1
|
Khayat F, Alshmery M, Pal M, Oliver A, Bianchi A. Binding of the TRF2 iDDR motif to RAD50 highlights a convergent evolutionary strategy to inactivate MRN at telomeres. Nucleic Acids Res 2024; 52:7704-7719. [PMID: 38884214 PMCID: PMC11260466 DOI: 10.1093/nar/gkae509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/07/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024] Open
Abstract
Telomeres protect chromosome ends from unscheduled DNA repair, including from the MRN (MRE11, RAD50, NBS1) complex, which processes double-stranded DNA breaks (DSBs) via activation of the ATM kinase, promotes DNA end-tethering aiding the non-homologous end-joining (NHEJ) pathway, and initiates DSB resection through the MRE11 nuclease. A protein motif (MIN, for MRN inhibitor) inhibits MRN at budding yeast telomeres by binding to RAD50 and evolved at least twice, in unrelated telomeric proteins Rif2 and Taz1. We identify the iDDR motif of human shelterin protein TRF2 as a third example of convergent evolution for this telomeric mechanism for binding MRN, despite the iDDR lacking sequence homology to the MIN motif. CtIP is required for activation of MRE11 nuclease action, and we provide evidence for binding of a short C-terminal region of CtIP to a RAD50 interface that partly overlaps with the iDDR binding site, indicating that the interaction is mutually exclusive. In addition, we show that the iDDR impairs the DNA binding activity of RAD50. These results highlight direct inhibition of MRN action as a crucial role of telomeric proteins across organisms and point to multiple mechanisms enforced by the iDDR to disable the many activities of the MRN complex.
Collapse
Affiliation(s)
- Freddy Khayat
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Majedh Alshmery
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
- Department of Life Sciences, Hafr Al Batin University, Saudi Arabia
| | - Mohinder Pal
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
- School of Biosciences, University of Kent, Canterbury, UK
| | - Antony W Oliver
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Alessandro Bianchi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
2
|
Pizzul P, Casari E, Rinaldi C, Gnugnoli M, Mangiagalli M, Tisi R, Longhese MP. Rif2 interaction with Rad50 counteracts Tel1 functions in checkpoint signalling and DNA tethering by releasing Tel1 from MRX binding. Nucleic Acids Res 2024; 52:2355-2371. [PMID: 38180815 PMCID: PMC10954470 DOI: 10.1093/nar/gkad1246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
The yeast Rif2 protein is known to inhibit Mre11 nuclease and the activation of Tel1 kinase through a short motif termed MIN, which binds the Rad50 subunit and simulates its ATPase activity in vitro. The mechanism by which Rif2 restrains Tel1 activation and the consequences of this inhibition at DNA double-strand breaks (DSBs) are poorly understood. In this study, we employed AlphaFold-Multimer modelling to pinpoint and validate the interaction surface between Rif2 MIN and Rad50. We also engineered the rif2-S6E mutation that enhances the inhibitory effect of Rif2 by increasing Rif2-Rad50 interaction. Unlike rif2Δ, the rif2-S6E mutation impairs hairpin cleavage. Furthermore, it diminishes Tel1 activation by inhibiting Tel1 binding to DSBs while leaving MRX association unchanged, indicating that Rif2 can directly inhibit Tel1 recruitment to DSBs. Additionally, Rif2S6E reduces Tel1-MRX interaction and increases stimulation of ATPase by Rad50, indicating that Rif2 binding to Rad50 induces an ADP-bound MRX conformation that is not suitable for Tel1 binding. The decreased Tel1 recruitment to DSBs in rif2-S6E cells impairs DSB end-tethering and this bridging defect is suppressed by expressing a Tel1 mutant variant that increases Tel1 persistence at DSBs, suggesting a direct role for Tel1 in the bridging of DSB ends.
Collapse
Affiliation(s)
- Paolo Pizzul
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano - Bicocca, 20126 Milano, Italy
| | - Erika Casari
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano - Bicocca, 20126 Milano, Italy
| | - Carlo Rinaldi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano - Bicocca, 20126 Milano, Italy
| | - Marco Gnugnoli
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano - Bicocca, 20126 Milano, Italy
| | - Marco Mangiagalli
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano - Bicocca, 20126 Milano, Italy
| | - Renata Tisi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano - Bicocca, 20126 Milano, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano - Bicocca, 20126 Milano, Italy
| |
Collapse
|
3
|
Rotheneder M, Stakyte K, van de Logt E, Bartho JD, Lammens K, Fan Y, Alt A, Kessler B, Jung C, Roos WP, Steigenberger B, Hopfner KP. Cryo-EM structure of the Mre11-Rad50-Nbs1 complex reveals the molecular mechanism of scaffolding functions. Mol Cell 2023; 83:167-185.e9. [PMID: 36577401 DOI: 10.1016/j.molcel.2022.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/14/2022] [Accepted: 12/03/2022] [Indexed: 12/28/2022]
Abstract
The DNA double-strand break repair complex Mre11-Rad50-Nbs1 (MRN) detects and nucleolytically processes DNA ends, activates the ATM kinase, and tethers DNA at break sites. How MRN can act both as nuclease and scaffold protein is not well understood. The cryo-EM structure of MRN from Chaetomium thermophilum reveals a 2:2:1 complex with a single Nbs1 wrapping around the autoinhibited Mre11 nuclease dimer. MRN has two DNA-binding modes, one ATP-dependent mode for loading onto DNA ends and one ATP-independent mode through Mre11's C terminus, suggesting how it may interact with DSBs and intact DNA. MRNs two 60-nm-long coiled-coil domains form a linear rod structure, the apex of which is assembled by the two joined zinc-hook motifs. Apices from two MRN complexes can further dimerize, forming 120-nm spanning MRN-MRN structures. Our results illustrate the architecture of MRN and suggest how it mechanistically integrates catalytic and tethering functions.
Collapse
Affiliation(s)
- Matthias Rotheneder
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Kristina Stakyte
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Erik van de Logt
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Joseph D Bartho
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Katja Lammens
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Yilan Fan
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Aaron Alt
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Brigitte Kessler
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Christophe Jung
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Wynand P Roos
- Institute for Toxicology, Johannes-Gutenberg-Universität, Mainz, Germany
| | - Barbara Steigenberger
- Mass Spectrometry Core Facility, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Karl-Peter Hopfner
- Gene Center, Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany.
| |
Collapse
|
4
|
Interplay between Sae2 and Rif2 in the regulation of Mre11-Rad50 activities at DNA ends. Curr Opin Genet Dev 2021; 71:72-77. [PMID: 34311383 DOI: 10.1016/j.gde.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023]
Abstract
DNA double-strand breaks (DSBs) can be repaired by non-homologous end-joining (NHEJ) or homologous recombination (HR). HR is initiated by nucleolytic degradation of the DSB ends in a process termed resection. The Mre11-Rad50-Xrs2/NBS1 (MRX/N) complex is a multifunctional enzyme that, aided by the Sae2/CtIP protein, promotes DSB resection and maintains the DSB ends tethered to each other to facilitate their re-ligation. Furthermore, it activates the protein kinase Tel1/ATM, which initiates DSB signaling. In Saccharomyces cerevisiae, these MRX functions are inhibited by the Rif2 protein, which is enriched at telomeres and protects telomeric DNA from being sensed and processed as a DSB. The present review focuses on recent data showing that Sae2 and Rif2 regulate MRX functions in opposite manners by interacting with Rad50 and influencing ATP-dependent Mre11-Rad50 conformational changes. As Sae2 is enriched at DSBs whereas Rif2 is predominantly present at telomeres, the relative abundance of these two MRX regulators can provide an effective mechanism to activate or inactivate MRX depending on the nature of chromosome ends.
Collapse
|
5
|
Francette AM, Tripplehorn SA, Arndt KM. The Paf1 Complex: A Keystone of Nuclear Regulation Operating at the Interface of Transcription and Chromatin. J Mol Biol 2021; 433:166979. [PMID: 33811920 PMCID: PMC8184591 DOI: 10.1016/j.jmb.2021.166979] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
The regulation of transcription by RNA polymerase II is closely intertwined with the regulation of chromatin structure. A host of proteins required for the disassembly, reassembly, and modification of nucleosomes interacts with Pol II to aid its movement and counteract its disruptive effects on chromatin. The highly conserved Polymerase Associated Factor 1 Complex, Paf1C, travels with Pol II and exerts control over transcription elongation and chromatin structure, while broadly impacting the transcriptome in both single cell and multicellular eukaryotes. Recent studies have yielded exciting new insights into the mechanisms by which Paf1C regulates transcription elongation, epigenetic modifications, and post-transcriptional steps in eukaryotic gene expression. Importantly, these functional studies are now supported by an extensive foundation of high-resolution structural information, providing intimate views of Paf1C and its integration into the larger Pol II elongation complex. As a global regulatory factor operating at the interface between chromatin and transcription, the impact of Paf1C is broad and its influence reverberates into other domains of nuclear regulation, including genome stability, telomere maintenance, and DNA replication.
Collapse
Affiliation(s)
- Alex M Francette
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Sarah A Tripplehorn
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
6
|
Abstract
The MRN complex (MRX in Saccharomyces cerevisiae, made of Mre11, Rad50 and Nbs1/Xrs2) initiates double-stranded DNA break repair and activates the Tel1/ATM kinase in the DNA damage response. Telomeres counter both outcomes at chromosome ends, partly by keeping MRN-ATM in check. We show that MRX is disabled by telomeric protein Rif2 through an N-terminal motif (MIN, MRN/X-inhibitory motif). MIN executes suppression of Tel1, DNA end-resection and non-homologous end joining by binding the Rad50 N-terminal region. Our data suggest that MIN promotes a transition within MRX that is not conductive for endonuclease activity, DNA-end tethering or Tel1 kinase activation, highlighting an Achilles' heel in MRN, which we propose is also exploited by the RIF2 paralog ORC4 (Origin Recognition Complex 4) in Kluyveromyces lactis and the Schizosaccharomyces pombe telomeric factor Taz1, which is evolutionarily unrelated to Orc4/Rif2. This raises the possibility that analogous mechanisms might be deployed in other eukaryotes as well.
