse
Affiliation(s)
- Sabrine Najeh
- INRS - Institut Armand-Frappier, Laval, QC H7V 1B7, Canada
| | - Kasra Zandi
- Software Engineering and Computer Science Department, Concordia University, Montreal, Quebec H3G 1M8, Canada
| | - Nawwaf Kharma
- Electrical and Computer Engineering Department, Concordia University, Montreal, Quebec H3G 1M8, Canada
| | | |
Collapse
|
13
|
Lennon SR, Wierzba AJ, Siwik SH, Gryko D, Palmer AE, Batey RT. Targeting Riboswitches with Beta-Axial-Substituted Cobalamins. ACS Chem Biol 2023; 18:1136-1147. [PMID: 37094176 PMCID: PMC10395008 DOI: 10.1021/acschembio.2c00939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
RNA-targeting small-molecule therapeutics is an emerging field hindered by an incomplete understanding of the basic principles governing RNA-ligand interactions. One way to advance our knowledge in this area is to study model systems where these interactions are better understood, such as riboswitches. Riboswitches bind a wide array of small molecules with high affinity and selectivity, providing a wealth of information on how RNA recognizes ligands through diverse structures. The cobalamin-sensing riboswitch is a particularly useful model system, as similar sequences show highly specialized binding preferences for different biological forms of cobalamin. This riboswitch is also widely dispersed across bacteria and therefore holds strong potential as an antibiotic target. Many synthetic cobalamin forms have been developed for various purposes including therapeutics, but their interaction with cobalamin riboswitches is yet to be explored. In this study, we characterize the interactions of 11 cobalamin derivatives with three representative cobalamin riboswitches using in vitro binding experiments (both chemical footprinting and a fluorescence-based assay) and a cell-based reporter assay. The derivatives show productive interactions with two of the three riboswitches, demonstrating simultaneous plasticity and selectivity within these RNAs. The observed plasticity is partially achieved through a novel structural rearrangement within the ligand binding pocket, providing insight into how similar RNA structures can be targeted. As the derivatives also show in vivo functionality, they serve as several potential lead compounds for further drug development.
Collapse
Affiliation(s)
- Shelby R. Lennon
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Aleksandra J. Wierzba
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303 – 0596, USA
| | - Shea H. Siwik
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Amy E. Palmer
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303 – 0596, USA
| | - Robert T. Batey
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| |
Collapse
|
14
|
Jackson RW, Smathers CM, Robart AR. General Strategies for RNA X-ray Crystallography. Molecules 2023; 28:2111. [PMID: 36903357 PMCID: PMC10004510 DOI: 10.3390/molecules28052111] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
An extremely small proportion of the X-ray crystal structures deposited in the Protein Data Bank are of RNA or RNA-protein complexes. This is due to three main obstacles to the successful determination of RNA structure: (1) low yields of pure, properly folded RNA; (2) difficulty creating crystal contacts due to low sequence diversity; and (3) limited methods for phasing. Various approaches have been developed to address these obstacles, such as native RNA purification, engineered crystallization modules, and incorporation of proteins to assist in phasing. In this review, we will discuss these strategies and provide examples of how they are used in practice.
Collapse
Affiliation(s)
| | | | - Aaron R. Robart
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 20506, USA
| |
Collapse
|
15
|
Ali Z, Goyal A, Jhunjhunwala A, Mitra A, Trant JF, Sharma P. Structural and Energetic Features of Base-Base Stacking Contacts in RNA. J Chem Inf Model 2023; 63:655-669. [PMID: 36635230 DOI: 10.1021/acs.jcim.2c01116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nucleobase π-π stacking is one of the crucial organizing interactions within three-dimensional (3D) RNA architectures. Characterizing the structural variability of these contacts in RNA crystal structures will help delineate their subtleties and their role in determining function. This analysis of different stacking geometries found in RNA X-ray crystal structures is the largest such survey to date; coupled with quantum-mechanical calculations on typical representatives of each possible stacking arrangement, we determined the distribution of stacking interaction energies. A total of 1,735,481 stacking contacts, spanning 359 of the 384 theoretically possible distinct stacking geometries, were identified. Our analysis reveals preferential occurrences of specific consecutive stacking arrangements in certain regions of RNA architectures. Quantum chemical calculations suggest that 88 of the 359 contacts possess intrinsically stable stacking geometries, whereas the remaining stacks require the RNA backbone or surrounding macromolecular environment to force their formation and maintain their stability. Our systematic analysis of π-π stacks in RNA highlights trends in the occurrence and localization of these noncovalent interactions and may help better understand the structural intricacies of functional RNA-based molecular architectures.
Collapse
Affiliation(s)
- Zakir Ali
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh160014, India
| | - Ambika Goyal
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh160014, India
| | - Ayush Jhunjhunwala
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, Gachibowli, Hyderabad, Telangana500032, India
| | - Abhijit Mitra
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, Gachibowli, Hyderabad, Telangana500032, India
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, OntarioN9B 3P4, Canada
- Binary Star Research Services, LaSalle, OntarioN9J 3X8, Canada
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh160014, India
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, OntarioN9B 3P4, Canada
| |
Collapse
|
16
|
Xu L, Xiao Y, Zhang J, Fang X. Structural insights into translation regulation by the THF-II riboswitch. Nucleic Acids Res 2023; 51:952-965. [PMID: 36620887 PMCID: PMC9881143 DOI: 10.1093/nar/gkac1257] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023] Open
Abstract
In bacteria, expression of folate-related genes is controlled by the tetrahydrofolate (THF) riboswitch in response to specific binding of THF and its derivatives. Recently, a second class of THF riboswitches, named THF-II, was identified in Gram-negative bacteria, which exhibit distinct architecture from the previously characterized THF-I riboswitches found in Gram-positive bacteria. Here, we present the crystal structures of the ligand-bound THF-II riboswitch from Mesorhizobium loti. These structures exhibit a long rod-like fold stabilized by continuous base pair and base triplet stacking across two helices of P1 and P2 and their interconnecting ligand-bound binding pocket. The pterin moiety of the ligand docks into the binding pocket by forming hydrogen bonds with two highly conserved pyrimidines in J12 and J21, which resembles the hydrogen-bonding pattern at the ligand-binding site FAPK in the THF-I riboswitch. Using small-angle X-ray scattering and isothermal titration calorimetry, we further characterized the riboswitch in solution and reveal that Mg2+ is essential for pre-organization of the binding pocket for efficient ligand binding. RNase H cleavage assay indicates that ligand binding reduces accessibility of the ribosome binding site in the right arm of P1, thus down-regulating the expression of downstream genes. Together, these results provide mechanistic insights into translation regulation by the THF-II riboswitch.
Collapse
Affiliation(s)
| | | | - Jie Zhang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China,Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | | |
Collapse
|
17
|
Zheng L, Song Q, Xu X, Shen X, Li C, Li H, Chen H, Ren A. Structure-based insights into recognition and regulation of SAM-sensing riboswitches. SCIENCE CHINA. LIFE SCIENCES 2023; 66:31-50. [PMID: 36459353 DOI: 10.1007/s11427-022-2188-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/17/2022] [Indexed: 12/03/2022]
Abstract
Riboswitches are highly conserved RNA elements that located in the 5'-UTR of mRNAs, which undergo real-time structure conformational change to achieve the regulation of downstream gene expression by sensing their cognate ligands. S-adenosylmethionine (SAM) is a ubiquitous methyl donor for transmethylation reactions in all living organisms. SAM riboswitch is one of the most abundant riboswitches that bind to SAM with high affinity and selectivity, serving as regulatory modules in multiple metabolic pathways. To date, seven SAM-specific riboswitch classes that belong to four families, one SAM/SAH riboswitch and one SAH riboswitch have been identified. Each SAM riboswitch family has a well-organized tertiary core scaffold to support their unique ligand-specific binding pocket. In this review, we summarize the current research progress on the distribution, structure, ligand recognition and gene regulation mechanism of these SAM-related riboswitch families, and further discuss their evolutionary prospects and potential applications.
