1
|
Cooke MB, Herman C, Sivaramakrishnan P. Clues to transcription/replication collision-induced DNA damage: it was RNAP, in the chromosome, with the fork. FEBS Lett 2025; 599:209-243. [PMID: 39582266 DOI: 10.1002/1873-3468.15063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024]
Abstract
DNA replication and RNA transcription processes compete for the same DNA template and, thus, frequently collide. These transcription-replication collisions are thought to lead to genomic instability, which places a selective pressure on organisms to avoid them. Here, we review the predisposing causes, molecular mechanisms, and downstream consequences of transcription-replication collisions (TRCs) with a strong emphasis on prokaryotic model systems, before contrasting prokaryotic findings with cases in eukaryotic systems. Current research points to genomic structure as the primary determinant of steady-state TRC levels and RNA polymerase regulation as the primary inducer of excess TRCs. We review the proposed mechanisms of TRC-induced DNA damage, attempting to clarify their mechanistic requirements. Finally, we discuss what drives genomes to select against TRCs.
Collapse
Affiliation(s)
- Matthew B Cooke
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Priya Sivaramakrishnan
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, PA, USA
| |
Collapse
|
2
|
Schärfen L, Vock IW, Simon MD, Neugebauer KM. Rapid folding of nascent RNA regulates eukaryotic RNA biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625435. [PMID: 39651172 PMCID: PMC11623619 DOI: 10.1101/2024.11.26.625435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
An RNA's catalytic, regulatory, or coding potential depends on RNA structure formation. Because base pairing occurs during transcription, early structural states can govern RNA processing events and dictate the formation of functional conformations. These co-transcriptional states remain unknown. Here, we develop CoSTseq, which detects nascent RNA base pairing within and upon exit from RNA polymerases (Pols) transcriptome-wide in living yeast cells. By monitoring each nucleotide's base pairing activity during transcription, we identify distinct classes of behaviors. While 47% of rRNA nucleotides remain unpaired, rapid and delayed base pairing - with rates of 48.5 and 13.2 kb -1 of transcribed rDNA, respectively - typically completes when Pol I is only 25 bp downstream. We show that helicases act immediately to remodel structures across the rDNA locus and facilitate ribosome biogenesis. In contrast, nascent pre-mRNAs attain local structures indistinguishable from mature mRNAs, suggesting that refolding behind elongating ribosomes resembles co-transcriptional folding behind Pol II.
Collapse
|
3
|
Qiu C, Arora P, Malik I, Laperuta AJ, Pavlovic EM, Ugochukwu S, Naik M, Kaplan CD. Thiolutin has complex effects in vivo but is a direct inhibitor of RNA polymerase II in vitro. Nucleic Acids Res 2024; 52:2546-2564. [PMID: 38214235 PMCID: PMC10954460 DOI: 10.1093/nar/gkad1258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024] Open
Abstract
Thiolutin is a natural product transcription inhibitor with an unresolved mode of action. Thiolutin and the related dithiolopyrrolone holomycin chelate Zn2+ and previous studies have concluded that RNA Polymerase II (Pol II) inhibition in vivo is indirect. Here, we present chemicogenetic and biochemical approaches to investigate thiolutin's mode of action in Saccharomyces cerevisiae. We identify mutants that alter sensitivity to thiolutin. We provide genetic evidence that thiolutin causes oxidation of thioredoxins in vivo and that thiolutin both induces oxidative stress and interacts functionally with multiple metals including Mn2+ and Cu2+, and not just Zn2+. Finally, we show direct inhibition of RNA polymerase II (Pol II) transcription initiation by thiolutin in vitro in support of classical studies that thiolutin can directly inhibit transcription in vitro. Inhibition requires both Mn2+ and appropriate reduction of thiolutin as excess DTT abrogates its effects. Pause prone, defective elongation can be observed in vitro if inhibition is bypassed. Thiolutin effects on Pol II occupancy in vivo are widespread but major effects are consistent with prior observations for Tor pathway inhibition and stress induction, suggesting that thiolutin use in vivo should be restricted to studies on its modes of action and not as an experimental tool.
Collapse
Affiliation(s)
- Chenxi Qiu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Payal Arora
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Indranil Malik
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | - Mandar Naik
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
4
|
Chauvier A, Porta JC, Deb I, Ellinger E, Meze K, Frank AT, Ohi MD, Walter NG. Structural basis for control of bacterial RNA polymerase pausing by a riboswitch and its ligand. Nat Struct Mol Biol 2023; 30:902-913. [PMID: 37264140 PMCID: PMC10523900 DOI: 10.1038/s41594-023-01002-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/20/2023] [Indexed: 06/03/2023]
Abstract
Folding of nascent transcripts can be modulated by the RNA polymerase (RNAP) that carries out their transcription, and vice versa. A pause of RNAP during transcription of a preQ1 riboswitch (termed que-PEC) is stabilized by a previously characterized template consensus sequence and the ligand-free conformation of the nascent RNA. Ligand binding to the riboswitch induces RNAP pause release and downstream transcription termination; however, the mechanism by which riboswitch folding modulates pausing is unclear. Here, we report single-particle cryo-electron microscopy reconstructions of que-PEC in ligand-free and ligand-bound states. In the absence of preQ1, the RNA transcript is in an unexpected hyper-translocated state, preventing downstream nucleotide incorporation. Strikingly, on ligand binding, the riboswitch rotates around its helical axis, expanding the surrounding RNAP exit channel and repositioning the transcript for elongation. Our study reveals the tight coupling by which nascent RNA structures and their ligands can functionally regulate the macromolecular transcription machinery.
Collapse
Affiliation(s)
- Adrien Chauvier
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Jason C Porta
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Indrajit Deb
- Biophysics Program, University of Michigan, Ann Arbor, MI, USA
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Emily Ellinger
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Katarina Meze
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Aaron T Frank
- Biophysics Program, University of Michigan, Ann Arbor, MI, USA
- Arrakis Therapeutics, Waltham, MA, USA
| | - Melanie D Ohi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Strobel EJ. Isolation of E. coli RNA polymerase transcription elongation complexes by selective solid-phase photoreversible immobilization. Methods Enzymol 2023; 691:223-250. [PMID: 37914448 PMCID: PMC10950060 DOI: 10.1016/bs.mie.2023.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The ability to prepare defined transcription elongation complexes (TECs) is a fundamental tool for investigating the interplay between RNA polymerases (RNAPs) and nascent RNA. To facilitate the preparation of defined TECs that contain arbitrarily long and complex transcripts, we developed a procedure for isolating roadblocked E. coli TECs from an in vitro transcription reaction using solid-phase photoreversible immobilization. Our approach uses a modified DNA template that contains both a 5' photocleavable biotin tag and an internal biotin-TEG transcription stall site. Because the footprint of a TEC at the stall site sequesters the biotin-TEG tag, DNA template molecules that contain a TEC can be reversibly immobilized on streptavidin-coated magnetic beads by the 5' photocleavable biotin tag. In contrast, DNA template molecules that do not contain a TEC are retained on the beads because the biotin-TEG tag is exposed and can bind streptavidin. In this way, DNA template molecules that contain a TEC are gently separated from free DNA and DNA that contains non-productive transcription complexes. This procedure yields precisely positioned TECs that are >95% pure with >30% yield relative to the amount of input DNA template. The resulting complexes are >99% stable for at least 3 h and can be used for biochemical investigations of nascent RNA structure and function in the context of E. coli RNAP. The procedure is likely generalizable to any RNAP that arrests at and sequesters the internal biotin-TEG stall site.
Collapse
Affiliation(s)
- Eric J Strobel
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
6
|
Duan B, Qiu C, Sze SH, Kaplan C. Widespread epistasis shapes RNA Polymerase II active site function and evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530048. [PMID: 36909581 PMCID: PMC10002619 DOI: 10.1101/2023.02.27.530048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Multi-subunit RNA Polymerases (msRNAPs) are responsible for transcription in all kingdoms of life. At the heart of these msRNAPs is an ultra-conserved active site domain, the trigger loop (TL), coordinating transcription speed and fidelity by critical conformational changes impacting multiple steps in substrate selection, catalysis, and translocation. Previous studies have observed several different types of genetic interactions between eukaryotic RNA polymerase II (Pol II) TL residues, suggesting that the TL's function is shaped by functional interactions of residues within and around the TL. The extent of these interaction networks and how they control msRNAP function and evolution remain to be determined. Here we have dissected the Pol II TL interaction landscape by deep mutational scanning in Saccharomyces cerevisiae Pol II. Through analysis of over 15000 alleles, representing all single mutants, a rationally designed subset of double mutants, and evolutionarily observed TL haplotypes, we identify interaction networks controlling TL function. Substituting residues creates allele-specific networks and propagates epistatic effects across the Pol II active site. Furthermore, the interaction landscape further distinguishes alleles with similar growth phenotypes, suggesting increased resolution over the previously reported single mutant phenotypic landscape. Finally, co-evolutionary analyses reveal groups of co-evolving residues across Pol II converge onto the active site, where evolutionary constraints interface with pervasive epistasis. Our studies provide a powerful system to understand the plasticity of RNA polymerase mechanism and evolution, and provide the first example of pervasive epistatic landscape in a highly conserved and constrained domain within an essential enzyme.
Collapse
Affiliation(s)
- Bingbing Duan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston, MA 02215
| | - Sing-Hoi Sze
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843
| | - Craig Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
7
|
Wee LM, Tong AB, Florez Ariza AJ, Cañari-Chumpitaz C, Grob P, Nogales E, Bustamante CJ. A trailing ribosome speeds up RNA polymerase at the expense of transcript fidelity via force and allostery. Cell 2023; 186:1244-1262.e34. [PMID: 36931247 PMCID: PMC10135430 DOI: 10.1016/j.cell.2023.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 03/18/2023]
Abstract
In prokaryotes, translation can occur on mRNA that is being transcribed in a process called coupling. How the ribosome affects the RNA polymerase (RNAP) during coupling is not well understood. Here, we reconstituted the E. coli coupling system and demonstrated that the ribosome can prevent pausing and termination of RNAP and double the overall transcription rate at the expense of fidelity. Moreover, we monitored single RNAPs coupled to ribosomes and show that coupling increases the pause-free velocity of the polymerase and that a mechanical assisting force is sufficient to explain the majority of the effects of coupling. Also, by cryo-EM, we observed that RNAPs with a terminal mismatch adopt a backtracked conformation, while a coupled ribosome allosterically induces these polymerases toward a catalytically active anti-swiveled state. Finally, we demonstrate that prolonged RNAP pausing is detrimental to cell viability, which could be prevented by polymerase reactivation through a coupled ribosome.
