1
|
Duran E, Schmidt A, Welty R, Jalihal AP, Pitchiaya S, Walter NG. Utilizing functional cell-free extracts to dissect ribonucleoprotein complex biology at single-molecule resolution. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1787. [PMID: 37042458 PMCID: PMC10524090 DOI: 10.1002/wrna.1787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 04/13/2023]
Abstract
Cellular machineries that drive and regulate gene expression often rely on the coordinated assembly and interaction of a multitude of proteins and RNA together called ribonucleoprotein complexes (RNPs). As such, it is challenging to fully reconstitute these cellular machines recombinantly and gain mechanistic understanding of how they operate and are regulated within the complex environment that is the cell. One strategy for overcoming this challenge is to perform single molecule fluorescence microscopy studies within crude or recombinantly supplemented cell extracts. This strategy enables elucidation of the interaction and kinetic behavior of specific fluorescently labeled biomolecules within RNPs under conditions that approximate native cellular environments. In this review, we describe single molecule fluorescence microcopy approaches that dissect RNP-driven processes within cellular extracts, highlighting general strategies used in these methods. We further survey biological advances in the areas of pre-mRNA splicing and transcription regulation that have been facilitated through this approach. Finally, we conclude with a summary of practical considerations for the implementation of the featured approaches to facilitate their broader future implementation in dissecting the mechanisms of RNP-driven cellular processes. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Elizabeth Duran
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Andreas Schmidt
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Robb Welty
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Ameya P Jalihal
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sethuramasundaram Pitchiaya
- Michigan Center for Translational Pathology, Department of Pathology, Department of Urology, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Widom JR, Hoeher JE. Base-Stacking Heterogeneity in RNA Resolved by Fluorescence-Detected Circular Dichroism Spectroscopy. J Phys Chem Lett 2022; 13:8010-8018. [PMID: 35984918 PMCID: PMC9442794 DOI: 10.1021/acs.jpclett.2c01778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/17/2022] [Indexed: 06/01/2023]
Abstract
RNA plays a critical role in many biological processes, and the structures it adopts are intimately linked to those functions. Among many factors that contribute to RNA folding, van der Waals interactions between adjacent nucleobases stabilize structures in which the bases are stacked on top of one another. Here, we utilize fluorescence-detected circular dichroism spectroscopy (FDCD) to investigate base-stacking heterogeneity in RNA labeled with the fluorescent adenine analogue 2-aminopurine (2-AP). Comparison of standard (transmission-detected) CD and FDCD spectra reveals that in dinucleotides, 2-AP fluorescence is emitted almost exclusively by unstacked molecules. In a trinucleotide, some fluorescence is emitted by a population of stacked and highly quenched molecules, but more than half originates from a minor ∼10% population of unstacked molecules. The combination of FDCD and standard CD measurements reveals the prevalence of stacked and unstacked conformational subpopulations as well as their relative fluorescence quantum yields.
Collapse
|
3
|
Venus S, Jankowsky E. Measuring the impact of cofactors on RNA helicase activities. Methods 2022; 204:376-385. [PMID: 35429628 PMCID: PMC9306305 DOI: 10.1016/j.ymeth.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 12/25/2022] Open
Abstract
RNA helicases are the largest class of enzymes in eukaryotic RNA metabolism. In cells, protein cofactors regulate RNA helicase functions and impact biochemical helicase activities. Understanding how cofactors affect enzymatic activities of RNA helicases is thus critical for delineating physical roles and regulation of RNA helicases in cells. Here, we discuss approaches and conceptual considerations for the design of experiments to interrogate cofactor effects on RNA helicase activities in vitro. We outline the mechanistic frame for helicase reactions, discuss optimization of experimental setup and reaction parameters for measuring cofactor effects on RNA helicase activities, and provide basic guides to data analysis and interpretation. The described approaches are also instructive for determining the impact of small molecule inhibitors of RNA helicases.
Collapse
|
4
|
Ordabayev YA, Friedman LJ, Gelles J, Theobald DL. Bayesian machine learning analysis of single-molecule fluorescence colocalization images. eLife 2022; 11:73860. [PMID: 35319463 PMCID: PMC9183235 DOI: 10.7554/elife.73860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/19/2022] [Indexed: 01/07/2023] Open
Abstract
Multi-wavelength single-molecule fluorescence colocalization (CoSMoS) methods allow elucidation of complex biochemical reaction mechanisms. However, analysis of CoSMoS data is intrinsically challenging because of low image signal-to-noise ratios, non-specific surface binding of the fluorescent molecules, and analysis methods that require subjective inputs to achieve accurate results. Here, we use Bayesian probabilistic programming to implement Tapqir, an unsupervised machine learning method that incorporates a holistic, physics-based causal model of CoSMoS data. This method accounts for uncertainties in image analysis due to photon and camera noise, optical non-uniformities, non-specific binding, and spot detection. Rather than merely producing a binary 'spot/no spot' classification of unspecified reliability, Tapqir objectively assigns spot classification probabilities that allow accurate downstream analysis of molecular dynamics, thermodynamics, and kinetics. We both quantitatively validate Tapqir performance against simulated CoSMoS image data with known properties and also demonstrate that it implements fully objective, automated analysis of experiment-derived data sets with a wide range of signal, noise, and non-specific binding characteristics.
Collapse
Affiliation(s)
| | - Larry J Friedman
- Department of Biochemistry, Brandeis UniversityWalthamUnited States
| | - Jeff Gelles
- Department of Biochemistry, Brandeis UniversityWalthamUnited States
| | | |
Collapse
|
5
|
Abstract
Molecular assembly in a complex cellular environment is vital for understanding underlying biological mechanisms. Biophysical parameters (such as single-molecule cluster density, cluster-area, pairwise distance, and number of molecules per cluster) related to molecular clusters directly associate with the physiological state (healthy/diseased) of a cell. Using super-resolution imaging along with powerful clustering methods (K-means, Gaussian mixture, and point clustering), we estimated these critical biophysical parameters associated with dense and sparse molecular clusters. We investigated Hemaglutinin (HA) molecules in an Influenza type A disease model. Subsequently, clustering parameters were estimated for transfected NIH3T3 cells. Investigations on test sample (randomly generated clusters) and NIH3T3 cells (expressing Dendra2-Hemaglutinin (Dendra2-HA) photoactivable molecules) show a significant disparity among the existing clustering techniques. It is observed that a single method is inadequate for estimating all relevant biophysical parameters accurately. Thus, a multimodel approach is necessary in order to characterize molecular clusters and determine critical parameters. The proposed study involving optical system development, photoactivable sample synthesis, and advanced clustering methods may facilitate a better understanding of single molecular clusters. Potential applications are in the emerging field of cell biology, biophysics, and fluorescence imaging.
Collapse
|
6
|
Alternative splicing of mRNA in colorectal cancer: new strategies for tumor diagnosis and treatment. Cell Death Dis 2021; 12:752. [PMID: 34330892 PMCID: PMC8324868 DOI: 10.1038/s41419-021-04031-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
Alternative splicing (AS) is an important event that contributes to posttranscriptional gene regulation. This process leads to several mature transcript variants with diverse physiological functions. Indeed, disruption of various aspects of this multistep process, such as cis- or trans- factor alteration, promotes the progression of colorectal cancer. Therefore, targeting some specific processes of AS may be an effective therapeutic strategy for treating cancer. Here, we provide an overview of the AS events related to colorectal cancer based on research done in the past 5 years. We focus on the mechanisms and functions of variant products of AS that are relevant to malignant hallmarks, with an emphasis on variants with clinical significance. In addition, novel strategies for exploiting the therapeutic value of AS events are discussed.
