1
|
Li M, Cai Z, Song S, Yue X, Lu W, Rao S, Zhang C, Xue C. EcCas6e-based antisense crRNA for gene repression and RNA editing in microorganisms. Nucleic Acids Res 2024; 52:8628-8642. [PMID: 38994565 PMCID: PMC11317134 DOI: 10.1093/nar/gkae612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Precise gene regulation and programmable RNA editing are vital RNA-level regulatory mechanisms. Gene repression tools grounded in small non-coding RNAs, microRNAs, and CRISPR-dCas proteins, along with RNA editing tools anchored in Adenosine Deaminases acting on RNA (ADARs), have found extensive application in molecular biology and cellular engineering. Here, we introduced a novel approach wherein we developed an EcCas6e mediated crRNA-mRNA annealing system for gene repression in Escherichia coli and RNA editing in Saccharomyces cerevisiae. We found that EcCas6e possesses inherent RNA annealing ability attributed to a secondary positively charged cleft, enhancing crRNA-mRNA hybridization and stability. Based on this, we demonstrated that EcCas6e, along with its cognate crRNA repeat containing a complementary region to the ribosome binding site of a target mRNA, effectively represses gene expression up to 25-fold. Furthermore, we demonstrated that multiple crRNAs can be easily assembled and can simultaneously target up to 13 genes. Lastly, the EcCas6e-crRNA system was developed as an RNA editing tool by fusing it with the ADAR2 deaminase domain. The EcCas6e-crRNA mediated gene repression and RNA editing tools hold broad applications for research and biotechnology.
Collapse
Affiliation(s)
- Mutong Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhaohui Cai
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Shucheng Song
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xinmin Yue
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shuquan Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chaoyou Xue
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
2
|
Talukder P, Chanda S, Chaudhuri B, Choudhury SR, Saha D, Dash S, Banerjee A, Chatterjee B. CRISPR-Based Gene Editing: a Modern Approach for Study and Treatment of Cancer. Appl Biochem Biotechnol 2024; 196:4439-4456. [PMID: 37737443 DOI: 10.1007/s12010-023-04708-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/23/2023]
Abstract
The development and emergence of clustered regularly interspaced short palindromic repeats (CRISPR) as a genome-editing technology have created a plethora of opportunities in genetic engineering. The ability of sequence-specific addition or removal of DNA in an efficient and cost-effective manner has revolutionized modern research in the field of life science and healthcare. CRISPR is widely used as a genome engineering tool in clinical studies for observing gene expression and metabolic pathway regulations in detail. Even in the case of transgenic research and personalized gene manipulation studies, CRISPR-based technology is used extensively. To understand and even to correct the underlying genetic problem is of cancer, CRISPR-based technology can be used. Various kinds of work is going on throughout the world which are attempting to target different genes in order to discover novel and effective methodologies for the treatment of cancer. In this review, we provide a brief overview on the application of CRISPR gene editing technology in cancer treatment focusing on the key aspects of cancer screening, modelling and therapy techniques.
Collapse
Affiliation(s)
- Pratik Talukder
- Department of Biotechnology, University of Engineering and Management, Kolkata, West Bengal, 700156, India.
| | - Sounak Chanda
- Department of Biotechnology, University of Engineering and Management, Kolkata, West Bengal, 700156, India
| | - Biswadeep Chaudhuri
- Department of Biotechnology, University of Engineering and Management, Kolkata, West Bengal, 700156, India
| | | | - Debanjan Saha
- School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, 632014, India
| | - Sudipta Dash
- Department of Biotechnology, IIT, Kharagpur, West Bengal, 721302, India
| | - Abhineet Banerjee
- Department of Biotechnology, NIT, Durgapur, West Bengal, 713209, India
| | | |
Collapse
|
3
|
McBride TM, Cameron SC, Fineran PC, Fagerlund RD. The biology and type I/III hybrid nature of type I-D CRISPR-Cas systems. Biochem J 2023; 480:471-488. [PMID: 37052300 PMCID: PMC10212523 DOI: 10.1042/bcj20220073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 04/14/2023]
Abstract
Prokaryotes have adaptive defence mechanisms that protect them from mobile genetic elements and viral infection. One defence mechanism is called CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins). There are six different types of CRISPR-Cas systems and multiple subtypes that vary in composition and mode of action. Type I and III CRISPR-Cas systems utilise multi-protein complexes, which differ in structure, nucleic acid binding and cleaving preference. The type I-D system is a chimera of type I and III systems. Recently, there has been a burst of research on the type I-D CRISPR-Cas system. Here, we review the mechanism, evolution and biotechnological applications of the type I-D CRISPR-Cas system.
Collapse
Affiliation(s)
- Tess M. McBride
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Shaharn C. Cameron
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter C. Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Robert D. Fagerlund
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
4
|
CRISPR-Cas adaptation in Escherichia coli. Biosci Rep 2023; 43:232582. [PMID: 36809461 PMCID: PMC10011333 DOI: 10.1042/bsr20221198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/23/2023] Open
Abstract
Prokaryotes use the adaptive immunity mediated via the Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR associated (CRISPR-Cas) system for protection against invading elements such as phages and plasmids. The immunity is achieved by capturing small DNA fragments or spacers from foreign nucleic acids (protospacers) and integrating them into the host CRISPR locus. This step of CRISPR-Cas immunity called 'naïve CRISPR adaptation' requires the conserved Cas1-Cas2 complex and is often supported by variable host proteins that assist in spacer processing and integration. Bacteria that have acquired new spacers become immune to the same invading elements when reinfected. CRISPR-Cas immunity can also be updated by integrating new spacers from the same invading elements, a process called 'primed adaptation'. Only properly selected and integrated spacers are functional in the next steps of CRISPR immunity when their processed transcripts are used for RNA-guided target recognition and interference (target degradation). Capturing, trimming, and integrating new spacers in the correct orientation are universal steps of adaptation to all CRISPR-Cas systems, but some details are CRISPR-Cas type-specific and species-specific. In this review, we provide an overview of the mechanisms of CRISPR-Cas class 1 type I-E adaptation in Escherichia coli as a general model for adaptation processes (DNA capture and integration) that have been studied in detail. We focus on the role of host non-Cas proteins involved in adaptation, particularly on the role of homologous recombination.
Collapse
|
5
|
Luo Y, Pratihar S, Horste EH, Mitschka S, Mey ASJS, Al-Hashimi HM, Mayr C. mRNA interactions with disordered regions control protein activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.18.529068. [PMID: 36824771 PMCID: PMC9949118 DOI: 10.1101/2023.02.18.529068] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The cytoplasm is compartmentalized into different translation environments. mRNAs use their 3'UTRs to localize to distinct cytoplasmic compartments, including TIS granules (TGs). Many transcription factors, including MYC, are translated in TGs. It was shown that translation of proteins in TGs enables the formation of protein complexes that cannot be established when these proteins are translated in the cytosol, but the mechanism is poorly understood. Here we show that MYC protein complexes that involve binding to the intrinsically disordered region (IDR) of MYC are only formed when MYC is translated in TGs. TG-dependent protein complexes require TG-enriched mRNAs for assembly. These mRNAs bind to a new and widespread RNA-binding domain in neutral or negatively charged IDRs in several transcription factors, including MYC. RNA-IDR interaction changes the conformational ensemble of the IDR, enabling the formation of MYC protein complexes that act in the nucleus and control functions that cannot be accomplished by cytosolically-translated MYC. We propose that certain mRNAs have IDR chaperone activity as they control IDR conformations. In addition to post-translational modifications, we found a novel mode of protein activity regulation. Since RNA-IDR interactions are prevalent, we suggest that mRNA-dependent control of protein functional states is widespread.
Collapse
Affiliation(s)
- Yang Luo
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Supriya Pratihar
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Ellen H. Horste
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Sibylle Mitschka
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | | | - Hashim M. Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Christine Mayr
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| |
Collapse
|
6
|
Ke G, Zhang J, Gao W, Chen J, Liu L, Wang S, Zhang H, Yan G. Application of advanced technology in traditional Chinese medicine for cancer therapy. Front Pharmacol 2022; 13:1038063. [PMID: 36313284 PMCID: PMC9606699 DOI: 10.3389/fphar.2022.1038063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022] Open
Abstract
Although cancer has seriously threatened people’s health, it is also identified by the World Health Organization as a controllable, treatable and even curable chronic disease. Traditional Chinese medicine (TCM) has been extensively used to treat cancer due to its multiple targets, minimum side effects and potent therapeutic effects, and thus plays an important role in all stages of tumor therapy. With the continuous progress in cancer treatment, the overall efficacy of cancer therapy has been significantly improved, and the survival time of patients has been dramatically prolonged. In recent years, a series of advanced technologies, including nanotechnology, gene editing technology, real-time cell-based assay (RTCA) technology, and flow cytometry analysis technology, have been developed and applied to study TCM for cancer therapy, which efficiently improve the medicinal value of TCM and accelerate the research progress of TCM in cancer therapy. Therefore, the applications of these advanced technologies in TCM for cancer therapy are summarized in this review. We hope this review will provide a good guidance for TCM in cancer therapy.
Collapse
Affiliation(s)
- Gaofeng Ke
- Department of Rehabilitation Medicine, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| | - Jia Zhang
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wufeng Gao
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiayi Chen
- School of Life Sciences, Jilin University, Changchun, China
| | - Luotong Liu
- School of Life Sciences, Jilin University, Changchun, China
| | - Simiao Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Huan Zhang
- School of Life Sciences, Jilin University, Changchun, China
- *Correspondence: Huan Zhang, ; Guojun Yan,
| | - Guojun Yan
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Huan Zhang, ; Guojun Yan,
| |
Collapse
|
7
|
CRISPR-Cas system and its use in the diagnosis of infectious diseases. Microbiol Res 2022; 263:127100. [PMID: 35849921 DOI: 10.1016/j.micres.2022.127100] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022]
Abstract
Rapid and accurate diagnostic methods for detecting pathogens are needed for effective management and treatment of infectious diseases. The conventional pathogen detection approach based on culture is considered the gold standard method, but needs several days to corroborate its results. Using nucleic acids from pathogens as detection targets has a considerable advantage in overcoming these time-consuming issues. The development of several molecular techniques has started to change the landscape of infectious disease diagnosis. However, these require expensive reagents, equipment, and sophisticated infrastructure, as well as highly trained workers. In this context, it is necessary to identify new diagnostic strategies to overcome these issues. Recently, CRISPR/Cas based diagnosis has revolutionized the area of molecular diagnostics of pathogenic diseases. In this review, we have discussed the different classes of CRISPR-Cas systems and their functions, and then focused on recent advances in CRISPR-based diagnosis technologies and the perspective of using this as a potential biosensing platform to detect infectious disease.