Collapse
Affiliation(s)
- Liang Meng Wee
- QB3-Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA
| | - Alexander B Tong
- QB3-Berkeley, Berkeley, CA, USA; Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Alfredo Jose Florez Ariza
- QB3-Berkeley, Berkeley, CA, USA; Biophysics Graduate Group, University of California Berkeley, Berkeley, CA, USA
| | - Cristhian Cañari-Chumpitaz
- QB3-Berkeley, Berkeley, CA, USA; Department of Chemistry, University of California Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA
| | - Patricia Grob
- QB3-Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Eva Nogales
- QB3-Berkeley, Berkeley, CA, USA; Biophysics Graduate Group, University of California Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Carlos J Bustamante
- QB3-Berkeley, Berkeley, CA, USA; Biophysics Graduate Group, University of California Berkeley, Berkeley, CA, USA; Department of Chemistry, University of California Berkeley, Berkeley, CA, USA; Department of Physics, University of California Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA; Kavli Energy Nanoscience Institute, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
8
|
Kang JY, Mishanina TV, Bao Y, Chen J, Llewellyn E, Liu J, Darst SA, Landick R. An ensemble of interconverting conformations of the elemental paused transcription complex creates regulatory options. Proc Natl Acad Sci U S A 2023; 120:e2215945120. [PMID: 36795753 PMCID: PMC9974457 DOI: 10.1073/pnas.2215945120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/10/2023] [Indexed: 02/17/2023] Open
Abstract
Transcriptional pausing underpins the regulation of cellular RNA synthesis, but its mechanism remains incompletely understood. Sequence-specific interactions of DNA and RNA with the dynamic, multidomain RNA polymerase (RNAP) trigger reversible conformational changes at pause sites that temporarily interrupt the nucleotide addition cycle. These interactions initially rearrange the elongation complex (EC) into an elemental paused EC (ePEC). ePECs can form longer-lived PECs by further rearrangements or interactions of diffusible regulators. For both bacterial and mammalian RNAPs, a half-translocated state in which the next DNA template base fails to load into the active site appears central to the ePEC. Some RNAPs also swivel interconnected modules that may stabilize the ePEC. However, it is unclear whether swiveling and half-translocation are requisite features of a single ePEC state or if multiple ePEC states exist. Here, we use cryo-electron microscopy (cryo-EM) analysis of ePECs with different RNA-DNA sequences combined with biochemical probes of ePEC structure to define an interconverting ensemble of ePEC states. ePECs occupy either pre- or half-translocated states but do not always swivel, indicating that difficulty in forming the posttranslocated state at certain RNA-DNA sequences may be the essence of the ePEC. The existence of multiple ePEC conformations has broad implications for transcriptional regulation.
Collapse
Affiliation(s)
- Jin Young Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
| | - Tatiana V. Mishanina
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093
| | - Yu Bao
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI53706
| | - James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY10065
| | - Eliza Llewellyn
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY10065
| | - James Liu
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI53706
| | - Seth A. Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY10065
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI53706
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI53706
| |
Collapse
|
9
|
You L, Omollo EO, Yu C, Mooney RA, Shi J, Shen L, Wu X, Wen A, He D, Zeng Y, Feng Y, Landick R, Zhang Y. Structural basis for intrinsic transcription termination. Nature 2023; 613:783-789. [PMID: 36631609 PMCID: PMC10091898 DOI: 10.1038/s41586-022-05604-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/25/2022] [Indexed: 01/13/2023]
Abstract
Efficient and accurate termination is required for gene transcription in all living organisms1,2. Cellular RNA polymerases in both bacteria and eukaryotes can terminate their transcription through a factor-independent termination pathway3,4-called intrinsic termination transcription in bacteria-in which RNA polymerase recognizes terminator sequences, stops nucleotide addition and releases nascent RNA spontaneously. Here we report a set of single-particle cryo-electron microscopy structures of Escherichia coli transcription intrinsic termination complexes representing key intermediate states of the event. The structures show how RNA polymerase pauses at terminator sequences, how the terminator RNA hairpin folds inside RNA polymerase, and how RNA polymerase rewinds the transcription bubble to release RNA and then DNA. These macromolecular snapshots define a structural mechanism for bacterial intrinsic termination and a pathway for RNA release and DNA collapse that is relevant for factor-independent termination by all RNA polymerases.
Collapse
Affiliation(s)
- Linlin You
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Expery O Omollo
- Department of Biochemistry and Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Chengzhi Yu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rachel A Mooney
- Department of Biochemistry and Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jing Shi
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liqiang Shen
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxian Wu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Aijia Wen
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dingwei He
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Zeng
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Robert Landick
- Department of Biochemistry and Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
10
|
Failure of Translation Initiation of the Next Gene Decouples Transcription at Intercistronic Sites and the Resultant mRNA Generation. mBio 2022; 13:e0128722. [PMID: 35695461 PMCID: PMC9239205 DOI: 10.1128/mbio.01287-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, transcription is coupled with translation. The polar gal operon is transcribed galE-galT-galK-galM; however, about 10% of transcription terminates at the end of galE because of Rho-dependent termination (RDT). When galE translation is complete, galT translation should begin immediately. It is unclear whether RDT at the end of galE is due to decoupling of translation termination and transcription at the cistron junction. In this study, we show that RDT at the galE/galT cistron junction is linked to the failure of translation initiation at the start of galT, rather than translation termination at the end of galE. We also show that transcription pauses 130 nucleotides downstream from the site of galE translation termination, and this pause is required for RDT. IMPORTANCE Transcription of operons is initiated at the promoter of the first gene in the operon, continues through cistron junctions, and terminates at the end of the operon, generating a full-length mRNA. Here, we show that Rho-dependent termination of transcription occurs stochastically at a cistron junction, generating a stable mRNA that is shorter than the full-length mRNA. We further show that stochastic failure in translation initiation of the next gene, rather than the failure of translation termination of the preceding gene, causes the Rho-dependent termination. Thus, stochastic failure in translation initiation at the cistron junction causes the promoter-proximal gene to be transcribed more than promoter-distal genes within the operon.
Collapse
|
11
|
Molina JA, Galaz-Davison P, Komives EA, Artsimovitch I, Ramírez-Sarmiento CA. Allosteric couplings upon binding of RfaH to transcription elongation complexes. Nucleic Acids Res 2022; 50:6384-6397. [PMID: 35670666 PMCID: PMC9226497 DOI: 10.1093/nar/gkac453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/07/2022] [Accepted: 05/18/2022] [Indexed: 12/03/2022] Open
Abstract
In every domain of life, NusG-like proteins bind to the elongating RNA polymerase (RNAP) to support processive RNA synthesis and to couple transcription to ongoing cellular processes. Structures of factor-bound transcription elongation complexes (TECs) reveal similar contacts to RNAP, consistent with a shared mechanism of action. However, NusG homologs differ in their regulatory roles, modes of recruitment, and effects on RNA synthesis. Some of these differences could be due to conformational changes in RNAP and NusG-like proteins, which cannot be captured in static structures. Here, we employed hydrogen-deuterium exchange mass spectrometry to investigate changes in local and non-local structural dynamics of Escherichia coli NusG and its paralog RfaH, which have opposite effects on expression of xenogenes, upon binding to TEC. We found that NusG and RfaH regions that bind RNAP became solvent-protected in factor-bound TECs, whereas RNAP regions that interact with both factors showed opposite deuterium uptake changes when bound to NusG or RfaH. Additional changes far from the factor-binding site were observed only with RfaH. Our results provide insights into differences in structural dynamics exerted by NusG and RfaH during binding to TEC, which may explain their different functional outcomes and allosteric regulation of transcriptional pausing by RfaH.
Collapse
Affiliation(s)
- José Alejandro Molina
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Pablo Galaz-Davison
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - César A Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
12
|
Miropolskaya N, Petushkov I, Esyunina D, Kulbachinskiy A. Suppressor mutations in Escherichia coli RNA polymerase alter transcription initiation but do not affect translesion RNA synthesis in vitro. J Biol Chem 2022; 298:102099. [PMID: 35667439 PMCID: PMC9254596 DOI: 10.1016/j.jbc.2022.102099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022] Open
Abstract
Bacterial RNA polymerase (RNAP) coordinates transcription with DNA repair and replication. Many RNAP mutations have pleiotropic phenotypes with profound effects on transcription-coupled processes. One class of RNAP mutations (rpo*) has been shown to suppress mutations in regulatory factors responsible for changes in gene expression during stationary phase or starvation, as well as in factors involved in the restoration of replication forks after DNA damage. These mutations were suggested to affect the ability of RNAP to transcribe damaged DNA and to decrease the stability of transcription complexes, thus facilitating their dislodging during DNA replication and repair, although this was not explicitly demonstrated. Here, we obtained nine mutations of this class located around the DNA/RNA binding cleft of E. coli RNAP and analyzed their transcription properties in vitro. We found that these mutations decreased promoter complex stability to varying degrees and all decreased the activity of rRNA promoters. However, they did not have strong effects on elongation complex stability. Some mutations were shown to stimulate transcriptional pauses or decrease intrinsic RNA cleavage by RNAP, but none altered the ability of RNAP to transcribe DNA templates containing damaged nucleotides. Thus, we conclude that the suppressor phenotypes of the mutations are unlikely to result from direct effects on DNA lesion recognition by RNAP but may be primarily explained by changes in transcription initiation. Further analysis of the effects of these mutations on the genomic distribution of RNAP and its interactions with regulatory factors will be essential for understanding their diverse phenotypes in vivo.
Collapse
Affiliation(s)
- Nataliya Miropolskaya
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia
| | - Ivan Petushkov
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia
| | - Daria Esyunina
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia.