Collapse
|
7
|
Hamann F, Zimmerningkat LC, Becker RA, Garbers TB, Neumann P, Hub JS, Ficner R. The structure of Prp2 bound to RNA and ADP-BeF 3- reveals structural features important for RNA unwinding by DEAH-box ATPases. Acta Crystallogr D Struct Biol 2021; 77:496-509. [PMID: 33825710 PMCID: PMC8025883 DOI: 10.1107/s2059798321001194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/02/2021] [Indexed: 01/25/2023] Open
Abstract
Noncoding intron sequences present in precursor mRNAs need to be removed prior to translation, and they are excised via the spliceosome, a multimegadalton molecular machine composed of numerous protein and RNA components. The DEAH-box ATPase Prp2 plays a crucial role during pre-mRNA splicing as it ensures the catalytic activation of the spliceosome. Despite high structural similarity to other spliceosomal DEAH-box helicases, Prp2 does not seem to function as an RNA helicase, but rather as an RNA-dependent ribonucleoprotein particle-modifying ATPase. Recent crystal structures of the spliceosomal DEAH-box ATPases Prp43 and Prp22, as well as of the related RNA helicase MLE, in complex with RNA have contributed to a better understanding of how RNA binding and processivity might be achieved in this helicase family. In order to shed light onto the divergent manner of function of Prp2, an N-terminally truncated construct of Chaetomium thermophilum Prp2 was crystallized in the presence of ADP-BeF3- and a poly-U12 RNA. The refined structure revealed a virtually identical conformation of the helicase core compared with the ADP-BeF3-- and RNA-bound structure of Prp43, and only a minor shift of the C-terminal domains. However, Prp2 and Prp43 differ in the hook-loop and a loop of the helix-bundle domain, which interacts with the hook-loop and evokes a different RNA conformation immediately after the 3' stack. On replacing these loop residues in Prp43 by the Prp2 sequence, the unwinding activity of Prp43 was abolished. Furthermore, a putative exit tunnel for the γ-phosphate after ATP hydrolysis could be identified in one of the Prp2 structures.
Collapse
Affiliation(s)
- Florian Hamann
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), Georg-August-University Göttingen, Göttingen, Germany
| | - Lars C. Zimmerningkat
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Robert A. Becker
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Tim B. Garbers
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Jochen S. Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Wilkinson ME, Fica SM, Galej WP, Nagai K. Structural basis for conformational equilibrium of the catalytic spliceosome. Mol Cell 2021; 81:1439-1452.e9. [PMID: 33705709 PMCID: PMC8022279 DOI: 10.1016/j.molcel.2021.02.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/14/2020] [Accepted: 02/11/2021] [Indexed: 12/21/2022]
Abstract
The ATPase Prp16 governs equilibrium between the branching (B∗/C) and exon ligation (C∗/P) conformations of the spliceosome. Here, we present the electron cryomicroscopy reconstruction of the Saccharomyces cerevisiae C-complex spliceosome at 2.8 Å resolution and identify a novel C-complex intermediate (Ci) that elucidates the molecular basis for this equilibrium. The exon-ligation factors Prp18 and Slu7 bind to Ci before ATP hydrolysis by Prp16 can destabilize the branching conformation. Biochemical assays suggest that these pre-bound factors prime the C complex for conversion to C∗ by Prp16. A complete model of the Prp19 complex (NTC) reveals how the branching factors Yju2 and Isy1 are recruited by the NTC before branching. Prp16 remodels Yju2 binding after branching, allowing Yju2 to remain tethered to the NTC in the C∗ complex to promote exon ligation. Our results explain how Prp16 action modulates the dynamic binding of step-specific factors to alternatively stabilize the C or C∗ conformation and establish equilibrium of the catalytic spliceosome. Cryo-EM reveals new Ci spliceosome intermediate between branching and exon ligation Binding of branching and exon-ligation factors to Ci governs spliceosome equilibrium Exon-ligation factors Slu7 and Prp18 bind Ci weakly before Prp16 action After Prp16 action, pre-bound Slu7 and Prp18 bind strongly to promote exon ligation
Collapse
Affiliation(s)
- Max E Wilkinson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| | - Sebastian M Fica
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| | - Wojciech P Galej
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
9
|
Abstract
Splicing of the precursor messenger RNA, involving intron removal and exon ligation, is mediated by the spliceosome. Together with biochemical and genetic investigations of the past four decades, structural studies of the intact spliceosome at atomic resolution since 2015 have led to mechanistic delineation of RNA splicing with remarkable insights. The spliceosome is proven to be a protein-orchestrated metalloribozyme. Conserved elements of small nuclear RNA (snRNA) constitute the splicing active site with two catalytic metal ions and recognize three conserved intron elements through duplex formation, which are delivered into the splicing active site for branching and exon ligation. The protein components of the spliceosome stabilize the conformation of the snRNA, drive spliceosome remodeling, orchestrate the movement of the RNA elements, and facilitate the splicing reaction. The overall organization of the spliceosome and the configuration of the splicing active site are strictly conserved between human and yeast.
Collapse
Affiliation(s)
- Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China;,
| | - Rui Bai
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, China
| | - Xiechao Zhan
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China;,
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China;,
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, China
| |
Collapse
|
10
|
Cooperative Analysis of Structural Dynamics in RNA-Protein Complexes by Single-Molecule Förster Resonance Energy Transfer Spectroscopy. Molecules 2020; 25:molecules25092057. [PMID: 32354083 PMCID: PMC7248720 DOI: 10.3390/molecules25092057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/31/2020] [Accepted: 04/13/2020] [Indexed: 12/24/2022] Open
Abstract
RNA-protein complexes (RNPs) are essential components in a variety of cellular processes, and oftentimes exhibit complex structures and show mechanisms that are highly dynamic in conformation and structure. However, biochemical and structural biology approaches are mostly not able to fully elucidate the structurally and especially conformationally dynamic and heterogeneous nature of these RNPs, to which end single molecule Förster resonance energy transfer (smFRET) spectroscopy can be harnessed to fill this gap. Here we summarize the advantages of strategic smFRET studies to investigate RNP dynamics, complemented by structural and biochemical data. Focusing on recent smFRET studies of three essential biological systems, we demonstrate that investigation of RNPs on a single molecule level can answer important functional questions that remained elusive with structural or biochemical approaches alone: The complex structural rearrangements throughout the splicing cycle, unwinding dynamics of the G-quadruplex (G4) helicase RHAU, and aspects in telomere maintenance regulation and synthesis.
Collapse
|
11
|
van der Feltz C, Hoskins AA. Structural and functional modularity of the U2 snRNP in pre-mRNA splicing. Crit Rev Biochem Mol Biol 2019; 54:443-465. [PMID: 31744343 DOI: 10.1080/10409238.2019.1691497] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The U2 small nuclear ribonucleoprotein (snRNP) is an essential component of the spliceosome, the cellular machine responsible for removing introns from precursor mRNAs (pre-mRNAs) in all eukaryotes. U2 is an extraordinarily dynamic splicing factor and the most frequently mutated in cancers. Cryo-electron microscopy (cryo-EM) has transformed our structural and functional understanding of the role of U2 in splicing. In this review, we synthesize these and other data with respect to a view of U2 as an assembly of interconnected functional modules. These modules are organized by the U2 small nuclear RNA (snRNA) for roles in spliceosome assembly, intron substrate recognition, and protein scaffolding. We describe new discoveries regarding the structure of U2 components and how the snRNP undergoes numerous conformational and compositional changes during splicing. We specifically highlight large scale movements of U2 modules as the spliceosome creates and rearranges its active site. U2 serves as a compelling example for how cellular machines can exploit the modular organization and structural plasticity of an RNP.
Collapse
Affiliation(s)
| | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
12
|
Walter NG. Biological Pathway Specificity in the Cell-Does Molecular Diversity Matter? Bioessays 2019; 41:e1800244. [PMID: 31245864 PMCID: PMC6684156 DOI: 10.1002/bies.201800244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/09/2019] [Indexed: 01/07/2023]
Abstract
Biology arises from the crowded molecular environment of the cell, rendering it a challenge to understand biological pathways based on the reductionist, low-concentration in vitro conditions generally employed for mechanistic studies. Recent evidence suggests that low-affinity interactions between cellular biopolymers abound, with still poorly defined effects on the complex interaction networks that lead to the emergent properties and plasticity of life. Mass-action considerations are used here to underscore that the sheer number of weak interactions expected from the complex mixture of cellular components significantly shapes biological pathway specificity. In particular, on-pathway-i.e., "functional"-become those interactions thermodynamically and kinetically stable enough to survive the incessant onslaught of the many off-pathway ("nonfunctional") interactions. Consequently, to better understand the molecular biology of the cell a further paradigm shift is needed toward mechanistic experimental and computational approaches that probe intracellular diversity and complexity more directly. Also see the video abstract here https://youtu.be/T19X_zYaBzg.