Collapse
Affiliation(s)
- Luqian Zheng
- Department of Gastroenterology, Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.,The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Qianqian Song
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xiaochen Xu
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xin Shen
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Chunyan Li
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Hongcheng Li
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Hao Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Aiming Ren
- Department of Gastroenterology, Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China. .,Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Chen J, Zeng Q, Wang W, Sun H, Hu G. Decoding the Identification Mechanism of an SAM-III Riboswitch on Ligands through Multiple Independent Gaussian-Accelerated Molecular Dynamics Simulations. J Chem Inf Model 2022; 62:6118-6132. [PMID: 36440874 DOI: 10.1021/acs.jcim.2c00961] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
S-Adenosyl-l-methionine (SAM)-responsive riboswitches play a central role in the regulation of bacterial gene expression at the level of transcription attenuation or translation inhibition. In this study, multiple independent Gaussian-accelerated molecular dynamics simulations were performed to decipher the identification mechanisms of SAM-III (SMK) on ligands SAM, SAH, and EEM. The results reveal that ligand binding highly affects the structural flexibility, internal dynamics, and conformational changes of SAM-III. The dynamic analysis shows that helices P3 and P4 as well as two junctions J23 and J24 of SAM-III are highly susceptible to ligand binding. Analyses of free energy landscapes suggest that ligand binding induces different free energy profiles of SAM-III, which leads to the difference in identification sites of SAM-III on ligands. The information on ligand-nucleotide interactions not only uncovers that the π-π, cation-π, and hydrogen bonding interactions drive identification of SAM-III on the three ligands but also reveals that different electrostatic properties of SAM, SAH, and EEM alter the active sites of SAM-III. Meanwhile, the results also verify that the adenine group of SAM, SAH, and EEM is well recognized by conserved nucleotides G7, A29, U37, A38, and G48. We expect that this study can provide useful information for understanding the applications of SAM-III in chemical, synthetic RNA biology, and biomedical fields.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan250357, China
| | - Qingkai Zeng
- School of Science, Shandong Jiaotong University, Jinan250357, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan250357, China
| | - Haibo Sun
- School of Science, Shandong Jiaotong University, Jinan250357, China
| | - Guodong Hu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou253023, China
| |
Collapse
|
19
|
Zhang J, Fakharzadeh A, Roland C, Sagui C. RNA as a Major-Groove Ligand: RNA-RNA and RNA-DNA Triplexes Formed by GAA and UUC or TTC Sequences. ACS OMEGA 2022; 7:38728-38743. [PMID: 36340174 PMCID: PMC9631886 DOI: 10.1021/acsomega.2c04358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Friedreich's ataxia is associated with noncanonical nucleic acid structures that emerge when GAA:TTC repeats in the first intron of the FXN gene expand beyond a critical number of repeats. Specifically, the noncanonical repeats are associated with both triplexes and R-loops. Here, we present an in silico investigation of all possible triplexes that form by attaching a third RNA strand to an RNA:RNA or DNA:DNA duplex, complementing previous DNA-based triplex studies. For both new triplexes results are similar. For a pyridimine UUC+ third strand, the parallel orientation is stable while its antiparallel counterpart is unstable. For a neutral GAA third strand, the parallel conformation is stable. A protonated GA+A third strand is stable in both parallel and antiparallel orientations. We have also investigated Na+ and Mg2+ ion distributions around the triplexes. The presence of Mg2+ ions helps stabilize neutral, antiparallel GAA triplexes. These results (along with previous DNA-based studies) allow for the emergence of a complete picture of the stability and structural characteristics of triplexes based on the GAA and TTC/UUC sequences, thereby contributing to the field of trinucleotide repeats and the associated unusual structures that trigger expansion.
Collapse
|
20
|
Yu-Nan H, Kang W, Yu S, Xiao-Jun X, Yan W, Xing-Ao L, Ting-Ting S. Molecular dynamics simulation on the Thermosinus carboxydivorans pfl ZTP riboswitch by ligand binding. Biochem Biophys Res Commun 2022; 627:184-190. [PMID: 36044800 DOI: 10.1016/j.bbrc.2022.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 12/01/2022]
Abstract
Riboswitches are RNA molecules that can regulate gene expression which is affected by ligand-binding during cotranscriptional folding process. However, the role of ligand during the folding is still unclear. In this study, the pfl domain of Thermosinus carboxydivorans ZTP riboswitch was discussed. The ligand is molecule ZMP. We mainly analyzed the change of ZMP-free and ZMP-bound aptamer domain by the dynamics simulation method. Structural features by calculating their RMSD, RMSF, etc. are analyzed. The results demonstrate that the binding domain require the presence of ZMP to maintain a stable fold. It also suggested that ZMP specificly binding to ZTP can generate more hydrogen bonds in the binding domain. Through the calculation of binding free energy decomposition of each nucleotide, molecule ZMP was found to promote the recognition and binding process of ligands by controlling some special nucleotides in the process of ligand binding. At last, the dynamical correlation and components of conformational motions were both applied to explore the effect of molecule ZMP to ZTP riboswitch. In general, ZMP can effectively affect the motions of the pfl riboswitch and facilitate the folding process of the ZTP riboswitch.These results may provide some new ideas for structural changes in riboswitches and their cotranscriptional folding process.
Collapse
Affiliation(s)
- He Yu-Nan
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310008, PR China
| | - Wang Kang
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310008, PR China
| | - Shen Yu
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310008, PR China
| | - Xu Xiao-Jun
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, PR China
| | - Wang Yan
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310008, PR China
| | - Li Xing-Ao
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310008, PR China.
| | - Sun Ting-Ting
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310008, PR China.
| |
Collapse
|
21
|
Sherlock ME, Higgs G, Yu D, Widner DL, White NA, Sudarsan N, Sadeeshkumar H, Perkins KR, Mirihana Arachchilage G, Malkowski SN, King CG, Harris KA, Gaffield G, Atilho RM, Breaker RR. Architectures and complex functions of tandem riboswitches. RNA Biol 2022; 19:1059-1076. [PMID: 36093908 PMCID: PMC9481103 DOI: 10.1080/15476286.2022.2119017] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Riboswitch architectures that involve the binding of a single ligand to a single RNA aptamer domain result in ordinary dose-response curves that require approximately a 100-fold change in ligand concentration to cover nearly the full dynamic range for gene regulation. However, by using multiple riboswitches or aptamer domains in tandem, these ligand-sensing structures can produce additional, complex gene control outcomes. In the current study, we have computationally searched for tandem riboswitch architectures in bacteria to provide a more complete understanding of the diverse biological and biochemical functions of gene control elements that are made exclusively of RNA. Numerous different arrangements of tandem homologous riboswitch architectures are exploited by bacteria to create more 'digital' gene control devices, which operate over a narrower ligand concentration range. Also, two heterologous riboswitch aptamers are sometimes employed to create two-input Boolean logic gates with various types of genetic outputs. These findings illustrate the sophisticated genetic decisions that can be made by using molecular sensors and switches based only on RNA.