Collapse
|
8
|
DiAndreth B, Wauford N, Hu E, Palacios S, Weiss R. PERSIST platform provides programmable RNA regulation using CRISPR endoRNases. Nat Commun 2022; 13:2582. [PMID: 35562172 PMCID: PMC9095627 DOI: 10.1038/s41467-022-30172-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/20/2022] [Indexed: 12/26/2022] Open
Abstract
Regulated transgene expression is an integral component of gene therapies, cell therapies and biomanufacturing. However, transcription factor-based regulation, upon which most applications are based, suffers from complications such as epigenetic silencing that limit expression longevity and reliability. Constitutive transgene transcription paired with post-transcriptional gene regulation could combat silencing, but few such RNA- or protein-level platforms exist. Here we develop an RNA-regulation platform we call "PERSIST" which consists of nine CRISPR-specific endoRNases as RNA-level activators and repressors as well as modular OFF- and ON-switch regulatory motifs. We show that PERSIST-regulated transgenes exhibit strong OFF and ON responses, resist silencing for at least two months, and can be readily layered to construct cascades, logic functions, switches and other sophisticated circuit topologies. The orthogonal, modular and composable nature of this platform as well as the ease in constructing robust and predictable gene circuits promises myriad applications in gene and cell therapies.
Collapse
Affiliation(s)
- Breanna DiAndreth
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Noreen Wauford
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Eileen Hu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sebastian Palacios
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
9
|
Lee H, Sashital DG. Creating memories: molecular mechanisms of CRISPR adaptation. Trends Biochem Sci 2022; 47:464-476. [DOI: 10.1016/j.tibs.2022.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/22/2022]
|
10
|
Gao F, Zheng K, Li YB, Jiang F, Han CY. A Cas6-based RNA tracking platform functioning in a fluorescence-activation mode. Nucleic Acids Res 2022; 50:e46. [PMID: 35061906 PMCID: PMC9071499 DOI: 10.1093/nar/gkac014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 12/09/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022] Open
Abstract
Given the fact that the localization of RNAs is closely associated with their functions, techniques developed for tracking the distribution of RNAs in live cells have greatly advanced the study of RNA biology. Recently, innovative application of fluorescent protein-labelled Cas9 and Cas13 into live-cell RNA tracking further enriches the toolbox. However, the Cas9/Cas13 platform, as well as the widely-used MS2-MCP technique, failed to solve the problem of high background noise. It was recently reported that CRISPR/Cas6 would exhibit allosteric alteration after interacting with the Cas6 binding site (CBS) on RNAs. Here, we exploited this feature and designed a Cas6-based switch platform for detecting target RNAs in vivo. Conjugating split-Venus fragments to both ends of the endoribonuclease-mutated Escherichia coli Cas6(dEcCas6) allowed ligand (CBS)-activated split-Venus complementation. We name this platform as Cas6 based Fluorescence Complementation (Cas6FC). In living cells, Cas6FC could detect target RNAs with nearly free background noise. Moreover, as minimal as one copy of CBS (29nt) tagged in an RNA of interest was able to turn on Cas6FC fluorescence, which greatly reduced the odds of potential alteration of conformation and localization of target RNAs. Thus, we developed a new RNA tracking platform inherently with high sensitivity and specificity.
Collapse
Affiliation(s)
- Feng Gao
- Gene Editing Research Center, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Ke Zheng
- Gene Editing Research Center, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - You-Bo Li
- School of Basic Medical Sciences, Hebei University, Baoding, Hebei 071000, China
| | - Feng Jiang
- Gene Editing Research Center, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Chun-Yu Han
- Gene Editing Research Center, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| |
Collapse
|
11
|
Abstract
:
Clustered regularly interspaced short palindromic repeats along with CRISPR-associated protein
mechanisms preserve the memory of previous experiences with DNA invaders, in particular spacers
that are embedded in CRISPR arrays between coordinate repeats. There has been a fast progression in
the comprehension of this immune system and its implementations; however, there are numerous points
of view that anticipate explanations to make the field an energetic research zone. The efficiency of
CRISPR-Cas depends upon well-considered single guide RNA; for this purpose, many bioinformatics
methods and tools are created to support the design of greatly active and precise single guide RNA. Insilico
single guide RNA architecture is a crucial point for effective gene editing by means of the
CRISPR technique. Persistent attempts have been made to improve in-silico single guide RNA formulation
having great on-target effectiveness and decreased off-target effects. This review offers a summary
of the CRISPR computational tools to help different researchers pick a specific tool for their work according
to pros and cons, along with new thoughts to make new computational tools to overcome all existing
limitations.
Collapse
Affiliation(s)
- Mohsin Ali Nasir
- Center for Informational Biology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave,
West Hi-Tech Zone, Chengdu 611731, China
| | - Samia Nawaz
- Center for Informational Biology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave,
West Hi-Tech Zone, Chengdu 611731, China
| | - Jian Huang
- Center for Informational Biology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave,
West Hi-Tech Zone, Chengdu 611731, China
| |
Collapse
|
12
|
Guzmán NM, Esquerra-Ruvira B, Mojica FJM. Digging into the lesser-known aspects of CRISPR biology. Int Microbiol 2021; 24:473-498. [PMID: 34487299 PMCID: PMC8616872 DOI: 10.1007/s10123-021-00208-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022]
Abstract
A long time has passed since regularly interspaced DNA repeats were discovered in prokaryotes. Today, those enigmatic repetitive elements termed clustered regularly interspaced short palindromic repeats (CRISPR) are acknowledged as an emblematic part of multicomponent CRISPR-Cas (CRISPR associated) systems. These systems are involved in a variety of roles in bacteria and archaea, notably, that of conferring protection against transmissible genetic elements through an adaptive immune-like response. This review summarises the present knowledge on the diversity, molecular mechanisms and biology of CRISPR-Cas. We pay special attention to the most recent findings related to the determinants and consequences of CRISPR-Cas activity. Research on the basic features of these systems illustrates how instrumental the study of prokaryotes is for understanding biology in general, ultimately providing valuable tools for diverse fields and fuelling research beyond the mainstream.
Collapse
Affiliation(s)
- Noemí M Guzmán
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Belén Esquerra-Ruvira
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Francisco J M Mojica
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain.
- Instituto Multidisciplinar para el Estudio del Medio, Universidad de Alicante, Alicante, Spain.
| |
Collapse
|
13
|
Lemak S, Serbanescu MA, Khusnutdinova AN, Ruszkowski M, Beloglazova N, Xu X, Brown G, Cui H, Tan K, Joachimiak A, Cvitkovitch DG, Savchenko A, Yakunin AF. Structural and biochemical insights into CRISPR RNA processing by the Cas5c ribonuclease SMU1763 from Streptococcus mutans. J Biol Chem 2021; 297:101251. [PMID: 34592310 PMCID: PMC8524198 DOI: 10.1016/j.jbc.2021.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 12/01/2022] Open
Abstract
The cariogenic pathogen Streptococcus mutans contains two CRISPR systems (type I-C and type II-A) with the Cas5c protein (SmuCas5c) involved in processing of long CRISPR RNA transcripts (pre-crRNA) containing repeats and spacers to mature crRNA guides. In this study, we determined the crystal structure of SmuCas5c at a resolution of 1.72 Å, which revealed the presence of an N-terminal modified RNA recognition motif and a C-terminal twisted β-sheet domain with four bound sulphate molecules. Analysis of surface charge and residue conservation of the SmuCas5c structure suggested the location of an RNA-binding site in a shallow groove formed by the RNA recognition motif domain with several conserved positively charged residues (Arg39, Lys52, Arg109, Arg127, and Arg134). Purified SmuCas5c exhibited metal-independent ribonuclease activity against single-stranded pre-CRISPR RNAs containing a stem-loop structure with a seven-nucleotide stem and a pentaloop. We found SmuCas5c cleaves substrate RNA within the repeat sequence at a single cleavage site located at the 3'-base of the stem but shows significant tolerance to substrate sequence variations downstream of the cleavage site. Structure-based mutational analysis revealed that the conserved residues Tyr50, Lys120, and His121 comprise the SmuCas5c catalytic residues. In addition, site-directed mutagenesis of positively charged residues Lys52, Arg109, and Arg134 located near the catalytic triad had strong negative effects on the RNase activity of this protein, suggesting that these residues are involved in RNA binding. Taken together, our results reveal functional diversity of Cas5c ribonucleases and provide further insight into the molecular mechanisms of substrate selectivity and activity of these enzymes.