Collapse
|
7
|
Roisné-Hamelin F, Pobiega S, Jézéquel K, Miron S, Dépagne J, Veaute X, Busso D, Du MHL, Callebaut I, Charbonnier JB, Cuniasse P, Zinn-Justin S, Marcand S. Mechanism of MRX inhibition by Rif2 at telomeres. Nat Commun 2021; 12:2763. [PMID: 33980827 PMCID: PMC8115599 DOI: 10.1038/s41467-021-23035-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Specific proteins present at telomeres ensure chromosome end stability, in large part through unknown mechanisms. In this work, we address how the Saccharomyces cerevisiae ORC-related Rif2 protein protects telomere. We show that the small N-terminal Rif2 BAT motif (Blocks Addition of Telomeres) previously known to limit telomere elongation and Tel1 activity is also sufficient to block NHEJ and 5' end resection. The BAT motif inhibits the ability of the Mre11-Rad50-Xrs2 complex (MRX) to capture DNA ends. It acts through a direct contact with Rad50 ATP-binding Head domains. Through genetic approaches guided by structural predictions, we identify residues at the surface of Rad50 that are essential for the interaction with Rif2 and its inhibition. Finally, a docking model predicts how BAT binding could specifically destabilise the DNA-bound state of the MRX complex. From these results, we propose that when an MRX complex approaches a telomere, the Rif2 BAT motif binds MRX Head in its ATP-bound resting state. This antagonises MRX transition to its DNA-bound state, and favours a rapid return to the ATP-bound state. Unable to stably capture the telomere end, the MRX complex cannot proceed with the subsequent steps of NHEJ, Tel1-activation and 5' resection.
Collapse
Affiliation(s)
- Florian Roisné-Hamelin
- Université de Paris, Université Paris-Saclay, Inserm, CEA, Institut de Biologie François Jacob, iRCM, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Sabrina Pobiega
- Université de Paris, Université Paris-Saclay, Inserm, CEA, Institut de Biologie François Jacob, iRCM, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Kévin Jézéquel
- Université de Paris, Université Paris-Saclay, Inserm, CEA, Institut de Biologie François Jacob, iRCM, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Simona Miron
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Jordane Dépagne
- CIGEx, Université de Paris, Université Paris-Saclay, Inserm, CEA, Institut de Biologie François Jacob, iRCM, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Xavier Veaute
- CIGEx, Université de Paris, Université Paris-Saclay, Inserm, CEA, Institut de Biologie François Jacob, iRCM, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Didier Busso
- CIGEx, Université de Paris, Université Paris-Saclay, Inserm, CEA, Institut de Biologie François Jacob, iRCM, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Marie-Hélène Le Du
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Jean-Baptiste Charbonnier
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Philippe Cuniasse
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Sophie Zinn-Justin
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stéphane Marcand
- Université de Paris, Université Paris-Saclay, Inserm, CEA, Institut de Biologie François Jacob, iRCM, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France.
| |
Collapse
|
8
|
Galli M, Frigerio C, Longhese MP, Clerici M. The regulation of the DNA damage response at telomeres: focus on kinases. Biochem Soc Trans 2021; 49:933-943. [PMID: 33769480 DOI: 10.1042/bst20200856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022]
Abstract
The natural ends of linear chromosomes resemble those of accidental double-strand breaks (DSBs). DSBs induce a multifaceted cellular response that promotes the repair of lesions and slows down cell cycle progression. This response is not elicited at chromosome ends, which are organized in nucleoprotein structures called telomeres. Besides counteracting DSB response through specialized telomere-binding proteins, telomeres also prevent chromosome shortening. Despite of the different fate of telomeres and DSBs, many proteins involved in the DSB response also localize at telomeres and participate in telomere homeostasis. In particular, the DSB master regulators Tel1/ATM and Mec1/ATR contribute to telomere length maintenance and arrest cell cycle progression when chromosome ends shorten, thus promoting a tumor-suppressive process known as replicative senescence. During senescence, the actions of both these apical kinases and telomere-binding proteins allow checkpoint activation while bulk DNA repair activities at telomeres are still inhibited. Checkpoint-mediated cell cycle arrest also prevents further telomere erosion and deprotection that would favor chromosome rearrangements, which are known to increase cancer-associated genome instability. This review summarizes recent insights into functions and regulation of Tel1/ATM and Mec1/ATR at telomeres both in the presence and in the absence of telomerase, focusing mainly on discoveries in budding yeast.
Collapse
Affiliation(s)
- Michela Galli
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Chiara Frigerio
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| |
Collapse
|
9
|
Complex Mechanisms of Antimony Genotoxicity in Budding Yeast Involves Replication and Topoisomerase I-Associated DNA Lesions, Telomere Dysfunction and Inhibition of DNA Repair. Int J Mol Sci 2021; 22:ijms22094510. [PMID: 33925940 PMCID: PMC8123508 DOI: 10.3390/ijms22094510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022] Open
Abstract
Antimony is a toxic metalloid with poorly understood mechanisms of toxicity and uncertain carcinogenic properties. By using a combination of genetic, biochemical and DNA damage assays, we investigated the genotoxic potential of trivalent antimony in the model organism Saccharomyces cerevisiae. We found that low doses of Sb(III) generate various forms of DNA damage including replication and topoisomerase I-dependent DNA lesions as well as oxidative stress and replication-independent DNA breaks accompanied by activation of DNA damage checkpoints and formation of recombination repair centers. At higher concentrations of Sb(III), moderately increased oxidative DNA damage is also observed. Consistently, base excision, DNA damage tolerance and homologous recombination repair pathways contribute to Sb(III) tolerance. In addition, we provided evidence suggesting that Sb(III) causes telomere dysfunction. Finally, we showed that Sb(III) negatively effects repair of double-strand DNA breaks and distorts actin and microtubule cytoskeleton. In sum, our results indicate that Sb(III) exhibits a significant genotoxic activity in budding yeast.
Collapse
|
10
|
Marsella A, Gobbini E, Cassani C, Tisi R, Cannavo E, Reginato G, Cejka P, Longhese MP. Sae2 and Rif2 regulate MRX endonuclease activity at DNA double-strand breaks in opposite manners. Cell Rep 2021; 34:108906. [PMID: 33789097 PMCID: PMC8028314 DOI: 10.1016/j.celrep.2021.108906] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/29/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022] Open
Abstract
The Mre11-Rad50-Xrs2 (MRX) complex detects and processes DNA double-strand breaks (DSBs). Its DNA binding and processing activities are regulated by transitions between an ATP-bound state and a post-hydrolysis cutting state that is nucleolytically active. Mre11 endonuclease activity is stimulated by Sae2, whose lack increases MRX persistence at DSBs and checkpoint activation. Here we show that the Rif2 protein inhibits Mre11 endonuclease activity and is responsible for the increased MRX retention at DSBs in sae2Δ cells. We identify a Rad50 residue that is important for Rad50-Rif2 interaction and Rif2 inhibition of Mre11 nuclease. This residue is located near a Rad50 surface that binds Sae2 and is important in stabilizing the Mre11-Rad50 (MR) interaction in the cutting state. We propose that Sae2 stimulates Mre11 endonuclease activity by stabilizing a post-hydrolysis MR conformation that is competent for DNA cleavage, whereas Rif2 antagonizes this Sae2 function and stabilizes an endonuclease inactive MR conformation. Sae2 stimulates Mre11 endonuclease activity by stabilizing the MRX cutting state Rif2 inhibits Sae2-mediated stimulation of Mre11 endonuclease activity The rad50-N18S mutation escapes Rif2-mediated inhibition of Mre11 nuclease Rif2 stabilizes an endonuclease inactive MR conformation that persistently binds DSBs
Collapse
Affiliation(s)
- Antonio Marsella
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano 20126, Italy
| | - Elisa Gobbini
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano 20126, Italy
| | - Corinne Cassani
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano 20126, Italy
| | - Renata Tisi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano 20126, Italy
| | - Elda Cannavo
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Giordano Reginato
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano 20126, Italy.
| |
Collapse
|
11
|
Lee JW, Ong EBB. Genomic Instability and Cellular Senescence: Lessons From the Budding Yeast. Front Cell Dev Biol 2021; 8:619126. [PMID: 33511130 PMCID: PMC7835410 DOI: 10.3389/fcell.2020.619126] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/15/2020] [Indexed: 01/14/2023] Open
Abstract
Aging is a complex biological process that occurs in all living organisms. Aging is initiated by the gradual accumulation of biomolecular damage in cells leading to the loss of cellular function and ultimately death. Cellular senescence is one such pathway that leads to aging. The accumulation of nucleic acid damage and genetic alterations that activate permanent cell-cycle arrest triggers the process of senescence. Cellular senescence can result from telomere erosion and ribosomal DNA instability. In this review, we summarize the molecular mechanisms of telomere length homeostasis and ribosomal DNA stability, and describe how these mechanisms are linked to cellular senescence and longevity through lessons learned from budding yeast.
Collapse
Affiliation(s)
- Jee Whu Lee
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia.,USM-RIKEN International Centre for Aging Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
| | - Eugene Boon Beng Ong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia.,USM-RIKEN International Centre for Aging Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
12
|
Harari Y, Gershon L, Alonso-Perez E, Klein S, Berneman Y, Choudhari K, Singh P, Sau S, Liefshitz B, Kupiec M. Telomeres and stress in yeast cells: When genes and environment interact. Fungal Biol 2019; 124:311-315. [PMID: 32389293 DOI: 10.1016/j.funbio.2019.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/27/2022]
Abstract
Telomeres are structures composed of simple DNA repeats and specific proteins that protect the eukaryotic chromosomal ends from degradation, and facilitate the replication of the genome. They are central to the maintenance of the genome integrity, and play important roles in the development of cancer and in the process of aging in humans. The yeast Saccharomyces cerevisiae has greatly contributed to our understanding of basic telomere biology. Our laboratory has carried out systematic screen for mutants that affect telomere length, and identified ∼500 genes that, when mutated, affect telomere length. Remarkably, all ∼500 TLM (Telomere Length Maintenance) genes participate in a very tight homeostatic process, and it is enough to mutate one of them to change the steady-state telomere length. Despite this complex network of balances, it is also possible to change telomere length in yeast by applying several types of external stresses. We summarize our insights about the molecular mechanisms by which genes and environment interact to affect telomere length.