Collapse
Affiliation(s)
- Madeline E. Sherlock
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Research-1S, Aurora, CO, USA
| | - Gadareth Higgs
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Diane Yu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Danielle L. Widner
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Neil A. White
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | | | - Harini Sadeeshkumar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Kevin R. Perkins
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Gayan Mirihana Arachchilage
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
- PTC Therapeutics, Inc, South Plainfield, NJ, USA
| | | | - Christopher G. King
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | | | - Glenn Gaffield
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Ruben M. Atilho
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Ronald R. Breaker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
22
|
Sanbonmatsu K. Towards Molecular Mechanism in Long Non-coding RNAs: Linking Structure and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1363:23-32. [DOI: 10.1007/978-3-030-92034-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Scheuer R, Dietz T, Kretz J, Hadjeras L, McIntosh M, Evguenieva-Hackenberg E. Incoherent dual regulation by a SAM-II riboswitch controlling translation at a distance. RNA Biol 2022; 19:980-995. [PMID: 35950733 PMCID: PMC9373788 DOI: 10.1080/15476286.2022.2110380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In Sinorhizobium meliloti, the methionine biosynthesis genes metA and metZ are preceded by S-adenosyl-L-methionine (SAM) riboswitches of the SAM-II class. Upon SAM binding, structural changes in the metZ riboswitch were predicted to cause transcriptional termination, generating the sRNA RZ. By contrast, the metA riboswitch was predicted to regulate translation from an AUG1 codon. However, downstream of the metA riboswitch, we found a putative Rho-independent terminator and an in-frame AUG2 codon, which may contribute to metA regulation. We validated the terminator between AUG1 and AUG2, which generates the sRNA RA1 that is processed to RA2. Under high SAM conditions, the activities of the metA and metZ promoters and the steady-state levels of the read-through metA and metZ mRNAs were decreased, while the levels of the RZ and RA2 sRNAs were increased. Under these conditions, the sRNAs and the mRNAs were stabilized. Reporter fusion experiments revealed that the Shine–Dalgarno (SD) sequence in the metA riboswitch is required for translation, which, however, starts 74 nucleotides downstream at AUG2, suggesting a novel translation initiation mechanism. Further, the reporter fusion data supported the following model of RNA-based regulation: Upon SAM binding by the riboswitch, the SD sequence is sequestered to downregulate metA translation, while the mRNA is stabilized. Thus, the SAM-II riboswitches fulfil incoherent, dual regulation, which probably serves to ensure basal metA and metZ mRNA levels under high SAM conditions. This probably helps to adapt to changing conditions and maintain SAM homoeostasis.
Collapse
Affiliation(s)
- Robina Scheuer
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Theresa Dietz
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Jonas Kretz
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Lydia Hadjeras
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Matthew McIntosh
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | | |
Collapse
|
24
|
Sanbonmatsu K. Getting to the bottom of lncRNA mechanism: structure-function relationships. Mamm Genome 2021; 33:343-353. [PMID: 34642784 PMCID: PMC8509902 DOI: 10.1007/s00335-021-09924-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022]
Abstract
While long non-coding RNAs are known to play key roles in disease and development, relatively few structural studies have been performed for this important class of RNAs. Here, we review functional studies of long non-coding RNAs and expose the need for high-resolution 3-D structural studies, discussing the roles of long non-coding RNAs in the cell and how structure–function relationships might be used to elucidate further understanding. We then describe structural studies of other classes of RNAs using chemical probing, nuclear magnetic resonance, small-angle X-ray scattering, X-ray crystallography, and cryogenic electron microscopy (cryo-EM). Next, we review early structural studies of long non-coding RNAs to date and describe the way forward for the structural biology of long non-coding RNAs in terms of cryo-EM.
Collapse
|
25
|
Piña MDLN, Frontera A, Bauza A. Charge Assisted S/Se Chalcogen Bonds in SAM Riboswitches: A Combined PDB and ab Initio Study. ACS Chem Biol 2021; 16:1701-1708. [PMID: 34427431 PMCID: PMC8525861 DOI: 10.1021/acschembio.1c00417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
In this study, we provide experimental
(Protein Data Bank (PDB)
inspection) and theoretical (RI-MP2/def2-TZVP level of theory) evidence
of the involvement of charge assisted chalcogen bonding (ChB) interactions
in the recognition and folding mechanisms of S-adenosylmethionine
(SAM) riboswitches. Concretely, an initial PDB search revealed several
examples where ChBs between S-adenosyl methionine (SAM)/adenosyl selenomethionine
(EEM) molecules and uracil (U) bases belonging to RNA take place.
While these interactions are usually described as a merely Coulombic
attraction between the positively charged S/Se group and RNA, theoretical
calculations indicated that the σ holes of S and Se are involved.
Moreover, computational models shed light on the strength and directionality
properties of the interaction, which was also further characterized
from a charge-density perspective using Bader’s “Atoms
in Molecules” (AIM) theory, Non-Covalent Interaction plot (NCIplot)
visual index, and Natural Bonding Orbital (NBO) analyses. As far as
our knowledge extends, this is the first time that ChBs in SAM–RNA
complexes have been systematically analyzed, and we believe the results
might be useful for scientists working in the field of RNA engineering
and chemical biology as well as to increase the visibility of the
interaction among the biological community.
Collapse
Affiliation(s)
- María de las Nieves Piña
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares), Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares), Spain
| | - Antonio Bauza
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares), Spain
| |
Collapse
|
26
|
Ariza-Mateos A, Nuthanakanti A, Serganov A. Riboswitch Mechanisms: New Tricks for an Old Dog. BIOCHEMISTRY (MOSCOW) 2021; 86:962-975. [PMID: 34488573 DOI: 10.1134/s0006297921080071] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Discovered almost twenty years ago, riboswitches turned out to be one of the most common regulatory systems in bacteria, with representatives found in eukaryotes and archaea. Unlike many other regulatory elements, riboswitches are entirely composed of RNA and capable of modulating expression of genes by direct binding of small cellular molecules. While bacterial riboswitches had been initially thought to control production of enzymes and transporters associated with small organic molecules via feedback regulatory circuits, later findings identified riboswitches directing expression of a wide range of genes and responding to various classes of molecules, including ions, signaling molecules, and others. The 5'-untranslated mRNA regions host a vast majority of riboswitches, which modulate transcription or translation of downstream genes through conformational rearrangements in the ligand-sensing domains and adjacent expression-controlling platforms. Over years, the repertoire of regulatory mechanisms employed by riboswitches has greatly expanded; most recent studies have highlighted the importance of alternative mechanisms, such as RNA degradation, for the riboswitch-mediated genetic circuits. This review discusses the plethora of bacterial riboswitch mechanisms and illustrates how riboswitches utilize different features and approaches to elicit various regulatory responses.
Collapse
Affiliation(s)
- Ascensión Ariza-Mateos
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ashok Nuthanakanti
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
27
|
Penev PI, Fakhretaha-Aval S, Patel VJ, Cannone JJ, Gutell RR, Petrov AS, Williams LD, Glass JB. Supersized Ribosomal RNA Expansion Segments in Asgard Archaea. Genome Biol Evol 2021; 12:1694-1710. [PMID: 32785681 PMCID: PMC7594248 DOI: 10.1093/gbe/evaa170] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
The ribosome’s common core, comprised of ribosomal RNA (rRNA) and universal ribosomal proteins, connects all life back to a common ancestor and serves as a window to relationships among organisms. The rRNA of the common core is similar to rRNA of extant bacteria. In eukaryotes, the rRNA of the common core is decorated by expansion segments (ESs) that vastly increase its size. Supersized ESs have not been observed previously in Archaea, and the origin of eukaryotic ESs remains enigmatic. We discovered that the large ribosomal subunit (LSU) rRNA of two Asgard phyla, Lokiarchaeota and Heimdallarchaeota, considered to be the closest modern archaeal cell lineages to Eukarya, bridge the gap in size between prokaryotic and eukaryotic LSU rRNAs. The elongated LSU rRNAs in Lokiarchaeota and Heimdallarchaeota stem from two supersized ESs, called ES9 and ES39. We applied chemical footprinting experiments to study the structure of Lokiarchaeota ES39. Furthermore, we used covariation and sequence analysis to study the evolution of Asgard ES39s and ES9s. By defining the common eukaryotic ES39 signature fold, we found that Asgard ES39s have more and longer helices than eukaryotic ES39s. Although Asgard ES39s have sequences and structures distinct from eukaryotic ES39s, we found overall conservation of a three-way junction across the Asgard species that matches eukaryotic ES39 topology, a result consistent with the accretion model of ribosomal evolution.