Collapse
Affiliation(s)
- Sofia Lemak
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - M Anca Serbanescu
- Faculty of Dentistry, Dental Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Anna N Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Milosz Ruszkowski
- Synchrotron Radiation Research Section of MCL, National Cancer Institute, Argonne, Illinois, USA
| | - Natalia Beloglazova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Xiaohui Xu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Greg Brown
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Hong Cui
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Kemin Tan
- X-Ray Science Division, Midwest Center for Structural Genomics and Structural Biology Center, Argonne National Laboratory, Argonne, Illinois, USA
| | - Andrzej Joachimiak
- X-Ray Science Division, Midwest Center for Structural Genomics and Structural Biology Center, Argonne National Laboratory, Argonne, Illinois, USA
| | - Dennis G Cvitkovitch
- Faculty of Dentistry, Dental Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada; Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, UK.
| |
Collapse
|
14
|
Prakash A, Kumar M. Characterizing the transcripts of Leptospira CRISPR I-B array and its processing with endoribonuclease LinCas6. Int J Biol Macromol 2021; 182:785-795. [PMID: 33862076 DOI: 10.1016/j.ijbiomac.2021.04.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 12/26/2022]
Abstract
In Leptospira interrogans serovar Copenhageni, the CRISPR-Cas I-B locus possesses a CRISPR array between the two independent cas-operons. Using the reverse transcription-PCR and the in vitro endoribonuclease assay with Cas6 of Leptospira (LinCas6), we account that the CRISPR is transcriptionally active and is conventionally processed. The LinCas6 specifically excises at one site within the synthetic cognate repeat RNA or the repeats of precursor-CRISPR RNA (pre-crRNA) in the sense direction. In contrast, the antisense repeat RNA is cleaved at multiple sites. LinCas6 functions as a single turnover endoribonuclease on its repeat RNA substrate, where substitution of one of predicted active site residues (His38) resulted in reduced activity. This study highlights the comprehensive understanding of the Leptospira CRISPR array transcription and its processing by LinCas6 that is central to RNA-mediated CRISPR-Cas I-B adaptive immunity.
Collapse
Affiliation(s)
- Aman Prakash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Manish Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
15
|
History, evolution and classification of CRISPR-Cas associated systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 179:11-76. [PMID: 33785174 DOI: 10.1016/bs.pmbts.2020.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter provides a detailed description of the history of CRISPR-Cas and its evolution into one of the most efficient genome-editing strategies. The chapter begins by providing information on early findings that were critical in deciphering the role of CRISPR-Cas associated systems in prokaryotes. It then describes how CRISPR-Cas had been evolved into an efficient genome-editing strategy. In the subsequent section, latest developments in the genome-editing approaches based on CRISPR-Cas are discussed. The chapter ends with the recent classification and possible evolution of CRISPR-Cas systems.
Collapse
|
16
|
The development of genome editing tools as powerful techniques with versatile applications in biotechnology and medicine: CRISPR/Cas9, ZnF and TALE nucleases, RNA interference, and Cre/loxP. CHEMTEXTS 2020. [DOI: 10.1007/s40828-020-00126-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractThe huge progress in whole genome sequencing (genomic revolution) methods including next generation sequencing (NGS) techniques allows one to obtain data on genome sequences of all organisms, ranging from bacteria to plants to mammals, within hours to days (era of whole genome/exome sequencing) (Goodwin et al. in Nat Rev Genet 17:333–351, 2016; Levy and Myers in Annu Rev Genomics Hum Genet 17:95–115, 2016; Giani et al. in Comput Struct Biotechnol J 18:9–19, 2020). Today, within the era of functional genomics the highest goal is to transfer this huge amount of sequencing data into information of functional and clinical relevance (genome annotation project). The World Health Organization (WHO) estimates that more than 10,000 diseases in humans are monogenic, i.e., that these diseases are caused by mutations within single genes (Jackson et al. in Essays Biochem 62:643–723, 2018). NGS technologies are continuously improving while our knowledge on genetic mutations driving the development of diseases is also still emerging (Giani et al. in Comput Struct Biotechnol J 18:9–19, 2020). It would be desirable to have tools that allow one to correct these genetic mutations, so-called genome editing tools. Apart from applications in biotechnology, medicine, and agriculture, it is still not concisely understood in basic science how genotype influences phenotype. Firstly, the Cre/loxP system and RNA-based technologies for gene knockout or knockdown are explained. Secondly, zinc-finger (ZnF) nucleases and transcription activator-like effector nucleases (TALENs) are discussed as targeted genome editing systems. Thirdly, CRISPR/Cas is presented including outline of the discovery and mechanisms of this adaptive immune system in bacteria and archaea, structure and function of CRISPR/Cas9 and its application as a tool for genomic editing. Current developments and applications of CRISPR/Cas9 are discussed. Moreover, limitations and drawbacks of the CRISPR/Cas system are presented and questions on ethical concerns connected to application of genome editing tools are discussed.
Collapse
|
17
|
Abstract
Prokaryotes have developed numerous defense strategies to combat the constant threat posed by the diverse genetic parasites that endanger them. Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas loci guard their hosts with an adaptive immune system against foreign nucleic acids. Protection starts with an immunization phase, in which short pieces of the invader's genome, known as spacers, are captured and integrated into the CRISPR locus after infection. Next, during the targeting phase, spacers are transcribed into CRISPR RNAs (crRNAs) that guide CRISPR-associated (Cas) nucleases to destroy the invader's DNA or RNA. Here we describe the many different molecular mechanisms of CRISPR targeting and how they are interconnected with the immunization phase through a third phase of the CRISPR-Cas immune response: primed spacer acquisition. In this phase, Cas proteins direct the crRNA-guided acquisition of additional spacers to achieve a more rapid and robust immunization of the population.
Collapse
Affiliation(s)
- Philip M. Nussenzweig
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Luciano A. Marraffini
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
18
|
Zheng Y, Li J, Wang B, Han J, Hao Y, Wang S, Ma X, Yang S, Ma L, Yi L, Peng W. Endogenous Type I CRISPR-Cas: From Foreign DNA Defense to Prokaryotic Engineering. Front Bioeng Biotechnol 2020; 8:62. [PMID: 32195227 PMCID: PMC7064716 DOI: 10.3389/fbioe.2020.00062] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/24/2020] [Indexed: 12/18/2022] Open
Abstract
Establishment of production platforms through prokaryotic engineering in microbial organisms would be one of the most efficient means for chemicals, protein, and biofuels production. Despite the fact that CRISPR (clustered regularly interspaced short palindromic repeats)–based technologies have readily emerged as powerful and versatile tools for genetic manipulations, their applications are generally limited in prokaryotes, possibly owing to the large size and severe cytotoxicity of the heterogeneous Cas (CRISPR-associated) effector. Nevertheless, the rich natural occurrence of CRISPR-Cas systems in many bacteria and most archaea holds great potential for endogenous CRISPR-based prokaryotic engineering. The endogenous CRISPR-Cas systems, with type I systems that constitute the most abundant and diverse group, would be repurposed as genetic manipulation tools once they are identified and characterized as functional in their native hosts. This article reviews the major progress made in understanding the mechanisms of invading DNA immunity by type I CRISPR-Cas and summarizes the practical applications of endogenous type I CRISPR-based toolkits for prokaryotic engineering.
Collapse
Affiliation(s)
- Yanli Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Jie Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Baiyang Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Jiamei Han
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Yile Hao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Shengchen Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Xiangdong Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Li Yi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Wenfang Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
19
|
Hahn J, Chou LYT, Sørensen RS, Guerra RM, Shih WM. Extrusion of RNA from a DNA-Origami-Based Nanofactory. ACS NANO 2020; 14:1550-1559. [PMID: 31922721 DOI: 10.1021/acsnano.9b06466] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cells often spatially organize biomolecules to regulate biological interactions. Synthetic mimicry of complex spatial organization may provide a route to similar levels of control for artificial systems. As a proof-of-principle, we constructed an RNA-extruding nanofactory using a DNA-origami barrel with an outer diameter of 60 nm as a chassis for integrated rolling-circle transcription and processing of RNA through spatial organization of DNA templates, RNA polymerases, and RNA endonucleases. The incorporation efficiency of molecular components was quantified to be roughly 50% on designed sites within the DNA-origami chassis. Each integrated nanofactory with RNA-producing units, composed of DNA templates and RNA polymerases, produced 100 copies of target RNA in 30 min on average. Further integration of RNA endonucleases that cleave rolling-circle transcripts from concatemers into monomers resulted in 30% processing efficiency. Disabling spatial organization of molecular components on DNA origami resulted in suppression of RNA production as well as processing.
Collapse
Affiliation(s)
- Jaeseung Hahn
- Division of Health Sciences and Technology , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
- Department of Cancer Biology , Dana Farber Cancer Institute , Boston , Massachusetts 02115 , United States
- Wyss Institute for Biologically Inspired Engineering , Harvard University , Boston , Massachusetts 02115 , United States
| | - Leo Y T Chou
- Department of Cancer Biology , Dana Farber Cancer Institute , Boston , Massachusetts 02115 , United States
- Wyss Institute for Biologically Inspired Engineering , Harvard University , Boston , Massachusetts 02115 , United States
| | - Rasmus S Sørensen
- Department of Cancer Biology , Dana Farber Cancer Institute , Boston , Massachusetts 02115 , United States
- Wyss Institute for Biologically Inspired Engineering , Harvard University , Boston , Massachusetts 02115 , United States
| | - Richard M Guerra
- Department of Cancer Biology , Dana Farber Cancer Institute , Boston , Massachusetts 02115 , United States
- Wyss Institute for Biologically Inspired Engineering , Harvard University , Boston , Massachusetts 02115 , United States
| | - William M Shih
- Department of Cancer Biology , Dana Farber Cancer Institute , Boston , Massachusetts 02115 , United States
- Wyss Institute for Biologically Inspired Engineering , Harvard University , Boston , Massachusetts 02115 , United States
| |
Collapse
|
20
|
Behler J, Hess WR. Approaches to study CRISPR RNA biogenesis and the key players involved. Methods 2020; 172:12-26. [PMID: 31325492 DOI: 10.1016/j.ymeth.2019.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/29/2019] [Accepted: 07/15/2019] [Indexed: 12/26/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins provide an inheritable and adaptive immune system against phages and foreign genetic elements in many bacteria and archaea. The three stages of CRISPR-Cas immunity comprise adaptation, CRISPR RNA (crRNA) biogenesis and interference. The maturation of the pre-crRNA into mature crRNAs, short guide RNAs that target invading nucleic acids, is crucial for the functionality of CRISPR-Cas defense systems. Mature crRNAs assemble with Cas proteins into the ribonucleoprotein (RNP) effector complex and guide the Cas nucleases to the cognate foreign DNA or RNA target. Experimental approaches to characterize these crRNAs, the specific steps toward their maturation and the involved factors, include RNA-seq analyses, enzyme assays, methods such as cryo-electron microscopy, the crystallization of proteins, or UV-induced protein-RNA crosslinking coupled to mass spectrometry analysis. Complex and multiple interactions exist between CRISPR-cas-encoded specific riboendonucleases such as Cas6, Cas5d and Csf5, endonucleases with dual functions in maturation and interference such as the enzymes of the Cas12 and Cas13 families, and nucleases belonging to the cell's degradosome such as RNase E, PNPase and RNase J, both in the maturation as well as in interference. The results of these studies have yielded a picture of unprecedented diversity of sequences, enzymes and biochemical mechanisms.