Collapse
|
13
|
Smathers CM, Robart AR. The mechanism of splicing as told by group II introns: Ancestors of the spliceosome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194390. [PMID: 31202783 DOI: 10.1016/j.bbagrm.2019.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022]
Abstract
Spliceosomal introns and self-splicing group II introns share a common mechanism of intron splicing where two sequential transesterification reactions remove intron lariats and ligate exons. The recent revolution in cryo-electron microscopy (cryo-EM) has allowed visualization of the spliceosome's ribozyme core. Comparison of these cryo-EM structures to recent group II intron crystal structures presents an opportunity to draw parallels between the RNA active site, substrate positioning, and product formation in these two model systems of intron splicing. In addition to shared RNA architectural features, structural similarity between group II intron encoded proteins (IEPs) and the integral spliceosomal protein Prp8 further support a shared catalytic core. These mechanistic and structural similarities support the long-held assertion that group II introns and the eukaryotic spliceosome have a common evolutionary origin. In this review, we discuss how recent structural insights into group II introns and the spliceosome facilitate the chemistry of splicing, highlight similarities between the two systems, and discuss their likely evolutionary connections. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Claire M Smathers
- Department of Biochemistry, West Virginia University, Morgantown, WV, United States of America
| | - Aaron R Robart
- Department of Biochemistry, West Virginia University, Morgantown, WV, United States of America.
| |
Collapse
|
14
|
Jalihal AP, Lund PE, Walter NG. Coming Together: RNAs and Proteins Assemble under the Single-Molecule Fluorescence Microscope. Cold Spring Harb Perspect Biol 2019; 11:11/4/a032441. [PMID: 30936188 DOI: 10.1101/cshperspect.a032441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
RNAs, across their numerous classes, often work in concert with proteins in RNA-protein complexes (RNPs) to execute critical cellular functions. Ensemble-averaging methods have been instrumental in revealing many important aspects of these RNA-protein interactions, yet are insufficiently sensitive to much of the dynamics at the heart of RNP function. Single-molecule fluorescence microscopy (SMFM) offers complementary, versatile tools to probe RNP conformational and compositional changes in detail. In this review, we first outline the basic principles of SMFM as applied to RNPs, describing key considerations for labeling, imaging, and quantitative analysis. We then sample applications of in vitro and in vivo single-molecule visualization using the case studies of pre-messenger RNA (mRNA) splicing and RNA silencing, respectively. After discussing specific insights single-molecule fluorescence methods have yielded, we briefly review recent developments in the field and highlight areas of anticipated growth.
Collapse
Affiliation(s)
- Ameya P Jalihal
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan 48109.,Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Paul E Lund
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109.,Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
15
|
Wan R, Bai R, Yan C, Lei J, Shi Y. Structures of the Catalytically Activated Yeast Spliceosome Reveal the Mechanism of Branching. Cell 2019; 177:339-351.e13. [PMID: 30879786 DOI: 10.1016/j.cell.2019.02.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/10/2018] [Accepted: 02/06/2019] [Indexed: 11/17/2022]
Abstract
Pre-mRNA splicing is executed by the spliceosome. Structural characterization of the catalytically activated complex (B∗) is pivotal for understanding the branching reaction. In this study, we assembled the B∗ complexes on two different pre-mRNAs from Saccharomyces cerevisiae and determined the cryo-EM structures of four distinct B∗ complexes at overall resolutions of 2.9-3.8 Å. The duplex between U2 small nuclear RNA (snRNA) and the branch point sequence (BPS) is discretely away from the 5'-splice site (5'SS) in the three B∗ complexes that are devoid of the step I splicing factors Yju2 and Cwc25. Recruitment of Yju2 into the active site brings the U2/BPS duplex into the vicinity of 5'SS, with the BPS nucleophile positioned 4 Å away from the catalytic metal M2. This analysis reveals the functional mechanism of Yju2 and Cwc25 in branching. These structures on different pre-mRNAs reveal substrate-specific conformations of the spliceosome in a major functional state.
Collapse
Affiliation(s)
- Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Rui Bai
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China; Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China; Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
16
|
Kaur H, Jamalidinan F, Condon SGF, Senes A, Hoskins AA. Analysis of spliceosome dynamics by maximum likelihood fitting of dwell time distributions. Methods 2018; 153:13-21. [PMID: 30472247 DOI: 10.1016/j.ymeth.2018.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 11/17/2022] Open
Abstract
Colocalization single-molecule methods can provide a wealth of information concerning the ordering and dynamics of biomolecule assembly. These have been used extensively to study the pathways of spliceosome assembly in vitro. Key to these experiments is the measurement of binding times-either the dwell times of a multi-molecular interaction or times in between binding events. By analyzing hundreds of these times, many new insights into the kinetic pathways governing spliceosome assembly have been obtained. Collections of binding times are often plotted as histograms and can be fit to kinetic models using a variety of methods. Here, we describe the use of maximum likelihood methods to fit dwell time distributions without binning. In addition, we discuss several aspects of analyzing these distributions with histograms and pitfalls that can be encountered if improperly binned histograms are used. We have automated several aspects of maximum likelihood fitting of dwell time distributions in the AGATHA software package.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Biochemistry, 433 Babcock Dr., University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Fatemehsadat Jamalidinan
- Department of Biochemistry, 433 Babcock Dr., University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samson G F Condon
- Department of Biochemistry, 433 Babcock Dr., University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alessandro Senes
- Department of Biochemistry, 433 Babcock Dr., University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Aaron A Hoskins
- Department of Biochemistry, 433 Babcock Dr., University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
17
|
Structural studies of the spliceosome: past, present and future perspectives. Biochem Soc Trans 2018; 46:1407-1422. [PMID: 30420411 DOI: 10.1042/bst20170240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022]
Abstract
The spliceosome is a multi-subunit RNA-protein complex involved in the removal of non-coding segments (introns) from between the coding regions (exons) in precursors of messenger RNAs (pre-mRNAs). Intron removal proceeds via two transesterification reactions, occurring between conserved sequences at intron-exon junctions. A tightly regulated, hierarchical assembly with a multitude of structural and compositional rearrangements posed a great challenge for structural studies of the spliceosome. Over the years, X-ray crystallography dominated the field, providing valuable high-resolution structural information that was mostly limited to individual proteins and smaller sub-complexes. Recent developments in the field of cryo-electron microscopy allowed the visualisation of fully assembled yeast and human spliceosomes, providing unprecedented insights into substrate recognition, catalysis, and active site formation. This has advanced our mechanistic understanding of pre-mRNA splicing enormously.
Collapse
|
18
|
Schmitt A, Hamann F, Neumann P, Ficner R. Crystal structure of the spliceosomal DEAH-box ATPase Prp2. Acta Crystallogr D Struct Biol 2018; 74:643-654. [PMID: 29968674 PMCID: PMC6038383 DOI: 10.1107/s2059798318006356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/25/2018] [Indexed: 12/18/2022] Open
Abstract
The DEAH-box ATPase Prp2 plays a key role in the activation of the spliceosome as it promotes the transition from the Bact to the catalytically active B* spliceosome. Here, four crystal structures of Prp2 are reported: one of the nucleotide-free state and three different structures of the ADP-bound state. The overall conformation of the helicase core, formed by two RecA-like domains, does not differ significantly between the ADP-bound and the nucleotide-free states. However, intrinsic flexibility of Prp2 is observed, varying the position of the C-terminal domains with respect to the RecA domains. Additionally, in one of the structures a unique ADP conformation is found which has not been observed in any other DEAH-box, DEAD-box or NS3/NPH-II helicase.
Collapse
Affiliation(s)
- Andreas Schmitt
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Florian Hamann
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
19
|
Hierarchical mechanism of amino acid sensing by the T-box riboswitch. Nat Commun 2018; 9:1896. [PMID: 29760498 PMCID: PMC5951919 DOI: 10.1038/s41467-018-04305-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/16/2018] [Indexed: 11/08/2022] Open
Abstract
In Gram-positive bacteria, T-box riboswitches control gene expression to maintain the cellular pools of aminoacylated tRNAs essential for protein biosynthesis. Co-transcriptional binding of an uncharged tRNA to the riboswitch stabilizes an antiterminator, allowing transcription read-through, whereas an aminoacylated tRNA does not. Recent structural studies have resolved two contact points between tRNA and Stem-I in the 5' half of the T-box riboswitch, but little is known about the mechanism empowering transcriptional control by a small, distal aminoacyl modification. Using single-molecule fluorescence microscopy, we have probed the kinetic and structural underpinnings of tRNA binding to a glycyl T-box riboswitch. We observe a two-step mechanism where fast, dynamic recruitment of tRNA by Stem-I is followed by ultra-stable anchoring by the downstream antiterminator, but only without aminoacylation. Our results support a hierarchical sensing mechanism wherein dynamic global binding of the tRNA body is followed by localized readout of its aminoacylation status by snap-lock-based trapping.