Collapse
Affiliation(s)
- Petar I Penev
- Georgia Institute of Technology, NASA Center for the Origin of Life, Atlanta, Georgia.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Sara Fakhretaha-Aval
- Georgia Institute of Technology, NASA Center for the Origin of Life, Atlanta, Georgia.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Vaishnavi J Patel
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas
| | - Jamie J Cannone
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas
| | - Robin R Gutell
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas
| | - Anton S Petrov
- Georgia Institute of Technology, NASA Center for the Origin of Life, Atlanta, Georgia.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Loren Dean Williams
- Georgia Institute of Technology, NASA Center for the Origin of Life, Atlanta, Georgia.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Jennifer B Glass
- Georgia Institute of Technology, NASA Center for the Origin of Life, Atlanta, Georgia.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia.,School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
28
|
Wilson TJ, Lilley DMJ. The potential versatility of RNA catalysis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1651. [PMID: 33949113 DOI: 10.1002/wrna.1651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 01/21/2023]
Abstract
It is commonly thought that in the early development of life on this planet RNA would have acted both as a store of genetic information and as a catalyst. While a number of RNA enzymes are known in contemporary cells, they are largely confined to phosphoryl transfer reactions, whereas an RNA based metabolism would have required a much greater chemical diversity of catalysis. Here we discuss how RNA might catalyze a wider variety of chemistries, and particularly how information gleaned from riboswitches could suggest how ribozymes might recruit coenzymes to expand their chemical range. We ask how we might seek such activities in modern biology. This article is categorized under: RNA-Based Catalysis > Miscellaneous RNA-Catalyzed Reactions Regulatory RNAs/RNAi/Riboswitches > Riboswitches RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Timothy J Wilson
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee, UK
| | - David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee, UK
| |
Collapse
|
29
|
Transcription of Cystathionine β-Lyase (MetC) Is Repressed by HeuR in Campylobacter jejuni, and Methionine Biosynthesis Facilitates Colonocyte Invasion. J Bacteriol 2021; 203:e0016421. [PMID: 34001558 DOI: 10.1128/jb.00164-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A previously identified transcriptional regulator in Campylobacter jejuni, termed HeuR, was found to positively regulate heme utilization. Additionally, transcriptomic work demonstrated that the putative operons CJJ81176_1390 to CJJ81176_1394 (CJJ81176_1390-1394) and CJJ81176_1214-1217 were upregulated in a HeuR mutant, suggesting that HeuR negatively regulates expression of these genes. Because genes within these clusters include a cystathionine β-lyase (metC) and a methionine synthase (metE), it appeared HeuR negatively regulates C. jejuni methionine biosynthesis. To address this, we confirmed mutation of HeuR reproducibly results in metC overexpression under nutrient-replete conditions but did not affect expression of metE, while metC expression in the wild type increased to heuR mutant levels during iron limitation. We subsequently determined that both gene clusters are operonic and demonstrated the direct interaction of HeuR with the predicted promoter regions of these operons. Using DNase footprinting assays, we were able to show that HeuR specifically binds within the predicted -35 region of the CJJ81176_1390-1394 operon. As predicted based on transcriptional results, the HeuR mutant was able to grow and remain viable in a defined medium with and without methionine, but we identified significant impacts on growth and viability in metC and metE mutants. Additionally, we observed decreased adherence, invasion, and persistence of metC and metE mutants when incubated with human colonocytes, while the heuR mutant exhibited increased invasion. Taken together, these results suggest that HeuR regulates methionine biosynthesis in an iron-responsive manner and that the ability to produce methionine is an important factor for adhering to and invading the gastrointestinal tract of a susceptible host. IMPORTANCE As the leading cause of bacterium-derived gastroenteritis worldwide, Campylobacter jejuni has a significant impact on human health. Investigating colonization factors that allow C. jejuni to successfully infect a host furthers our understanding of genes and regulatory elements necessary for virulence. In this study, we have begun to characterize the role of the transcriptional regulatory protein, HeuR, on methionine biosynthesis in C. jejuni. When the ability to synthesize methionine is impaired, detrimental impacts on growth and viability are observed during growth in limited media lacking methionine and/or iron. Additionally, mutations in the methionine biosynthetic pathway result in decreased adhesion, invasion, and intracellular survival of C. jejuni when incubated with human colonocytes, indicating the importance of regulating methionine biosynthesis.
Collapse
|
30
|
Dziuba D, Didier P, Ciaco S, Barth A, Seidel CAM, Mély Y. Fundamental photophysics of isomorphic and expanded fluorescent nucleoside analogues. Chem Soc Rev 2021; 50:7062-7107. [PMID: 33956014 DOI: 10.1039/d1cs00194a] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are structurally diverse mimics of the natural essentially non-fluorescent nucleosides which have found numerous applications in probing the structure and dynamics of nucleic acids as well as their interactions with various biomolecules. In order to minimize disturbance in the labelled nucleic acid sequences, the FNA chromophoric groups should resemble the natural nucleobases in size and hydrogen-bonding patterns. Isomorphic and expanded FNAs are the two groups that best meet the criteria of non-perturbing fluorescent labels for DNA and RNA. Significant progress has been made over the past decades in understanding the fundamental photophysics that governs the spectroscopic and environmentally sensitive properties of these FNAs. Herein, we review recent advances in the spectroscopic and computational studies of selected isomorphic and expanded FNAs. We also show how this information can be used as a rational basis to design new FNAs, select appropriate sequences for optimal spectroscopic response and interpret fluorescence data in FNA applications.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Stefano Ciaco
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France. and Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Anders Barth
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Claus A M Seidel
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| |
Collapse
|
31
|
Bendre AD, Peters PJ, Kumar J. Recent Insights into the Structure and Function of Mycobacterial Membrane Proteins Facilitated by Cryo-EM. J Membr Biol 2021; 254:321-341. [PMID: 33954837 PMCID: PMC8099146 DOI: 10.1007/s00232-021-00179-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 03/23/2021] [Indexed: 12/26/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is one of the deadliest pathogens encountered by humanity. Over the decades, its characteristic membrane organization and composition have been understood. However, there is still limited structural information and mechanistic understanding of the constituent membrane proteins critical for drug discovery pipelines. Recent advances in single-particle cryo-electron microscopy and cryo-electron tomography have provided the much-needed impetus towards structure determination of several vital Mtb membrane proteins whose structures were inaccessible via X-ray crystallography and NMR. Important insights into membrane composition and organization have been gained via a combination of electron tomography and biochemical and biophysical assays. In addition, till the time of writing this review, 75 new structures of various Mtb proteins have been reported via single-particle cryo-EM. The information obtained from these structures has improved our understanding of the mechanisms of action of these proteins and the physiological pathways they are associated with. These structures have opened avenues for structure-based drug design and vaccine discovery programs that might help achieve global-TB control. This review describes the structural features of selected membrane proteins (type VII secretion systems, Rv1819c, Arabinosyltransferase, Fatty Acid Synthase, F-type ATP synthase, respiratory supercomplex, ClpP1P2 protease, ClpB disaggregase and SAM riboswitch), their involvement in physiological pathways, and possible use as a drug target. Tuberculosis is a deadly disease caused by Mycobacterium tuberculosis. The Cryo-EM and tomography have simplified the understanding of the mycobacterial membrane organization. Some proteins are located in the plasma membrane; some span the entire envelope, while some, like MspA, are located in the mycomembrane. Cryo-EM has made the study of such membrane proteins feasible.