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia.
| |
Collapse
|
13
|
Abstract
Cotranscriptional folding is a fundamental step in RNA biogenesis and the basis for many RNA-mediated gene regulation systems. Understanding how RNA folds as it is synthesized requires experimental methods that can systematically identify intermediate RNA structures that form during transcription. Cotranscriptional RNA chemical probing experiments achieve this by applying high-throughput RNA structure probing to an in vitro transcribed array of cotranscriptionally folded intermediate transcripts. In this chapter, we present guidelines and procedures for integrating single-round in vitro transcription using E. coli RNA polymerase with high-throughput RNA chemical probing workflows. We provide an overview of key concepts including DNA template design, transcription roadblocking strategies, single-round in vitro transcription with E. coli RNA polymerase, and RNA chemical probing and describe procedures for DNA template preparation, cotranscriptional RNA chemical probing, RNA purification, and 3' adapter ligation. The end result of these procedures is a purified RNA library that can be prepared for Illumina sequencing using established high-throughput RNA structure probing library construction strategies.
Collapse
Affiliation(s)
- Courtney E Szyjka
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY, USA
| | - Eric J Strobel
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
14
|
Mishra S, Maraia RJ. Evolution of the RNA Cleavage Subunit C11/RPC10, and Recycling by RNA Polymerase III. JOURNAL OF CELLULAR IMMUNOLOGY 2022; 4:65-71. [PMID: 35813003 PMCID: PMC9262308 DOI: 10.33696/immunology.4.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nuclear RNA polymerase (Pol) III synthesizes large amounts of tRNAs and other short non-coding (nc)RNAs by a unique process that involves a termination-associated reinitiation-recycling mechanism. In addition to its two largest of 17 subunits, which contribute to active center RNA-DNA binding and catalytic site, a smaller subunit of ~110 aa (yeast C11, human RPC10) monitors this site, can modify its activity, and is essential for reinitiation-recycling. Distinct, but relevant to human immunity is cytoplasmic (cyto-)Pol III that is a direct sensor of AT-rich viral DNA from which it synthesizes 5'-ppp-RNA signaling molecules that activate interferon (IFN) production. Mutations in genes encoding Pol III subunits cause severe anti-viral immunodeficiency although the mechanisms responsible for cyto-Pol III initiation on this AT-rich DNA are unknown. Cyto-Pol III has also been implicated in inducing IFN in response to cytosolic mitochondrial DNA in autoimmune dysfunction. A focus of this commentary is recent biochemical and genetics research that examined the roles of the individual domains of C11 in the Pol III termination-associated reinitiation-recycling process as well as more recent cryo-EM structural and accompanying analyses, that are considered in evolutionary and other biological contexts. The N-terminal domain (NTD) of C11/RPC10 anchors at the periphery of Pol III from which a highly conserved linker extends to the mobile C-terminal RNA cleavage domain that can reach into the active center and rescue arrested complexes. Biochemical data indicate separable activities for the NTD and CTD in the transcription cycle, whereas the NTD-Linker can confer the evolutionary unique Pol III termination-reinitiation-recycling activity. A model produced from single particle cryo-EM conformations indicates that the C11-Linker-CTD swings in and out of the active center coordinated with allosteric movements of the DNA-binding clamp by the largest subunit, coupling termination to reinitiation-recycling. These may be relevant to DNA loading by cyto-Pol III during immune signaling.
Collapse
Affiliation(s)
- Saurabh Mishra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Richard J. Maraia
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
15
|
Dynamic competition between a ligand and transcription factor NusA governs riboswitch-mediated transcription regulation. Proc Natl Acad Sci U S A 2021; 118:2109026118. [PMID: 34782462 DOI: 10.1073/pnas.2109026118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 11/18/2022] Open
Abstract
Cotranscriptional RNA folding is widely assumed to influence the timely control of gene expression, but our understanding remains limited. In bacteria, the fluoride (F-)-sensing riboswitch is a transcriptional control element essential to defend against toxic F- levels. Using this model riboswitch, we find that its ligand F- and essential bacterial transcription factor NusA compete to bind the cotranscriptionally folding RNA, opposing each other's modulation of downstream pausing and termination by RNA polymerase. Single-molecule fluorescence assays probing active transcription elongation complexes discover that NusA unexpectedly binds highly reversibly, frequently interrogating the complex for emerging, cotranscriptionally folding RNA duplexes. NusA thus fine-tunes the transcription rate in dependence of the ligand-responsive higher-order structure of the riboswitch. At the high NusA concentrations found intracellularly, this dynamic modulation is expected to lead to adaptive bacterial transcription regulation with fast response times.
Collapse
|
16
|
Abstract
Transcription of DNA into RNA is crucial to life, and understanding RNA polymerase (RNAP) function has received considerable attention. In contrast, how the nascent RNA folds into structures that impact transcription itself and regulate gene expression remains poorly understood. Here, we combine single-molecule Förster resonance energy transfer and site-specific fluorescent labelling of transcripts within native complexes to enable real-time cotranscriptional folding studies of a metabolite-sensing riboswitch from Escherichia coli. By monitoring the folding of riboswitches stalled at RNAP pausing sites and during active elongation, we reveal a crucial role for RNAP, which directs RNA folding to allow thiamin pyrophosphate sensing within a precise, transcriptional hotspot. Our approach offers a unique opportunity to unveil cotranscriptional processes in eukaryotic and bacterial systems. Cotranscriptional RNA folding is crucial for the timely control of biological processes, but because of its transient nature, its study has remained challenging. While single-molecule Förster resonance energy transfer (smFRET) is unique to investigate transient RNA structures, its application to cotranscriptional studies has been limited to nonnative systems lacking RNA polymerase (RNAP)–dependent features, which are crucial for gene regulation. Here, we present an approach that enables site-specific labeling and smFRET studies of kilobase-length transcripts within native bacterial complexes. By monitoring Escherichia coli nascent riboswitches, we reveal an inverse relationship between elongation speed and metabolite-sensing efficiency and show that pause sites upstream of the translation start codon delimit a sequence hotspot for metabolite sensing during transcription. Furthermore, we demonstrate a crucial role of the bacterial RNAP actively delaying the formation, within the hotspot sequence, of competing structures precluding metabolite binding. Our approach allows the investigation of cotranscriptional regulatory mechanisms in bacterial and eukaryotic elongation complexes.
Collapse
|
17
|
Abstract
To exert their functions, RNAs adopt diverse structures, ranging from simple secondary to complex tertiary and quaternary folds. In vivo, RNA folding starts with RNA transcription, and a wide variety of processes are coupled to co-transcriptional RNA folding events, including the regulation of fundamental transcription dynamics, gene regulation by mechanisms like attenuation, RNA processing or ribonucleoprotein particle formation. While co-transcriptional RNA folding and associated co-transcriptional processes are by now well accepted as pervasive regulatory principles in all organisms, investigations into the role of the transcription machinery in co-transcriptional folding processes have so far largely focused on effects of the order in which RNA regions are produced and of transcription kinetics. Recent structural and structure-guided functional analyses of bacterial transcription complexes increasingly point to an additional role of RNA polymerase and associated transcription factors in supporting co-transcriptional RNA folding by fostering or preventing strategic contacts to the nascent transcripts. In general, the results support the view that transcription complexes can act as RNA chaperones, a function that has been suggested over 30 years ago. Here, we discuss transcription complexes as RNA chaperones based on recent examples from bacterial transcription.
Collapse
Affiliation(s)
- Nelly Said
- Freie Universität Berlin, Department Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany
| | - Markus C Wahl
- Freie Universität Berlin, Department Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany.,Helmholtz-Zentrum Berlin Für Materialien Und Energie, Macromolecular Crystallography, Berlin, Germany
| |
Collapse
|
18
|
Abstract
Cellular life depends on transcription of DNA by RNA polymerase to express genetic information. RNA polymerase has evolved not just to read information from DNA and write it to RNA but also to sense and process information from the cellular and extracellular environments. Much of this information processing occurs during transcript elongation, when transcriptional pausing enables regulatory decisions. Transcriptional pauses halt RNA polymerase in response to DNA and RNA sequences and structures at locations and times that help coordinate interactions with small molecules and transcription factors important for regulation. Four classes of transcriptional pause signals are now evident after decades of study: elemental pauses, backtrack pauses, hairpin-stabilized pauses, and regulator-stabilized pauses. In this review, I describe current understanding of the molecular mechanisms of these four classes of pause signals, remaining questions about how RNA polymerase responds to pause signals, and the many exciting directions now open to understand pausing and the regulation of transcript elongation on a genome-wide scale. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Robert Landick
- Department of Biochemistry and Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA;
| |
Collapse
|
19
|
Strobel EJ. Preparation of E. coli RNA polymerase transcription elongation complexes by selective photoelution from magnetic beads. J Biol Chem 2021; 297:100812. [PMID: 34023383 PMCID: PMC8212663 DOI: 10.1016/j.jbc.2021.100812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/30/2022] Open
Abstract
In vitro studies of transcription frequently require the preparation of defined elongation complexes. Defined transcription elongation complexes (TECs) are typically prepared by constructing an artificial transcription bubble from synthetic oligonucleotides and RNA polymerase. This approach is optimal for diverse applications but is sensitive to nucleic acid length and sequence and is not compatible with systems where promoter-directed initiation or extensive transcription elongation is crucial. To complement scaffold-directed approaches for TEC assembly, I have developed a method for preparing promoter-initiated Escherichia coli TECs using a purification strategy called selective photoelution. This approach combines TEC-dependent sequestration of a biotin-triethylene glycol transcription stall site with photoreversible DNA immobilization to enrich TECs from an in vitro transcription reaction. I show that selective photoelution can be used to purify TECs that contain a 273-bp DNA template and 194-nt structured RNA. Selective photoelution is a straightforward and robust procedure that, in the systems assessed here, generates precisely positioned TECs with >95% purity and >30% yield. TECs prepared by selective photoelution can contain complex nucleic acid sequences and will therefore likely be useful for investigating RNA structure and function in the context of RNA polymerases.