Collapse
|
20
|
Ray S, Widom JR, Walter NG. Life under the Microscope: Single-Molecule Fluorescence Highlights the RNA World. Chem Rev 2018; 118:4120-4155. [PMID: 29363314 PMCID: PMC5918467 DOI: 10.1021/acs.chemrev.7b00519] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The emergence of single-molecule (SM) fluorescence techniques has opened up a vast new toolbox for exploring the molecular basis of life. The ability to monitor individual biomolecules in real time enables complex, dynamic folding pathways to be interrogated without the averaging effect of ensemble measurements. In parallel, modern biology has been revolutionized by our emerging understanding of the many functions of RNA. In this comprehensive review, we survey SM fluorescence approaches and discuss how the application of these tools to RNA and RNA-containing macromolecular complexes in vitro has yielded significant insights into the underlying biology. Topics covered include the three-dimensional folding landscapes of a plethora of isolated RNA molecules, their assembly and interactions in RNA-protein complexes, and the relation of these properties to their biological functions. In all of these examples, the use of SM fluorescence methods has revealed critical information beyond the reach of ensemble averages.
Collapse
Affiliation(s)
| | | | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
21
|
Daher M, Widom JR, Tay W, Walter NG. Soft Interactions with Model Crowders and Non-canonical Interactions with Cellular Proteins Stabilize RNA Folding. J Mol Biol 2017; 430:509-523. [PMID: 29128594 DOI: 10.1016/j.jmb.2017.10.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/22/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
Abstract
Living cells contain diverse biopolymers, creating a heterogeneous crowding environment, the impact of which on RNA folding is poorly understood. Here, we have used single-molecule fluorescence resonance energy transfer to monitor tertiary structure formation of the hairpin ribozyme as a model to probe the effects of polyethylene glycol and yeast cell extract as crowding agents. As expected, polyethylene glycol stabilizes the docked, catalytically active state of the ribozyme, in part through excluded volume effects; unexpectedly, we found evidence that it additionally displays soft, non-specific interactions with the ribozyme. Yeast extract has a profound effect on folding at protein concentrations 1000-fold lower than found intracellularly, suggesting the dominance of specific interactions over volume exclusion. Gel shift assays and affinity pull-down followed by mass spectrometry identified numerous non-canonical RNA-binding proteins that stabilize ribozyme folding; the apparent chaperoning activity of these ubiquitous proteins significantly compensates for the low-counterion environment of the cell.
Collapse
Affiliation(s)
- May Daher
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Julia R Widom
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Wendy Tay
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
22
|
Tavakoli M, Taylor JN, Li CB, Komatsuzaki T, Pressé S. Single Molecule Data Analysis: An Introduction. ADVANCES IN CHEMICAL PHYSICS 2017. [DOI: 10.1002/9781119324560.ch4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Meysam Tavakoli
- Physics Department; Indiana University-Purdue University Indianapolis; Indianapolis IN 46202 USA
| | - J. Nicholas Taylor
- Research Institute for Electronic Science; Hokkaido University; Kita 20 Nishi 10 Kita-Ku Sapporo 001-0020 Japan
| | - Chun-Biu Li
- Research Institute for Electronic Science; Hokkaido University; Kita 20 Nishi 10 Kita-Ku Sapporo 001-0020 Japan
- Department of Mathematics; Stockholm University; 106 91 Stockholm Sweden
| | - Tamiki Komatsuzaki
- Research Institute for Electronic Science; Hokkaido University; Kita 20 Nishi 10 Kita-Ku Sapporo 001-0020 Japan
| | - Steve Pressé
- Physics Department; Indiana University-Purdue University Indianapolis; Indianapolis IN 46202 USA
- Department of Chemistry and Chemical Biology; Indiana University-Purdue University Indianapolis; Indianapolis IN 46202 USA
- Department of Cell and Integrative Physiology; Indiana University School of Medicine; Indianapolis IN 46202 USA
- Department of Physics and School of Molecular Sciences; Arizona State University; Tempe AZ 85287 USA
| |
Collapse
|
23
|
Fica SM, Nagai K. Cryo-electron microscopy snapshots of the spliceosome: structural insights into a dynamic ribonucleoprotein machine. Nat Struct Mol Biol 2017; 24:791-799. [PMID: 28981077 DOI: 10.1038/nsmb.3463] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/10/2017] [Indexed: 12/18/2022]
Abstract
The spliceosome excises introns from pre-messenger RNAs using an RNA-based active site that is cradled by a dynamic protein scaffold. A recent revolution in cryo-electron microscopy (cryo-EM) has led to near-atomic-resolution structures of key spliceosome complexes that provide insight into the mechanism of activation, splice site positioning, catalysis, protein rearrangements and ATPase-mediated dynamics of the active site. The cryo-EM structures rationalize decades of observations from genetic and biochemical studies and provide a molecular framework for future functional studies.
Collapse
|
24
|
Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nat Rev Mol Cell Biol 2017; 18:655-670. [DOI: 10.1038/nrm.2017.86] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Shi Y. The Spliceosome: A Protein-Directed Metalloribozyme. J Mol Biol 2017; 429:2640-2653. [PMID: 28733144 DOI: 10.1016/j.jmb.2017.07.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 11/15/2022]
Abstract
Pre-mRNA splicing is executed by the ribonucleoprotein machinery spliceosome. Nearly 40 years after the discovery of pre-mRNA splicing, the atomic structure of the spliceosome has finally come to light. Four distinct conformational states of the yeast spliceosome have been captured at atomic or near-atomic resolutions. Two catalytic metal ions at the active site are specifically coordinated by the U6 small nuclear RNA (snRNA) and catalyze both the branching reaction and the exon ligation. Of the three snRNAs in the fully assembled spliceosome, U5 and U6, along with 30 contiguous nucleotides of U2 at its 5'-end, remain structurally rigid throughout the splicing reaction. The rigidity of these RNA elements is safeguarded by Prp8 and 16 core protein components, which maintain the same overall conformation in all structurally characterized spliceosomes during the splicing reaction. Only the sequences downstream of nucleotide 30 of U2 snRNA are mobile; their movement, directed by the protein components, delivers the intron branch site into the close proximity of the 5'-splice site for the branching reaction. A set of additional structural rearrangement is required for exon ligation, and the lariat junction is moved out of the active site for recruitment of the 3'-splice site and 3'-exon. The spliceosome is proven to be a protein-directed metalloribozyme.
Collapse
Affiliation(s)
- Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou 310064, Zhejiang Province, Province, China.
| |
Collapse
|
26
|
van der Feltz C, Hoskins AA. Methodologies for studying the spliceosome's RNA dynamics with single-molecule FRET. Methods 2017; 125:45-54. [PMID: 28529063 DOI: 10.1016/j.ymeth.2017.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/13/2017] [Accepted: 05/16/2017] [Indexed: 11/30/2022] Open
Abstract
The spliceosome is an extraordinarily dynamic molecular machine in which significant changes in composition as well as protein and RNA conformation are required for carrying out pre-mRNA splicing. Single-molecule fluorescence resonance energy transfer (smFRET) can be used to elucidate these dynamics both in well-characterized model systems and in entire spliceosomes. These types of single-molecule data provide novel information about spliceosome components and can be used to identify sub-populations of molecules with unique behaviors. When smFRET is combined with single-molecule fluorescence colocalization, conformational dynamics can be further linked to the presence or absence of a given spliceosome component. Here, we provide a description of experimental considerations, approaches, and workflows for smFRET with an emphasis on applications for the splicing machinery.
Collapse
Affiliation(s)
- Clarisse van der Feltz
- Department of Biochemistry, 433 Babcock Dr., University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Aaron A Hoskins
- Department of Biochemistry, 433 Babcock Dr., University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
27
|
Abstract
Major developments in cryo-electron microscopy in the past three or four years have led to the solution of a number of spliceosome structures at high resolution, e.g., the fully assembled but not yet active spliceosome (Bact), the spliceosome just after the first step of splicing (C), and the spliceosome activated for the second step (C*). Therefore 30 years of genetics and biochemistry of the spliceosome can now be interpreted at the structural level. I have closely examined the RNase H domain of Prp8 in each of the structures. Interestingly, the RNase H domain has different and unexpected roles in each of the catalytic steps of splicing.