Collapse
Affiliation(s)
- Ameya D Bendre
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University Campus, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Nanoscopy, Maastricht University, Maastricht, The Netherlands
| | - Janesh Kumar
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University Campus, Ganeshkhind, Pune, Maharashtra, 411007, India.
| |
Collapse
|
32
|
Torabi SF, Vaidya AT, Tycowski KT, DeGregorio SJ, Wang J, Shu MD, Steitz TA, Steitz JA. RNA stabilization by a poly(A) tail 3'-end binding pocket and other modes of poly(A)-RNA interaction. Science 2021; 371:science.abe6523. [PMID: 33414189 DOI: 10.1126/science.abe6523] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022]
Abstract
Polyadenylate [poly(A)] tail addition to the 3' end of a wide range of RNAs is a highly conserved modification that plays a central role in cellular RNA function. Elements for nuclear expression (ENEs) are cis-acting RNA elements that stabilize poly(A) tails by sequestering them in RNA triplex structures. A crystal structure of a double ENE from a rice hAT transposon messenger RNA complexed with poly(A)28 at a resolution of 2.89 angstroms reveals multiple modes of interaction with poly(A), including major-groove triple helices, extended minor-groove interactions with RNA double helices, a quintuple-base motif that transitions poly(A) from minor-groove associations to major-groove triple helices, and a poly(A) 3'-end binding pocket. Our findings both expand the repertoire of motifs involved in long-range RNA interactions and provide insights into how polyadenylation can protect an RNA's extreme 3' end.
Collapse
Affiliation(s)
- Seyed-Fakhreddin Torabi
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Anand T Vaidya
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA.,TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Kazimierz T Tycowski
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Suzanne J DeGregorio
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Mei-Di Shu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA. .,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
33
|
Yang L, Toh DFK, Krishna MS, Zhong Z, Liu Y, Wang S, Gong Y, Chen G. Tertiary Base Triple Formation in the SRV-1 Frameshifting Pseudoknot Stabilizes Secondary Structure Components. Biochemistry 2020; 59:4429-4438. [PMID: 33166472 DOI: 10.1021/acs.biochem.0c00611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Minor-groove base triples formed between stem 1 and loop 2 of the simian retrovirus type 1 (SRV-1) mRNA frameshifting pseudoknot are essential in stimulating -1 ribosomal frameshifting. How tertiary base triple formation affects the local stabilities of secondary structures (stem 1 and stem 2) and thus ribosomal frameshifting efficiency is not well understood. We made a short peptide nucleic acid (PNA) that is expected to invade stem 1 of the SRV-1 pseudoknot by PNA-RNA duplex formation to mimic the stem 1 unwinding process by a translating ribosome. In addition, we used a PNA for invading stem 2 in the SRV-1 pseudoknot. Our nondenaturing polyacrylamide gel electrophoresis data for the binding of PNA to the SRV-1 pseudoknot and mutants reveal that mutations in loop 2 disrupting base triple formation between loop 2 and stem 1 in the SRV-1 pseudoknot result in enhanced invasion by both PNAs. Our data suggest that tertiary stem 1-loop 2 base triple interactions in the SRV-1 pseudoknot can stabilize both of the secondary structural components, stem 1 and stem 2. Stem 2 stability is thus coupled to the structural stability of stem 1-loop 2 base triples, mediated through a long-range effect. The apparent dissociation constants of both PNAs are positively correlated with the pseudoknot mechanical stabilities and frameshifting efficiencies. The relatively simple PNA local invasion experiment may be used to characterize the energetic contribution of tertiary interactions and ligand binding in many other RNA and DNA structures.
Collapse
Affiliation(s)
- Lixia Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, P. R. China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), No. 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P. R. China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Zhensheng Zhong
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yiyao Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, P. R. China
| | - Shaomeng Wang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, P. R. China
| | - Yubin Gong
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, Sichuan 610054, P. R. China
| | - Gang Chen
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), No. 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P. R. China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
34
|
Malina J, Farrell NP, Brabec V. Substitution-Inert Polynuclear Platinum Complexes Inhibit Reverse Transcription Preferentially in RNA Triplex-Forming Templates. Inorg Chem 2020; 59:15135-15143. [PMID: 32988198 DOI: 10.1021/acs.inorgchem.0c02070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA triplexes are significant tertiary structure motifs that are found in many functional RNAs. Hence, small molecules capable of recognition, binding, and stabilization of the triple-helical RNA structures are emerging as attractive potential molecular biology tools and therapeutic agents. Here, we utilize methods of molecular biology and biophysics to study the interactions of a series of antitumor substitution-inert polynuclear platinum complexes (SI-PPCs) with triple-helical RNA structures. We show that SI-PPCs recognize and stabilize RNA triplexes and inhibit reverse transcription preferentially in the RNA template prone to the triplex formation. These so far unexplored properties of SI-PPCs suggest that the targeting of triple-stranded regions in RNA might contribute to the biological effects of SI-PPCs.
Collapse
Affiliation(s)
- Jaroslav Malina
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61265, Czech Republic
| | - Nicholas P Farrell
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61265, Czech Republic
| |
Collapse
|
35
|
Abstract
Biocatalysis is dominated by protein enzymes, and only a few classes of ribozymes are known to contribute to the task of promoting biochemical transformations. The RNA World theory encompasses the notion that earlier forms of life made use of a much greater diversity of ribozymes and other functional RNAs to guide complex metabolic states long before proteins had emerged in evolution. In recent years, the discoveries of various classes of ribozymes, riboswitches, and other noncoding RNAs in bacteria have provided additional support for the hypothesis that RNA molecules indeed have the catalytic competence to promote diverse chemical reactions without the aid of protein enzymes. Herein, some of the most striking observations made from examinations of natural riboswitches that bind small ligands are highlighted and used as a basis to imagine the characteristics and functions of long-extinct ribozymes from the RNA World.
Collapse
Affiliation(s)
- Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Department of Chemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520, United States
| |
Collapse
|
36
|
Huang L, Liao TW, Wang J, Ha T, Lilley DMJ. Crystal structure and ligand-induced folding of the SAM/SAH riboswitch. Nucleic Acids Res 2020; 48:7545-7556. [PMID: 32520325 PMCID: PMC7367207 DOI: 10.1093/nar/gkaa493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 01/09/2023] Open
Abstract
While most SAM riboswitches strongly discriminate between SAM and SAH, the SAM/SAH riboswitch responds to both ligands with similar apparent affinities. We have determined crystal structures of the SAM/SAH riboswitch bound to SAH, SAM and other variant ligands at high resolution. The riboswitch forms an H-type pseudoknot structure with coaxial alignment of the stem–loop helix (P1) and the pseudoknot helix (PK). An additional three base pairs form at the non-open end of P1, and the ligand is bound at the interface between the P1 extension and the PK helix. The adenine nucleobase is stacked into the helix and forms a trans Hoogsteen–Watson–Crick base pair with a uridine, thus becoming an integral part of the helical structure. The majority of the specific interactions are formed with the adenosine. The methionine or homocysteine chain lies in the groove making a single hydrogen bond, and there is no discrimination between the sulfonium of SAM or the thioether of SAH. Single-molecule FRET analysis reveals that the riboswitch exists in two distinct conformations, and that addition of SAM or SAH shifts the population into a stable state that likely corresponds to the form observed in the crystal. A model for translational regulation is presented whereby in the absence of ligand the riboswitch is largely unfolded, lacking the PK helix so that translation can be initiated at the ribosome binding site. But the presence of ligand stabilizes the folded conformation that includes the PK helix, so occluding the ribosome binding site and thus preventing the initiation of translation.