Collapse
Affiliation(s)
- Yaniv Harari
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Lihi Gershon
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Elisa Alonso-Perez
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Shir Klein
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Yael Berneman
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Karan Choudhari
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Pragyan Singh
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Soumitra Sau
- Amity Institute of Biotechnology, Amity University Kolkata, Kolkata, India
| | - Batia Liefshitz
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Martin Kupiec
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel.
| |
Collapse
|
13
|
Mersaoui SY, Wellinger RJ. Fine tuning the level of the Cdc13 telomere-capping protein for maximal chromosome stability performance. Curr Genet 2018; 65:109-118. [PMID: 30066139 DOI: 10.1007/s00294-018-0871-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
Chromosome stability relies on an adequate length and complete replication of telomeres, the physical ends of chromosomes. Telomeres are composed of short direct repeat DNA and the associated nucleoprotein complex is essential for providing end-stability. In addition, the so-called end-replication problem of the conventional replication requires that telomeres be elongated by a special mechanism which, in virtually all organisms, is based by a reverse transcriptase, called telomerase. Although, at the conceptual level, telomere functions are highly similar in most organisms, the telomeric nucleoprotein composition appears to diverge significantly, in particular if it is compared between mammalian and budding yeast cells. However, over the last years, the CST complex has emerged as a central hub for telomere replication in most systems. Composed of three proteins, it is related to the highly conserved replication protein A complex, and in all systems studied, it coordinates telomerase-based telomere elongation with lagging-strand DNA synthesis. In budding yeast, the Cdc13 protein of this complex also is essential for telomerase recruitment and this specialisation is accompanied by additional regulatory adaptations. Based on recent results obtained in yeast, here, we review these issues and present an updated telomere replication hypothesis. We speculate that the similarities between systems far outweigh the differences, once we detach ourselves from the historic descriptions of the mechanisms in the various organisms.
Collapse
Affiliation(s)
- Sofiane Y Mersaoui
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Raymund J Wellinger
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC, J1E 4K8, Canada.
| |
Collapse
|
14
|
Fontana GA, Reinert JK, Thomä NH, Rass U. Shepherding DNA ends: Rif1 protects telomeres and chromosome breaks. MICROBIAL CELL 2018; 5:327-343. [PMID: 29992129 PMCID: PMC6035837 DOI: 10.15698/mic2018.07.639] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells have evolved conserved mechanisms to protect DNA ends, such as those at the termini of linear chromosomes, or those at DNA double-strand breaks (DSBs). In eukaryotes, DNA ends at chromosomal termini are packaged into proteinaceous structures called telomeres. Telomeres protect chromosome ends from erosion, inadvertent activation of the cellular DNA damage response (DDR), and telomere fusion. In contrast, cells must respond to damage-induced DNA ends at DSBs by harnessing the DDR to restore chromosome integrity, avoiding genome instability and disease. Intriguingly, Rif1 (Rap1-interacting factor 1) has been implicated in telomere homeostasis as well as DSB repair. The protein was first identified in Saccharomyces cerevisiae as being part of the proteinaceous telosome. In mammals, RIF1 is not associated with intact telomeres, but was found at chromosome breaks, where RIF1 has emerged as a key mediator of pathway choice between the two evolutionary conserved DSB repair pathways of non-homologous end-joining (NHEJ) and homologous recombination (HR). While this functional dichotomy has long been a puzzle, recent findings link yeast Rif1 not only to telomeres, but also to DSB repair, and mechanistic parallels likely exist. In this review, we will provide an overview of the actions of Rif1 at DNA ends and explore how exclusion of end-processing factors might be the underlying principle allowing Rif1 to fulfill diverse biological roles at telomeres and chromosome breaks.
Collapse
Affiliation(s)
- Gabriele A Fontana
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Julia K Reinert
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.,University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Ulrich Rass
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| |
Collapse
|
15
|
Kedziora S, Gali VK, Wilson RHC, Clark KRM, Nieduszynski CA, Hiraga SI, Donaldson AD. Rif1 acts through Protein Phosphatase 1 but independent of replication timing to suppress telomere extension in budding yeast. Nucleic Acids Res 2018; 46:3993-4003. [PMID: 29529242 PMCID: PMC5934629 DOI: 10.1093/nar/gky132] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 02/09/2018] [Accepted: 02/23/2018] [Indexed: 12/24/2022] Open
Abstract
The Rif1 protein negatively regulates telomeric TG repeat length in the budding yeast Saccharomyces cerevisiae, but how it prevents telomere over-extension is unknown. Rif1 was recently shown to control DNA replication by acting as a Protein Phosphatase 1 (PP1)-targeting subunit. Therefore, we investigated whether Rif1 controls telomere length by targeting PP1 activity. We find that a Rif1 mutant defective for PP1 interaction causes a long-telomere phenotype, similar to that of rif1Δ cells. Tethering PP1 at a specific telomere partially substitutes for Rif1 in limiting TG repeat length, confirming the importance of PP1 in telomere length control. Ablating Rif1-PP1 interaction is known to cause precocious activation of telomere-proximal replication origins and aberrantly early telomere replication. However, we find that Rif1 still limits telomere length even if late replication is forced through deletion of nearby replication origins, indicating that Rif1 can control telomere length independent of replication timing. Moreover we find that, even at a de novo telomere created after DNA synthesis during a mitotic block, Rif1-PP1 interaction is required to suppress telomere lengthening and prevent inappropriate recruitment of Tel1 kinase. Overall, our results show that Rif1 controls telomere length by recruiting PP1 to directly suppress telomerase-mediated TG repeat lengthening.
Collapse
Affiliation(s)
- Sylwia Kedziora
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Vamsi K Gali
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Rosemary HC Wilson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Kate RM Clark
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Conrad A Nieduszynski
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Shin-ichiro Hiraga
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Anne D Donaldson
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
16
|
Toubiana S, Selig S. DNA:RNA hybrids at telomeres - when it is better to be out of the (R) loop. FEBS J 2018; 285:2552-2566. [PMID: 29637701 DOI: 10.1111/febs.14464] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/11/2018] [Accepted: 04/03/2018] [Indexed: 01/31/2023]
Abstract
R-loops (RLs) are three-stranded nucleic acid structures that contain a DNA:RNA hybrid and a displaced DNA strand. Genomic regions with GC skew and a G-rich transcript are particularly prone to form RLs. RLs play important physiological roles in cells; however, when present at abnormally high levels, they may threaten genome stability. The perfect GC skew of telomeric repeats and the discovery of telomeric repeat-containing RNA (TERRA), a long noncoding transcript that consists of the G-rich telomeric sequence, make telomeric sequences the perfect candidates for generating RLs. Indeed, in the past 5 years, telomere R-loops (TRLs) have been demonstrated in Saccharomyces cerevisiae, Trypanosoma brucei, and human cells. The presence of TRLs in normal human cells that transcribe low levels of TERRA, suggests a physiological role for these nucleic structures in telomere maintenance. Abnormally enhanced TERRA transcription, as found in several human pathological conditions, leads to high TRL levels and various cellular outcomes, depending on the recombinogenic capabilities of the cells. Study of TRLs in various organisms highlights the necessity for tight regulation of these structures, which can switch from beneficial to detrimental under different conditions. Here, we review the current state of knowledge on TRLs, describe several means by which TRLs are regulated, and discuss how findings from yeast are relevant to human pathological scenarios in which TRLs are deregulated.
Collapse
Affiliation(s)
- Shir Toubiana
- Molecular Medicine Laboratory, Rappaport Faculty of Medicine, Rambam Health Care Campus, Technion, Haifa, Israel
| | - Sara Selig
- Molecular Medicine Laboratory, Rappaport Faculty of Medicine, Rambam Health Care Campus, Technion, Haifa, Israel
| |
Collapse
|
17
|
Current Perspectives of Telomerase Structure and Function in Eukaryotes with Emerging Views on Telomerase in Human Parasites. Int J Mol Sci 2018; 19:ijms19020333. [PMID: 29364142 PMCID: PMC5855555 DOI: 10.3390/ijms19020333] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
Replicative capacity of a cell is strongly correlated with telomere length regulation. Aberrant lengthening or reduction in the length of telomeres can lead to health anomalies, such as cancer or premature aging. Telomerase is a master regulator for maintaining replicative potential in most eukaryotic cells. It does so by controlling telomere length at chromosome ends. Akin to cancer cells, most single-cell eukaryotic pathogens are highly proliferative and require persistent telomerase activity to maintain constant length of telomere and propagation within their host. Although telomerase is key to unlimited cellular proliferation in both cases, not much was known about the role of telomerase in human parasites (malaria, Trypanosoma, etc.) until recently. Since telomerase regulation is mediated via its own structural components, interactions with catalytic reverse transcriptase and several factors that can recruit and assemble telomerase to telomeres in a cell cycle-dependent manner, we compare and discuss here recent findings in telomerase biology in cancer, aging and parasitic diseases to give a broader perspective of telomerase function in human diseases.
Collapse
|
18
|
Yang CW, Tseng SF, Yu CJ, Chung CY, Chang CY, Pobiega S, Teng SC. Telomere shortening triggers a feedback loop to enhance end protection. Nucleic Acids Res 2017; 45:8314-8328. [PMID: 28575419 PMCID: PMC5737367 DOI: 10.1093/nar/gkx503] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 05/26/2017] [Indexed: 01/20/2023] Open
Abstract
Telomere homeostasis is controlled by both telomerase machinery and end protection. Telomere shortening induces DNA damage sensing kinases ATM/ATR for telomerase recruitment. Yet, whether telomere shortening also governs end protection is poorly understood. Here we discover that yeast ATM/ATR controls end protection. Rap1 is phosphorylated by Tel1 and Mec1 kinases at serine 731, and this regulation is stimulated by DNA damage and telomere shortening. Compromised Rap1 phosphorylation hampers the interaction between Rap1 and its interacting partner Rif1, which thereby disturbs the end protection. As expected, reduction of Rap1–Rif1 association impairs telomere length regulation and increases telomere–telomere recombination. These results indicate that ATM/ATR DNA damage checkpoint signal contributes to telomere protection by strengthening the Rap1–Rif1 interaction at short telomeres, and the checkpoint signal oversees both telomerase recruitment and end capping pathways to maintain telomere homeostasis.