Collapse
Affiliation(s)
- Eric J Strobel
- Department of Biological Sciences, The University at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
20
|
Mazumder A, Wang A, Uhm H, Ebright RH, Kapanidis AN. RNA polymerase clamp conformational dynamics: long-lived states and modulation by crowding, cations, and nonspecific DNA binding. Nucleic Acids Res 2021; 49:2790-2802. [PMID: 33589919 PMCID: PMC7969002 DOI: 10.1093/nar/gkab074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 02/04/2023] Open
Abstract
The RNA polymerase (RNAP) clamp, a mobile structural element conserved in RNAP from all domains of life, has been proposed to play critical roles at different stages of transcription. In previous work, we demonstrated using single-molecule Förster resonance energy transfer (smFRET) that RNAP clamp interconvert between three short-lived conformational states (lifetimes ∼ 0.3–0.6 s), that the clamp can be locked into any one of these states by small molecules, and that the clamp stays closed during initial transcription and elongation. Here, we extend these studies to obtain a comprehensive understanding of clamp dynamics under conditions RNAP may encounter in living cells. We find that the RNAP clamp can populate long-lived conformational states (lifetimes > 1.0 s) and can switch between these long-lived states and the previously observed short-lived states. In addition, we find that clamp motions are increased in the presence of molecular crowding, are unchanged in the presence of elevated monovalent-cation concentrations, and are reduced in the presence of elevated divalent-cation concentrations. Finally, we find that RNAP bound to non-specific DNA predominantly exhibits a closed clamp conformation. Our results raise the possibility of additional regulatory checkpoints that could affect clamp dynamics and consequently could affect transcription and transcriptional regulation.
Collapse
Affiliation(s)
- Abhishek Mazumder
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Anna Wang
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Heesoo Uhm
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Richard H Ebright
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| |
Collapse
|
21
|
Martín AL, Mounir M, Meyer IM. CoBold: a method for identifying different functional classes of transient RNA structure features that can impact RNA structure formation in vivo. Nucleic Acids Res 2021; 49:e19. [PMID: 33095878 PMCID: PMC7913772 DOI: 10.1093/nar/gkaa900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 11/14/2022] Open
Abstract
RNA structure formation in vivo happens co-transcriptionally while the transcript is being made. The corresponding co-transcriptional folding pathway typically involves transient RNA structure features that are not part of the final, functional RNA structure. These transient features can play important functional roles of their own and also influence the formation of the final RNA structure in vivo. We here present CoBold, a computational method for identifying different functional classes of transient RNA structure features that can either aid or hinder the formation of a known reference RNA structure. Our method takes as input either a single RNA or a corresponding multiple-sequence alignment as well as a known reference RNA secondary structure and identifies different classes of transient RNA structure features that could aid or prevent the formation of the given RNA structure. We make CoBold available via a web-server which includes dedicated data visualisation.
Collapse
Affiliation(s)
- Adrián López Martín
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Mohamed Mounir
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Irmtraud M Meyer
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany.,Freie Universität Berlin, Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Thielallee 63, 14195 Berlin, Germany
| |
Collapse
|
22
|
Brodolin K, Morichaud Z. Region 4 of the RNA polymerase σ subunit counteracts pausing during initial transcription. J Biol Chem 2021; 296:100253. [PMID: 33380428 PMCID: PMC7948647 DOI: 10.1074/jbc.ra120.016299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 01/24/2023] Open
Abstract
All cellular genetic information is transcribed into RNA by multisubunit RNA polymerases (RNAPs). The basal transcription initiation factors of cellular RNAPs stimulate the initial RNA synthesis via poorly understood mechanisms. Here, we explored the mechanism employed by the bacterial factor σ in promoter-independent initial transcription. We found that the RNAP holoenzyme lacking the promoter-binding domain σ4 is ineffective in de novo transcription initiation and displays high propensity to pausing upon extension of RNAs 3 to 7 nucleotides in length. The nucleotide at the RNA 3' end determines the pause lifetime. The σ4 domain stabilizes short RNA:DNA hybrids and suppresses pausing by stimulating RNAP active-center translocation. The antipausing activity of σ4 is modulated by its interaction with the β subunit flap domain and by the σ remodeling factors AsiA and RbpA. Our results suggest that the presence of σ4 within the RNA exit channel compensates for the intrinsic instability of short RNA:DNA hybrids by increasing RNAP processivity, thus favoring productive transcription initiation. This "RNAP boosting" activity of the initiation factor is shaped by the thermodynamics of RNA:DNA interactions and thus, should be relevant for any factor-dependent RNAP.
Collapse
Affiliation(s)
- Konstantin Brodolin
- Institut de Recherche en Infectiologie de Montpellier, Centre national de la recherche scientifique, Univ Montpellier, Montpellier, France; Institut national de la santé et de la recherche médicale, Institut de Recherche en Infectiologie de Montpellier, Montpellier, France.
| | - Zakia Morichaud
- Institut de Recherche en Infectiologie de Montpellier, Centre national de la recherche scientifique, Univ Montpellier, Montpellier, France
| |
Collapse
|
23
|
Yakhnin AV, Kashlev M, Babitzke P. NusG-dependent RNA polymerase pausing is a frequent function of this universally conserved transcription elongation factor. Crit Rev Biochem Mol Biol 2020; 55:716-728. [PMID: 33003953 DOI: 10.1080/10409238.2020.1828261] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Although transcription by RNA polymerase (RNAP) is highly processive, elongation can be transiently halted by RNAP pausing. Pausing provides time for diverse regulatory events to occur such as RNA folding and regulatory factor binding. The transcription elongation factors NusA and NusG dramatically affect the frequency and duration of RNAP pausing, and hence regulation of transcription. NusG is the only transcription factor conserved in all three domains of life; its homolog in archaea and eukaryotes is Spt5. This review focuses on NusG-dependent pausing, which is a common occurrence in Bacillus subtilis. B. NusG induces pausing about once per 3 kb at a consensus TTNTTT motif in the non-template DNA strand within the paused transcription bubble. A conserved region of NusG contacts the TTNTTT motif to stabilize the paused transcription elongation complex (TEC) in multiple catalytically inactive RNAP conformations. The density of NusG-dependent pause sites is 3-fold higher in untranslated regions, suggesting that pausing could regulate the expression of hundreds of genes in B. subtilis. We describe how pausing in 5' leader regions contributes to regulating the expression of B. subtilis genes by transcription attenuation and translation control mechanisms. As opposed to the broadly accepted view that NusG is an anti-pausing factor, phylogenetic analyses suggest that NusG-dependent pausing is a widespread mechanism in bacteria. This function of NusG is consistent with the well-established role of its eukaryotic homolog Spt5 in promoter-proximal pausing. Since NusG is present in all domains of life, NusG-dependent pausing could be a conserved mechanism in all organisms.
Collapse
Affiliation(s)
- Alexander V Yakhnin
- NCI RNA Biology Laboratory, Center for Cancer Research, NCI, Frederick, MD, USA
| | - Mikhail Kashlev
- NCI RNA Biology Laboratory, Center for Cancer Research, NCI, Frederick, MD, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
24
|
Huang YH, Hilal T, Loll B, Bürger J, Mielke T, Böttcher C, Said N, Wahl MC. Structure-Based Mechanisms of a Molecular RNA Polymerase/Chaperone Machine Required for Ribosome Biosynthesis. Mol Cell 2020; 79:1024-1036.e5. [DOI: 10.1016/j.molcel.2020.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/29/2020] [Accepted: 08/11/2020] [Indexed: 01/18/2023]
|
25
|
Antitermination protein P7 of bacteriophage Xp10 distinguishes different types of transcriptional pausing by bacterial RNA polymerase. Biochimie 2020; 170:57-64. [DOI: 10.1016/j.biochi.2019.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/23/2019] [Indexed: 11/21/2022]
|
26
|
Strobel EJ, Cheng L, Berman KE, Carlson PD, Lucks JB. A ligand-gated strand displacement mechanism for ZTP riboswitch transcription control. Nat Chem Biol 2019; 15:1067-1076. [PMID: 31636437 PMCID: PMC6814202 DOI: 10.1038/s41589-019-0382-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/31/2019] [Accepted: 08/22/2019] [Indexed: 01/14/2023]
Abstract
Cotranscriptional folding is an obligate step of RNA biogenesis that can guide RNA structure formation and function through transient intermediate folds. This process is particularly important for transcriptional riboswitches in which the formation of ligand-dependent structures during transcription regulates downstream gene expression. However, the intermediate structures that comprise cotranscriptional RNA folding pathways, and the mechanisms that enable transit between them, remain largely unknown. Here, we determine the series of cotranscriptional folds and rearrangements that mediate antitermination by the Clostridium beijerinckii pfl ZTP riboswitch in response to the purine biosynthetic intermediate ZMP. We uncover sequence and structural determinants that modulate an internal RNA strand displacement process and identify biases within natural ZTP riboswitch sequences that promote on-pathway folding. Our findings establish a mechanism for pfl riboswitch antitermination and suggest general strategies by which nascent RNA molecules navigate cotranscriptional folding pathways.
Collapse
Affiliation(s)
- Eric J Strobel
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
| | - Luyi Cheng
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Katherine E Berman
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Paul D Carlson
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
27
|
Kang JY, Mishanina TV, Landick R, Darst SA. Mechanisms of Transcriptional Pausing in Bacteria. J Mol Biol 2019; 431:4007-4029. [PMID: 31310765 DOI: 10.1016/j.jmb.2019.07.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 12/21/2022]
Abstract
Pausing by RNA polymerase (RNAP) during transcription regulates gene expression in all domains of life. In this review, we recap the history of transcriptional pausing discovery, summarize advances in our understanding of the underlying causes of pausing since then, and describe new insights into the pausing mechanisms and pause modulation by transcription factors gained from structural and biochemical experiments. The accumulated evidence to date suggests that upon encountering a pause signal in the nucleic-acid sequence being transcribed, RNAP rearranges into an elemental, catalytically inactive conformer unable to load NTP substrate. The conformation, and as a consequence lifetime, of an elemental paused RNAP is modulated by backtracking, nascent RNA structure, binding of transcription regulators, or a combination of these mechanisms. We conclude the review by outlining open questions and directions for future research in the field of transcriptional pausing.
Collapse
Affiliation(s)
- Jin Young Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejon 34141, Republic of Korea.
| | - Tatiana V Mishanina
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA.
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Seth A Darst
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
28
|
Abstract
In this review, Core et al. discuss the recent advances in our understanding of the early steps in Pol II transcription, highlighting the events and factors involved in the establishment and release of paused Pol II. They also discuss a number of unanswered questions about the regulation and function of Pol II pausing. Precise spatio–temporal control of gene activity is essential for organismal development, growth, and survival in a changing environment. Decisive steps in gene regulation involve the pausing of RNA polymerase II (Pol II) in early elongation, and the controlled release of paused polymerase into productive RNA synthesis. Here we describe the factors that enable pausing and the events that trigger Pol II release into the gene. We also discuss open questions in the field concerning the stability of paused Pol II, nucleosomes as obstacles to elongation, and potential roles of pausing in defining the precision and dynamics of gene expression.