Collapse
Affiliation(s)
- John Abelson
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| |
Collapse
|
28
|
Tseng CK, Chung CS, Chen HC, Cheng SC. A central role of Cwc25 in spliceosome dynamics during the catalytic phase of pre-mRNA splicing. RNA (NEW YORK, N.Y.) 2017; 23:546-556. [PMID: 28057857 PMCID: PMC5340917 DOI: 10.1261/rna.059204.116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/03/2017] [Indexed: 05/22/2023]
Abstract
Splicing of precursor mRNA occurs via two consecutive steps of transesterification reaction; both require ATP and several proteins. Despite the energy requirement in the catalytic phase, incubation of the purified spliceosome under proper ionic conditions can elicit competitive reversible transesterification, debranching, and spliced-exon-reopening reactions without the necessity for ATP or other factors, suggesting that small changes in the conformational state of the spliceosome can lead to disparate chemical consequences for the substrate. We show here that Cwc25 plays a central role in modulating the conformational state of the catalytic spliceosome during normal splicing reactions. Cwc25 binds tightly to the spliceosome after the reaction and is then removed from the spliceosome, which normally requires DExD/H-box protein Prp16 and ATP hydrolysis, to allow the occurrence of the second reaction. When deprived of Cwc25, the purified first-step spliceosome catalyzes both forward and reverse splicing reactions under normal splicing conditions without requiring energy. Both reactions are inhibited when Cwc25 is added back, presumably due to the stabilization of first-step conformation. Prp16 is dispensable for the second reaction when splicing is carried out under conditions that destabilize Cwc25. We also show that the purified precatalytic spliceosome can catalyze two steps of the reaction at a low efficiency without requiring Cwc25, Slu7, or Prp18 when incubated under proper conditions. Our study reveals conformational modulation of the spliceosome by Cwc25 and Prp16 in stabilization and destabilization of first-step conformation, respectively, to facilitate the splicing process.
Collapse
Affiliation(s)
- Chi-Kang Tseng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Che-Sheng Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Hsin-Chou Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| |
Collapse
|
29
|
Mihailovic MK, Chen A, Gonzalez-Rivera JC, Contreras LM. Defective Ribonucleoproteins, Mistakes in RNA Processing, and Diseases. Biochemistry 2017; 56:1367-1382. [PMID: 28206738 DOI: 10.1021/acs.biochem.6b01134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ribonucleoproteins (RNPs) are vital to many cellular events. To this end, many neurodegenerative diseases and cancers have been linked to RNP malfunction, particularly as this relates to defective processing of cellular RNA. The connection of RNPs and diseases has also propagated a shift of focus onto RNA targeting from traditional protein targeting treatments. However, therapeutic development in this area has been limited by incomplete molecular insight into the specific contributions of RNPs to disease. This review outlines the role of several RNPs in diseases, focusing on molecular defects in processes that affect proper RNA handling in the cell. This work also evaluates the contributions of recently developed methods to understanding RNP association and function. We review progress in this area by focusing on molecular malfunctions of RNPs associated with the onset and progression of several neurodegenerative diseases and cancer and conclude with a brief discussion of RNA-based therapeutic efforts.
Collapse
Affiliation(s)
- Mia K Mihailovic
- McKetta Department of Chemical Engineering, University of Texas at Austin , 200 East. Dean Keeton Street, Stop C0400, Austin, Texas 78712, United States
| | - Angela Chen
- McKetta Department of Chemical Engineering, University of Texas at Austin , 200 East. Dean Keeton Street, Stop C0400, Austin, Texas 78712, United States
| | - Juan C Gonzalez-Rivera
- McKetta Department of Chemical Engineering, University of Texas at Austin , 200 East. Dean Keeton Street, Stop C0400, Austin, Texas 78712, United States
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin , 200 East. Dean Keeton Street, Stop C0400, Austin, Texas 78712, United States
| |
Collapse
|
30
|
Mayerle M, Guthrie C. Genetics and biochemistry remain essential in the structural era of the spliceosome. Methods 2017; 125:3-9. [PMID: 28132896 DOI: 10.1016/j.ymeth.2017.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/23/2017] [Indexed: 12/31/2022] Open
Abstract
The spliceosome is not a single macromolecular machine. Rather it is a collection of dynamic heterogeneous subcomplexes that rapidly interconvert throughout the course of a typical splicing cycle. Because of this, for many years the only high resolution structures of the spliceosome available were of smaller, isolated protein or RNA components. Consequently much of our current understanding of the spliceosome derives from biochemical and genetic techniques. Now with the publication of multiple, high resolution structures of the spliceosome, some question the relevance of traditional biochemical and genetic techniques to the splicing field. We argue such techniques are not only relevant, but vital for an in depth mechanistic understanding of pre-mRNA splicing.
Collapse
Affiliation(s)
- Megan Mayerle
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
31
|
Single-Molecule Analysis of Pre-mRNA Splicing with Colocalization Single-Molecule Spectroscopy (CoSMoS). Methods Mol Biol 2017; 1648:27-37. [PMID: 28766287 DOI: 10.1007/978-1-4939-7204-3_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recent development of single-molecule techniques to study pre-mRNA splicing has provided insights into the dynamic nature of the spliceosome. Colocalization single-molecule spectroscopy (CoSMoS) allows following spliceosome assembly in real time at single-molecule resolution in the full complexity of cellular extracts. A detailed protocol of CoSMoS has been published previously (Anderson and Hoskins, Methods Mol Biol 1126:217-241, 2014). Here, we provide an update on the technical advances since the first CoSMoS studies including slide surface treatment, data processing, and representation. We describe various labeling strategies to generate RNA reporters with multiple dyes (or other moieties) at specific locations.
Collapse
|
32
|
Rohlman CE, Blanco MR, Walter NG. Putting Humpty-Dumpty Together: Clustering the Functional Dynamics of Single Biomolecular Machines Such as the Spliceosome. Methods Enzymol 2016; 581:257-283. [PMID: 27793282 DOI: 10.1016/bs.mie.2016.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The spliceosome is a biomolecular machine that, in all eukaryotes, accomplishes site-specific splicing of introns from precursor messenger RNAs (pre-mRNAs) with high fidelity. Operating at the nanometer scale, where inertia and friction have lost the dominant role they play in the macroscopic realm, the spliceosome is highly dynamic and assembles its active site around each pre-mRNA anew. To understand the structural dynamics underlying the molecular motors, clocks, and ratchets that achieve functional accuracy in the yeast spliceosome (a long-standing model system), we have developed single-molecule fluorescence resonance energy transfer (smFRET) approaches that report changes in intra- and intermolecular interactions in real time. Building on our work using hidden Markov models (HMMs) to extract kinetic and conformational state information from smFRET time trajectories, we recognized that HMM analysis of individual state transitions as independent stochastic events is insufficient for a biomolecular machine as complex as the spliceosome. In this chapter, we elaborate on the recently developed smFRET-based Single-Molecule Cluster Analysis (SiMCAn) that dissects the intricate conformational dynamics of a pre-mRNA through the splicing cycle in a model-free fashion. By leveraging hierarchical clustering techniques developed for Bioinformatics, SiMCAn efficiently analyzes large datasets to first identify common molecular behaviors. Through a second level of clustering based on the abundance of dynamic behaviors exhibited by defined functional intermediates that have been stalled by biochemical or genetic tools, SiMCAn then efficiently assigns pre-mRNA FRET states and transitions to specific splicing complexes, with the potential to find heretofore undescribed conformations. SiMCAn thus arises as a general tool to analyze dynamic cellular machines more broadly.
Collapse
Affiliation(s)
| | - M R Blanco
- Single Molecule Analysis Group and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, United States
| | - N G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
33
|
Single-molecule fluorescence microscopy of native macromolecular complexes. Curr Opin Struct Biol 2016; 41:225-232. [PMID: 27662375 DOI: 10.1016/j.sbi.2016.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 12/11/2022]
Abstract
Macromolecular complexes consisting of proteins, lipids, and/or nucleic acids are ubiquitous in biological processes. Their composition, stoichiometry, order of assembly, and conformations can be heterogeneous or can change dynamically, making single-molecule studies best suited to measure these properties accurately. Recent single-molecule pull-down and other related approaches have combined the principles of conventional co-immunoprecipitation assay with single-molecule fluorescence microscopy to probe native macromolecular complexes. In this review, we present the advances in single-molecule pull-down methods and biological systems that have been investigated in such semi vivo manner.