Collapse
Affiliation(s)
- Chia-Wei Yang
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Shun-Fu Tseng
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 100, Taiwan
| | - Chia-Jung Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Tao-Yuan 333, Taiwan
| | - Chia-Yu Chung
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Cheng-Yen Chang
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Sabrina Pobiega
- INSERM UMR 967, Institut de Biologie François Jacob, CEA Paris-Saclay, 92265 Fontenay-aux-roses, France
| | - Shu-Chun Teng
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
19
|
Wu Z, Liu J, Zhang QD, Lv DK, Wu NF, Zhou JQ. Rad6-Bre1-mediated H2B ubiquitination regulates telomere replication by promoting telomere-end resection. Nucleic Acids Res 2017; 45:3308-3322. [PMID: 28180293 PMCID: PMC5389628 DOI: 10.1093/nar/gkx101] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/08/2017] [Indexed: 12/20/2022] Open
Abstract
Rad6 and Bre1, ubiquitin-conjugating E2 and E3 enzymes respectively, are responsible for histone H2B lysine 123 mono-ubiquitination (H2Bub1) in Saccharomyces cerevisiae. Previous studies have shown that Rad6 and Bre1 regulate telomere length and recombination. However, the underlying molecular mechanism remains largely unknown. Here we report that H2BK123 mutation results in telomere shortening, while inactivation of Ubp8 and/or Ubp10, deubiquitinases of H2Bub1, leads to telomere lengthening in Rad6–Bre1-dependent manner. In telomerase-deficient cells, inactivation of Rad6–Bre1 pathway retards telomere shortening rate and the onset of senescence, while deletion of UBP8 and/or UBP10 accelerates senescence. Thus, Rad6–Bre1 pathway regulates both telomere length and recombination through its role in H2Bub1. Additionally, inactivation of both Rad6–Bre1–H2Bub1 and Mre11–Rad50–Xrs2 (MRX) pathways causes synthetic growth defects and telomere shortening in telomerase-proficient cells, and significantly accelerates senescence and eliminates type II telomere recombination in telomerase-deficient cells. Furthermore, RAD6 or BRE1 deletion, or H2BK123R mutation decreases the accumulation of ssDNA at telomere ends. These results support the model that Rad6–Bre1–H2Bub1 cooperates with MRX to promote telomere-end resection and thus positively regulates both telomerase- and recombination-dependent telomere replication. This study provides a mechanistic link between histone H2B ubiquitination and telomere replication.
Collapse
Affiliation(s)
- Zhenfang Wu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jun Liu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qiong-Di Zhang
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - De-Kang Lv
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Nian-Feng Wu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.,School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201210, China
| |
Collapse
|
20
|
Harari Y, Kupiec M. Mec1 ATR is needed for extensive telomere elongation in response to ethanol in yeast. Curr Genet 2017; 64:223-234. [PMID: 28780613 DOI: 10.1007/s00294-017-0728-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 11/26/2022]
Abstract
Telomere length homeostasis is essential for cell survival. In humans, telomeres shorten as a function of age. Short telomeres are known determinants of cell senescence and longevity. The yeast Saccharomyces cerevisiae expresses telomerase and maintains a strict telomere length homeostasis during vegetative growth. We have previously reported that different environmental signals promote changes in telomere length in S. cerevisiae. In particular, exposure to ethanol induces an extensive telomere elongation response due to a reduction in RAP1 mRNA and protein levels. Here we show that the reduction in Rap1 protein levels disrupts the physical interaction between Rap1 and Rif1, which in turn reduces the recruitment of these two proteins to telomeres during G2-phase. Although elongation of the shortest telomeres has been shown to depend on the Rif2 telomeric protein and on the Tel1(ATM) protein kinase, we show here that the extensive telomere elongation in response to ethanol exposure is Rif1 and Mec1 (ATR)-dependent. Our results fit a model in which Rif1 and Rap1 form a complex that is loaded onto telomeres at the end of S-phase. Reduced levels of the Rap1-Rif1 complex in ethanol lead to continuous telomere elongation in a Mec1-dependent process.
Collapse
Affiliation(s)
- Yaniv Harari
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Martin Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.
| |
Collapse
|
21
|
Strecker J, Stinus S, Caballero MP, Szilard RK, Chang M, Durocher D. A sharp Pif1-dependent threshold separates DNA double-strand breaks from critically short telomeres. eLife 2017; 6:23783. [PMID: 28826474 PMCID: PMC5595431 DOI: 10.7554/elife.23783] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 07/26/2017] [Indexed: 11/25/2022] Open
Abstract
DNA double-strand breaks (DSBs) and short telomeres are structurally similar, yet they have diametrically opposed fates. Cells must repair DSBs while blocking the action of telomerase on these ends. Short telomeres must avoid recognition by the DNA damage response while promoting telomerase recruitment. In Saccharomyces cerevisiae, the Pif1 helicase, a telomerase inhibitor, lies at the interface of these end-fate decisions. Using Pif1 as a sensor, we uncover a transition point in which 34 bp of telomeric (TG1-3)n repeat sequence renders a DNA end insensitive to Pif1 action, thereby enabling extension by telomerase. A similar transition point exists at natural chromosome ends, where telomeres shorter than ~40 bp are inefficiently extended by telomerase. This phenomenon is not due to known Pif1 modifications and we instead propose that Cdc13 renders TG34+ ends insensitive to Pif1 action. We contend that the observed threshold of Pif1 activity defines a dividing line between DSBs and telomeres.
Collapse
Affiliation(s)
- Jonathan Strecker
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Sonia Stinus
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Mariana Pliego Caballero
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Rachel K Szilard
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Michael Chang
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
22
|
Ouenzar F, Lalonde M, Laprade H, Morin G, Gallardo F, Tremblay-Belzile S, Chartrand P. Cell cycle-dependent spatial segregation of telomerase from sites of DNA damage. J Cell Biol 2017. [PMID: 28637749 PMCID: PMC5551704 DOI: 10.1083/jcb.201610071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Telomerase can generate a novel telomere at a DNA break, with potentially lethal consequences for the cell. Ouenzar et al. reveal novel roles for Pif1, Rad52, and Siz1-dependent sumoylation in the spatial exclusion of telomerase from sites of DNA repair during the cell cycle. Telomerase can generate a novel telomere at DNA double-strand breaks (DSBs), an event called de novo telomere addition. How this activity is suppressed remains unclear. Combining single-molecule imaging and deep sequencing, we show that the budding yeast telomerase RNA (TLC1 RNA) is spatially segregated to the nucleolus and excluded from sites of DNA repair in a cell cycle–dependent manner. Although TLC1 RNA accumulates in the nucleoplasm in G1/S, Pif1 activity promotes TLC1 RNA localization in the nucleolus in G2/M. In the presence of DSBs, TLC1 RNA remains nucleolar in most G2/M cells but accumulates in the nucleoplasm and colocalizes with DSBs in rad52Δ cells, leading to de novo telomere additions. Nucleoplasmic accumulation of TLC1 RNA depends on Cdc13 localization at DSBs and on the SUMO ligase Siz1, which is required for de novo telomere addition in rad52Δ cells. This study reveals novel roles for Pif1, Rad52, and Siz1-dependent sumoylation in the spatial exclusion of telomerase from sites of DNA repair.
Collapse
Affiliation(s)
- Faissal Ouenzar
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Maxime Lalonde
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Hadrien Laprade
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Geneviève Morin
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Franck Gallardo
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Samuel Tremblay-Belzile
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Pascal Chartrand
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
23
|
Graf M, Bonetti D, Lockhart A, Serhal K, Kellner V, Maicher A, Jolivet P, Teixeira MT, Luke B. Telomere Length Determines TERRA and R-Loop Regulation through the Cell Cycle. Cell 2017; 170:72-85.e14. [DOI: 10.1016/j.cell.2017.06.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/21/2017] [Accepted: 06/06/2017] [Indexed: 10/19/2022]
|
24
|
Cesena D, Cassani C, Rizzo E, Lisby M, Bonetti D, Longhese MP. Regulation of telomere metabolism by the RNA processing protein Xrn1. Nucleic Acids Res 2017; 45:3860-3874. [PMID: 28160602 PMCID: PMC5397203 DOI: 10.1093/nar/gkx072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 11/19/2022] Open
Abstract
Telomeric DNA consists of repetitive G-rich sequences that terminate with a 3΄-ended single stranded overhang (G-tail), which is important for telomere extension by telomerase. Several proteins, including the CST complex, are necessary to maintain telomere structure and length in both yeast and mammals. Emerging evidence indicates that RNA processing factors play critical, yet poorly understood, roles in telomere metabolism. Here, we show that the lack of the RNA processing proteins Xrn1 or Rrp6 partially bypasses the requirement for the CST component Cdc13 in telomere protection by attenuating the activation of the DNA damage checkpoint. Xrn1 is necessary for checkpoint activation upon telomere uncapping because it promotes the generation of single-stranded DNA. Moreover, Xrn1 maintains telomere length by promoting the association of Cdc13 to telomeres independently of ssDNA generation and exerts this function by downregulating the transcript encoding the telomerase inhibitor Rif1. These findings reveal novel roles for RNA processing proteins in the regulation of telomere metabolism with implications for genome stability in eukaryotes.
