1
|
Chu X, Raju RP. Regulation of NAD + metabolism in aging and disease. Metabolism 2022; 126:154923. [PMID: 34743990 PMCID: PMC8649045 DOI: 10.1016/j.metabol.2021.154923] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/17/2021] [Accepted: 10/25/2021] [Indexed: 01/03/2023]
Abstract
More than a century after discovering NAD+, information is still evolving on the role of this molecule in health and diseases. The biological functions of NAD+ and NAD+ precursors encompass pathways in cellular energetics, inflammation, metabolism, and cell survival. Several metabolic and neurological diseases exhibit reduced tissue NAD+ levels. Significantly reduced levels of NAD+ are also associated with aging, and enhancing NAD+ levels improved healthspan and lifespan in animal models. Recent studies suggest a causal link between senescence, age-associated reduction in tissue NAD+ and enzymatic degradation of NAD+. Furthermore, the discovery of transporters and receptors involved in NAD+ precursor (nicotinic acid, or niacin, nicotinamide, and nicotinamide riboside) metabolism allowed for a better understanding of their role in cellular homeostasis including signaling functions that are independent of their functions in redox reactions. We also review studies that demonstrate that the functional effect of niacin is partially due to the activation of its cell surface receptor, GPR109a. Based on the recent progress in understanding the mechanism and function of NAD+ and NAD+ precursors in cell metabolism, new strategies are evolving to exploit these molecules' pharmacological potential in the maintenance of metabolic balance.
Collapse
Affiliation(s)
- Xiaogang Chu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Raghavan Pillai Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America.
| |
Collapse
|
2
|
Anjali A, Fatima U, Senthil-Kumar M. The ins and outs of SWEETs in plants: Current understanding of the basics and their prospects in crop improvement. J Biosci 2021. [DOI: 10.1007/s12038-021-00227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Abstract
Nucleosides play central roles in all facets of life, from metabolism to cellular signaling. Because of their physiochemical properties, nucleosides are lipid bilayer impermeable and thus rely on dedicated transport systems to cross biological membranes. In humans, two unrelated protein families mediate nucleoside membrane transport: the concentrative and equilibrative nucleoside transporter families. The objective of this review is to provide a broad outlook on the current status of nucleoside transport research. We will discuss the role played by nucleoside transporters in human health and disease, with emphasis placed on recent structural advancements that have revealed detailed molecular principles of these important cellular transport systems and exploitable pharmacological features.
Collapse
Affiliation(s)
- Nicholas J. Wright
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, North Carolina, 27710, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, North Carolina, 27710, USA
- Correspondence and requests for materials should be addressed to: S.-Y. Lee., , tel: 919-684-1005, fax: 919-684-8885
| |
Collapse
|
4
|
Sugar and Hormone Dynamics and the Expression Profiles of SUT/SUC and SWEET Sweet Sugar Transporters during Flower Development in Petunia axillaris. PLANTS 2020; 9:plants9121770. [PMID: 33327497 PMCID: PMC7764969 DOI: 10.3390/plants9121770] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
Flowering is the first committed step of plant sexual reproduction. While the developing flower is a strong sink requiring large quantity of sugars from photosynthetic source tissues, this process is under-temper-spatially controlled via hormone signaling pathway and nutrient availability. Sugar transporters SUT/SUC and SWEET mediate sugars movement across membranes and play a significant role in various physiological processes, including reproductive organ development. In Petunia axillaris, a model ornamental plant, 5 SUT/SUC and 36 SWEET genes are identified in the current version of the genome. Analysis of their gene structure and chromosomal locations reveal that SWEET family is moderately expanded. Most of the transporter genes are abundantly expressed in the flower than in other organs. During the five flower developmental stages, transcript levels of PaSUT1, PaSUT3, PaSWEET13c, PaSWEET9a, PaSWEET1d, PaSWEET5a and PaSWEET14a increase with the maturation of the flower and reach their maximum in the fully open flowers. PaSWEET9c, the nectar-specific PhNEC1 orthologous, is expressed in matured and fully opened flowers. Moreover, determination of sugar concentrations and phytohormone dynamics in flowers at the five developmental stages shows that glucose is the predominant form of sugar in young flowers at the early stage but depletes at the later stage, whereas sucrose accumulates only in maturated flowers prior to the corolla opening. On the other hand, GA3 content and to a less extent IAA and zeatin decreases with the flower development; however, JA, SA and ABA display a remarkable peak at mid- or later flower developmental stage.
Collapse
|
5
|
Gyimesi G, Hediger MA. Sequence Features of Mitochondrial Transporter Protein Families. Biomolecules 2020; 10:E1611. [PMID: 33260588 PMCID: PMC7761412 DOI: 10.3390/biom10121611] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial carriers facilitate the transfer of small molecules across the inner mitochondrial membrane (IMM) to support mitochondrial function and core cellular processes. In addition to the classical SLC25 (solute carrier family 25) mitochondrial carriers, the past decade has led to the discovery of additional protein families with numerous members that exhibit IMM localization and transporter-like properties. These include mitochondrial pyruvate carriers, sideroflexins, and mitochondrial cation/H+ exchangers. These transport proteins were linked to vital physiological functions and disease. Their structures and transport mechanisms are, however, still largely unknown and understudied. Protein sequence analysis per se can often pinpoint hotspots that are of functional or structural importance. In this review, we summarize current knowledge about the sequence features of mitochondrial transporters with a special focus on the newly included SLC54, SLC55 and SLC56 families of the SLC solute carrier superfamily. Taking a step further, we combine sequence conservation analysis with transmembrane segment and secondary structure prediction methods to extract residue positions and sequence motifs that likely play a role in substrate binding, binding site gating or structural stability. We hope that our review will help guide future experimental efforts by the scientific community to unravel the transport mechanisms and structures of these novel mitochondrial carriers.