Collapse
|
34
|
DeHaven AC, Norden IS, Hoskins AA. Lights, camera, action! Capturing the spliceosome and pre-mRNA splicing with single-molecule fluorescence microscopy. WILEY INTERDISCIPLINARY REVIEWS. RNA 2016; 7:683-701. [PMID: 27198613 PMCID: PMC4990488 DOI: 10.1002/wrna.1358] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/20/2016] [Accepted: 04/04/2016] [Indexed: 11/06/2022]
Abstract
The process of removing intronic sequences from a precursor to messenger RNA (pre-mRNA) to yield a mature mRNA transcript via splicing is an integral step in eukaryotic gene expression. Splicing is carried out by a cellular nanomachine called the spliceosome that is composed of RNA components and dozens of proteins. Despite decades of study, many fundamentals of spliceosome function have remained elusive. Recent developments in single-molecule fluorescence microscopy have afforded new tools to better probe the spliceosome and the complex, dynamic process of splicing by direct observation of single molecules. These cutting-edge technologies enable investigators to monitor the dynamics of specific splicing components, whole spliceosomes, and even cotranscriptional splicing within living cells. WIREs RNA 2016, 7:683-701. doi: 10.1002/wrna.1358 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Alexander C. DeHaven
- Integrated Program in Biochemistry, U. Wisconsin-Madison, Madison, WI 53706
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706
| | - Ian S. Norden
- Integrated Program in Biochemistry, U. Wisconsin-Madison, Madison, WI 53706
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706
| | - Aaron A. Hoskins
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
35
|
Abstract
The production of a single mRNA is the result of many sequential steps, from docking of transcription factors to polymerase initiation, elongation, splicing, and, finally, termination. Much of our knowledge about the fundamentals of RNA synthesis and processing come from ensemble in vitro biochemical measurements. Single-molecule approaches are very much in this same reductionist tradition but offer exquisite sensitivity in space and time along with the ability to observe heterogeneous behavior and actually manipulate macromolecules. These techniques can also be applied in vivo, allowing one to address questions in living cells that were previously restricted to reconstituted systems. In this review, we examine the unique insights that single-molecule techniques have yielded on the mechanisms of gene expression.
Collapse
Affiliation(s)
- Huimin Chen
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Daniel R Larson
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
36
|
Husbands AY, Aggarwal V, Ha T, Timmermans MCP. In Planta Single-Molecule Pull-Down Reveals Tetrameric Stoichiometry of HD-ZIPIII:LITTLE ZIPPER Complexes. THE PLANT CELL 2016; 28:1783-94. [PMID: 27385814 PMCID: PMC5006705 DOI: 10.1105/tpc.16.00289] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/03/2016] [Indexed: 05/12/2023]
Abstract
Deciphering complex biological processes markedly benefits from approaches that directly assess the underlying biomolecular interactions. Most commonly used approaches to monitor protein-protein interactions typically provide nonquantitative readouts that lack statistical power and do not yield information on the heterogeneity or stoichiometry of protein complexes. Single-molecule pull-down (SiMPull) uses single-molecule fluorescence detection to mitigate these disadvantages and can quantitatively interrogate interactions between proteins and other compounds, such as nucleic acids, small molecule ligands, and lipids. Here, we establish SiMPull in plants using the HOMEODOMAIN LEUCINE ZIPPER III (HD-ZIPIII) and LITTLE ZIPPER (ZPR) interaction as proof-of-principle. Colocalization analysis of fluorophore-tagged HD-ZIPIII and ZPR proteins provides strong statistical evidence of complex formation. In addition, we use SiMPull to directly quantify YFP and mCherry maturation probabilities, showing these differ substantially from values obtained in mammalian systems. Leveraging these probabilities, in conjunction with fluorophore photobleaching assays on over 2000 individual complexes, we determined HD-ZIPIII:ZPR stoichiometry. Intriguingly, these complexes appear as heterotetramers, comprising two HD-ZIPIII and two ZPR molecules, rather than heterodimers as described in the current model. This surprising result raises new questions about the regulation of these key developmental factors and is illustrative of the unique contribution SiMPull is poised to make to in planta protein interaction studies.
Collapse
Affiliation(s)
- Aman Y Husbands
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Vasudha Aggarwal
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205 Howard Hughes Medical Institute, Baltimore, Maryland 21205
| | - Marja C P Timmermans
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
37
|
Semlow DR, Blanco MR, Walter NG, Staley JP. Spliceosomal DEAH-Box ATPases Remodel Pre-mRNA to Activate Alternative Splice Sites. Cell 2016; 164:985-98. [PMID: 26919433 DOI: 10.1016/j.cell.2016.01.025] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 01/08/2016] [Accepted: 01/15/2016] [Indexed: 12/19/2022]
Abstract
During pre-mRNA splicing, a central step in the expression and regulation of eukaryotic genes, the spliceosome selects splice sites for intron excision and exon ligation. In doing so, the spliceosome must distinguish optimal from suboptimal splice sites. At the catalytic stage of splicing, suboptimal splice sites are repressed by the DEAH-box ATPases Prp16 and Prp22. Here, using budding yeast, we show that these ATPases function further by enabling the spliceosome to search for and utilize alternative branch sites and 3' splice sites. The ATPases facilitate this search by remodeling the splicing substrate to disengage candidate splice sites. Our data support a mechanism involving 3' to 5' translocation of the ATPases along substrate RNA and toward a candidate site, but, surprisingly, not across the site. Thus, our data implicate DEAH-box ATPases in acting at a distance by pulling substrate RNA from the catalytic core of the spliceosome.
Collapse
Affiliation(s)
- Daniel R Semlow
- Graduate Program in Cell and Molecular Biology, University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA
| | - Mario R Blanco
- Cellular and Molecular Biology, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA; Single Molecule Analysis Group, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
| | - Jonathan P Staley
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58(th) Street, Chicago, IL 60637, USA.
| |
Collapse
|
38
|
Cryo-EM structure of the spliceosome immediately after branching. Nature 2016; 537:197-201. [PMID: 27459055 PMCID: PMC5156311 DOI: 10.1038/nature19316] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/19/2016] [Indexed: 12/11/2022]
Abstract
Precursor mRNA (pre-mRNA) splicing proceeds by two consecutive transesterification reactions via a lariat-intron intermediate. Here we present the 3.8 Å cryo-electron microscopy structure of the spliceosome immediately after lariat formation. The 5'-splice site is cleaved but remains close to the catalytic Mg2+ site in the U2/U6 small nuclear RNA (snRNA) triplex, and the 5'-phosphate of the intron nucleotide G(+1) is linked to the branch adenosine 2'OH. The 5'-exon is held between the Prp8 amino-terminal and linker domains, and base-pairs with U5 snRNA loop 1. Non-Watson-Crick interactions between the branch helix and 5'-splice site dock the branch adenosine into the active site, while intron nucleotides +3 to +6 base-pair with the U6 snRNA ACAGAGA sequence. Isy1 and the step-one factors Yju2 and Cwc25 stabilize docking of the branch helix. The intron downstream of the branch site emerges between the Prp8 reverse transcriptase and linker domains and extends towards the Prp16 helicase, suggesting a plausible mechanism of remodelling before exon ligation.