Collapse
Affiliation(s)
- Juliane Behler
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Wolfgang R Hess
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104 Freiburg, Germany; University of Freiburg, Freiburg Institute for Advanced Studies, Albertstr. 19, D-79104 Freiburg, Germany.
| |
Collapse
|
21
|
Sahoo N, Cuello V, Udawant S, Litif C, Mustard JA, Keniry M. CRISPR-Cas9 Genome Editing in Human Cell Lines with Donor Vector Made by Gibson Assembly. Methods Mol Biol 2020; 2115:365-383. [PMID: 32006411 PMCID: PMC7391466 DOI: 10.1007/978-1-0716-0290-4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
CRISPR Cas9 genome editing allows researchers to modify genes in a multitude of ways including to obtain deletions, epitope-tagged loci, and knock-in mutations. Within 6 years of its initial application, CRISPR-Cas9 genome editing has been widely employed, but disadvantages to this method, such as low modification efficiencies and off-target effects, need careful consideration. Obtaining custom donor vectors can also be expensive and time-consuming. This chapter details strategies to overcome barriers to CRISPR-Cas9 genome editing as well as recent developments in employing this technique.
Collapse
Affiliation(s)
- Nirakar Sahoo
- Department of Biology, University of Texas - Rio Grande Valley, Edinburg, TX, USA
| | - Victoria Cuello
- Department of Biology, University of Texas - Rio Grande Valley, Edinburg, TX, USA
| | - Shreya Udawant
- Department of Biology, University of Texas - Rio Grande Valley, Edinburg, TX, USA
| | - Carl Litif
- Department of Biology, University of Texas - Rio Grande Valley, Edinburg, TX, USA
| | - Julie A Mustard
- Department of Biology, University of Texas - Rio Grande Valley, Edinburg, TX, USA
| | - Megan Keniry
- Department of Biology, University of Texas - Rio Grande Valley, Edinburg, TX, USA.
| |
Collapse
|
22
|
Nithin C, Mukherjee S, Bahadur RP. A structure-based model for the prediction of protein-RNA binding affinity. RNA (NEW YORK, N.Y.) 2019; 25:1628-1645. [PMID: 31395671 PMCID: PMC6859855 DOI: 10.1261/rna.071779.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/05/2019] [Indexed: 05/28/2023]
Abstract
Protein-RNA recognition is highly affinity-driven and regulates a wide array of cellular functions. In this study, we have curated a binding affinity data set of 40 protein-RNA complexes, for which at least one unbound partner is available in the docking benchmark. The data set covers a wide affinity range of eight orders of magnitude as well as four different structural classes. On average, we find the complexes with single-stranded RNA have the highest affinity, whereas the complexes with the duplex RNA have the lowest. Nevertheless, free energy gain upon binding is the highest for the complexes with ribosomal proteins and the lowest for the complexes with tRNA with an average of -5.7 cal/mol/Å2 in the entire data set. We train regression models to predict the binding affinity from the structural and physicochemical parameters of protein-RNA interfaces. The best fit model with the lowest maximum error is provided with three interface parameters: relative hydrophobicity, conformational change upon binding and relative hydration pattern. This model has been used for predicting the binding affinity on a test data set, generated using mutated structures of yeast aspartyl-tRNA synthetase, for which experimentally determined ΔG values of 40 mutations are available. The predicted ΔGempirical values highly correlate with the experimental observations. The data set provided in this study should be useful for further development of the binding affinity prediction methods. Moreover, the model developed in this study enhances our understanding on the structural basis of protein-RNA binding affinity and provides a platform to engineer protein-RNA interfaces with desired affinity.
Collapse
Affiliation(s)
- Chandran Nithin
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sunandan Mukherjee
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ranjit Prasad Bahadur
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
23
|
Liu L, Cao J, Chang Q, Xing F, Yan G, Fu L, Wang H, Ma Z, Chen X, Li Y, Li S. In Vivo Exon Replacement in the Mouse Atp7b Gene by the Cas9 System. Hum Gene Ther 2019; 30:1079-1092. [PMID: 31144528 DOI: 10.1089/hum.2019.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The application of CRISPR/Cas9 has opened a new era in gene therapy, making it possible to correct mutated genomes in vivo. Exon replacement can correct many mutations and has potential clinical value. In this study, we used a lentivirus-delivered transgene to obtain transgenic mice in which Cas9 and green fluorescent protein (GFP) were driven by the hTBG promoter and were specifically expressed in the liver. In Cas9-positive mice, only ∼11.6% of hepatocytes were GFP positive. The newborn Cas9-positive F1 mice were injected via the temporal vein with rAAV carrying a modified homologous replacement sequence for exon 8 of Atp7b and a pair of single-strand guide RNAs targeting the introns surrounding exon 8. When the Cas9-positive hepatocytes were sorted and analyzed by PCR and next-generation deep sequencing with different labels, ∼16.34 ± 4.02% to 19.37 ± 6.50% of the analyzed copies of exon 8 were replaced by the donor template in the genome of GFP-positive hepatocytes, that is, 1.81 ± 0.29% to 2.09 ± 0.54% replacement occurred in all liver genomes. However, when rAAV carrying a modified homologous replacement sequence was injected into the adult spCas9 mice, a double-cut deletion ratio of up to 99%, only about 1.10-1.13% of the exon 8 replacement rate was detected in Cas9-positive hepatocytes. This study is the first to achieve exon replacement via CRISPR/Cas9, which will benefit research on CRISPR/Cas9 technology for gene therapy.
Collapse
Affiliation(s)
- Lili Liu
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianchang Cao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiurong Chang
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fengying Xing
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guofeng Yan
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Fu
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huiyang Wang
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengwen Ma
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuejin Chen
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Li
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shangang Li
- Yunnan Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
24
|
Taylor HN, Warner EE, Armbrust MJ, Crowley VM, Olsen KJ, Jackson RN. Structural basis of Type IV CRISPR RNA biogenesis by a Cas6 endoribonuclease. RNA Biol 2019; 16:1438-1447. [PMID: 31232162 DOI: 10.1080/15476286.2019.1634965] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Prokaryotic CRISPR-Cas adaptive immune systems rely on small non-coding RNAs derived from CRISPR loci to recognize and destroy complementary nucleic acids. However, the mechanism of Type IV CRISPR RNA (crRNA) biogenesis is poorly understood. To dissect the mechanism of Type IV CRISPR RNA biogenesis, we determined the x-ray crystal structure of the putative Type IV CRISPR associated endoribonuclease Cas6 from Mahella australiensis (Ma Cas6-IV) and characterized its enzymatic activity with RNA cleavage assays. We show that Ma Cas6-IV specifically cleaves Type IV crRNA repeats at the 3' side of a predicted stem loop, with a metal-independent, single-turnover mechanism that relies on a histidine and a tyrosine located within the putative endonuclease active site. Structure and sequence alignments with Cas6 orthologs reveal that although Ma Cas6-IV shares little sequence homology with other Cas6 proteins, all share common structural features that bind distinct crRNA repeat sequences. This analysis of Type IV crRNA biogenesis provides a structural and biochemical framework for understanding the similarities and differences of crRNA biogenesis across multi-subunit Class 1 CRISPR immune systems.
Collapse
Affiliation(s)
- Hannah N Taylor
- Department of Chemistry and Biochemistry, Utah State University , Logan , UT , USA
| | - Emily E Warner
- Department of Chemistry and Biochemistry, Utah State University , Logan , UT , USA
| | - Matthew J Armbrust
- Department of Chemistry and Biochemistry, Utah State University , Logan , UT , USA
| | - Valerie M Crowley
- Department of Chemistry and Biochemistry, Utah State University , Logan , UT , USA
| | - Keith J Olsen
- Department of Chemistry and Biochemistry, Utah State University , Logan , UT , USA
| | - Ryan N Jackson
- Department of Chemistry and Biochemistry, Utah State University , Logan , UT , USA
| |
Collapse
|
25
|
Gong L, Li M, Cheng F, Zhao D, Chen Y, Xiang H. Primed adaptation tolerates extensive structural and size variations of the CRISPR RNA guide in Haloarcula hispanica. Nucleic Acids Res 2019; 47:5880-5891. [PMID: 30957847 PMCID: PMC6582329 DOI: 10.1093/nar/gkz244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022] Open
Abstract
Recent studies on CRISPR adaptation revealed that priming is a major pathway of spacer acquisition, at least for the most prevalent type I systems. Priming is guided by a CRISPR RNA which fully/partially matches the invader DNA, but the plasticity of this RNA guide has not yet been characterized. In this study, we extensively modified the two conserved handles of a priming crRNA in Haloarcula hispanica, and altered the size of its central spacer part. Interestingly, priming is insusceptible to the full deletion of 3' handle, which seriously impaired crRNA stability and interference effects. With 3' handle deletion, further truncation of 5' handle revealed that its spacer-proximal 6 nucleotides could provide the least conserved sequence required for priming. Subsequent scanning mutation further identified critical nucleotides within 5' handle. Besides, priming was also shown to tolerate a wider size variation of the spacer part, compared to interference. These data collectively illustrate the high tolerance of priming to extensive structural/size variations of the crRNA guide, which highlights the structural flexibility of the crRNA-effector ribonucleoprotein complex. The observed high priming effectiveness suggests that primed adaptation promotes clearance of the fast-replicating and ever-evolving viral DNA, by rapidly and persistently multiplexing the interference pathway.