Collapse
Affiliation(s)
- Leighton Core
- Department of Molecular and Cell Biology, Institute of Systems Genomics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
29
|
Atilho RM, Mirihana Arachchilage G, Greenlee EB, Knecht KM, Breaker RR. A bacterial riboswitch class for the thiamin precursor HMP-PP employs a terminator-embedded aptamer. eLife 2019; 8:45210. [PMID: 30950790 PMCID: PMC6478431 DOI: 10.7554/elife.45210] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/04/2019] [Indexed: 12/29/2022] Open
Abstract
We recently implemented a bioinformatics pipeline that can uncover novel, but rare, riboswitch candidates as well as other noncoding RNA structures in bacteria. A prominent candidate revealed by our initial search efforts was called the ‘thiS motif’ because of its frequent association with a gene coding for the ThiS protein, which delivers sulfur to form the thiazole moiety of the thiamin precursor HET-P. In the current report, we describe biochemical and genetic data demonstrating that thiS motif RNAs function as sensors of the thiamin precursor HMP-PP, which is fused with HET-P ultimately to form the final active coenzyme thiamin pyrophosphate (TPP). HMP-PP riboswitches exhibit a distinctive architecture wherein an unusually small ligand-sensing aptamer is almost entirely embedded within an otherwise classic intrinsic transcription terminator stem. This arrangement yields remarkably compact genetic switches that bacteria use to tune the levels of thiamin precursors during the biosynthesis of this universally distributed coenzyme. Many bacteria use small genetic devices called riboswitches to sense molecules that are essential for life and regulate the genes necessary to make, break or move these molecules. Riboswitches are made of molecules of RNA and appear to have ancient origins that predate the evolution of bacteria and other lifeforms made of cells. Inside modern bacteria, chunks of DNA in the genome provide the instructions to make riboswitches and around 40 different types of riboswitch have been identified so far. However, it has been proposed that the instructions for thousands more riboswitches may remain hidden in the DNA of bacteria. All of the currently known riboswitches contain a region called an aptamer that binds to a target molecule. This binding causes another structure in the riboswitch RNA to switch a specific gene on or off. For example, the aptamer binding might cause a hairpin-like structure called a terminator to form, which stops a gene being used to make new RNA molecules. In 2019 a team of researchers reported using a computational approach to identify new riboswitches in bacteria. This approach identified many different chunks of DNA that might code for a riboswitch, including one known as the thiS motif. This potential new riboswitch appeared to be associated with a gene that encodes a protein required to make a vitamin called thiamin (also known as vitamin B1). To test the new computational approach, Atilho et al. including several of the researchers involved in the earlier work used genetic and biochemical techniques to study the thiS motif. The experiments revealed that the motif binds to a molecule called HMP-PP, which bacteria use to make thiamin. Unexpectedly, the aptamer of the riboswitch was nested within a terminator, rather than being a separate entity. The findings of Atilho et al. reveal that riboswitches can be even more compact than previously thought. Furthermore, these findings reveal new insights into how bacteria use riboswitches to manage their vitamin levels. In the future it may be possible to develop drugs that target such riboswitches to starve bacteria of these essential molecules.
Collapse
Affiliation(s)
- Ruben M Atilho
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
| | | | - Etienne B Greenlee
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Kirsten M Knecht
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
| | - Ronald R Breaker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| |
Collapse
|
30
|
Kim S, Jacobs-Wagner C. Effects of mRNA Degradation and Site-Specific Transcriptional Pausing on Protein Expression Noise. Biophys J 2019; 114:1718-1729. [PMID: 29642040 DOI: 10.1016/j.bpj.2018.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 12/20/2022] Open
Abstract
Genetically identical cells exhibit diverse phenotypes even when experiencing the same environment. This phenomenon in part originates from cell-to-cell variability (noise) in protein expression. Although various kinetic schemes of stochastic transcription initiation are known to affect gene expression noise, how posttranscription initiation events contribute to noise at the protein level remains incompletely understood. To address this question, we developed a stochastic simulation-based model of bacterial gene expression that integrates well-known dependencies between transcription initiation, transcription elongation dynamics, mRNA degradation, and translation. We identified realistic conditions under which mRNA lifetime and transcriptional pauses modulate the protein expression noise initially introduced by the promoter architecture. For instance, we found that the short lifetime of bacterial mRNAs facilitates the production of protein bursts. Conversely, RNA polymerase (RNAP) pausing at specific sites during transcription elongation can attenuate protein bursts by fluidizing the RNAP traffic to the point of erasing the effect of a bursty promoter. Pause-prone sites, if located close to the promoter, can also affect noise indirectly by reducing both transcription and translation initiation due to RNAP and ribosome congestion. Our findings highlight how the interplay between transcription initiation, transcription elongation, translation, and mRNA degradation shapes the distribution in protein numbers. They also have implications for our understanding of gene evolution and suggest combinatorial strategies for modulating phenotypic variability by genetic engineering.
Collapse
Affiliation(s)
- Sangjin Kim
- Microbial Sciences Institute, West Haven, Connecticut; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut; Howard Hughes Medical Institute, New Haven, Connecticut
| | - Christine Jacobs-Wagner
- Microbial Sciences Institute, West Haven, Connecticut; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut; Howard Hughes Medical Institute, New Haven, Connecticut; Department of Microbial Pathogenesis, Yale School of Medicine, Yale University, New Haven, Connecticut.
| |
Collapse
|
31
|
Sanders TJ, Lammers M, Marshall CJ, Walker JE, Lynch ER, Santangelo TJ. TFS and Spt4/5 accelerate transcription through archaeal histone-based chromatin. Mol Microbiol 2019; 111:784-797. [PMID: 30592095 PMCID: PMC6417941 DOI: 10.1111/mmi.14191] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2018] [Indexed: 12/25/2022]
Abstract
RNA polymerase must surmount translocation barriers for continued transcription. In Eukarya and most Archaea, DNA-bound histone proteins represent the most common and troublesome barrier to transcription elongation. Eukaryotes encode a plethora of chromatin-remodeling complexes, histone-modification enzymes and transcription elongation factors to aid transcription through nucleosomes, while archaea seemingly lack machinery to remodel/modify histone-based chromatin and thus must rely on elongation factors to accelerate transcription through chromatin-barriers. TFS (TFIIS in Eukarya) and the Spt4-Spt5 complex are universally encoded in archaeal genomes, and here we demonstrate that both elongation factors, via different mechanisms, can accelerate transcription through archaeal histone-based chromatin. Histone proteins in Thermococcus kodakarensis are sufficiently abundant to completely wrap all genomic DNA, resulting in a consistent protein barrier to transcription elongation. TFS-enhanced cleavage of RNAs in backtracked transcription complexes reactivates stalled RNAPs and dramatically accelerates transcription through histone-barriers, while Spt4-Spt5 changes to clamp-domain dynamics play a lesser-role in stabilizing transcription. Repeated attempts to delete TFS, Spt4 and Spt5 from the T. kodakarensis genome were not successful, and the essentiality of both conserved transcription elongation factors suggests that both conserved elongation factors play important roles in transcription regulation in vivo, including mechanisms to accelerate transcription through downstream protein barriers.
Collapse
Affiliation(s)
- Travis J. Sanders
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Marshall Lammers
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Craig J. Marshall
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Julie E. Walker
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
- Current address: Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado, 80303, USA
| | - Erin R. Lynch
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Thomas J. Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| |
Collapse
|
32
|
Bellecourt MJ, Ray-Soni A, Harwig A, Mooney RA, Landick R. RNA Polymerase Clamp Movement Aids Dissociation from DNA but Is Not Required for RNA Release at Intrinsic Terminators. J Mol Biol 2019; 431:696-713. [PMID: 30630008 DOI: 10.1016/j.jmb.2019.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 10/27/2022]
Abstract
In bacteria, disassembly of elongating transcription complexes (ECs) can occur at intrinsic terminators in a 2- to 3-nucleotide window after transcription of multiple kilobase pairs of DNA. Intrinsic terminators trigger pausing on weak RNA-DNA hybrids followed by formation of a strong, GC-rich stem-loop in the RNA exit channel of RNA polymerase (RNAP), inactivating nucleotide addition and inducing dissociation of RNA and RNAP from DNA. Although the movements of RNA and DNA during intrinsic termination have been studied extensively leading to multiple models, the effects of RNAP conformational changes remain less well defined. RNAP contains a clamp domain that closes around the nucleic acid scaffold during transcription initiation and can be displaced by either swiveling or opening motions. Clamp opening is proposed to promote termination by releasing RNAP-nucleic acid contacts. We developed a cysteine crosslinking assay to constrain clamp movements and study effects on intrinsic termination. We found that biasing the clamp into different conformations perturbed termination efficiency, but that perturbations were due primarily to changes in elongation rate, not the competing rate at which ECs commit to termination. After commitment, however, inhibiting clamp movements slowed release of DNA but not of RNA from the EC. We also found that restricting trigger-loop movements with the RNAP inhibitor microcin J25 prior to commitment inhibits termination, in agreement with a recently proposed multistate-multipath model of intrinsic termination. Together our results support views that termination commitment and DNA release are separate steps and that RNAP may remain associated with DNA after termination.
Collapse
Affiliation(s)
- Michael J Bellecourt
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ananya Ray-Soni
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alex Harwig
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rachel Anne Mooney
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
33
|
Saba J, Chua XY, Mishanina TV, Nayak D, Windgassen TA, Mooney RA, Landick R. The elemental mechanism of transcriptional pausing. eLife 2019; 8:e40981. [PMID: 30618376 PMCID: PMC6336406 DOI: 10.7554/elife.40981] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022] Open
Abstract
Transcriptional pausing underlies regulation of cellular RNA biogenesis. A consensus pause sequence that acts on RNA polymerases (RNAPs) from bacteria to mammals halts RNAP in an elemental paused state from which longer-lived pauses can arise. Although the structural foundations of pauses prolonged by backtracking or nascent RNA hairpins are recognized, the fundamental mechanism of the elemental pause is less well-defined. Here we report a mechanistic dissection that establishes the elemental pause signal (i) is multipartite; (ii) causes a modest conformational shift that puts γ-proteobacterial RNAP in an off-pathway state in which template base loading but not RNA translocation is inhibited; and (iii) allows RNAP to enter pretranslocated and one-base-pair backtracked states easily even though the half-translocated state observed in paused cryo-EM structures rate-limits pause escape. Our findings provide a mechanistic basis for the elemental pause and a framework to understand how pausing is modulated by sequence, cellular conditions, and regulators.