Collapse
|
39
|
Hoskins AA, Rodgers ML, Friedman LJ, Gelles J, Moore MJ. Single molecule analysis reveals reversible and irreversible steps during spliceosome activation. eLife 2016; 5. [PMID: 27244240 PMCID: PMC4922858 DOI: 10.7554/elife.14166] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 05/26/2016] [Indexed: 12/19/2022] Open
Abstract
The spliceosome is a complex machine composed of small nuclear ribonucleoproteins (snRNPs) and accessory proteins that excises introns from pre-mRNAs. After assembly the spliceosome is activated for catalysis by rearrangement of subunits to form an active site. How this rearrangement is coordinated is not well-understood. During activation, U4 must be released to allow U6 conformational change, while Prp19 complex (NTC) recruitment is essential for stabilizing the active site. We used multi-wavelength colocalization single molecule spectroscopy to directly observe the key events in Saccharomyces cerevisiae spliceosome activation. Following binding of the U4/U6.U5 tri-snRNP, the spliceosome either reverses assembly by discarding tri-snRNP or proceeds to activation by irreversible U4 loss. The major pathway for NTC recruitment occurs after U4 release. ATP stimulates both the competing U4 release and tri-snRNP discard processes. The data reveal the activation mechanism and show that overall splicing efficiency may be maintained through repeated rounds of disassembly and tri-snRNP reassociation. DOI:http://dx.doi.org/10.7554/eLife.14166.001 The genes in an organism’s DNA may be expressed to form a protein via an intermediate molecule called RNA. In many organisms including humans, gene expression often begins by making a precursor molecule called a pre-mRNA. The pre-mRNA contains regions called exons that code for the protein product and regions called introns that do not. A machine in the cell called the spliceosome has the job of removing the introns in the pre-mRNA and stitching the exons together by a process known as splicing. The spliceosome is made up of dozens of components that assemble on the pre-mRNAs. Before a newly assembled spliceosome can carry out splicing, it must be activated. The activation process involves several steps that are powered by the cell's universal power source (a molecule called ATP), including the release of many components from the spliceosome. Many of the details of the activation process are unclear. Spliceosomes in the yeast species Saccharomyces cerevisiae are similar to spliceosomes from humans, and so are often studied experimentally. Hoskins et al. have now used a technique called colocalization single molecule fluorescence spectroscopy to follow, in real time, a single yeast spliceosome molecule as it activates. This technique uses a specialized microscope and a number of colored lasers to detect different spliceosome proteins at the same time. Hoskins et al. found that one of the steps during activation is irreversible – once that step occurs, the spliceosome must either perform the next activation steps or start the processes of assembly and activation over again. Hoskins et al. also discovered that ATP causes some spliceosomes to be discarded during activation and not used for splicing. This indicates that before spliceosomes are allowed to activate, they may undergo 'quality control', which may be important for making sure that gene expression occurs efficiently and correctly. Future studies will investigate how this quality control process works in further detail. DOI:http://dx.doi.org/10.7554/eLife.14166.002
Collapse
Affiliation(s)
- Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Margaret L Rodgers
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Larry J Friedman
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Melissa J Moore
- Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
40
|
Fareh M, Loeff L, Szczepaniak M, Haagsma AC, Yeom KH, Joo C. Single-molecule pull-down for investigating protein-nucleic acid interactions. Methods 2016; 105:99-108. [PMID: 27017911 DOI: 10.1016/j.ymeth.2016.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/26/2016] [Accepted: 03/24/2016] [Indexed: 12/30/2022] Open
Abstract
The genome and transcriptome are constantly modified by proteins in the cell. Recent advances in single-molecule techniques allow for high spatial and temporal observations of these interactions between proteins and nucleic acids. However, due to the difficulty of obtaining functional protein complexes, it remains challenging to study the interactions between macromolecular protein complexes and nucleic acids. Here, we combined single-molecule fluorescence with various protein complex pull-down techniques to determine the function and stoichiometry of ribonucleoprotein complexes. Through the use of three examples of protein complexes from eukaryotic cells (Drosha, Dicer, and TUT4 protein complexes), we provide step-by-step guidance for using novel single-molecule techniques. Our single-molecule methods provide sub-second and nanometer resolution and can be applied to other nucleoprotein complexes that are essential for cellular processes.
Collapse
Affiliation(s)
- Mohamed Fareh
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, Delft 2629HZ, The Netherlands
| | - Luuk Loeff
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, Delft 2629HZ, The Netherlands
| | - Malwina Szczepaniak
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, Delft 2629HZ, The Netherlands
| | - Anna C Haagsma
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, Delft 2629HZ, The Netherlands
| | - Kyu-Hyeon Yeom
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, Delft 2629HZ, The Netherlands
| | - Chirlmin Joo
- Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, Delft 2629HZ, The Netherlands.
| |
Collapse
|
41
|
Dhakal S, Adendorff MR, Liu M, Yan H, Bathe M, Walter NG. Rational design of DNA-actuated enzyme nanoreactors guided by single molecule analysis. NANOSCALE 2016; 8:3125-3137. [PMID: 26788713 DOI: 10.1039/c5nr07263h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The control of enzymatic reactions using nanoscale DNA devices offers a powerful application of DNA nanotechnology uniquely derived from actuation. However, previous characterization of enzymatic reaction rates using bulk biochemical assays reported suboptimal function of DNA devices such as tweezers. To gain mechanistic insight into this deficiency and to identify design rules to improve their function, here we exploit the synergy of single molecule imaging and computational modeling to characterize the three-dimensional structures and catalytic functions of DNA tweezer-actuated nanoreactors. Our analysis revealed two important deficiencies--incomplete closure upon actuation and conformational heterogeneity. Upon rational redesign of the Holliday junctions located at their hinge and arms, we found that the DNA tweezers could be more completely and uniformly closed. A novel single molecule enzyme assay was developed to demonstrate that our design improvements yield significant, independent enhancements in the fraction of active enzyme nanoreactors and their individual substrate turnover frequencies. The sequence-level design strategies explored here may aid more broadly in improving the performance of DNA-based nanodevices including biological and chemical sensors.
Collapse
Affiliation(s)
- Soma Dhakal
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Matthew R Adendorff
- Department of Biological Engineering, Laboratory for Computational Biology & Biophysics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Minghui Liu
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | - Hao Yan
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | - Mark Bathe
- Department of Biological Engineering, Laboratory for Computational Biology & Biophysics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Nils G Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
42
|
Rodgers ML, Tretbar US, Dehaven A, Alwan AA, Luo G, Mast HM, Hoskins AA. Conformational dynamics of stem II of the U2 snRNA. RNA (NEW YORK, N.Y.) 2016; 22:225-36. [PMID: 26631165 PMCID: PMC4712673 DOI: 10.1261/rna.052233.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 10/27/2015] [Indexed: 05/25/2023]
Abstract
The spliceosome undergoes dramatic changes in both small nuclear RNA (snRNA) composition and structure during assembly and pre-mRNA splicing. It has been previously proposed that the U2 snRNA adopts two conformations within the stem II region: stem IIa or stem IIc. Dynamic rearrangement of stem IIa into IIc and vice versa is necessary for proper progression of the spliceosome through assembly and catalysis. How this conformational transition is regulated is unclear; although, proteins such as Cus2p and the helicase Prp5p have been implicated in this process. We have used single-molecule Förster resonance energy transfer (smFRET) to study U2 stem II toggling between stem IIa and IIc. Structural interconversion of the RNA was spontaneous and did not require the presence of a helicase; however, both Mg(2+) and Cus2p promote formation of stem IIa. Destabilization of stem IIa by a G53A mutation in the RNA promotes stem IIc formation and inhibits conformational switching of the RNA by both Mg(2+) and Cus2p. Transitioning to stem IIa can be restored using Cus2p mutations that suppress G53A phenotypes in vivo. We propose that during spliceosome assembly, Cus2p and Mg(2+) may work together to promote stem IIa formation. During catalysis the spliceosome could then toggle stem II with the aid of Mg(2+) or with the use of functionally equivalent protein interactions. As noted in previous studies, the Mg(2+) toggling we observe parallels previous observations of U2/U6 and Prp8p RNase H domain Mg(2+)-dependent conformational changes. Together these data suggest that multiple components of the spliceosome may have evolved to switch between conformations corresponding to open or closed active sites with the aid of metal and protein cofactors.
Collapse
Affiliation(s)
- Margaret L Rodgers
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - U Sandy Tretbar
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Alexander Dehaven
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Amir A Alwan
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - George Luo
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Hannah M Mast
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| |
Collapse
|
43
|
Blanco MR, Martin JS, Kahlscheuer ML, Krishnan R, Abelson J, Laederach A, Walter NG. Single Molecule Cluster Analysis dissects splicing pathway conformational dynamics. Nat Methods 2015; 12:1077-84. [PMID: 26414013 DOI: 10.1038/nmeth.3602] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 08/10/2015] [Indexed: 02/01/2023]
Abstract
We report Single Molecule Cluster Analysis (SiMCAn), which utilizes hierarchical clustering of hidden Markov modeling-fitted single-molecule fluorescence resonance energy transfer (smFRET) trajectories to dissect the complex conformational dynamics of biomolecular machines. We used this method to study the conformational dynamics of a precursor mRNA during the splicing cycle as carried out by the spliceosome. By clustering common dynamic behaviors derived from selectively blocked splicing reactions, SiMCAn was able to identify the signature conformations and dynamic behaviors of multiple ATP-dependent intermediates. In addition, it identified an open conformation adopted late in splicing by a 3' splice-site mutant, invoking a mechanism for substrate proofreading. SiMCAn enables rapid interpretation of complex single-molecule behaviors and should prove useful for the comprehensive analysis of a plethora of dynamic cellular machines.