Collapse
Affiliation(s)
- Luyao Gong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feiyue Cheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Dorsey BW, Huang L, Mondragón A. Structural organization of a Type III-A CRISPR effector subcomplex determined by X-ray crystallography and cryo-EM. Nucleic Acids Res 2019; 47:3765-3783. [PMID: 30759237 PMCID: PMC6468305 DOI: 10.1093/nar/gkz079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 02/06/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated Cas proteins provide an immune-like response in many prokaryotes against extraneous nucleic acids. CRISPR-Cas systems are classified into different classes and types. Class 1 CRISPR-Cas systems form multi-protein effector complexes that includes a guide RNA (crRNA) used to identify the target for destruction. Here we present crystal structures of Staphylococcus epidermidis Type III-A CRISPR subunits Csm2 and Csm3 and a 5.2 Å resolution single-particle cryo-electron microscopy (cryo-EM) reconstruction of an in vivo assembled effector subcomplex including the crRNA. The structures help to clarify the quaternary architecture of Type III-A effector complexes, and provide details on crRNA binding, target RNA binding and cleavage, and intermolecular interactions essential for effector complex assembly. The structures allow a better understanding of the organization of Type III-A CRISPR effector complexes as well as highlighting the overall similarities and differences with other Class 1 effector complexes.
Collapse
Affiliation(s)
- Bryan W Dorsey
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Lei Huang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Alfonso Mondragón
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
27
|
Xue C, Sashital DG. Mechanisms of Type I-E and I-F CRISPR-Cas Systems in Enterobacteriaceae. EcoSal Plus 2019; 8:10.1128/ecosalplus.ESP-0008-2018. [PMID: 30724156 PMCID: PMC6368399 DOI: 10.1128/ecosalplus.esp-0008-2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 12/17/2022]
Abstract
CRISPR-Cas systems provide bacteria and archaea with adaptive immunity against invasion by bacteriophages and other mobile genetic elements. Short fragments of invader DNA are stored as immunological memories within CRISPR (clustered regularly interspaced short palindromic repeat) arrays in the host chromosome. These arrays provide a template for RNA molecules that can guide CRISPR-associated (Cas) proteins to specifically neutralize viruses upon subsequent infection. Over the past 10 years, our understanding of CRISPR-Cas systems has benefited greatly from a number of model organisms. In particular, the study of several members of the Gram-negative Enterobacteriaceae family, especially Escherichia coli and Pectobacterium atrosepticum, have provided significant insights into the mechanisms of CRISPR-Cas immunity. In this review, we provide an overview of CRISPR-Cas systems present in members of the Enterobacteriaceae. We also detail the current mechanistic understanding of the type I-E and type I-F CRISPR-Cas systems that are commonly found in enterobacteria. Finally, we discuss how phages can escape or inactivate CRISPR-Cas systems and the measures bacteria can enact to counter these types of events.
Collapse
Affiliation(s)
- Chaoyou Xue
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA
- Present address: Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY
| | - Dipali G Sashital
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA
| |
Collapse
|
28
|
Zhu Y, Huang Z. Recent advances in structural studies of the CRISPR-Cas-mediated genome editing tools. Natl Sci Rev 2018; 6:438-451. [PMID: 34691893 PMCID: PMC8291651 DOI: 10.1093/nsr/nwy150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 12/26/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and accompanying CRISPR-associated (Cas) proteins provide RNA-guided adaptive immunity for prokaryotes to defend themselves against viruses. The CRISPR-Cas systems have attracted much attention in recent years for their power in aiding the development of genome editing tools. Based on the composition of the CRISPR RNA-effector complex, the CRISPR-Cas systems can be divided into two classes and six types. In this review, we summarize recent advances in the structural biology of the CRISPR-Cas-mediated genome editing tools, which helps us to understand the mechanism of how the guide RNAs assemble with diverse Cas proteins to cleave target nucleic acids.
Collapse
Affiliation(s)
- Yuwei Zhu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
29
|
Mohr G, Silas S, Stamos JL, Makarova KS, Markham LM, Yao J, Lucas-Elío P, Sanchez-Amat A, Fire AZ, Koonin EV, Lambowitz AM. A Reverse Transcriptase-Cas1 Fusion Protein Contains a Cas6 Domain Required for Both CRISPR RNA Biogenesis and RNA Spacer Acquisition. Mol Cell 2018; 72:700-714.e8. [PMID: 30344094 PMCID: PMC6242336 DOI: 10.1016/j.molcel.2018.09.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/10/2018] [Accepted: 09/12/2018] [Indexed: 01/30/2023]
Abstract
Prokaryotic CRISPR-Cas systems provide adaptive immunity by integrating portions of foreign nucleic acids (spacers) into genomic CRISPR arrays. Cas6 proteins then process CRISPR array transcripts into spacer-derived RNAs (CRISPR RNAs; crRNAs) that target Cas nucleases to matching invaders. We find that a Marinomonas mediterranea fusion protein combines three enzymatic domains (Cas6, reverse transcriptase [RT], and Cas1), which function in both crRNA biogenesis and spacer acquisition from RNA and DNA. We report a crystal structure of this divergent Cas6, identify amino acids required for Cas6 activity, show that the Cas6 domain is required for RT activity and RNA spacer acquisition, and demonstrate that CRISPR-repeat binding to Cas6 regulates RT activity. Co-evolution of putative interacting surfaces suggests a specific structural interaction between the Cas6 and RT domains, and phylogenetic analysis reveals repeated, stable association of free-standing Cas6s with CRISPR RTs in multiple microbial lineages, indicating that a functional interaction between these proteins preceded evolution of the fusion.
Collapse
Affiliation(s)
- Georg Mohr
- Institute for Cellular and Molecular Biology and Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Sukrit Silas
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Jennifer L Stamos
- Institute for Cellular and Molecular Biology and Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD 20894, USA
| | - Laura M Markham
- Institute for Cellular and Molecular Biology and Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jun Yao
- Institute for Cellular and Molecular Biology and Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Patricia Lucas-Elío
- Department of Genetics and Microbiology, Universidad de Murcia, Murcia 30100, Spain
| | - Antonio Sanchez-Amat
- Department of Genetics and Microbiology, Universidad de Murcia, Murcia 30100, Spain
| | - Andrew Z Fire
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD 20894, USA
| | - Alan M Lambowitz
- Institute for Cellular and Molecular Biology and Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
30
|
Medina-Aparicio L, Dávila S, Rebollar-Flores JE, Calva E, Hernández-Lucas I. The CRISPR-Cas system in Enterobacteriaceae. Pathog Dis 2018; 76:4794941. [PMID: 29325038 DOI: 10.1093/femspd/fty002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022] Open
Abstract
In nature, microorganisms are constantly exposed to multiple viral infections and thus have developed many strategies to survive phage attack and invasion by foreign DNA. One of such strategies is the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) bacterial immunological system. This defense mechanism is widespread in prokaryotes including several families such as Enterobacteriaceae. Much knowledge about the CRISPR-Cas system has been generated, including its biological functions, transcriptional regulation, distribution, utility as a molecular marker and as a tool for specific genome editing. This review focuses on these aspects and describes the state of the art of the CRISPR-Cas system in the Enterobacteriaceae bacterial family.
Collapse
Affiliation(s)
- Liliana Medina-Aparicio
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Sonia Dávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Cuernavaca, Morelos 62209, México
| | - Javier E Rebollar-Flores
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Edmundo Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Ismael Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| |
Collapse
|
31
|
Nickel L, Ulbricht A, Alkhnbashi OS, Förstner KU, Cassidy L, Weidenbach K, Backofen R, Schmitz RA. Cross-cleavage activity of Cas6b in crRNA processing of two different CRISPR-Cas systems in Methanosarcina mazei Gö1. RNA Biol 2018; 16:492-503. [PMID: 30153081 DOI: 10.1080/15476286.2018.1514234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR) system is a prokaryotic adaptive defense system against foreign nucleic acids. In the methanoarchaeon Methanosarcina mazei Gö1, two types of CRISPR-Cas systems are present (type I-B and type III-C). Both loci encode a Cas6 endonuclease, Cas6b-IB and Cas6b-IIIC, typically responsible for maturation of functional short CRISPR RNAs (crRNAs). To evaluate potential cross cleavage activity, we biochemically characterized both Cas6b proteins regarding their crRNA binding behavior and their ability to process pre-crRNA from the respective CRISPR array in vivo. Maturation of crRNA was studied in the respective single deletion mutants by northern blot and RNA-Seq analysis demonstrating that in vivo primarily Cas6b-IB is responsible for crRNA processing of both CRISPR arrays. Tentative protein level evidence for the translation of both Cas6b proteins under standard growth conditions was detected, arguing for different activities or a potential non-redundant role of Cas6b-IIIC within the cell. Conservation of both Cas6 endonucleases was observed in several other M. mazei isolates, though a wide variety was displayed. In general, repeat and leader sequence conservation revealed a close correlation in the M. mazei strains. The repeat sequences from both CRISPR arrays from M. mazei Gö1 contain the same sequence motif with differences only in two nucleotides. These data stand in contrast to all other analyzed M. mazei isolates, which have at least one additional CRISPR array with repeats belonging to another sequence motif. This conforms to the finding that Cas6b-IB is the crucial and functional endonuclease in M. mazei Gö1. Abbreviations: sRNA: small RNA; crRNA: CRISPR RNA; pre-crRNAs: Precursor CRISPR RNA; CRISPR: clustered regularly interspaced short palindromic repeats; Cas: CRISPR associated; nt: nucleotide; RNP: ribonucleoprotein; RBS: ribosome binding site.