Collapse
Affiliation(s)
- Jason Saba
- Department of BiochemistryUniversity of Wisconsin-MadisonMadisonUnited States
| | - Xien Yu Chua
- Department of BiochemistryUniversity of Wisconsin-MadisonMadisonUnited States
| | - Tatiana V Mishanina
- Department of BiochemistryUniversity of Wisconsin-MadisonMadisonUnited States
| | - Dhananjaya Nayak
- Department of BiochemistryUniversity of Wisconsin-MadisonMadisonUnited States
| | - Tricia A Windgassen
- Department of BiochemistryUniversity of Wisconsin-MadisonMadisonUnited States
| | - Rachel Anne Mooney
- Department of BiochemistryUniversity of Wisconsin-MadisonMadisonUnited States
| | - Robert Landick
- Department of BiochemistryUniversity of Wisconsin-MadisonMadisonUnited States
- Department of BacteriologyUniversity of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
34
|
Kang JY, Mishanina TV, Bellecourt MJ, Mooney RA, Darst SA, Landick R. RNA Polymerase Accommodates a Pause RNA Hairpin by Global Conformational Rearrangements that Prolong Pausing. Mol Cell 2019; 69:802-815.e5. [PMID: 29499135 DOI: 10.1016/j.molcel.2018.01.018] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/27/2017] [Accepted: 01/12/2018] [Indexed: 01/10/2023]
Abstract
Sequence-specific pausing by RNA polymerase (RNAP) during transcription plays crucial and diverse roles in gene expression. In bacteria, RNA structures are thought to fold within the RNA exit channel of the RNAP and can increase pause lifetimes significantly. The biophysical mechanism of pausing is uncertain. We used single-particle cryo-EM to determine structures of paused complexes, including a 3.8-Å structure of an RNA hairpin-stabilized, paused RNAP that coordinates RNA folding in the his operon attenuation control region of E. coli. The structures revealed a half-translocated pause state (RNA post-translocated, DNA pre-translocated) that can explain transcriptional pausing and a global conformational change of RNAP that allosterically inhibits trigger loop folding and can explain pause hairpin action. Pause hairpin interactions with the RNAP RNA exit channel suggest how RNAP guides the formation of nascent RNA structures.
Collapse
Affiliation(s)
- Jin Young Kang
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Tatiana V Mishanina
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael J Bellecourt
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rachel Anne Mooney
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Seth A Darst
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
35
|
Widom JR, Nedialkov YA, Rai V, Hayes RL, Brooks CL, Artsimovitch I, Walter NG. Ligand Modulates Cross-Coupling between Riboswitch Folding and Transcriptional Pausing. Mol Cell 2018; 72:541-552.e6. [PMID: 30388413 PMCID: PMC6565381 DOI: 10.1016/j.molcel.2018.08.046] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/11/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022]
Abstract
Numerous classes of riboswitches have been found to regulate bacterial gene expression in response to physiological cues, offering new paths to antibacterial drugs. As common studies of isolated riboswitches lack the functional context of the transcription machinery, we here combine single-molecule, biochemical, and simulation approaches to investigate the coupling between co-transcriptional folding of the pseudoknot-structured preQ1 riboswitch and RNA polymerase (RNAP) pausing. We show that pausing at a site immediately downstream of the riboswitch requires a ligand-free pseudoknot in the nascent RNA, a precisely spaced sequence resembling the pause consensus, and electrostatic and steric interactions with the RNAP exit channel. While interactions with RNAP stabilize the native fold of the riboswitch, binding of the ligand signals RNAP release from the pause. Our results demonstrate that the nascent riboswitch and its ligand actively modulate the function of RNAP and vice versa, a paradigm likely to apply to other cellular RNA transcripts.
Collapse
Affiliation(s)
- Julia R Widom
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuri A Nedialkov
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Victoria Rai
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA; Biophysics Program and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryan L Hayes
- Biophysics Program and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Charles L Brooks
- Biophysics Program and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Irina Artsimovitch
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
36
|
Erickson B, Sheridan RM, Cortazar M, Bentley DL. Dynamic turnover of paused Pol II complexes at human promoters. Genes Dev 2018; 32:1215-1225. [PMID: 30150253 PMCID: PMC6120720 DOI: 10.1101/gad.316810.118] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/11/2018] [Indexed: 12/30/2022]
Abstract
Paused RNA polymerase II (Pol II) that piles up near most human promoters is the target of mechanisms that control entry into productive elongation. Whether paused Pol II is a stable or dynamic target remains unresolved. We report that most 5' paused Pol II throughout the genome is turned over within 2 min. This process is revealed under hypertonic conditions that prevent Pol II recruitment to promoters. This turnover requires cell viability but is not prevented by inhibiting transcription elongation, suggesting that it is mediated at the level of termination. When initiation was prevented by triptolide during recovery from high salt, a novel preinitiated state of Pol II lacking the pausing factor Spt5 accumulated at transcription start sites. We propose that Pol II occupancy near 5' ends is governed by a cycle of ongoing assembly of preinitiated complexes that transition to pause sites followed by eviction from the DNA template. This model suggests that mechanisms regulating the transition to productive elongation at pause sites operate on a dynamic population of Pol II that is turning over at rates far higher than previously suspected. We suggest that a plausible alternative to elongation control via escape from a stable pause is by escape from premature termination.
Collapse
Affiliation(s)
- Benjamin Erickson
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Ryan M Sheridan
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Michael Cortazar
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
37
|
Duchi D, Mazumder A, Malinen AM, Ebright RH, Kapanidis AN. The RNA polymerase clamp interconverts dynamically among three states and is stabilized in a partly closed state by ppGpp. Nucleic Acids Res 2018; 46:7284-7295. [PMID: 29878276 PMCID: PMC6101503 DOI: 10.1093/nar/gky482] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/09/2018] [Accepted: 05/16/2018] [Indexed: 02/06/2023] Open
Abstract
RNA polymerase (RNAP) contains a mobile structural module, the 'clamp,' that forms one wall of the RNAP active-center cleft and that has been linked to crucial aspects of the transcription cycle, including promoter melting, transcription elongation complex stability, transcription pausing, and transcription termination. Using single-molecule FRET on surface-immobilized RNAP molecules, we show that the clamp in RNAP holoenzyme populates three distinct conformational states and interconvert between these states on the 0.1-1 s time-scale. Similar studies confirm that the RNAP clamp is closed in open complex (RPO) and in initial transcribing complexes (RPITC), including paused initial transcribing complexes, and show that, in these complexes, the clamp does not exhibit dynamic behaviour. We also show that, the stringent-response alarmone ppGpp, which reprograms transcription during amino acid starvation stress, selectively stabilizes the partly-closed-clamp state and prevents clamp opening; these results raise the possibility that ppGpp controls promoter opening by modulating clamp dynamics.
Collapse
Affiliation(s)
- Diego Duchi
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Abhishek Mazumder
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
- Waksman Institute of Microbiology and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Anssi M Malinen
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Richard H Ebright
- Waksman Institute of Microbiology and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| |
Collapse
|
38
|
Nedialkov Y, Svetlov D, Belogurov GA, Artsimovitch I. Locking the nontemplate DNA to control transcription. Mol Microbiol 2018; 109:445-457. [PMID: 29758107 PMCID: PMC6173972 DOI: 10.1111/mmi.13983] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2018] [Indexed: 12/31/2022]
Abstract
Universally conserved NusG/Spt5 factors reduce RNA polymerase pausing and arrest. In a widely accepted model, these proteins bridge the RNA polymerase clamp and lobe domains across the DNA channel, inhibiting the clamp opening to promote pause-free RNA synthesis. However, recent structures of paused transcription elongation complexes show that the clamp does not open and suggest alternative mechanisms of antipausing. Among these mechanisms, direct contacts of NusG/Spt5 proteins with the nontemplate DNA in the transcription bubble have been proposed to prevent unproductive DNA conformations and thus inhibit arrest. We used Escherichia coli RfaH, whose interactions with DNA are best characterized, to test this idea. We report that RfaH stabilizes the upstream edge of the transcription bubble, favoring forward translocation, and protects the upstream duplex DNA from exonuclease cleavage. Modeling suggests that RfaH loops the nontemplate DNA around its surface and restricts the upstream DNA duplex mobility. Strikingly, we show that RfaH-induced DNA protection and antipausing activity can be mimicked by shortening the nontemplate strand in elongation complexes assembled on synthetic scaffolds. We propose that remodeling of the nontemplate DNA controls recruitment of regulatory factors and R-loop formation during transcription elongation across all life.
Collapse
Affiliation(s)
- Yuri Nedialkov
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210
| | - Dmitri Svetlov
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | | | - Irina Artsimovitch
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
39
|
Kang JY, Mooney RA, Nedialkov Y, Saba J, Mishanina TV, Artsimovitch I, Landick R, Darst SA. Structural Basis for Transcript Elongation Control by NusG Family Universal Regulators. Cell 2018; 173:1650-1662.e14. [PMID: 29887376 PMCID: PMC6003885 DOI: 10.1016/j.cell.2018.05.017] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/09/2018] [Accepted: 05/08/2018] [Indexed: 10/14/2022]
Abstract
NusG/RfaH/Spt5 transcription elongation factors are the only transcription regulators conserved across all life. Bacterial NusG regulates RNA polymerase (RNAP) elongation complexes (ECs) across most genes, enhancing elongation by suppressing RNAP backtracking and coordinating ρ-dependent termination and translation. The NusG paralog RfaH engages the EC only at operon polarity suppressor (ops) sites and suppresses both backtrack and hairpin-stabilized pausing. We used single-particle cryoelectron microscopy (cryo-EM) to determine structures of ECs at ops with NusG or RfaH. Both factors chaperone base-pairing of the upstream duplex DNA to suppress backtracking, explaining stimulation of elongation genome-wide. The RfaH-opsEC structure reveals how RfaH confers operon specificity through specific recognition of an ops hairpin in the single-stranded nontemplate DNA and tighter binding to the EC to exclude NusG. Tight EC binding by RfaH sterically blocks the swiveled RNAP conformation necessary for hairpin-stabilized pausing. The universal conservation of NusG/RfaH/Spt5 suggests that the molecular mechanisms uncovered here are widespread.