Collapse
Affiliation(s)
- Lin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.,RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.,Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | | - Jia Wang
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Taekjip Ha
- Department of Biophysics.,Department of Biophysics and Biophysical Chemistry.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.,Howard Hughes Medical Institute, Baltimore, MD, USA
| | - David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
37
|
Beyene SS, Ling T, Ristevski B, Chen M. A novel riboswitch classification based on imbalanced sequences achieved by machine learning. PLoS Comput Biol 2020; 16:e1007760. [PMID: 32687488 PMCID: PMC7392346 DOI: 10.1371/journal.pcbi.1007760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/30/2020] [Accepted: 05/13/2020] [Indexed: 11/24/2022] Open
Abstract
Riboswitch, a part of regulatory mRNA (50-250nt in length), has two main classes: aptamer and expression platform. One of the main challenges raised during the classification of riboswitch is imbalanced data. That is a circumstance in which the records of a sequences of one group are very small compared to the others. Such circumstances lead classifier to ignore minority group and emphasize on majority ones, which results in a skewed classification. We considered sixteen riboswitch families, to be in accord with recent riboswitch classification work, that contain imbalanced sequences. The sequences were split into training and test set using a newly developed pipeline. From 5460 k-mers (k value 1 to 6) produced, 156 features were calculated based on CfsSubsetEval and BestFirst function found in WEKA 3.8. Statistically tested result was significantly difference between balanced and imbalanced sequences (p < 0.05). Besides, each algorithm also showed a significant difference in sensitivity, specificity, accuracy, and macro F-score when used in both groups (p < 0.05). Several k-mers clustered from heat map were discovered to have biological functions and motifs at the different positions like interior loops, terminal loops and helices. They were validated to have a biological function and some are riboswitch motifs. The analysis has discovered the importance of solving the challenges of majority bias analysis and overfitting. Presented results were generalized evaluation of both balanced and imbalanced models, which implies their ability of classifying, to classify novel riboswitches. The Python source code is available at https://github.com/Seasonsling/riboswitch.
Collapse
Affiliation(s)
- Solomon Shiferaw Beyene
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Tianyi Ling
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Blagoj Ristevski
- Faculty of Information and Communication Technologies, Bitola, St. Kliment Ohridski University Bitola, ul. Partizanska Bitola, Republic of North Macedonia
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Ruszkowska A, Ruszkowski M, Hulewicz JP, Dauter Z, Brown JA. Molecular structure of a U•A-U-rich RNA triple helix with 11 consecutive base triples. Nucleic Acids Res 2020; 48:3304-3314. [PMID: 31930330 PMCID: PMC7102945 DOI: 10.1093/nar/gkz1222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023] Open
Abstract
Three-dimensional structures have been solved for several naturally occurring RNA triple helices, although all are limited to six or fewer consecutive base triples, hindering accurate estimation of global and local structural parameters. We present an X-ray crystal structure of a right-handed, U•A-U-rich RNA triple helix with 11 continuous base triples. Due to helical unwinding, the RNA triple helix spans an average of 12 base triples per turn. The double helix portion of the RNA triple helix is more similar to both the helical and base step structural parameters of A′-RNA rather than A-RNA. Its most striking features are its wide and deep major groove, a smaller inclination angle and all three strands favoring a C3′-endo sugar pucker. Despite the presence of a third strand, the diameter of an RNA triple helix remains nearly identical to those of DNA and RNA double helices. Contrary to our previous modeling predictions, this structure demonstrates that an RNA triple helix is not limited in length to six consecutive base triples and that longer RNA triple helices may exist in nature. Our structure provides a starting point to establish structural parameters of the so-called ‘ideal’ RNA triple helix, analogous to A-RNA and B-DNA double helices.
Collapse
Affiliation(s)
- Agnieszka Ruszkowska
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Milosz Ruszkowski
- Synchrotron Radiation Research Section of MCL, National Cancer Institute, Argonne, IL 60439 USA
| | - Jacob P Hulewicz
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section of MCL, National Cancer Institute, Argonne, IL 60439 USA
| | - Jessica A Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA
| |
Collapse
|
39
|
Brown JA. Unraveling the structure and biological functions of RNA triple helices. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1598. [PMID: 32441456 PMCID: PMC7583470 DOI: 10.1002/wrna.1598] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
It has been nearly 63 years since the first characterization of an RNA triple helix in vitro by Gary Felsenfeld, David Davies, and Alexander Rich. An RNA triple helix consists of three strands: A Watson–Crick RNA double helix whose major‐groove establishes hydrogen bonds with the so‐called “third strand”. In the past 15 years, it has been recognized that these major‐groove RNA triple helices, like single‐stranded and double‐stranded RNA, also mediate prominent biological roles inside cells. Thus far, these triple helices are known to mediate catalysis during telomere synthesis and RNA splicing, bind to ligands and ions so that metabolite‐sensing riboswitches can regulate gene expression, and provide a clever strategy to protect the 3′ end of RNA from degradation. Because RNA triple helices play important roles in biology, there is a renewed interest in better understanding the fundamental properties of RNA triple helices and developing methods for their high‐throughput discovery. This review provides an overview of the fundamental biochemical and structural properties of major‐groove RNA triple helices, summarizes the structure and function of naturally occurring RNA triple helices, and describes prospective strategies to isolate RNA triple helices as a means to establish the “triplexome”. This article is categorized under:RNA Structure and Dynamics > RNA Structure and Dynamics RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems
Collapse
Affiliation(s)
- Jessica A Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
40
|
Dutta D, Wedekind JE. Nucleobase mutants of a bacterial preQ 1-II riboswitch that uncouple metabolite sensing from gene regulation. J Biol Chem 2020; 295:2555-2567. [PMID: 31659117 PMCID: PMC7049981 DOI: 10.1074/jbc.ra119.010755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/20/2019] [Indexed: 11/06/2022] Open
Abstract
Riboswitches are a class of nonprotein-coding RNAs that directly sense cellular metabolites to regulate gene expression. They are model systems for analyzing RNA-ligand interactions and are established targets for antibacterial agents. Many studies have analyzed the ligand-binding properties of riboswitches, but this work has outpaced our understanding of the underlying chemical pathways that govern riboswitch-controlled gene expression. To address this knowledge gap, we prepared 15 mutants of the preQ1-II riboswitch-a structurally and biochemically well-characterized HLout pseudoknot that recognizes the metabolite prequeuosine1 (preQ1). The mutants span the preQ1-binding pocket through the adjoining Shine-Dalgarno sequence (SDS) and include A-minor motifs, pseudoknot-insertion helix P4, U·A-U base triples, and canonical G-C pairs in the anti-SDS. As predicted-and confirmed by in vitro isothermal titration calorimetry measurements-specific mutations ablated preQ1 binding, but most aberrant binding effects were corrected by compensatory mutations. In contrast, functional analysis in live bacteria using a riboswitch-controlled GFPuv-reporter assay revealed that each mutant had a deleterious effect on gene regulation, even when compensatory changes were included. Our results indicate that effector binding can be uncoupled from gene regulation. We attribute loss of function to defects in a chemical interaction network that links effector binding to distal regions of the fold that support the gene-off RNA conformation. Our findings differentiate effector binding from biological function, which has ramifications for riboswitch characterization. Our results are considered in the context of synthetic ligands and drugs that bind tightly to riboswitches without eliciting a biological response.
Collapse
Affiliation(s)
- Debapratim Dutta
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Joseph E Wedekind
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642.
| |
Collapse
|
41
|
Zhou T, Wang H, Song L, Zhao Y. Computational study of switching mechanism in add A-riboswitch. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020. [DOI: 10.1142/s0219633620400015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Riboswitch can bind small molecules to regulate gene expression. Unlike other RNAs, riboswitch relies on its conformational switching for regulation. However, the understanding of the switching mechanism is still limited. Here, we focussed on the add A-riboswitch to illustrate the dynamical switching mechanism as an example. We performed molecular dynamics simulation, conservation and co-evolution calculations to infer the dynamical motions and evolutionary base pairings. The results suggest that the binding domain is stable for molecule recognition and binding, whereas the switching base pairings are co-evolutionary for translation. The understanding of the add A-riboswitch switching mechanism provides a potential solution for riboswitch drug design.