Collapse
Affiliation(s)
- Lisa Nickel
- a Institute of General Microbiology , Christian-Albrechts-University of Kiel , Kiel , Germany
| | - Andrea Ulbricht
- a Institute of General Microbiology , Christian-Albrechts-University of Kiel , Kiel , Germany
| | - Omer S Alkhnbashi
- b Bioinformatics Group, Department of Computer Science , University of Freiburg , Freiburg , Germany
| | - Konrad U Förstner
- c Core Unit Systems Medicine , Institute of Molecular Infection Biology, University of Würzburg , Würzburg , Germany
| | - Liam Cassidy
- d Institute for Experimental Medicine , Christian-Albrechts-University of Kiel , Kiel , Germany
| | - Katrin Weidenbach
- a Institute of General Microbiology , Christian-Albrechts-University of Kiel , Kiel , Germany
| | - Rolf Backofen
- b Bioinformatics Group, Department of Computer Science , University of Freiburg , Freiburg , Germany.,e BIOSS Centre for Biological Signaling Studies , University of Freiburg , Freiburg , Germany
| | - Ruth A Schmitz
- a Institute of General Microbiology , Christian-Albrechts-University of Kiel , Kiel , Germany
| |
Collapse
|
32
|
Maier LK, Stachler AE, Brendel J, Stoll B, Fischer S, Haas KA, Schwarz TS, Alkhnbashi OS, Sharma K, Urlaub H, Backofen R, Gophna U, Marchfelder A. The nuts and bolts of the Haloferax CRISPR-Cas system I-B. RNA Biol 2018; 16:469-480. [PMID: 29649958 PMCID: PMC6546412 DOI: 10.1080/15476286.2018.1460994] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Invading genetic elements pose a constant threat to prokaryotic survival, requiring an effective defence. Eleven years ago, the arsenal of known defence mechanisms was expanded by the discovery of the CRISPR-Cas system. Although CRISPR-Cas is present in the majority of archaea, research often focuses on bacterial models. Here, we provide a perspective based on insights gained studying CRISPR-Cas system I-B of the archaeon Haloferax volcanii. The system relies on more than 50 different crRNAs, whose stability and maintenance critically depend on the proteins Cas5 and Cas7, which bind the crRNA and form the Cascade complex. The interference machinery requires a seed sequence and can interact with multiple PAM sequences. H. volcanii stands out as the first example of an organism that can tolerate autoimmunity via the CRISPR-Cas system while maintaining a constitutively active system. In addition, the H. volcanii system was successfully developed into a tool for gene regulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Karina A Haas
- a Biology II, Ulm University , Ulm , Germany.,b Microbiology and Biotechnology, Ulm University , Ulm , Germany
| | | | - Omer S Alkhnbashi
- c Freiburg Bioinformatics Group, Department of Computer Science , University of Freiburg , Georges-Köhler-Allee 106, Freiburg , Germany
| | - Kundan Sharma
- e Max Planck Institute of Biophysical Chemistry , Am Faßberg 11, Göttingen , Germany.,f Ludwig Institute for Cancer Research, University of Oxford , Oxford , United Kingdom
| | - Henning Urlaub
- e Max Planck Institute of Biophysical Chemistry , Am Faßberg 11, Göttingen , Germany.,g Institute for Clinical Chemistry, University Medical Center Göttingen , Robert Koch Straße 10, Göttingen , Germany
| | - Rolf Backofen
- c Freiburg Bioinformatics Group, Department of Computer Science , University of Freiburg , Georges-Köhler-Allee 106, Freiburg , Germany.,d Centre for Biological Signalling Studies (BIOSS), Cluster of Excellence, University of Freiburg , Germany
| | - Uri Gophna
- h School of Molecular Cell Biology & Biotechnology, George S. Wise, Faculty of Life Sciences, Tel Aviv University , Tel Aviv , Israel
| | | |
Collapse
|
33
|
Klompe SE, Sternberg SH. Harnessing "A Billion Years of Experimentation": The Ongoing Exploration and Exploitation of CRISPR-Cas Immune Systems. CRISPR J 2018; 1:141-158. [PMID: 31021200 PMCID: PMC6636882 DOI: 10.1089/crispr.2018.0012] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The famed physicist-turned-biologist, Max Delbrück, once remarked that, for physicists, "the field of bacterial viruses is a fine playground for serious children who ask ambitious questions." Early discoveries in that playground helped establish molecular genetics, and half a century later, biologists delving into the same field have ushered in the era of precision genome engineering. The focus has of course shifted-from bacterial viruses and their mechanisms of infection to the bacterial hosts and their mechanisms of immunity-but it is the very same evolutionary arms race that continues to awe and inspire researchers worldwide. In this review, we explore the remarkable diversity of CRISPR-Cas adaptive immune systems, describe the molecular components that mediate nucleic acid targeting, and outline the use of these RNA-guided machines for biotechnology applications. CRISPR-Cas research has yielded far more than just Cas9-based genome-editing tools, and the wide-reaching, innovative impacts of this fascinating biological playground are sure to be felt for years to come.
Collapse
Affiliation(s)
- Sanne E Klompe
- Department of Biochemistry and Molecular Biophysics, Columbia University , New York, New York
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University , New York, New York
| |
Collapse
|
34
|
Cas4-Dependent Prespacer Processing Ensures High-Fidelity Programming of CRISPR Arrays. Mol Cell 2018; 70:48-59.e5. [PMID: 29602742 DOI: 10.1016/j.molcel.2018.03.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/13/2018] [Accepted: 02/28/2018] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas immune systems integrate short segments of foreign DNA as spacers into the host CRISPR locus to provide molecular memory of infection. Cas4 proteins are widespread in CRISPR-Cas systems and are thought to participate in spacer acquisition, although their exact function remains unknown. Here we show that Bacillus halodurans type I-C Cas4 is required for efficient prespacer processing prior to Cas1-Cas2-mediated integration. Cas4 interacts tightly with the Cas1 integrase, forming a heterohexameric complex containing two Cas1 dimers and two Cas4 subunits. In the presence of Cas1 and Cas2, Cas4 processes double-stranded substrates with long 3' overhangs through site-specific endonucleolytic cleavage. Cas4 recognizes PAM sequences within the prespacer and prevents integration of unprocessed prespacers, ensuring that only functional spacers will be integrated into the CRISPR array. Our results reveal the critical role of Cas4 in maintaining fidelity during CRISPR adaptation, providing a structural and mechanistic model for prespacer processing and integration.
Collapse
|
35
|
Jesser R, Behler J, Benda C, Reimann V, Hess WR. Biochemical analysis of the Cas6-1 RNA endonuclease associated with the subtype I-D CRISPR-Cas system in Synechocystis sp. PCC 6803. RNA Biol 2018. [PMID: 29517395 DOI: 10.1080/15476286.2018.1447742] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Specialized RNA endonucleases are critical for efficient activity of the CRISPR-Cas defense mechanisms against invading DNA or RNA. Cas6-type enzymes are the RNA endonucleases in many type I and type III CRISPR-Cas systems. These enzymes are diverse and critical residues involved in the recognition and cleavage of RNA substrates are not universally conserved. Cas6 endonucleases associated with the CRISPR-Cas subtypes I-A, I-B, I-C, I-E and I-F, as well as III-B have been studied from three archaea and four bacteria thus far. However, until now information about subtype I-D specific Cas6 endonucleases has remained scarce. Here, we report the biochemical analysis of Cas6-1, which is specific for the crRNA maturation from the subtype I-D CRISPR-Cas system of Synechocystis sp. PCC 6803. Assays of turnover kinetics suggest a single turnover mechanism for Cas6-1. The mutation of conserved amino acids R29A, H32A-S33A and H51A revealed these as essential, whereas the parallel mutation of R175A-R176A led to a pronounced and the K155A mutation to a slight reduction in enzymatic activity. In contrast, the mutations R67A, R81A and K231A left the enzymatic activity unchanged. These results are in accordance with the predominant role of histidine residues in the active site and of positively charged residues in RNA binding. Nevertheless, the protein-RNA interaction site seems to differ from other known systems, since imidazole could not restore the mutated histidine site.
Collapse
Affiliation(s)
- Rabea Jesser
- a Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg , Schänzlestr. 1, Freiburg , Germany
| | - Juliane Behler
- a Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg , Schänzlestr. 1, Freiburg , Germany
| | - Christian Benda
- b Department of Structural Cell Biology , Max-Planck-Institute of Biochemistry , Am Klopferspitz 18, Martinsried , Germany
| | - Viktoria Reimann
- a Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg , Schänzlestr. 1, Freiburg , Germany
| | - Wolfgang R Hess
- a Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg , Schänzlestr. 1, Freiburg , Germany.,c Freiburg Institute for Advanced Studies, University of Freiburg , Albertstr. 19, Freiburg , Germany
| |
Collapse
|
36
|
Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E. The Biology of CRISPR-Cas: Backward and Forward. Cell 2018. [DOI: 10.1016/j.cell.2017.11.032] [Citation(s) in RCA: 333] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
van Erp PBG, Patterson A, Kant R, Berry L, Golden SM, Forsman BL, Carter J, Jackson RN, Bothner B, Wiedenheft B. Conformational Dynamics of DNA Binding and Cas3 Recruitment by the CRISPR RNA-Guided Cascade Complex. ACS Chem Biol 2018; 13:481-490. [PMID: 29035497 DOI: 10.1021/acschembio.7b00649] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bacteria and archaea rely on CRISPR (clustered regularly interspaced short palindromic repeats) RNA-guided adaptive immune systems for sequence specific elimination of foreign nucleic acids. In Escherichia coli, short CRISPR-derived RNAs (crRNAs) assemble with Cas (CRISPR-associated) proteins into a 405-kilodalton multisubunit surveillance complex called Cascade (CRISPR-associated complex for antiviral defense). Cascade binds foreign DNA complementary to the crRNA guide and recruits Cas3, a trans-acting nuclease-helicase required for target degradation. Structural models of Cascade have captured static snapshots of the complex in distinct conformational states, but conformational dynamics of the 11-subunit surveillance complex have not been measured. Here, we use hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) to map conformational dynamics of Cascade onto the three-dimensional structure. New insights from structural dynamics are used to make functional predictions about the mechanisms of the R-loop coordination and Cas3 recruitment. We test these predictions in vivo and in vitro. Collectively, we show how mapping conformational dynamics onto static 3D-structures adds an additional dimension to the functional understanding of this biological machine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ryan N. Jackson
- Department
of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | | | | |
Collapse
|
38
|
Hille F, Charpentier E. CRISPR-Cas: biology, mechanisms and relevance. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0496. [PMID: 27672148 PMCID: PMC5052741 DOI: 10.1098/rstb.2015.0496] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2016] [Indexed: 12/21/2022] Open
Abstract
Prokaryotes have evolved several defence mechanisms to protect themselves from viral predators. Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas) display a prokaryotic adaptive immune system that memorizes previous infections by integrating short sequences of invading genomes—termed spacers—into the CRISPR locus. The spacers interspaced with repeats are expressed as small guide CRISPR RNAs (crRNAs) that are employed by Cas proteins to target invaders sequence-specifically upon a reoccurring infection. The ability of the minimal CRISPR-Cas9 system to target DNA sequences using programmable RNAs has opened new avenues in genome editing in a broad range of cells and organisms with high potential in therapeutical applications. While numerous scientific studies have shed light on the biochemical processes behind CRISPR-Cas systems, several aspects of the immunity steps, however, still lack sufficient understanding. This review summarizes major discoveries in the CRISPR-Cas field, discusses the role of CRISPR-Cas in prokaryotic immunity and other physiological properties, and describes applications of the system as a DNA editing technology and antimicrobial agent. This article is part of the themed issue ‘The new bacteriology’.