Collapse
Affiliation(s)
- Daniele Cesena
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| | - Corinne Cassani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| | - Emanuela Rizzo
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Diego Bonetti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| |
Collapse
|
25
|
Cassani C, Gobbini E, Wang W, Niu H, Clerici M, Sung P, Longhese MP. Tel1 and Rif2 Regulate MRX Functions in End-Tethering and Repair of DNA Double-Strand Breaks. PLoS Biol 2016; 14:e1002387. [PMID: 26901759 PMCID: PMC4762649 DOI: 10.1371/journal.pbio.1002387] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/20/2016] [Indexed: 01/03/2023] Open
Abstract
The cellular response to DNA double-strand breaks (DSBs) is initiated by the MRX/MRN complex (Mre11-Rad50-Xrs2 in yeast; Mre11-Rad50-Nbs1 in mammals), which recruits the checkpoint kinase Tel1/ATM to DSBs. In Saccharomyces cerevisiae, the role of Tel1 at DSBs remains enigmatic, as tel1Δ cells do not show obvious hypersensitivity to DSB-inducing agents. By performing a synthetic phenotype screen, we isolated a rad50-V1269M allele that sensitizes tel1Δ cells to genotoxic agents. The MRV1269MX complex associates poorly to DNA ends, and its retention at DSBs is further reduced by the lack of Tel1. As a consequence, tel1Δ rad50-V1269M cells are severely defective both in keeping the DSB ends tethered to each other and in repairing a DSB by either homologous recombination (HR) or nonhomologous end joining (NHEJ). These data indicate that Tel1 promotes MRX retention to DSBs and this function is important to allow proper MRX-DNA binding that is needed for end-tethering and DSB repair. The role of Tel1 in promoting MRX accumulation to DSBs is counteracted by Rif2, which is recruited to DSBs. We also found that Rif2 enhances ATP hydrolysis by MRX and attenuates MRX function in end-tethering, suggesting that Rif2 can regulate MRX activity at DSBs by modulating ATP-dependent conformational changes of Rad50. This study reveals novel roles for the checkpoint kinase Tel1/ATM and Rif2 in regulating the function of the MRX complex during repair of DNA double-strand breaks by nonhomologous end joining and homologous recombination. Many tumors contain mutations that confer defects in repairing DNA double-strand breaks (DSBs). In both yeast and mammals, the MRX/MRN complex (Mre11-Rad50-Xrs2 in yeast; Mre11-Rad50-Nbs1 in mammals) plays critical functions in repairing a DSB by either nonhomologous end joining (NHEJ) or homologous recombination (HR). Furthermore, it recruits the checkpoint kinase Tel1/ATM. Although ATM is considered to be a tumor suppressor, up-regulation of ATM signaling promotes chemoresistance, radioresistance and metastasis. For this reason, cancer therapies targeting ATM have been developed to increase the effectiveness of standard genotoxic treatments and/or to set up synthetic lethal approaches in cancers with DNA repair defects. We aimed to identify the precise role of ATM/Tel1 in these processes. By performing a synthetic phenotype screen, we identified a mutation (rad50-V1269M) altering the Rad50 subunit of the MRX complex, which sensitizes cells lacking Tel1 to genotoxic agents. Genetic and biochemical characterization of MRV1269MX protein complex revealed that Tel1 promotes MRX association at DSBs to allow proper MRX-DNA binding that is needed for DSB repair. The role of Tel1 in promoting MRX retention on DSBs is counteracted by Rif2, which can regulate MRX activity at DSBs by modulating ATP-dependent conformational changes in Rad50. Our finding that MRX dysfunctions can be synthetically lethal with Tel1 loss in the presence of genotoxic agents suggests that ATM inhibitors could be beneficial in patients whose tumors have defective MRN functions.
Collapse
Affiliation(s)
- Corinne Cassani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Elisa Gobbini
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Weibin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Hengyao Niu
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
- * E-mail:
| |
Collapse
|
26
|
Lin KW, Zakian VA. 21st Century Genetics: Mass Spectrometry of Yeast Telomerase. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2016; 80:111-6. [PMID: 26763982 PMCID: PMC5441543 DOI: 10.1101/sqb.2015.80.027656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Telomerase is a specialized reverse transcriptase that maintains the ends of chromosomes in almost all eukaryotes. The core of telomerase consists of telomerase RNA and the reverse transcriptase that uses a short segment without the RNA to template the addition of telomeric repeats. In addition, one or more accessory proteins are required for telomerase action in vivo. The best-studied accessory protein is Est1, which is conserved from yeasts to humans. In budding yeast, Est1 has two critical in vivo functions: By interaction with Cdc13, a telomere-binding protein, it recruits telomerase to telomeres, and it also increases telomerase activity. Although budding yeast telomerase is highly regulated by the cell cycle, Est1 is the only telomerase subunit whose abundance is cell cycle-regulated. Close to 400 yeast genes are reported to affect telomere length, although the specific function of most of them is unknown. With the goal of identifying novel telomerase regulators by mass spectrometry, we developed methods for purifying yeast telomerase and its associated proteins. We summarize the methods we used and describe the experiments that show that four telomerase-associated proteins identified by mass spectrometry, none of which had been linked previously to telomeres, affect telomere length and cell cycle regulation of telomerase by controlling Est1 abundance.
Collapse
Affiliation(s)
- Kah Wai Lin
- Department of Molecular Biology, Lewis Thomas Labs, Princeton University, Princeton, New Jersey 08544
| | - Virginia A Zakian
- Department of Molecular Biology, Lewis Thomas Labs, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
27
|
Hass EP, Zappulla DC. The Ku subunit of telomerase binds Sir4 to recruit telomerase to lengthen telomeres in S. cerevisiae. eLife 2015. [PMID: 26218225 PMCID: PMC4547093 DOI: 10.7554/elife.07750] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In Saccharomyces cerevisiae and in humans, the telomerase RNA subunit is bound by Ku, a ring-shaped protein heterodimer best known for its function in DNA repair. Ku binding to yeast telomerase RNA promotes telomere lengthening and telomerase recruitment to telomeres, but how this is achieved remains unknown. Using telomere-length analysis and chromatin immunoprecipitation, we show that Sir4 – a previously identified Ku-binding protein that is a component of telomeric silent chromatin – is required for Ku-mediated telomere lengthening and telomerase recruitment. We also find that specifically tethering Sir4 directly to Ku-binding-defective telomerase RNA restores otherwise-shortened telomeres to wild-type length. These findings suggest that Sir4 is the telomere-bound target of Ku-mediated telomerase recruitment and provide one mechanism for how the Sir4-competing Rif1 and Rif2 proteins negatively regulate telomere length in yeast. DOI:http://dx.doi.org/10.7554/eLife.07750.001 Inside a cell's nucleus, DNA is packaged into structures called chromosomes. The ends of every chromosome are capped by repeating sequences of DNA known as telomeres, which protect the chromosomes from damage. Every time a cell divides, the telomeres shorten. If telomere length falls below a critical level, the cell can die or enter a state in which it can no longer divide. During cell division, an enzyme called telomerase normally restores telomeres to their original length. Telomerase is made up of several proteins and an RNA molecule. In yeast and humans, a protein called Ku is one part of the telomerase enzyme. Ku binds to the RNA subunit of telomerase and helps the enzyme find and interact with the telomeres. Previous research has shown that Ku is unable to work alone to recruit telomerase to the chromosome. A protein called Sir4 binds to telomeres and cells lacking it have short telomeres, but the reason behind this was not known. Hass and Zappulla confirmed previous reports that Ku binds to Sir4 using a biochemical approach. Additional experiments provided genetic evidence that this binding interaction is important for telomerase to lengthen telomeres appropriately. Cells in which the RNA subunit of telomerase is unable to bind effectively to Ku have short telomeres. Hass and Zappulla directly tethered Sir4 to this defective RNA and found this restored the shortened telomeres to a normal length, indicating that Sir4 normally binds Ku to recruit telomerase. Discovering this mode of recruitment also helps to explain how two other telomeric proteins (Rif1 and 2) limit telomere lengthening; they compete with Ku-Sir4 recruitment to form a length-regulating system. Taken together, Hass and Zappulla's results provide strong evidence that Sir4 cooperates with Ku to control the lengthening of chromosome ends. Future research will hopefully reveal the precise space and time requirements for this telomerase-controlling system in yeast. Additionally, because Ku has been reported to be a subunit of human telomerase, future studies could also explore whether human cells use a similar strategy. DOI:http://dx.doi.org/10.7554/eLife.07750.002
Collapse
Affiliation(s)
- Evan P Hass
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - David C Zappulla
- Department of Biology, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
28
|
Marcomini I, Gasser SM. Nuclear organization in DNA end processing: Telomeres vs double-strand breaks. DNA Repair (Amst) 2015; 32:134-140. [PMID: 26004856 DOI: 10.1016/j.dnarep.2015.04.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Many proteins ligands are shared between double-strand breaks and natural chromosomal ends or telomeres. The structural similarity of the 3' overhang, and the efficiency of cellular DNA end degradation machineries, highlight the need for mechanisms that resect selectively to promote or restrict recombination events. Here we examine the means used by eukaryotic cells to suppress resection at telomeres, target telomerase to short telomeres, and process broken ends for appropriate repair. Not only molecular ligands, but the spatial sequestration of telomeres and damage likely ensure that these two very similar structures have very distinct outcomes with respect to the DNA damage response and repair.