Collapse
Affiliation(s)
- Ting Zhou
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, P. R. China
| | - Huiwen Wang
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, P. R. China
| | - Linlu Song
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, P. R. China
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
42
|
Zhang X, Sun W, Chen D, Murchie AIH. Interactions between SAM and the 5' UTR mRNA of the sam1 gene regulate translation in S. pombe. RNA (NEW YORK, N.Y.) 2020; 26:150-161. [PMID: 31767786 PMCID: PMC6961541 DOI: 10.1261/rna.072983.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/14/2019] [Indexed: 05/03/2023]
Abstract
The 5' untranslated region (5' UTR) of eukaryotic mRNA plays an important role in translation. Here we report the function of the 5' UTR mRNA of S-adenosylmethionine synthetase (sam1) in translational modulation in the presence of SAM in fission yeast Schizosaccharomyces pombe Reporter assays, binding and chemical probing experiments, and mutational analysis show that the 5' UTR mRNA of sam1 binds to SAM to effect translation. Translational modulation is dependent on a tertiary structure transition in the RNA upon SAM binding. The characterization of such an RNA that is directly associated with an essential metabolic process in eukaryotes provides additional evidence that ligand binding by RNAs plays an important role in eukaryotic gene regulation.
Collapse
Affiliation(s)
- Xuhui Zhang
- Fudan University Pudong Medical Center, Pudong and Key Laboratory of Medical Epigenetics and Metabolism, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenxia Sun
- Fudan University Pudong Medical Center, Pudong and Key Laboratory of Medical Epigenetics and Metabolism, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Dongrong Chen
- Fudan University Pudong Medical Center, Pudong and Key Laboratory of Medical Epigenetics and Metabolism, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Alastair I H Murchie
- Fudan University Pudong Medical Center, Pudong and Key Laboratory of Medical Epigenetics and Metabolism, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
43
|
Chen J, Wang X, Pang L, Zhang JZH, Zhu T. Effect of mutations on binding of ligands to guanine riboswitch probed by free energy perturbation and molecular dynamics simulations. Nucleic Acids Res 2020; 47:6618-6631. [PMID: 31173143 PMCID: PMC6649850 DOI: 10.1093/nar/gkz499] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
Riboswitches can regulate gene expression by direct and specific interactions with ligands and have recently attracted interest as potential drug targets for antibacterial. In this work, molecular dynamics (MD) simulations, free energy perturbation (FEP) and molecular mechanics generalized Born surface area (MM-GBSA) methods were integrated to probe the effect of mutations on the binding of ligands to guanine riboswitch (GR). The results not only show that binding free energies predicted by FEP and MM-GBSA obtain an excellent correlation, but also indicate that mutations involved in the current study can strengthen the binding affinity of ligands GR. Residue-based free energy decomposition was applied to compute ligand-nucleotide interactions and the results suggest that mutations highly affect interactions of ligands with key nucleotides U22, U51 and C74. Dynamics analyses based on MD trajectories indicate that mutations not only regulate the structural flexibility but also change the internal motion modes of GR, especially for the structures J12, J23 and J31, which implies that the aptamer domain activity of GR is extremely plastic and thus readily tunable by nucleotide mutations. This study is expected to provide useful molecular basis and dynamics information for the understanding of the function of GR and possibility as potential drug targets for antibacterial.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357 China
| | - Xingyu Wang
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Laixue Pang
- School of Science, Shandong Jiaotong University, Jinan 250357 China
| | - John Z H Zhang
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China.,Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Tong Zhu
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China.,Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
44
|
Sun A, Gasser C, Li F, Chen H, Mair S, Krasheninina O, Micura R, Ren A. SAM-VI riboswitch structure and signature for ligand discrimination. Nat Commun 2019; 10:5728. [PMID: 31844059 PMCID: PMC6914780 DOI: 10.1038/s41467-019-13600-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022] Open
Abstract
Riboswitches are metabolite-sensing, conserved domains located in non-coding regions of mRNA that are central to regulation of gene expression. Here we report the first three-dimensional structure of the recently discovered S-adenosyl-L-methionine responsive SAM-VI riboswitch. SAM-VI adopts a unique fold and ligand pocket that are distinct from all other known SAM riboswitch classes. The ligand binds to the junctional region with its adenine tightly intercalated and Hoogsteen base-paired. Furthermore, we reveal the ligand discrimination mode of SAM-VI by additional X-ray structures of this riboswitch bound to S-adenosyl-L-homocysteine and a synthetic ligand mimic, in combination with isothermal titration calorimetry and fluorescence spectroscopy to explore binding thermodynamics and kinetics. The structure is further evaluated by analysis of ligand binding to SAM-VI mutants. It thus provides a thorough basis for developing synthetic SAM cofactors for applications in chemical and synthetic RNA biology.
Collapse
Affiliation(s)
- Aiai Sun
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Catherina Gasser
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, Leopold Franzens University, Innsbruck, A6020, Austria
| | - Fudong Li
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics and School of Life Sciences, University of Science and Technology of China, 230026, Hefei, China
| | - Hao Chen
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Stefan Mair
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, Leopold Franzens University, Innsbruck, A6020, Austria
| | - Olga Krasheninina
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, Leopold Franzens University, Innsbruck, A6020, Austria
| | - Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, Leopold Franzens University, Innsbruck, A6020, Austria.
| | - Aiming Ren
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
45
|
Huang L, Wang J, Watkins AM, Das R, Lilley DMJ. Structure and ligand binding of the glutamine-II riboswitch. Nucleic Acids Res 2019; 47:7666-7675. [PMID: 31216023 PMCID: PMC6698751 DOI: 10.1093/nar/gkz539] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022] Open
Abstract
We have determined the structure of the glutamine-II riboswitch ligand binding domain using X-ray crystallography. The structure was solved using a novel combination of homology modeling and molecular replacement. The structure comprises three coaxial helical domains, the central one of which is a pseudoknot with partial triplex character. The major groove of this helix provides the binding site for L-glutamine, which is extensively hydrogen bonded to the RNA. Atomic mutation of the RNA at the ligand binding site leads to loss of binding shown by isothermal titration calorimetry, explaining the specificity of the riboswitch. A metal ion also plays an important role in ligand binding. This is directly bonded to a glutamine carboxylate oxygen atom, and its remaining inner-sphere water molecules make hydrogen bonding interactions with the RNA.
Collapse
Affiliation(s)
- Lin Huang
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Jia Wang
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Andrew M Watkins
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
46
|
Zhang K, Li S, Kappel K, Pintilie G, Su Z, Mou TC, Schmid MF, Das R, Chiu W. Cryo-EM structure of a 40 kDa SAM-IV riboswitch RNA at 3.7 Å resolution. Nat Commun 2019; 10:5511. [PMID: 31796736 PMCID: PMC6890682 DOI: 10.1038/s41467-019-13494-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/03/2019] [Indexed: 01/17/2023] Open
Abstract
Specimens below 50 kDa have generally been considered too small to be analyzed by single-particle cryo-electron microscopy (cryo-EM). The high flexibility of pure RNAs makes it difficult to obtain high-resolution structures by cryo-EM. In bacteria, riboswitches regulate sulfur metabolism through binding to the S-adenosylmethionine (SAM) ligand and offer compelling targets for new antibiotics. SAM-I, SAM-I/IV, and SAM-IV are the three most commonly found SAM riboswitches, but the structure of SAM-IV is still unknown. Here, we report the structures of apo and SAM-bound SAM-IV riboswitches (119-nt, ~40 kDa) to 3.7 Å and 4.1 Å resolution, respectively, using cryo-EM. The structures illustrate homologies in the ligand-binding core but distinct peripheral tertiary contacts in SAM-IV compared to SAM-I and SAM-I/IV. Our results demonstrate the feasibility of resolving small RNAs with enough detail to enable detection of their ligand-binding pockets and suggest that cryo-EM could play a role in structure-assisted drug design for RNA.
Collapse
Affiliation(s)
- Kaiming Zhang
- Department of Bioengineering, and James H. Clark Center, Stanford University, Stanford, CA, 94305, USA
| | - Shanshan Li
- Department of Bioengineering, and James H. Clark Center, Stanford University, Stanford, CA, 94305, USA
| | - Kalli Kappel
- Biophysics Program, Stanford University, Stanford, CA, 94305, USA
| | - Grigore Pintilie
- Department of Bioengineering, and James H. Clark Center, Stanford University, Stanford, CA, 94305, USA
| | - Zhaoming Su
- Department of Bioengineering, and James H. Clark Center, Stanford University, Stanford, CA, 94305, USA
| | - Tung-Chung Mou
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, 59812, USA
| | - Michael F Schmid
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA.