Collapse
Affiliation(s)
- Frank Hille
- Department of Regulation in Infection Biology, Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Emmanuelle Charpentier
- Department of Regulation in Infection Biology, Max Planck Institute for Infection Biology, Berlin 10117, Germany The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, Umeå 90187, Sweden
| |
Collapse
|
39
|
Goren MG, Doron S, Globus R, Amitai G, Sorek R, Qimron U. Repeat Size Determination by Two Molecular Rulers in the Type I-E CRISPR Array. Cell Rep 2017; 16:2811-2818. [PMID: 27626652 PMCID: PMC5039180 DOI: 10.1016/j.celrep.2016.08.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/01/2016] [Accepted: 08/12/2016] [Indexed: 12/24/2022] Open
Abstract
Prokaryotic adaptive immune systems are composed of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins. These systems adapt to new threats by integrating short nucleic acids, termed spacers, into the CRISPR array. The functional motifs in the repeat and the mechanism by which a constant repeat size is maintained are still elusive. Here, through a series of mutations within the repeat of the CRISPR-Cas type I-E, we identify motifs that are crucial for adaptation and show that they serve as anchor sites for two molecular rulers determining the size of the new repeat. Adaptation products from various repeat mutants support a model in which two motifs in the repeat bind to two different sites in the adaptation complex that are 8 and 16 bp away from the active site. This model significantly extends our understanding of the adaptation process and broadens the scope of its applications. Inverted repeats in the type I-E CRISPR-Cas system are essential for adaptation Each inverted repeat encodes a motif serving as an anchor site for a molecular ruler These molecular rulers determine the spacer insertion site regardless of the sequence The findings support a model considering all known steps in spacer adaptation
Collapse
Affiliation(s)
- Moran G Goren
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Shany Doron
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rea Globus
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Udi Qimron
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel.
| |
Collapse
|
40
|
Shevidi S, Uchida A, Schudrowitz N, Wessel GM, Yajima M. Single nucleotide editing without DNA cleavage using CRISPR/Cas9-deaminase in the sea urchin embryo. Dev Dyn 2017; 246:1036-1046. [PMID: 28857338 DOI: 10.1002/dvdy.24586] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 08/13/2017] [Accepted: 08/13/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND A single base pair mutation in the genome can result in many congenital disorders in humans. The recent gene editing approach using CRISPR/Cas9 has rapidly become a powerful tool to replicate or repair such mutations in the genome. These approaches rely on cleaving DNA, while presenting unexpected risks. RESULTS In this study, we demonstrate a modified CRISPR/Cas9 system fused to cytosine deaminase (Cas9-DA), which induces a single nucleotide conversion in the genome. Cas9-DA was introduced into sea urchin eggs with sgRNAs targeted for SpAlx1, SpDsh, or SpPks, each of which is critical for skeletogenesis, embryonic axis formation, or pigment formation, respectively. We found that both Cas9 and Cas9-DA edit the genome, and cause predicted phenotypic changes at a similar efficiency. Cas9, however, resulted in significant deletions in the genome centered on the gRNA target sequence, whereas Cas9-DA resulted in single or double nucleotide editing of C to T conversions within the gRNA target sequence. CONCLUSIONS These results suggest that the Cas9-DA approach may be useful for manipulating gene activity with decreased risks of genomic aberrations. Developmental Dynamics 246:1036-1046, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Saba Shevidi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode, Island
| | - Alicia Uchida
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode, Island
| | - Natalie Schudrowitz
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode, Island
| | - Gary M Wessel
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode, Island
| | - Mamiko Yajima
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode, Island
| |
Collapse
|
41
|
Mapping the Universe of RNA Tetraloop Folds. Biophys J 2017; 113:257-267. [PMID: 28673616 DOI: 10.1016/j.bpj.2017.06.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 11/22/2022] Open
Abstract
We report a map of RNA tetraloop conformations constructed by calculating pairwise distances among all experimentally determined four-nucleotide hairpin loops. Tetraloops with similar structures are clustered together and, as expected, the two largest clusters are the canonical GNRA and UNCG folds. We identify clusters corresponding to known tetraloop folds such as GGUG, RNYA, AGNN, and CUUG. These clusters are represented in a simple two-dimensional projection that recapitulates the relationship among the different folds. The cluster analysis also identifies 20 novel tetraloop folds that are peculiar to specific positions in ribosomal RNAs and that are stabilized by tertiary interactions. In our RNA tetraloop database we find a significant number of non-GNRA and non-UNCG sequences adopting the canonical GNRA and UNCG folds. Conversely, we find a significant number of GNRA and UNCG sequences adopting non-GNRA and non-UNCG folds. Our analysis demonstrates that there is not a simple one-to-one, but rather a many-to-many mapping between tetraloop sequence and tetraloop fold.
Collapse
|
42
|
Jackson RN, van Erp PB, Sternberg SH, Wiedenheft B. Conformational regulation of CRISPR-associated nucleases. Curr Opin Microbiol 2017. [PMID: 28646675 DOI: 10.1016/j.mib.2017.05.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adaptive immune systems in bacteria and archaea rely on small CRISPR-derived RNAs (crRNAs) to guide specialized nucleases to foreign nucleic acids. The activation of these nucleases is controlled by a series of molecular checkpoints that ensure precise cleavage of nucleic acid targets, while minimizing toxic off-target cleavage events. In this review, we highlight recent advances in understanding regulatory mechanisms responsible for controlling the activation of these nucleases and identify emerging regulatory themes conserved across diverse CRISPR systems.
Collapse
Affiliation(s)
- Ryan N Jackson
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, United States.
| | - Paul Bg van Erp
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, United States.
| | | | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, United States.
| |
Collapse
|
43
|
Peng R, Xu Y, Zhu T, Li N, Qi J, Chai Y, Wu M, Zhang X, Shi Y, Wang P, Wang J, Gao N, Gao GF. Alternate binding modes of anti-CRISPR viral suppressors AcrF1/2 to Csy surveillance complex revealed by cryo-EM structures. Cell Res 2017; 27:853-864. [PMID: 28574055 DOI: 10.1038/cr.2017.79] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/07/2017] [Accepted: 05/08/2017] [Indexed: 12/11/2022] Open
Abstract
Bacteriophages encode anti-CRISPR suppressors to counteract the CRISPR/Cas immunity of their bacterial hosts, thus facilitating their survival and replication. Previous studies have shown that two phage-encoded anti-CRISPR proteins, AcrF1 and AcrF2, suppress the type I-F CRISPR/Cas system of Pseudomonas aeruginosa by preventing target DNA recognition by the Csy surveillance complex, but the precise underlying mechanism was unknown. Here we present the structure of AcrF1/2 bound to the Csy complex determined by cryo-EM single-particle reconstruction. By structural analysis, we found that AcrF1 inhibits target DNA recognition of the Csy complex by interfering with base pairing between the DNA target strand and crRNA spacer. In addition, multiple copies of AcrF1 bind to the Csy complex with different modes when working individually or cooperating with AcrF2, which might exclude target DNA binding through different mechanisms. Together with previous reports, we provide a comprehensive working scenario for the two anti-CRISPR suppressors, AcrF1 and AcrF2, which silence CRISPR/Cas immunity by targeting the Csy surveillance complex.
Collapse
Affiliation(s)
- Ruchao Peng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ying Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tengfei Zhu
- University of Chinese Academy of Sciences, Beijing 101408, China.,Research Network of Immunity and Health (RNIH), Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Ningning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yan Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 101408, China.,Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, Guangdong 518112, China.,Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Peiyi Wang
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Jiawei Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 101408, China.,Research Network of Immunity and Health (RNIH), Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, Guangdong 518112, China.,Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| |
Collapse
|
44
|
Liang Y, Richardson S, Yan J, Benites VT, Cheng-Yue C, Tran T, Mortimer J, Mukhopadhyay A, Keasling JD, Scheller HV, Loqué D. Endoribonuclease-Based Two-Component Repressor Systems for Tight Gene Expression Control in Plants. ACS Synth Biol 2017; 6:806-816. [PMID: 28094975 DOI: 10.1021/acssynbio.6b00295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tight control and multifactorial regulation of gene expression are important challenges in genetic engineering and are critical for the development of regulatory circuits. Meeting these challenges will facilitate transgene expression regulation and support the fine-tuning of metabolic pathways to avoid the accumulation of undesired intermediates. By employing the endoribonuclease Csy4 and its recognition sequence from Pseudomonas aeruginosa and manipulating 5'UTR of mRNA, we developed a two-component expression-repression system to tightly control synthesis of transgene products. We demonstrated that this regulatory device was functional in monocotyledonous and dicotyledonous plant species, and showed that it can be used to repress transgene expression by >400-fold and to synchronize transgene repression. In addition to tissue-specific transgene repression, this system offers stimuli-dependent expression control. Using a bioinformatics approach, we identified 54 orthologous systems from various bacteria, and then validated in planta the activity for a few of those systems, demonstrating the potential diversity of such a two-component repressor system.