Collapse
Affiliation(s)
- Isabella Marcomini
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
29
|
The pif1 helicase, a negative regulator of telomerase, acts preferentially at long telomeres. PLoS Genet 2015; 11:e1005186. [PMID: 25906395 PMCID: PMC4408051 DOI: 10.1371/journal.pgen.1005186] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 11/19/2022] Open
Abstract
Telomerase, the enzyme that maintains telomeres, preferentially lengthens short telomeres. The S. cerevisiae Pif1 DNA helicase inhibits both telomerase-mediated telomere lengthening and de novo telomere addition at double strand breaks (DSB). Here, we report that the association of the telomerase subunits Est2 and Est1 at a DSB was increased in the absence of Pif1, as it is at telomeres, suggesting that Pif1 suppresses de novo telomere addition by removing telomerase from the break. To determine how the absence of Pif1 results in telomere lengthening, we used the single telomere extension assay (STEX), which monitors lengthening of individual telomeres in a single cell cycle. In the absence of Pif1, telomerase added significantly more telomeric DNA, an average of 72 nucleotides per telomere compared to the 45 nucleotides in wild type cells, and the fraction of telomeres lengthened increased almost four-fold. Using an inducible short telomere assay, Est2 and Est1 no longer bound preferentially to a short telomere in pif1 mutant cells while binding of Yku80, a telomere structural protein, was unaffected by the status of the PIF1 locus. Two experiments demonstrate that Pif1 binding is affected by telomere length: Pif1 (but not Yku80) -associated telomeres were 70 bps longer than bulk telomeres, and in the inducible short telomere assay, Pif1 bound better to wild type length telomeres than to short telomeres. Thus, preferential lengthening of short yeast telomeres is achieved in part by targeting the negative regulator Pif1 to long telomeres. Telomerase, the enzyme that maintains telomeres, preferentially lengthens short telomeres. The baker’s yeast Pif1 DNA helicase inhibits both telomerase-mediated lengthening of existing telomeres and the formation of new telomeres at double strand breaks. By virtue of its ATPase activity, Pif1 reduces the level of telomerase binding to telomeres. Here, we report that the association of the telomerase subunits Est2 and Est1 at a DNA break was increased in the absence of Pif1, suggesting that Pif1 affects telomere length and new telomere formation by similar mechanisms. In cells lacking Pif1, Est2 and Est1 no longer bound preferentially to short telomeres, a larger fraction of telomeres was lengthened and the amount of telomeric DNA added per telomere was increased compared to wild type cells. Furthermore, by two different assays, Pif1 bound preferentially to long telomeres in vivo. Thus, preferential lengthening of short telomeres is achieved in part by targeting Pif1, a negative regulator of telomerase, to long telomeres.
Collapse
|
30
|
Sridhar A, Kedziora S, Donaldson AD. At short telomeres Tel1 directs early replication and phosphorylates Rif1. PLoS Genet 2014; 10:e1004691. [PMID: 25329891 PMCID: PMC4199499 DOI: 10.1371/journal.pgen.1004691] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 08/20/2014] [Indexed: 11/19/2022] Open
Abstract
The replication time of Saccharomyces cerevisiae telomeres responds to TG1-3 repeat length, with telomeres of normal length replicating late during S phase and short telomeres replicating early. Here we show that Tel1 kinase, which is recruited to short telomeres, specifies their early replication, because we find a tel1Δ mutant has short telomeres that nonetheless replicate late. Consistent with a role for Tel1 in driving early telomere replication, initiation at a replication origin close to an induced short telomere was reduced in tel1Δ cells, in an S phase blocked by hydroxyurea. The telomeric chromatin component Rif1 mediates late replication of normal telomeres and is a potential substrate of Tel1 phosphorylation, so we tested whether Tel1 directs early replication of short telomeres by inactivating Rif1. A strain lacking both Rif1 and Tel1 behaves like a rif1Δ mutant by replicating its telomeres early, implying that Tel1 can counteract the delaying effect of Rif1 to control telomere replication time. Proteomic analyses reveals that in yku70Δ cells that have short telomeres, Rif1 is phosphorylated at Tel1 consensus sequences (S/TQ sites), with phosphorylation of Serine-1308 being completely dependent on Tel1. Replication timing analysis of a strain mutated at these phosphorylation sites, however, suggested that Tel1-mediated phosphorylation of Rif1 is not the sole mechanism of replication timing control at telomeres. Overall, our results reveal two new functions of Tel1 at shortened telomeres: phosphorylation of Rif1, and specification of early replication by counteracting the Rif1-mediated delay in initiation at nearby replication origins.
Collapse
Affiliation(s)
- Akila Sridhar
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Sylwia Kedziora
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Anne D. Donaldson
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Sgs1 and Sae2 promote telomere replication by limiting accumulation of ssDNA. Nat Commun 2014; 5:5004. [DOI: 10.1038/ncomms6004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 08/15/2014] [Indexed: 02/02/2023] Open
|
32
|
Multifunctional role of ATM/Tel1 kinase in genome stability: from the DNA damage response to telomere maintenance. BIOMED RESEARCH INTERNATIONAL 2014; 2014:787404. [PMID: 25247188 PMCID: PMC4163350 DOI: 10.1155/2014/787404] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/28/2014] [Accepted: 08/07/2014] [Indexed: 12/19/2022]
Abstract
The mammalian protein kinase ataxia telangiectasia mutated (ATM) is a key regulator of the DNA double-strand-break response and belongs to the evolutionary conserved phosphatidylinositol-3-kinase-related protein kinases. ATM deficiency causes ataxia telangiectasia (AT), a genetic disorder that is characterized by premature aging, cerebellar neuropathy, immunodeficiency, and predisposition to cancer. AT cells show defects in the DNA damage-response pathway, cell-cycle control, and telomere maintenance and length regulation. Likewise, in Saccharomyces cerevisiae, haploid strains defective in the TEL1 gene, the ATM ortholog, show chromosomal aberrations and short telomeres. In this review, we outline the complex role of ATM/Tel1 in maintaining genomic stability through its control of numerous aspects of cellular survival. In particular, we describe how ATM/Tel1 participates in the signal transduction pathways elicited by DNA damage and in telomere homeostasis and its importance as a barrier to cancer development.
Collapse
|
33
|
Abstract
Telomerase action is temporally linked to DNA replication. Although yeast telomeres are normally late replicating, telomere shortening leads to early firing of subtelomeric DNA replication origins. We show that double-strand breaks flanked by short telomeric arrays cause origin firing early in S phase at late-replicating loci and that this effect on origin firing time is dependent on the Tel1ATM checkpoint kinase. The effect of Tel1ATM on telomere replication timing extends to endogenous telomeres and is stronger than that elicited by Rif1 loss. These results establish that Tel1ATM specifies not only the extent but also the timing of telomerase recruitment.
Collapse
Affiliation(s)
- Carol Cooley
- Genome Damage and Stability Centre, School of Life Sciences University of Sussex, Brighton, UK
| | - Anoushka Davé
- Genome Damage and Stability Centre, School of Life Sciences University of Sussex, Brighton, UK
| | - Mansi Garg
- Genome Damage and Stability Centre, School of Life Sciences University of Sussex, Brighton, UK
| | - Alessandro Bianchi
- Genome Damage and Stability Centre, School of Life Sciences University of Sussex, Brighton, UK
| |
Collapse
|
34
|
Malyavko AN, Parfenova YY, Zvereva MI, Dontsova OA. Telomere length regulation in budding yeasts. FEBS Lett 2014; 588:2530-6. [PMID: 24914478 DOI: 10.1016/j.febslet.2014.05.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/23/2014] [Accepted: 05/23/2014] [Indexed: 11/19/2022]
Abstract
Telomeres are the nucleoprotein caps of chromosomes. Their length must be tightly regulated in order to maintain the stability of the genome. This is achieved by the intricate network of interactions between different proteins and protein-RNA complexes. Different organisms use various mechanisms for telomere length homeostasis. However, details of these mechanisms are not yet completely understood. In this review we have summarized our latest achievements in the understanding of telomere length regulation in budding yeasts.
Collapse
Affiliation(s)
- Alexander N Malyavko
- Faculty of Chemistry, Lomonosov Moscow State University, 119999 Moscow, Russia; Belozersky Institute, Moscow State University, Leninskie Gory 1, Bldg. 40, 119991 Moscow, Russia
| | - Yuliya Y Parfenova
- Faculty of Chemistry, Lomonosov Moscow State University, 119999 Moscow, Russia; Belozersky Institute, Moscow State University, Leninskie Gory 1, Bldg. 40, 119991 Moscow, Russia
| | - Maria I Zvereva
- Faculty of Chemistry, Lomonosov Moscow State University, 119999 Moscow, Russia; Belozersky Institute, Moscow State University, Leninskie Gory 1, Bldg. 40, 119991 Moscow, Russia
| | - Olga A Dontsova
- Faculty of Chemistry, Lomonosov Moscow State University, 119999 Moscow, Russia; Belozersky Institute, Moscow State University, Leninskie Gory 1, Bldg. 40, 119991 Moscow, Russia.
| |
Collapse
|
35
|
Soudet J, Jolivet P, Teixeira MT. Elucidation of the DNA end-replication problem in Saccharomyces cerevisiae. Mol Cell 2014; 53:954-64. [PMID: 24656131 DOI: 10.1016/j.molcel.2014.02.030] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/15/2014] [Accepted: 01/31/2014] [Indexed: 11/26/2022]
Abstract
The model for telomere shortening at each replication cycle is currently incomplete, and the exact contribution of the telomeric 3' overhang to the shortening rate remains unclear. Here, we demonstrate key steps of the mechanism of telomere replication in Saccharomyces cerevisiae. By following the dynamics of telomeres during replication at near-nucleotide resolution, we find that the leading-strand synthesis generates blunt-end intermediates before being 5'-resected and filled in. Importantly, the shortening rate is set by positioning the last Okazaki fragments at the very ends of the chromosome. Thus, telomeres shorten in direct proportion to the 3' overhang lengths of 5-10 nucleotides that are present in parental templates. Furthermore, the telomeric protein Cdc13 coordinates leading- and lagging-strand syntheses. Taken together, our data unravel a precise choreography of telomere replication elucidating the DNA end-replication problem and provide a framework to understand the control of the cell proliferation potential.