Collapse
Affiliation(s)
- Jin Young Kang
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Rachel Anne Mooney
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yuri Nedialkov
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA; The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Jason Saba
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tatiana V Mishanina
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Irina Artsimovitch
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA; The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Seth A Darst
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
40
|
Lin W, Das K, Degen D, Mazumder A, Duchi D, Wang D, Ebright YW, Ebright RY, Sineva E, Gigliotti M, Srivastava A, Mandal S, Jiang Y, Liu Y, Yin R, Zhang Z, Eng ET, Thomas D, Donadio S, Zhang H, Zhang C, Kapanidis AN, Ebright RH. Structural Basis of Transcription Inhibition by Fidaxomicin (Lipiarmycin A3). Mol Cell 2018; 70:60-71.e15. [PMID: 29606590 PMCID: PMC6205224 DOI: 10.1016/j.molcel.2018.02.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/14/2018] [Accepted: 02/23/2018] [Indexed: 12/16/2022]
Abstract
Fidaxomicin is an antibacterial drug in clinical use for treatment of Clostridium difficile diarrhea. The active ingredient of fidaxomicin, lipiarmycin A3 (Lpm), functions by inhibiting bacterial RNA polymerase (RNAP). Here we report a cryo-EM structure of Mycobacterium tuberculosis RNAP holoenzyme in complex with Lpm at 3.5-Å resolution. The structure shows that Lpm binds at the base of the RNAP "clamp." The structure exhibits an open conformation of the RNAP clamp, suggesting that Lpm traps an open-clamp state. Single-molecule fluorescence resonance energy transfer experiments confirm that Lpm traps an open-clamp state and define effects of Lpm on clamp dynamics. We suggest that Lpm inhibits transcription by trapping an open-clamp state, preventing simultaneous interaction with promoter -10 and -35 elements. The results account for the absence of cross-resistance between Lpm and other RNAP inhibitors, account for structure-activity relationships of Lpm derivatives, and enable structure-based design of improved Lpm derivatives.
Collapse
Affiliation(s)
- Wei Lin
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Kalyan Das
- Rega Institute and Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium.
| | - David Degen
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Abhishek Mazumder
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Diego Duchi
- Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Dongye Wang
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Yon W Ebright
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Richard Y Ebright
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Elena Sineva
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Matthew Gigliotti
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Aashish Srivastava
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Sukhendu Mandal
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Yi Jiang
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Yu Liu
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Ruiheng Yin
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Zhening Zhang
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York NY 10027, USA
| | - Edward T Eng
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York NY 10027, USA
| | - Dennis Thomas
- Center for Integrative Proteomics, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Haibo Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Changsheng Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | | | - Richard H Ebright
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
41
|
Guo X, Myasnikov AG, Chen J, Crucifix C, Papai G, Takacs M, Schultz P, Weixlbaumer A. Structural Basis for NusA Stabilized Transcriptional Pausing. Mol Cell 2018; 69:816-827.e4. [PMID: 29499136 PMCID: PMC5842316 DOI: 10.1016/j.molcel.2018.02.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/22/2018] [Accepted: 02/02/2018] [Indexed: 12/12/2022]
Abstract
Transcriptional pausing by RNA polymerases (RNAPs) is a key mechanism to regulate gene expression in all kingdoms of life and is a prerequisite for transcription termination. The essential bacterial transcription factor NusA stimulates both pausing and termination of transcription, thus playing a central role. Here, we report single-particle electron cryo-microscopy reconstructions of NusA bound to paused E. coli RNAP elongation complexes with and without a pause-enhancing hairpin in the RNA exit channel. The structures reveal four interactions between NusA and RNAP that suggest how NusA stimulates RNA folding, pausing, and termination. An asymmetric translocation intermediate of RNA and DNA converts the active site of the enzyme into an inactive state, providing a structural explanation for the inhibition of catalysis. Comparing RNAP at different stages of pausing provides insights on the dynamic nature of the process and the role of NusA as a regulatory factor.
Collapse
Affiliation(s)
- Xieyang Guo
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch Cedex, France; Université de Strasbourg, 67404 Illkirch Cedex, France; Centre National de la Recherche Scientifique (CNRS), UMR 7104, 67404 Illkirch Cedex, France; Institut National de la Santé et de la Recherche Médicale (Inserm), U964, 67404 Illkirch Cedex, France
| | - Alexander G Myasnikov
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch Cedex, France; Université de Strasbourg, 67404 Illkirch Cedex, France; Centre National de la Recherche Scientifique (CNRS), UMR 7104, 67404 Illkirch Cedex, France; Institut National de la Santé et de la Recherche Médicale (Inserm), U964, 67404 Illkirch Cedex, France
| | - James Chen
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Corinne Crucifix
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch Cedex, France; Université de Strasbourg, 67404 Illkirch Cedex, France; Centre National de la Recherche Scientifique (CNRS), UMR 7104, 67404 Illkirch Cedex, France; Institut National de la Santé et de la Recherche Médicale (Inserm), U964, 67404 Illkirch Cedex, France
| | - Gabor Papai
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch Cedex, France; Université de Strasbourg, 67404 Illkirch Cedex, France; Centre National de la Recherche Scientifique (CNRS), UMR 7104, 67404 Illkirch Cedex, France; Institut National de la Santé et de la Recherche Médicale (Inserm), U964, 67404 Illkirch Cedex, France
| | - Maria Takacs
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch Cedex, France; Université de Strasbourg, 67404 Illkirch Cedex, France; Centre National de la Recherche Scientifique (CNRS), UMR 7104, 67404 Illkirch Cedex, France; Institut National de la Santé et de la Recherche Médicale (Inserm), U964, 67404 Illkirch Cedex, France
| | - Patrick Schultz
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch Cedex, France; Université de Strasbourg, 67404 Illkirch Cedex, France; Centre National de la Recherche Scientifique (CNRS), UMR 7104, 67404 Illkirch Cedex, France; Institut National de la Santé et de la Recherche Médicale (Inserm), U964, 67404 Illkirch Cedex, France
| | - Albert Weixlbaumer
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch Cedex, France; Université de Strasbourg, 67404 Illkirch Cedex, France; Centre National de la Recherche Scientifique (CNRS), UMR 7104, 67404 Illkirch Cedex, France; Institut National de la Santé et de la Recherche Médicale (Inserm), U964, 67404 Illkirch Cedex, France.
| |
Collapse
|
42
|
Barvík I, Rejman D, Panova N, Šanderová H, Krásný L. Non-canonical transcription initiation: the expanding universe of transcription initiating substrates. FEMS Microbiol Rev 2017; 41:131-138. [PMID: 27799279 DOI: 10.1093/femsre/fuw041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2016] [Indexed: 11/13/2022] Open
Abstract
RNA polymerase (RNAP) is the central enzyme of transcription of the genetic information from DNA into RNA. RNAP recognizes four main substrates: ATP, CTP, GTP and UTP. Experimental evidence from the past several years suggests that, besides these four NTPs, other molecules can be used to initiate transcription: (i) ribooligonucleotides (nanoRNAs) and (ii) coenzymes such as NAD+, NADH, dephospho-CoA and FAD. The presence of these molecules at the 5΄ ends of RNAs affects the properties of the RNA. Here, we discuss the expanding portfolio of molecules that can initiate transcription, their mechanism of incorporation, effects on RNA and cellular processes, and we present an outlook toward other possible initiation substrates.
Collapse
Affiliation(s)
- Ivan Barvík
- Division of Biomolecular Physics, Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v. v. i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Natalya Panova
- Institute of Microbiology, Czech Academy of Sciences v. v. i., Vídenská 1083, 142 20 Prague 4, Czech Republic
| | - Hana Šanderová
- Institute of Microbiology, Czech Academy of Sciences v. v. i., Vídenská 1083, 142 20 Prague 4, Czech Republic
| | - Libor Krásný
- Institute of Microbiology, Czech Academy of Sciences v. v. i., Vídenská 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
43
|
Trigger loop dynamics can explain stimulation of intrinsic termination by bacterial RNA polymerase without terminator hairpin contact. Proc Natl Acad Sci U S A 2017; 114:E9233-E9242. [PMID: 29078293 DOI: 10.1073/pnas.1706247114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In bacteria, intrinsic termination signals cause disassembly of the highly stable elongating transcription complex (EC) over windows of two to three nucleotides after kilobases of RNA synthesis. Intrinsic termination is caused by the formation of a nascent RNA hairpin adjacent to a weak RNA-DNA hybrid within RNA polymerase (RNAP). Although the contributions of RNA and DNA sequences to termination are largely understood, the roles of conformational changes in RNAP are less well described. The polymorphous trigger loop (TL), which folds into the trigger helices to promote nucleotide addition, also is proposed to drive termination by folding into the trigger helices and contacting the terminator hairpin after invasion of the hairpin in the RNAP main cleft [Epshtein V, Cardinale CJ, Ruckenstein AE, Borukhov S, Nudler E (2007) Mol Cell 28:991-1001]. To investigate the contribution of the TL to intrinsic termination, we developed a kinetic assay that distinguishes effects of TL alterations on the rate at which ECs terminate from effects of the TL on the nucleotide addition rate that indirectly affect termination efficiency by altering the time window in which termination can occur. We confirmed that the TL stimulates termination rate, but found that stabilizing either the folded or unfolded TL conformation decreased termination rate. We propose that conformational fluctuations of the TL (TL dynamics), not TL-hairpin contact, aid termination by increasing EC conformational diversity and thus access to favorable termination pathways. We also report that the TL and the TL sequence insertion (SI3) increase overall termination efficiency by stimulating pausing, which increases the flux of ECs into the termination pathway.