Collapse
Affiliation(s)
- Yan Liang
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Sarah Richardson
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Jingwei Yan
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Veronica T. Benites
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Clarabelle Cheng-Yue
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Thu Tran
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Jenny Mortimer
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Jay D. Keasling
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Henrik V. Scheller
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Dominique Loqué
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- INSA de Lyon, CNRS, UMR5240, Microbiologie,
Adaptation et Pathogénie, Université Claude Bernard Lyon 1, 10 rue Raphaël Dubois, F-69622, Villeurbanne, France
| |
Collapse
|
45
|
Stout E, Klaenhammer T, Barrangou R. CRISPR-Cas Technologies and Applications in Food Bacteria. Annu Rev Food Sci Technol 2017; 8:413-437. [DOI: 10.1146/annurev-food-072816-024723] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins form adaptive immune systems that occur in many bacteria and most archaea. In addition to protecting bacteria from phages and other invasive mobile genetic elements, CRISPR-Cas molecular machines can be repurposed as tool kits for applications relevant to the food industry. A primary concern of the food industry has long been the proper management of food-related bacteria, with a focus on both enhancing the outcomes of beneficial microorganisms such as starter cultures and probiotics and limiting the presence of detrimental organisms such as pathogens and spoilage microorganisms. This review introduces CRISPR-Cas as a novel set of technologies to manage food bacteria and offers insights into CRISPR-Cas biology. It primarily focuses on the applications of CRISPR-Cas systems and tools in starter cultures and probiotics, encompassing strain-typing, phage resistance, plasmid vaccination, genome editing, and antimicrobial activity.
Collapse
Affiliation(s)
- Emily Stout
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - Todd Klaenhammer
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
46
|
Fragmentation of the CRISPR-Cas Type I-B signature protein Cas8b. Biochim Biophys Acta Gen Subj 2017; 1861:2993-3000. [PMID: 28238733 DOI: 10.1016/j.bbagen.2017.02.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/10/2017] [Accepted: 02/16/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND CRISPR arrays are transcribed into long precursor RNA species, which are further processed into mature CRISPR RNAs (crRNAs). Cas proteins utilize these crRNAs, which contain spacer sequences that can be derived from mobile genetic elements, to mediate immunity during a reoccurring virus infection. Type I CRISPR-Cas systems are defined by the presence of different Cascade interference complexes containing large and small subunits that play major roles during target DNA selection. METHODS Here, we produce the protein and crRNA components of the Type I-B CRISPR-Cas complex of Clostridium thermocellum and Methanococcus maripaludis. The C. thermocellum Cascade complexes were reconstituted and analyzed via size-exclusion chromatography. Activity of the heterologous M. maripaludis CRISPR-Cas system was followed using phage lambda plaques assays. RESULTS The reconstituted Type-I-B Cascade complex contains Cas7, Cas5, Cas6b and the large subunit Cas8b. Cas6b can be omitted from the reconstitution protocol. The large subunit Cas8b was found to be represented by two tightly associated protein fragments and a small C-terminal Cas8b segment was identified in recombinant complexes and C. thermocellum cell lysate. CONCLUSIONS Production of Cas8b generates a small C-terminal fragment, which is suggested to fulfill the role of the missing small subunit. A heterologous, synthetic M. maripaludis Type I-B system is active in E. coli against phage lambda, highlighting a potential for genome editing using endogenous Type-I-B CRISPR-Cas machineries. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
|
47
|
Liu L, Li X, Wang J, Wang M, Chen P, Yin M, Li J, Sheng G, Wang Y. Two Distant Catalytic Sites Are Responsible for C2c2 RNase Activities. Cell 2017; 168:121-134.e12. [PMID: 28086085 DOI: 10.1016/j.cell.2016.12.031] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 01/08/2023]
Abstract
C2c2, the effector of type VI CRISPR-Cas systems, has two RNase activities-one for cutting its RNA target and the other for processing the CRISPR RNA (crRNA). Here, we report the structures of Leptotrichia shahii C2c2 in its crRNA-free and crRNA-bound states. While C2c2 has a bilobed structure reminiscent of all other Class 2 effectors, it also exhibits different structural characteristics. It contains the REC lobe with a Helical-1 domain and the NUC lobe with two HEPN domains. The two RNase catalytic pockets responsible for cleaving pre-crRNA and target RNA are independently located on Helical-1 and HEPN domains, respectively. crRNA binding induces significant conformational changes that are likely to stabilize crRNA binding and facilitate target RNA recognition. These structures provide important insights into the molecular mechanism of dual RNase activities of C2c2 and establish a framework for its future engineering as a RNA editing tool.
Collapse
Affiliation(s)
- Liang Liu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xueyan Li
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuyu Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Chen
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maolu Yin
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiazhi Li
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Sheng
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanli Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Collaborative Innovation Center of Genetics and Development, Shanghai 200438, China.
| |
Collapse
|
48
|
Abstract
Prokaryotes use diverse strategies to improve fitness in the face of different environmental threats and stresses, including those posed by mobile genetic elements (e.g., bacteriophages and plasmids). To defend against these elements, many bacteria and archaea use elegant, RNA-directed, nucleic acid-targeting adaptive restriction machineries called CRISPR -: Cas (CRISPR-associated) systems. While providing an effective defense against foreign genetic elements, these systems have also been observed to play critical roles in regulating bacterial physiology during environmental stress. Increasingly, CRISPR-Cas systems, in particular the Type II systems containing the Cas9 endonuclease, have been exploited for their ability to bind desired nucleic acid sequences, as well as direct sequence-specific cleavage of their targets. Cas9-mediated genome engineering is transcending biological research as a versatile and portable platform for manipulating genetic content in myriad systems. Here, we present a systematic overview of CRISPR-Cas history and biology, highlighting the revolutionary tools derived from these systems, which greatly expand the molecular biologists' toolkit.
Collapse
Affiliation(s)
- Hannah K Ratner
- Department of Microbiology and Immunology, Microbiology and Molecular Genetics Program, Emory University, Atlanta, Georgia 30329
- Emory Vaccine Center, Emory University, Atlanta, Georgia 30329
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Timothy R Sampson
- Department of Microbiology and Immunology, Microbiology and Molecular Genetics Program, Emory University, Atlanta, Georgia 30329
- Emory Vaccine Center, Emory University, Atlanta, Georgia 30329
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - David S Weiss
- Emory Vaccine Center, Emory University, Atlanta, Georgia 30329
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30329
| |
Collapse
|
49
|
Nishimasu H, Nureki O. Structures and mechanisms of CRISPR RNA-guided effector nucleases. Curr Opin Struct Biol 2016; 43:68-78. [PMID: 27912110 DOI: 10.1016/j.sbi.2016.11.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/15/2022]
Abstract
In the prokaryotic CRISPR-Cas adaptive immune systems, a CRISPR RNA (crRNA) assembles with multiple or single Cas proteins to form crRNA ribonucleoprotein (crRNP) effector complexes, responsible for the destruction of invading genetic elements. Although the mechanisms of target recognition and cleavage by the crRNP effectors are quite diverse among the different types of CRISPR-Cas systems, the basic action principles of these crRNA-guided effector nucleases are highly conserved. In all of the crRNP effectors, the repeat-derived invariant and spacer-derived variable segments of the crRNA are recognized by the Cas protein(s) in sequence-dependent and sequence-independent manners, respectively, with the spacer-derived guide segment available for base pairing with target nucleic acids. Over the past few years, intensive studies have provided an atomic view of the crRNA-guided target interference mechanisms in different types of CRISPR-Cas systems. Here, we review the recent progress toward structural and mechanistic understanding of the diverse crRNP effector nucleases.
Collapse
Affiliation(s)
- Hiroshi Nishimasu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; JST, PRESTO, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
50
|
Shabbir MAB, Hao H, Shabbir MZ, Hussain HI, Iqbal Z, Ahmed S, Sattar A, Iqbal M, Li J, Yuan Z. Survival and Evolution of CRISPR-Cas System in Prokaryotes and Its Applications. Front Immunol 2016; 7:375. [PMID: 27725818 PMCID: PMC5035730 DOI: 10.3389/fimmu.2016.00375] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/07/2016] [Indexed: 12/12/2022] Open
Abstract
Prokaryotes have developed numerous innate immune mechanisms in order to fend off bacteriophage or plasmid attack. One of these immune systems is clustered regularly interspaced short palindromic repeats (CRISPR). CRISPR-associated proteins play a key role in survival of prokaryotes against invaders, as these systems cleave DNA of foreign genetic elements. Beyond providing immunity, these systems have significant impact in altering the bacterial physiology in term of its virulence and pathogenicity, as well as evolution. Also, due to their diverse nature of functionality, cas9 endoribonuclease can be easily reprogrammed with the help of guide RNAs, showing unprecedented potential and significance for gene editing in treating genetic diseases. Here, we also discuss the use of NgAgo–gDNA system in genome editing of human cells.
Collapse
Affiliation(s)
- Muhammad Abu Bakr Shabbir
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University , Wuhan , China
| | - Haihong Hao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University , Wuhan , China
| | - Muhammad Zubair Shabbir
- Quality Operations Laboratory at University of Veterinary and Animal Sciences Lahore , Pakistan
| | - Hafiz Iftikhar Hussain
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University , Wuhan , China
| | - Zahid Iqbal
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University , Wuhan , China
| | - Saeed Ahmed
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University , Wuhan , China
| | - Adeel Sattar
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, China; MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Mujahid Iqbal
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, China; MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Jun Li
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University , Wuhan , China
| | - Zonghui Yuan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China; National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, China; MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|