Collapse
Affiliation(s)
- Julien Soudet
- Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Pascale Jolivet
- Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Maria Teresa Teixeira
- Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France.
| |
Collapse
|
36
|
|
37
|
Gao H, Moss DL, Parke C, Tatum D, Lustig AJ. The Ctf18RFC clamp loader is essential for telomere stability in telomerase-negative and mre11 mutant alleles. PLoS One 2014; 9:e88633. [PMID: 24533124 PMCID: PMC3923045 DOI: 10.1371/journal.pone.0088633] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 01/13/2014] [Indexed: 11/19/2022] Open
Abstract
The function of the replication clamp loaders in the semi-conservative telomere replication and their relationship to telomerase- and recombination mechanisms of telomere addition remains ambiguous. We have investigated the variant clamp loader Ctf18 RFC (Replication Factor C). To understand the role of Ctf18 at the telomere, we first investigated genetic interactions after loss of Ctf18 and TLC1 (the yeast telomerase RNA). We find that the tlc1Δ ctf18Δ double mutant confers a rapid >1000-fold decrease in viability. The rate of loss was similar to the kinetics of cell death in rad52Δ tlc1Δ cells. However, the Ctf18 pathway is distinct from Rad52, required for the repair of DSBs, as demonstrated by the synthetic lethality of rad52▵ tlc1Δ ctf18Δ triple mutants. These data suggest that each mutant elicits non-redundant defects acting on the same substrate. Second, interactions of the yeast hyper-recombinational mutant, mre11A470T, with ctf18▵ confer a synergistic cold sensitivity. The phenotype of these double mutants ultimately results in telomere loss and the generation of recombinational survivors. We observed a similar synergism between single mutants that led to hypersensitivity to the DNA alkylating agent, methane methyl sulphonate (MMS), the replication fork inhibitor hydroxyurea (HU), and to a failure to separate telomeres of sister chromatids. Hence, ctf18Δ and mre11A470T act in different pathways on telomere substrates for multiple phenotypes. The mre11A470T cells also displayed a DNA damage response (DDR) at 15°C but not at 30°C while ctf18Δ mutants conferred a constitutive DDR activity. Both the 15°C DDR pattern and growth rate were reversible at 30°C and displayed telomerase activity in vivo. We hypothesize that Ctf18 confers protection against stalling and/or breaks at the replication fork in cells that either lack, or are compromised for, telomerase activity. This Ctf18-based function is likely to contribute another level to telomere size homeostasis.
Collapse
Affiliation(s)
- Honghai Gao
- Department of Biochemistry and Molecular Biology, Tulane University Medical Center, New Orleans, Louisiana, United States of America
| | - Daniel L. Moss
- Department of Biochemistry and Molecular Biology, Tulane University Medical Center, New Orleans, Louisiana, United States of America
| | - Courtney Parke
- Department of Biochemistry and Molecular Biology, Tulane University Medical Center, New Orleans, Louisiana, United States of America
| | - Danielle Tatum
- Department of Biochemistry and Molecular Biology, Tulane University Medical Center, New Orleans, Louisiana, United States of America
| | - Arthur J. Lustig
- Department of Biochemistry and Molecular Biology, Tulane University Medical Center, New Orleans, Louisiana, United States of America
| |
Collapse
|
38
|
Fallet E, Jolivet P, Soudet J, Lisby M, Gilson E, Teixeira MT. Length-dependent processing of telomeres in the absence of telomerase. Nucleic Acids Res 2014; 42:3648-65. [PMID: 24393774 PMCID: PMC3973311 DOI: 10.1093/nar/gkt1328] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In the absence of telomerase, telomeres progressively shorten with every round of DNA replication, leading to replicative senescence. In telomerase-deficient Saccharomyces cerevisiae, the shortest telomere triggers the onset of senescence by activating the DNA damage checkpoint and recruiting homologous recombination (HR) factors. Yet, the molecular structures that trigger this checkpoint and the mechanisms of repair have remained elusive. By tracking individual telomeres, we show that telomeres are subjected to different pathways depending on their length. We first demonstrate a progressive accumulation of subtelomeric single-stranded DNA (ssDNA) through 5'-3' resection as telomeres shorten. Thus, exposure of subtelomeric ssDNA could be the signal for cell cycle arrest in senescence. Strikingly, early after loss of telomerase, HR counteracts subtelomeric ssDNA accumulation rather than elongates telomeres. We then asked whether replication repair pathways contribute to this mechanism. We uncovered that Rad5, a DNA helicase/Ubiquitin ligase of the error-free branch of the DNA damage tolerance (DDT) pathway, associates with native telomeres and cooperates with HR in senescent cells. We propose that DDT acts in a length-independent manner, whereas an HR-based repair using the sister chromatid as a template buffers precocious 5'-3' resection at the shortest telomeres.
Collapse
Affiliation(s)
- Emilie Fallet
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, FRE3354, 75005 Paris, France, Laboratoire de Biologie Moléculaire de la Cellule, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, Université de Lyon 1, UMR5239, 69364 Lyon Cedex 07, France, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR7284/INSERM U1081, Faculty of Medicine, Nice F-06107, France and Department of Medical Genetics, CHU Nice, 06202 Nice cedex 3, France
| | | | | | | | | | | |
Collapse
|
39
|
Bonetti D, Martina M, Falcettoni M, Longhese MP. Telomere-end processing: mechanisms and regulation. Chromosoma 2013; 123:57-66. [PMID: 24122006 DOI: 10.1007/s00412-013-0440-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/04/2013] [Accepted: 10/04/2013] [Indexed: 10/26/2022]
Abstract
Telomeres are specialized nucleoprotein complexes that provide protection to the ends of eukaryotic chromosomes. Telomeric DNA consists of tandemly repeated G-rich sequences that terminate with a 3' single-stranded overhang, which is important for telomere extension by the telomerase enzyme. This structure, as well as most of the proteins that specifically bind double and single-stranded telomeric DNA, are conserved from yeast to humans, suggesting that the mechanisms underlying telomere identity are based on common principles. The telomeric 3' overhang is generated by different events depending on whether the newly synthesized strand is the product of leading- or lagging-strand synthesis. Here, we review the mechanisms that regulate these processes at Saccharomyces cerevisiae and mammalian telomeres.
Collapse
Affiliation(s)
- Diego Bonetti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | | | | | | |
Collapse
|
40
|
Environmental stresses disrupt telomere length homeostasis. PLoS Genet 2013; 9:e1003721. [PMID: 24039592 PMCID: PMC3764183 DOI: 10.1371/journal.pgen.1003721] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 06/29/2013] [Indexed: 12/15/2022] Open
Abstract
Telomeres protect the chromosome ends from degradation and play crucial roles in cellular aging and disease. Recent studies have additionally found a correlation between psychological stress, telomere length, and health outcome in humans. However, studies have not yet explored the causal relationship between stress and telomere length, or the molecular mechanisms underlying that relationship. Using yeast as a model organism, we show that stresses may have very different outcomes: alcohol and acetic acid elongate telomeres, whereas caffeine and high temperatures shorten telomeres. Additional treatments, such as oxidative stress, show no effect. By combining genome-wide expression measurements with a systematic genetic screen, we identify the Rap1/Rif1 pathway as the central mediator of the telomeric response to environmental signals. These results demonstrate that telomere length can be manipulated, and that a carefully regulated homeostasis may become markedly deregulated in opposing directions in response to different environmental cues. Over 70 years ago, Barbara McClintock described telomeres and hypothesized about their role in protecting the integrity of chromosomes. Since then, scientists have shown that telomere length is highly regulated and associated with cell senescence and longevity, as well as with age-related disorders and cancer. Here, we show that despite their importance, the tight, highly complex regulation of telomeres may be disrupted by environmental cues, leading to changes in telomere length. We have introduced yeast cells to 13 different environmental stresses to show that some stresses directly alter telomere length. Our results indicate that alcohol and acetic acid elongate telomeres, while caffeine and high temperatures shorten telomeres. Using expression data, bioinformatics tools, and a large genetic screen, we explored the mechanisms responsible for the alterations of telomere length under several stress conditions. We identify Rap1 and Rif1, central players in telomere length maintenance, as the central proteins directly affected by external cues that respond by altering telomere length. Because many human diseases are related to alterations in telomere length that fuel the disease's pathology, controlling telomere length by manipulating simple stressing agents may point the way to effective treatment, and will supply scientists with an additional tool to study the machinery responsible for telomere length homeostasis.
Collapse
|
41
|
Webb CJ, Wu Y, Zakian VA. DNA repair at telomeres: keeping the ends intact. Cold Spring Harb Perspect Biol 2013; 5:5/6/a012666. [PMID: 23732473 DOI: 10.1101/cshperspect.a012666] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The molecular era of telomere biology began with the discovery that telomeres usually consist of G-rich simple repeats and end with 3' single-stranded tails. Enormous progress has been made in identifying the mechanisms that maintain and replenish telomeric DNA and the proteins that protect them from degradation, fusions, and checkpoint activation. Although telomeres in different organisms (or even in the same organism under different conditions) are maintained by different mechanisms, the disparate processes have the common goals of repairing defects caused by semiconservative replication through G-rich DNA, countering the shortening caused by incomplete replication, and postreplication regeneration of G tails. In addition, standard DNA repair mechanisms must be suppressed or modified at telomeres to prevent their being recognized and processed as DNA double-strand breaks. Here, we discuss the players and processes that maintain and regenerate telomere structure.
Collapse
Affiliation(s)
- Christopher J Webb
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
42
|
Teixeira MT. Saccharomyces cerevisiae as a Model to Study Replicative Senescence Triggered by Telomere Shortening. Front Oncol 2013; 3:101. [PMID: 23638436 PMCID: PMC3636481 DOI: 10.3389/fonc.2013.00101] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/11/2013] [Indexed: 01/22/2023] Open
Abstract
In many somatic human tissues, telomeres shorten progressively because of the DNA-end replication problem. Consequently, cells cease to proliferate and are maintained in a metabolically viable state called replicative senescence. These cells are characterized by an activation of DNA damage checkpoints stemming from eroded telomeres, which are bypassed in many cancer cells. Hence, replicative senescence has been considered one of the most potent tumor suppressor pathways. However, the mechanism through which short telomeres trigger this cellular response is far from being understood. When telomerase is removed experimentally in Saccharomyces cerevisiae, telomere shortening also results in a gradual arrest of population growth, suggesting that replicative senescence also occurs in this unicellular eukaryote. In this review, we present the key steps that have contributed to the understanding of the mechanisms underlying the establishment of replicative senescence in budding yeast. As in mammals, signals stemming from short telomeres activate the DNA damage checkpoints, suggesting that the early cellular response to the shortest telomere(s) is conserved in evolution. Yet closer analysis reveals a complex picture in which the apparent single checkpoint response may result from a variety of telomeric alterations expressed in the absence of telomerase. Accordingly, the DNA replication of eroding telomeres appears as a critical challenge for senescing budding yeast cells and the easy manipulation of S. cerevisiae is providing insights into the way short telomeres are integrated into their chromatin and nuclear environments. Finally, the loss of telomerase in budding yeast triggers a more general metabolic alteration that remains largely unexplored. Thus, telomerase-deficient S. cerevisiae cells may have more common points than anticipated with somatic cells, in which telomerase depletion is naturally programed, thus potentially inspiring investigations in mammalian cells.