Collapse
|
44
|
Demo G, Rasouly A, Vasilyev N, Svetlov V, Loveland AB, Diaz-Avalos R, Grigorieff N, Nudler E, Korostelev AA. Structure of RNA polymerase bound to ribosomal 30S subunit. eLife 2017; 6:28560. [PMID: 29027901 PMCID: PMC5655137 DOI: 10.7554/elife.28560] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/11/2017] [Indexed: 11/29/2022] Open
Abstract
In bacteria, mRNA transcription and translation are coupled to coordinate optimal gene expression and maintain genome stability. Coupling is thought to involve direct interactions between RNA polymerase (RNAP) and the translational machinery. We present cryo-EM structures of E. coli RNAP core bound to the small ribosomal 30S subunit. The complex is stable under cell-like ionic conditions, consistent with functional interaction between RNAP and the 30S subunit. The RNA exit tunnel of RNAP aligns with the Shine-Dalgarno-binding site of the 30S subunit. Ribosomal protein S1 forms a wall of the tunnel between RNAP and the 30S subunit, consistent with its role in directing mRNAs onto the ribosome. The nucleic-acid-binding cleft of RNAP samples distinct conformations, suggesting different functional states during transcription-translation coupling. The architecture of the 30S•RNAP complex provides a structural basis for co-localization of the transcriptional and translational machineries, and inform future mechanistic studies of coupled transcription and translation.
Collapse
Affiliation(s)
- Gabriel Demo
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Aviram Rasouly
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States.,Howard Hughes Medical Institute, New York University School of Medicine, New York, United States
| | - Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| | - Vladimir Svetlov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| | - Anna B Loveland
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Ruben Diaz-Avalos
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Nikolaus Grigorieff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States.,Howard Hughes Medical Institute, New York University School of Medicine, New York, United States
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
45
|
Strobel EJ, Watters KE, Nedialkov Y, Artsimovitch I, Lucks JB. Distributed biotin-streptavidin transcription roadblocks for mapping cotranscriptional RNA folding. Nucleic Acids Res 2017; 45:e109. [PMID: 28398514 PMCID: PMC5499547 DOI: 10.1093/nar/gkx233] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/02/2017] [Indexed: 01/24/2023] Open
Abstract
RNA folding during transcription directs an order of folding that can determine RNA structure and function. However, the experimental study of cotranscriptional RNA folding has been limited by the lack of easily approachable methods that can interrogate nascent RNA structure at nucleotide resolution. To address this, we previously developed cotranscriptional selective 2΄-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq) to simultaneously probe all intermediate RNA transcripts during transcription by stalling elongation complexes at catalytically dead EcoRIE111Q roadblocks. While effective, the distribution of elongation complexes using EcoRIE111Q requires laborious PCR using many different oligonucleotides for each sequence analyzed. Here, we improve the broad applicability of cotranscriptional SHAPE-Seq by developing a sequence-independent biotin-streptavidin (SAv) roadblocking strategy that simplifies the preparation of roadblocking DNA templates. We first determine the properties of biotin-SAv roadblocks. We then show that randomly distributed biotin-SAv roadblocks can be used in cotranscriptional SHAPE-Seq experiments to identify the same RNA structural transitions related to a riboswitch decision-making process that we previously identified using EcoRIE111Q. Lastly, we find that EcoRIE111Q maps nascent RNA structure to specific transcript lengths more precisely than biotin-SAv and propose guidelines to leverage the complementary strengths of each transcription roadblock in cotranscriptional SHAPE-Seq.
Collapse
Affiliation(s)
- Eric J. Strobel
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60201, USA
| | - Kyle E. Watters
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Yuri Nedialkov
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Irina Artsimovitch
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Julius B. Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60201, USA
- To whom correspondence should be addressed. Tel: +1 847 467 2943; Fax: +1 847 491 3728;
| |
Collapse
|
46
|
Engstrom MD, Pfleger BF. Transcription control engineering and applications in synthetic biology. Synth Syst Biotechnol 2017; 2:176-191. [PMID: 29318198 PMCID: PMC5655343 DOI: 10.1016/j.synbio.2017.09.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/18/2022] Open
Abstract
In synthetic biology, researchers assemble biological components in new ways to produce systems with practical applications. One of these practical applications is control of the flow of genetic information (from nucleic acid to protein), a.k.a. gene regulation. Regulation is critical for optimizing protein (and therefore activity) levels and the subsequent levels of metabolites and other cellular properties. The central dogma of molecular biology posits that information flow commences with transcription, and accordingly, regulatory tools targeting transcription have received the most attention in synthetic biology. In this mini-review, we highlight many past successes and summarize the lessons learned in developing tools for controlling transcription. In particular, we focus on engineering studies where promoters and transcription terminators (cis-factors) were directly engineered and/or isolated from DNA libraries. We also review several well-characterized transcription regulators (trans-factors), giving examples of how cis- and trans-acting factors have been combined to create digital and analogue switches for regulating transcription in response to various signals. Last, we provide examples of how engineered transcription control systems have been used in metabolic engineering and more complicated genetic circuits. While most of our mini-review focuses on the well-characterized bacterium Escherichia coli, we also provide several examples of the use of transcription control engineering in non-model organisms. Similar approaches have been applied outside the bacterial kingdom indicating that the lessons learned from bacterial studies may be generalized for other organisms.
Collapse
Affiliation(s)
- Michael D. Engstrom
- Genetics-Biotechnology Center, University of Wisconsin-Madison School of Medicine and Public Health, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison College of Engineering, USA
| | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison College of Engineering, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, USA
| |
Collapse
|
47
|
Abstract
RNA polymerase activity is regulated by nascent RNA sequences, DNA template sequences, and conserved transcription factors. Transcription factors promoting initiation and elongation have been characterized in each domain, but transcription termination factors have been identified only in bacteria and eukarya. Here we describe euryarchaeal termination activity (Eta), the first archaeal termination factor capable of disrupting the transcription elongation complex (TEC), detail the rate of and requirements for Eta-mediated transcription termination, and describe a role for Eta in transcription termination in vivo. Eta-mediated transcription termination is energy-dependent, requires upstream DNA sequences, and disrupts TECs to release the nascent RNA to solution. Deletion of TK0566 (encoding Eta) is possible, but results in slow growth and renders cells sensitive to DNA damaging agents. Our results suggest that the mechanisms used by termination factors in archaea, eukarya, and bacteria to disrupt the TEC may be conserved, and that Eta stimulates release of stalled or arrested TECs.
Collapse
|
48
|
Sevier SA, Levine H. Mechanical Properties of Transcription. PHYSICAL REVIEW LETTERS 2017; 118:268101. [PMID: 28707908 DOI: 10.1103/physrevlett.118.268101] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Indexed: 06/07/2023]
Abstract
The mechanical properties of transcription have recently been shown to play a central role in gene expression. However, a full physical characterization of this central biological process is lacking. In this Letter, we introduce a simple description of the basic physical elements of transcription where RNA elongation, RNA polymerase rotation, and DNA supercoiling are coupled. The resulting framework describes the relative amount of RNA polymerase rotation and DNA supercoiling that occurs during RNA elongation. Asymptotic behavior is derived and can be used to experimentally extract unknown mechanical parameters of transcription. Mechanical limits to transcription are incorporated through the addition of a DNA supercoiling-dependent RNA polymerase velocity. This addition can lead to transcriptional stalling and resulting implications for gene expression, chromatin structure and genome organization are discussed.
Collapse
Affiliation(s)
- Stuart A Sevier
- Department of Physics and Astronomy, Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Herbert Levine
- Department of Bioengineering, Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
49
|
Abstract
Transcription elongation is not uniform and transcription is often hindered by protein-bound factors or DNA lesions that limit translocation and impair catalysis. Despite the high degree of sequence and structural homology of the multi-subunit RNA polymerases (RNAP), substantial differences in response to DNA lesions have been reported. Archaea encode only a single RNAP with striking structural conservation with eukaryotic RNAP II (Pol II). Here, we demonstrate that the archaeal RNAP from Thermococcus kodakarensis is sensitive to a variety of DNA lesions that pause and arrest RNAP at or adjacent to the site of DNA damage. DNA damage only halts elongation when present in the template strand, and the damage often results in RNAP arresting such that the lesion would be encapsulated with the transcription elongation complex. The strand-specific halt to archaeal transcription elongation on modified templates is supportive of RNAP recognizing DNA damage and potentially initiating DNA repair through a process akin to the well-described transcription-coupled DNA repair (TCR) pathways in Bacteria and Eukarya.
Collapse
Affiliation(s)
- Alexandra M Gehring
- a Department of Biochemistry and Molecular Biology , Colorado State University , Fort Collins , CO , USA.,b Institute for Genome Architecture and Function, Colorado State University , Fort Collins , CO , USA
| | - Thomas J Santangelo
- a Department of Biochemistry and Molecular Biology , Colorado State University , Fort Collins , CO , USA.,b Institute for Genome Architecture and Function, Colorado State University , Fort Collins , CO , USA
| |
Collapse
|
50
|
Steinert H, Sochor F, Wacker A, Buck J, Helmling C, Hiller F, Keyhani S, Noeske J, Grimm S, Rudolph MM, Keller H, Mooney RA, Landick R, Suess B, Fürtig B, Wöhnert J, Schwalbe H. Pausing guides RNA folding to populate transiently stable RNA structures for riboswitch-based transcription regulation. eLife 2017; 6. [PMID: 28541183 PMCID: PMC5459577 DOI: 10.7554/elife.21297] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 05/24/2017] [Indexed: 01/18/2023] Open
Abstract
In bacteria, the regulation of gene expression by cis-acting transcriptional riboswitches located in the 5'-untranslated regions of messenger RNA requires the temporal synchronization of RNA synthesis and ligand binding-dependent conformational refolding. Ligand binding to the aptamer domain of the riboswitch induces premature termination of the mRNA synthesis of ligand-associated genes due to the coupled formation of 3'-structural elements acting as terminators. To date, there has been no high resolution structural description of the concerted process of synthesis and ligand-induced restructuring of the regulatory RNA element. Here, we show that for the guanine-sensing xpt-pbuX riboswitch from Bacillus subtilis, the conformation of the full-length transcripts is static: it exclusively populates the functional off-state but cannot switch to the on-state, regardless of the presence or absence of ligand. We show that only the combined matching of transcription rates and ligand binding enables transcription intermediates to undergo ligand-dependent conformational refolding. DOI:http://dx.doi.org/10.7554/eLife.21297.001
Collapse
Affiliation(s)
- Hannah Steinert
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Florian Sochor
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Anna Wacker
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Janina Buck
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Christina Helmling
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Fabian Hiller
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Sara Keyhani
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Jonas Noeske
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Steffen Grimm
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Martin M Rudolph
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Heiko Keller
- Center for Biomolecular Magnetic Resonance, Institute of Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Rachel Anne Mooney
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Beatrix Suess
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Boris Fürtig
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Jens Wöhnert
- Center for Biomolecular Magnetic Resonance, Institute of Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|