- Department of Physics, Stanford University, Stanford, CA, 94305, USA.
| | - Wah Chiu
- Department of Bioengineering, and James H. Clark Center, Stanford University, Stanford, CA, 94305, USA.
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA.
| |
Collapse
|
47
|
Suddala KC, Zhang J. High-affinity recognition of specific tRNAs by an mRNA anticodon-binding groove. Nat Struct Mol Biol 2019; 26:1114-1122. [PMID: 31792448 PMCID: PMC6903423 DOI: 10.1038/s41594-019-0335-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/21/2019] [Indexed: 11/10/2022]
Abstract
T-box riboswitches are modular bacterial noncoding RNAs that sense and regulate amino acid availability through direct interactions with tRNAs. Between the 5' anticodon-binding stem I domain and the 3' amino acid sensing domains of most T-boxes lies the stem II domain of unknown structure and function. Here, we report a 2.8-Å cocrystal structure of the Nocardia farcinica ileS T-box in complex with its cognate tRNAIle. The structure reveals a perpendicularly arranged ultrashort stem I containing a K-turn and an elongated stem II bearing an S-turn. Both stems rest against a compact pseudoknot, dock via an extended ribose zipper and jointly create a binding groove specific to the anticodon of its cognate tRNA. Contrary to proposed distal contacts to the tRNA elbow region, stem II locally reinforces the codon-anticodon interactions between stem I and tRNA, achieving low-nanomolar affinity. This study illustrates how mRNA junctions can create specific binding sites for interacting RNAs of prescribed sequence and structure.
Collapse
Affiliation(s)
- Krishna C Suddala
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| |
Collapse
|
48
|
Kunkler CN, Hulewicz JP, Hickman SC, Wang MC, McCown PJ, Brown JA. Stability of an RNA•DNA-DNA triple helix depends on base triplet composition and length of the RNA third strand. Nucleic Acids Res 2019; 47:7213-7222. [PMID: 31265072 PMCID: PMC6698731 DOI: 10.1093/nar/gkz573] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/13/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022] Open
Abstract
Recent studies suggest noncoding RNAs interact with genomic DNA, forming an RNA•DNA–DNA triple helix that regulates gene expression. However, base triplet composition of pyrimidine motif RNA•DNA–DNA triple helices is not well understood beyond the canonical U•A–T and C•G–C base triplets. Using native gel-shift assays, the relative stability of 16 different base triplets at a single position, Z•X–Y (where Z = C, U, A, G and X–Y = A–T, G–C, T–A, C–G), in an RNA•DNA–DNA triple helix was determined. The canonical U•A–T and C•G–C base triplets were the most stable, while three non-canonical base triplets completely disrupted triple-helix formation. We further show that our RNA•DNA–DNA triple helix can tolerate up to two consecutive non-canonical A•G–C base triplets. Additionally, the RNA third strand must be at least 19 nucleotides to form an RNA•DNA–DNA triple helix but increasing the length to 27 nucleotides does not increase stability. The relative stability of 16 different base triplets in DNA•DNA–DNA and RNA•RNA–RNA triple helices was distinctly different from those in RNA•DNA–DNA triple helices, showing that base triplet stability depends on strand composition being DNA and/or RNA. Multiple factors influence the stability of triple helices, emphasizing the importance of experimentally validating formation of computationally predicted triple helices.
Collapse
Affiliation(s)
- Charlotte N Kunkler
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jacob P Hulewicz
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sarah C Hickman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Matthew C Wang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Phillip J McCown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jessica A Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
49
|
Weickhmann AK, Keller H, Wurm JP, Strebitzer E, Juen MA, Kremser J, Weinberg Z, Kreutz C, Duchardt-Ferner E, Wöhnert J. The structure of the SAM/SAH-binding riboswitch. Nucleic Acids Res 2019; 47:2654-2665. [PMID: 30590743 PMCID: PMC6411933 DOI: 10.1093/nar/gky1283] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/12/2018] [Accepted: 12/26/2018] [Indexed: 12/16/2022] Open
Abstract
S-adenosylmethionine (SAM) is a central metabolite since it is used as a methyl group donor in many different biochemical reactions. Many bacteria control intracellular SAM concentrations using riboswitch-based mechanisms. A number of structurally different riboswitch families specifically bind to SAM and mainly regulate the transcription or the translation of SAM-biosynthetic enzymes. In addition, a highly specific riboswitch class recognizes S-adenosylhomocysteine (SAH)—the product of SAM-dependent methyl group transfer reactions—and regulates enzymes responsible for SAH hydrolysis. High-resolution structures are available for many of these riboswitch classes and illustrate how they discriminate between the two structurally similar ligands SAM and SAH. The so-called SAM/SAH riboswitch class binds both ligands with similar affinities and is structurally not yet characterized. Here, we present a high-resolution nuclear magnetic resonance structure of a member of the SAM/SAH-riboswitch class in complex with SAH. Ligand binding induces pseudoknot formation and sequestration of the ribosome binding site. Thus, the SAM/SAH-riboswitches are translational ‘OFF’-switches. Our results establish a structural basis for the unusual bispecificity of this riboswitch class. In conjunction with genomic data our structure suggests that the SAM/SAH-riboswitches might be an evolutionary late invention and not a remnant of a primordial RNA-world as suggested for other riboswitches.
Collapse
Affiliation(s)
- A Katharina Weickhmann
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt/M., Germany
| | - Heiko Keller
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt/M., Germany
| | - Jan P Wurm
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt/M., Germany.,Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Bavaria, Germany
| | - Elisabeth Strebitzer
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Michael A Juen
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Johannes Kremser
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Zasha Weinberg
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Centre for Bioinformatics, Institute of Informatics, University of Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Christoph Kreutz
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Elke Duchardt-Ferner
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt/M., Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt/M., Germany
| |
Collapse
|
50
|
Ageeli AA, McGovern-Gooch KR, Kaminska MM, Baird NJ. Finely tuned conformational dynamics regulate the protective function of the lncRNA MALAT1 triple helix. Nucleic Acids Res 2019; 47:1468-1481. [PMID: 30462290 PMCID: PMC6379651 DOI: 10.1093/nar/gky1171] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/28/2018] [Accepted: 11/03/2018] [Indexed: 12/21/2022] Open
Abstract
Nucleic acid triplexes may regulate many important biological processes. Persistent accumulation of the oncogenic 7-kb long noncoding RNA MALAT1 is dependent on an unusually long intramolecular triple helix. This triplex structure is positioned within a conserved ENE (element for nuclear expression) motif at the lncRNA 3′ terminus and protects the entire transcript from degradation in a polyA-independent manner. A requisite 3′ maturation step leads to triplex formation though the precise mechanism of triplex folding remains unclear. Furthermore, the contributions of several peripheral structural elements to triplex formation and protective function have not been determined. We evaluated the stability, conformational fluctuations, and function of this MALAT1 ENE triple helix (M1TH) protective element using in vitro mutational analyses coupled with biochemical and biophysical characterizations. Using fluorescence and UV melts, FRET, and an exonucleolytic decay assay we define a concerted mechanism for triplex formation and uncover a metastable, dynamic triplex population under near-physiological conditions. Structural elements surrounding the triplex regulate the dynamic M1TH conformational variability, but increased triplex dynamics lead to M1TH degradation. Taken together, we suggest that finely tuned dynamics may be a general mechanism regulating triplex-mediated functions.
Collapse
Affiliation(s)
- Abeer A Ageeli
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, PA 19143, USA
| | | | - Magdalena M Kaminska
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, PA 19143, USA
| | - Nathan J Baird
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, PA 19143, USA
| |
Collapse
|