Collapse
Affiliation(s)
- M Teresa Teixeira
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique Paris, France
| |
Collapse
|
43
|
Ribeyre C, Shore D. Regulation of telomere addition at DNA double-strand breaks. Chromosoma 2013; 122:159-73. [DOI: 10.1007/s00412-013-0404-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 12/11/2022]
|
44
|
Grandin N, Charbonneau M. RPA provides checkpoint-independent cell cycle arrest and prevents recombination at uncapped telomeres of Saccharomyces cerevisiae. DNA Repair (Amst) 2013; 12:212-26. [DOI: 10.1016/j.dnarep.2012.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 11/13/2012] [Accepted: 12/08/2012] [Indexed: 12/23/2022]
|
45
|
Churikov D, Corda Y, Luciano P, Géli V. Cdc13 at a crossroads of telomerase action. Front Oncol 2013; 3:39. [PMID: 23450759 PMCID: PMC3584321 DOI: 10.3389/fonc.2013.00039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 02/11/2013] [Indexed: 01/21/2023] Open
Abstract
Telomere elongation by telomerase involves sequential steps that must be highly coordinated to ensure the maintenance of telomeres at a proper length. Telomerase is delivered to telomere ends, where it engages single-strand DNA end as a primer, elongates it, and dissociates from the telomeres via mechanism that is likely coupled to the synthesis of the complementary C-strand. In Saccharomyces cerevisiae, the telomeric G-overhang bound Cdc13 acts as a platform for the recruitment of several factors that orchestrate timely transitions between these steps. In this review, we focus on some unresolved aspects of telomerase recruitment and on the mechanisms that regulate telomere elongation by telomerase after its recruitment to chromosome ends. We also highlight the key regulatory modifications of Cdc13 that promote transitions between the steps of telomere elongation.
Collapse
Affiliation(s)
- Dmitri Churikov
- Marseille Cancer Research Center, U1068 INSERM, UMR7258 CNRS, Aix-Marseille University Institut Paoli-Calmettes, Marseille, France
| | | | | | | |
Collapse
|
46
|
Lescasse R, Pobiega S, Callebaut I, Marcand S. End-joining inhibition at telomeres requires the translocase and polySUMO-dependent ubiquitin ligase Uls1. EMBO J 2013; 32:805-15. [PMID: 23417015 DOI: 10.1038/emboj.2013.24] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/21/2013] [Indexed: 11/09/2022] Open
Abstract
In eukaryotes, permanent inhibition of the non-homologous end joining (NHEJ) repair pathway at telomeres ensures that chromosome ends do not fuse. In budding yeast, binding of Rap1 to telomere repeats establishes NHEJ inhibition. Here, we show that the Uls1 protein is required for the maintenance of NHEJ inhibition at telomeres. Uls1 protein is a non-essential Swi2/Snf2-related translocase and a Small Ubiquitin-related Modifier (SUMO)-Targeted Ubiquitin Ligase (STUbL) with unknown targets. Loss of Uls1 results in telomere-telomere fusions. Uls1 requirement is alleviated by the absence of poly-SUMO chains and by rap1 alleles lacking SUMOylation sites. Furthermore, Uls1 limits the accumulation of Rap1 poly-SUMO conjugates. We propose that one of Uls1 functions is to clear non-functional poly-SUMOylated Rap1 molecules from telomeres to ensure the continuous efficiency of NHEJ inhibition. Since Uls1 is the only known STUbL with a translocase activity, it can be the general molecular sweeper for the clearance of poly-SUMOylated proteins on DNA in eukaryotes.
Collapse
Affiliation(s)
- Rachel Lescasse
- CEA, Direction des sciences du vivant/Institut de radiobiologie cellulaire et moléculaire/Service instabilité génétique réparation recombinaison/Laboratoire télomère et réparation du chromosome, Fontenay-aux-roses, France
| | | | | | | |
Collapse
|
47
|
Novel connections between DNA replication, telomere homeostasis, and the DNA damage response revealed by a genome-wide screen for TEL1/ATM interactions in Saccharomyces cerevisiae. Genetics 2013; 193:1117-33. [PMID: 23378069 DOI: 10.1534/genetics.113.149849] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tel1 is the budding yeast ortholog of the mammalian tumor suppressor and DNA damage response (DDR) kinase ATM. However, tel1-Δ cells, unlike ATM-deficient cells, do not exhibit sensitivity to DNA-damaging agents, but do display shortened (but stably maintained) telomere lengths. Neither the extent to which Tel1p functions in the DDR nor the mechanism by which Tel1 contributes to telomere metabolism is well understood. To address the first question, we present the results from a comprehensive genome-wide screen for genetic interactions with tel1-Δ that cause sensitivity to methyl methanesulfonate (MMS) and/or ionizing radiation, along with follow-up characterizations of the 13 interactions yielded by this screen. Surprisingly, many of the tel1-Δ interactions that confer DNA damage sensitivity also exacerbate the short telomere phenotype, suggesting a connection between these two phenomena. Restoration of normal telomere length in the tel1-Δ xxx-Δ mutants results in only minor suppression of the DNA damage sensitivity, demonstrating that the sensitivity of these mutants must also involve mechanisms independent of telomere length. In support of a model for increased replication stress in the tel1-Δ xxx-Δ mutants, we show that depletion of dNTP pools through pretreatment with hydroxyurea renders tel1-Δ cells (but not wild type) MMS-sensitive, demonstrating that, under certain conditions, Tel1p does indeed play a critical role in the DDR.
Collapse
|
48
|
Abstract
The mechanisms that maintain the stability of chromosome ends have broad impact on genome integrity in all eukaryotes. Budding yeast is a premier organism for telomere studies. Many fundamental concepts of telomere and telomerase function were first established in yeast and then extended to other organisms. We present a comprehensive review of yeast telomere biology that covers capping, replication, recombination, and transcription. We think of it as yeast telomeres—soup to nuts.
Collapse
|
49
|
Cheung HC, San Lucas FA, Hicks S, Chang K, Bertuch AA, Ribes-Zamora A. An S/T-Q cluster domain census unveils new putative targets under Tel1/Mec1 control. BMC Genomics 2012. [PMID: 23176708 PMCID: PMC3564818 DOI: 10.1186/1471-2164-13-664] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background The cellular response to DNA damage is immediate and highly coordinated in order to maintain genome integrity and proper cell division. During the DNA damage response (DDR), the sensor kinases Tel1 and Mec1 in Saccharomyces cerevisiae and ATM and ATR in human, phosphorylate multiple mediators which activate effector proteins to initiate cell cycle checkpoints and DNA repair. A subset of kinase substrates are recognized by the S/T-Q cluster domain (SCD), which contains motifs of serine (S) or threonine (T) followed by a glutamine (Q). However, the full repertoire of proteins and pathways controlled by Tel1 and Mec1 is unknown. Results To identify all putative SCD-containing proteins, we analyzed the distribution of S/T-Q motifs within verified Tel1/Mec1 targets and arrived at a unifying SCD definition of at least 3 S/T-Q within a stretch of 50 residues. This new SCD definition was used in a custom bioinformatics pipeline to generate a census of SCD-containing proteins in both yeast and human. In yeast, 436 proteins were identified, a significantly larger number of hits than were expected by chance. These SCD-containing proteins did not distribute equally across GO-ontology terms, but were significantly enriched for those involved in processes related to the DDR. We also found a significant enrichment of proteins involved in telophase and cytokinesis, protein transport and endocytosis suggesting possible novel Tel1/Mec1 targets in these pathways. In the human proteome, a wide range of similar proteins were identified, including homologs of some SCD-containing proteins found in yeast. This list also included high concentrations of proteins in the Mediator, spindle pole body/centrosome and actin cytoskeleton complexes. Conclusions Using a bioinformatic approach, we have generated a census of SCD-containing proteins that are involved not only in known DDR pathways but several other pathways under Tel1/Mec1 control suggesting new putative targets for these kinases.
Collapse
Affiliation(s)
- Hannah C Cheung
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
50
|
Preserving Yeast Genetic Heritage through DNA Damage Checkpoint Regulation and Telomere Maintenance. Biomolecules 2012; 2:505-23. [PMID: 24970147 PMCID: PMC4030855 DOI: 10.3390/biom2040505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/10/2012] [Accepted: 10/22/2012] [Indexed: 01/07/2023] Open
Abstract
In order to preserve genome integrity, extrinsic or intrinsic DNA damages must be repaired before they accumulate in cells and trigger other mutations and genome rearrangements. Eukaryotic cells are able to respond to different genotoxic stresses as well as to single DNA double strand breaks (DSBs), suggesting highly sensitive and robust mechanisms to detect lesions that trigger a signal transduction cascade which, in turn, controls the DNA damage response (DDR). Furthermore, cells must be able to distinguish natural chromosomal ends from DNA DSBs in order to prevent inappropriate checkpoint activation, DDR and chromosomal rearrangements. Since the original discovery of RAD9, the first DNA damage checkpoint gene identified in Saccharomyces cerevisiae, many genes that have a role in this pathway have been identified, including MRC1, MEC3, RAD24, RAD53, DUN1, MEC1 and TEL1. Extensive studies have established most of the genetic basis of the DNA damage checkpoint and uncovered its different functions in cell cycle regulation, DNA replication and repair, and telomere maintenance. However, major questions concerning the regulation and functions of the DNA damage checkpoint remain to be answered. First, how is the checkpoint activity coupled to DNA replication and repair? Second, how do cells distinguish natural chromosome ends from deleterious DNA DSBs? In this review we will examine primarily studies performed using Saccharomyces cerevisiae as a model system.
Collapse
|