Collapse
Affiliation(s)
- Mario R Blanco
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, Michigan, USA.,Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Joshua S Martin
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matthew L Kahlscheuer
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, Michigan, USA
| | - Ramya Krishnan
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, Michigan, USA
| | - John Abelson
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
| | - Alain Laederach
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Nils G Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
44
|
|
45
|
Single-molecule fluorescence-based studies on the dynamics, assembly and catalytic mechanism of the spliceosome. Biochem Soc Trans 2015; 42:1211-8. [PMID: 25110027 DOI: 10.1042/bst20140105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pre-mRNA (precursor mRNA) splicing is a key step in cellular gene expression where introns are excised and exons are ligated together to produce mature mRNA. This process is catalysed by the spliceosome, which consists of five snRNPs (small nuclear ribonucleoprotein particles) and numerous protein factors. Assembly of these snRNPs and associated proteins is a highly dynamic process, making it challenging to study the conformational rearrangements and spliceosome assembly kinetics in bulk studies. In the present review, we discuss recent studies utilizing techniques based on single-molecule detection that have helped overcome this challenge. These studies focus on the assembly dynamics and splicing kinetics in real-time, which help understanding of spliceosomal assembly and catalysis.
Collapse
|
46
|
Rodgers ML, Paulson J, Hoskins AA. Rapid isolation and single-molecule analysis of ribonucleoproteins from cell lysate by SNAP-SiMPull. RNA (NEW YORK, N.Y.) 2015; 21:1031-41. [PMID: 25805862 PMCID: PMC4408783 DOI: 10.1261/rna.047845.114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 02/03/2015] [Indexed: 05/08/2023]
Abstract
Large macromolecular complexes such as the spliceosomal small nuclear ribonucleoproteins (snRNPs) play a variety of roles within the cell. Despite their biological importance, biochemical studies of snRNPs and other machines are often thwarted by practical difficulties in the isolation of sufficient amounts of material. Studies of the snRNPs as well as other macromolecular machines would be greatly facilitated by new approaches that enable their isolation and biochemical characterization. One such approach is single-molecule pull-down (SiMPull) that combines in situ immunopurification of complexes from cell lysates with subsequent single-molecule fluorescence microscopy experiments. We report the development of a new method, called SNAP-SiMPull, that can readily be applied to studies of splicing factors and snRNPs isolated from whole-cell lysates. SNAP-SiMPull overcomes many of the limitations imposed by conventional SiMPull strategies that rely on fluorescent proteins. We have used SNAP-SiMPull to study the yeast branchpoint bridging protein (BBP) as well as the U1 and U6 snRNPs. SNAP-SiMPull will likely find broad use for rapidly isolating complex cellular machines for single-molecule fluorescence colocalization experiments.
Collapse
Affiliation(s)
- Margaret L Rodgers
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Joshua Paulson
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| |
Collapse
|
47
|
Bartke RM, Cameron EL, Cristie-David AS, Custer TC, Denies MS, Daher M, Dhakal S, Ghosh S, Heinicke LA, Hoff JD, Hou Q, Kahlscheuer ML, Karslake J, Krieger AG, Li J, Li X, Lund PE, Vo NN, Park J, Pitchiaya S, Rai V, Smith DJ, Suddala KC, Wang J, Widom JR, Walter NG. Meeting report: SMART timing--principles of single molecule techniques course at the University of Michigan 2014. Biopolymers 2015; 103:296-302. [PMID: 25546606 PMCID: PMC4613745 DOI: 10.1002/bip.22603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 12/17/2014] [Indexed: 11/07/2022]
Abstract
Four days after the announcement of the 2014 Nobel Prize in Chemistry for "the development of super-resolved fluorescence microscopy" based on single molecule detection, the Single Molecule Analysis in Real-Time (SMART) Center at the University of Michigan hosted a "Principles of Single Molecule Techniques 2014" course. Through a combination of plenary lectures and an Open House at the SMART Center, the course took a snapshot of a technology with an especially broad and rapidly expanding range of applications in the biomedical and materials sciences. Highlighting the continued rapid emergence of technical and scientific advances, the course underscored just how brightly the future of the single molecule field shines.
Collapse
Affiliation(s)
- Rebecca M Bartke
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Patrick KL, Ryan CJ, Xu J, Lipp JJ, Nissen KE, Roguev A, Shales M, Krogan NJ, Guthrie C. Genetic interaction mapping reveals a role for the SWI/SNF nucleosome remodeler in spliceosome activation in fission yeast. PLoS Genet 2015; 11:e1005074. [PMID: 25825871 PMCID: PMC4380400 DOI: 10.1371/journal.pgen.1005074] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/16/2015] [Indexed: 12/19/2022] Open
Abstract
Although numerous regulatory connections between pre-mRNA splicing and chromatin have been demonstrated, the precise mechanisms by which chromatin factors influence spliceosome assembly and/or catalysis remain unclear. To probe the genetic network of pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, we constructed an epistatic mini-array profile (E-MAP) and discovered many new connections between chromatin and splicing. Notably, the nucleosome remodeler SWI/SNF had strong genetic interactions with components of the U2 snRNP SF3 complex. Overexpression of SF3 components in ΔSWI/SNF cells led to inefficient splicing of many fission yeast introns, predominantly those with non-consensus splice sites. Deletion of SWI/SNF decreased recruitment of the splicing ATPase Prp2, suggesting that SWI/SNF promotes co-transcriptional spliceosome assembly prior to first step catalysis. Importantly, defects in SWI/SNF as well as SF3 overexpression each altered nucleosome occupancy along intron-containing genes, illustrating that the chromatin landscape both affects—and is affected by—co-transcriptional splicing. It has recently become apparent that most introns are removed from pre-mRNA while the transcript is still engaged with RNA polymerase II (RNAPII). To gain insight into possible roles for chromatin in co-transcriptional splicing, we generated a genome-wide genetic interaction map in fission yeast and uncovered numerous connections between splicing and chromatin. The SWI/SNF remodeling complex is typically thought to activate gene expression by relieving barriers to polymerase elongation imposed by nucleosomes. Here we show that this remodeler is important for an early step in splicing in which Prp2, an RNA-dependent ATPase, is recruited to the assembling spliceosome to promote catalytic activation. Interestingly, introns with sub-optimal splice sites are particularly dependent on SWI/SNF, suggesting the impact of nucleosome dynamics on the kinetics of spliceosome assembly and catalysis. By monitoring nucleosome occupancy, we show significant alterations in nucleosome density in particular splicing and chromatin mutants, which generally paralleled the levels of RNAPII. Taken together, our findings challenge the notion that nucleosomes simply act as barriers to elongation; rather, we suggest that polymerase pausing at nucleosomes can activate gene expression by allowing more time for co-transcriptional splicing.
Collapse
Affiliation(s)
- Kristin L. Patrick
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - Colm J. Ryan
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, QB3, San Francisco, California, United States of America
| | - Jiewei Xu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, QB3, San Francisco, California, United States of America
| | - Jesse J. Lipp
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
| | - Kelly E. Nissen
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - Assen Roguev
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, QB3, San Francisco, California, United States of America
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, QB3, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
49
|
Butzlaff M, Hannan SB, Karsten P, Lenz S, Ng J, Voßfeldt H, Prüßing K, Pflanz R, Schulz JB, Rasse T, Voigt A. Impaired retrograde transport by the Dynein/Dynactin complex contributes to Tau-induced toxicity. Hum Mol Genet 2015; 24:3623-37. [DOI: 10.1093/hmg/ddv107] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/17/2015] [Indexed: 11/12/2022] Open
|
50
|
Kahlscheuer ML, Widom J, Walter NG. Single-Molecule Pull-Down FRET to Dissect the Mechanisms of Biomolecular Machines. Methods Enzymol 2015; 558:539-570. [PMID: 26068753 PMCID: PMC4886477 DOI: 10.1016/bs.mie.2015.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Spliceosomes are multimegadalton RNA-protein complexes responsible for the faithful removal of noncoding segments (introns) from pre-messenger RNAs (pre-mRNAs), a process critical for the maturation of eukaryotic mRNAs for subsequent translation by the ribosome. Both the spliceosome and ribosome, as well as many other RNA and DNA processing machineries, contain central RNA components that endow biomolecular complexes with precise, sequence-specific nucleic acid recognition, and versatile structural dynamics. Single-molecule fluorescence (or Förster) resonance energy transfer (smFRET) microscopy is a powerful tool for the study of local and global conformational changes of both simple and complex biomolecular systems involving RNA. The integration of biochemical tools such as immunoprecipitation with advanced methods in smFRET microscopy and data analysis has opened up entirely new avenues toward studying the mechanisms of biomolecular machines isolated directly from complex biological specimens, such as cell extracts. Here, we detail the general steps for using prism-based total internal reflection fluorescence microscopy in exemplary single-molecule pull-down FRET studies of the yeast spliceosome and discuss the broad application potential of this technique.
Collapse
Affiliation(s)
- Matthew L Kahlscheuer
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Julia Widom
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|