Collapse
Affiliation(s)
- Gergely Gyimesi
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, and Department of Biomedical Research, Inselspital, University of Bern, Kinderklinik, Freiburgstrasse 15, CH-3010 Bern, Switzerland;
| | | |
Collapse
|
6
|
Anjali A, Fatima U, Manu MS, Ramasamy S, Senthil-Kumar M. Structure and regulation of SWEET transporters in plants: An update. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:1-6. [PMID: 32891967 DOI: 10.1016/j.plaphy.2020.08.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/16/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Sugar will eventually be exported transporters (SWEETs), a novel family of sugar transporters found in both eukaryotes and prokaryotes, facilitate sugar flux across the cell membrane. Although these transporters were first discovered in plants, their homologs have been reported in different organisms. SWEETs have critical roles in various developmental processes, including phloem loading, nectar secretion, and pathogen nutrition. The structure of bacterial homologs, called SemiSWEETs, has been well studied thus far. Here, we provide an overview of SWEET protein structure and dynamic function by analyzing the solved crystal structures and predicted models that are available for a few SWEETs in a monocot plant (rice) and dicot plant (Arabidopsis thaliana). Despite the advancement in structure-related studies, the regulation of SWEETs remains unknown. In light of reported regulatory mechanisms of a few other sugar transporters, we propose the regulation of SWEETs at the post-translational level. We then enumerate the potential post-translational modification sites in SWEETs using computational tools. Overall, in this review, we critically analyze SWEET protein structure in plants to predict the post-translational regulation of SWEETs. Such findings have a direct bearing on plant nutrition and defense and targeting the regulation at these levels will be important in crop improvement.
Collapse
Affiliation(s)
- Anjali Anjali
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Urooj Fatima
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - M S Manu
- Biochemical Science Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Sureshkumar Ramasamy
- Biochemical Science Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Muthappa Senthil-Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
7
|
Medrano-Soto A, Ghazi F, Hendargo KJ, Moreno-Hagelsieb G, Myers S, Saier MH. Expansion of the Transporter-Opsin-G protein-coupled receptor superfamily with five new protein families. PLoS One 2020; 15:e0231085. [PMID: 32320418 PMCID: PMC7176098 DOI: 10.1371/journal.pone.0231085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Here we provide bioinformatic evidence that the Organo-Arsenical Exporter (ArsP), Endoplasmic Reticulum Retention Receptor (KDELR), Mitochondrial Pyruvate Carrier (MPC), L-Alanine Exporter (AlaE), and the Lipid-linked Sugar Translocase (LST) protein families are members of the Transporter-Opsin-G Protein-coupled Receptor (TOG) Superfamily. These families share domains homologous to well-established TOG superfamily members, and their topologies of transmembranal segments (TMSs) are compatible with the basic 4-TMS repeat unit characteristic of this Superfamily. These repeat units tend to occur twice in proteins as a result of intragenic duplication events, often with subsequent gain/loss of TMSs in many superfamily members. Transporters within the ArsP family allow microbial pathogens to expel toxic arsenic compounds from the cell. Members of the KDELR family are involved in the selective retrieval of proteins that reside in the endoplasmic reticulum. Proteins of the MPC family are involved in the transport of pyruvate into mitochondria, providing the organelle with a major oxidative fuel. Members of family AlaE excrete L-alanine from the cell. Members of the LST family are involved in the translocation of lipid-linked glucose across the membrane. These five families substantially expand the range of substrates of transport carriers in the superfamily, although KDEL receptors have no known transport function. Clustering of protein sequences reveals the relationships among families, and the resulting tree correlates well with the degrees of sequence similarity documented between families. The analyses and programs developed to detect distant relatedness, provide insights into the structural, functional, and evolutionary relationships that exist between families of the TOG superfamily, and should be of value to many other investigators.
Collapse
Affiliation(s)
- Arturo Medrano-Soto
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Faezeh Ghazi
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Kevin J. Hendargo
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | | | - Scott Myers
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Structural and Functional Characterization of NadR from Lactococcus lactis. Molecules 2020; 25:molecules25081940. [PMID: 32331317 PMCID: PMC7221760 DOI: 10.3390/molecules25081940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/02/2022] Open
Abstract
NadR is a bifunctional enzyme that converts nicotinamide riboside (NR) into nicotinamide mononucleotide (NMN), which is then converted into nicotinamide adenine dinucleotide (NAD). Although a crystal structure of the enzyme from the Gram-negative bacterium Haemophilus influenzae is known, structural understanding of its catalytic mechanism remains unclear. Here, we purified the NadR enzyme from Lactococcus lactis and established an assay to determine the combined activity of this bifunctional enzyme. The conversion of NR into NAD showed hyperbolic dependence on the NR concentration, but sigmoidal dependence on the ATP concentration. The apparent cooperativity for ATP may be explained because both reactions catalyzed by the bifunctional enzyme (phosphorylation of NR and adenylation of NMN) require ATP. The conversion of NMN into NAD followed simple Michaelis-Menten kinetics for NMN, but again with the sigmoidal dependence on the ATP concentration. In this case, the apparent cooperativity is unexpected since only a single ATP is used in the NMN adenylyltransferase catalyzed reaction. To determine the possible structural determinants of such cooperativity, we solved the crystal structure of NadR from L. lactis (NadRLl). Co-crystallization with NAD, NR, NMN, ATP, and AMP-PNP revealed a ‘sink’ for adenine nucleotides in a location between two domains. This sink could be a regulatory site, or it may facilitate the channeling of substrates between the two domains.
Collapse
|
9
|
Bushweller JH. Protein Disulfide Exchange by the Intramembrane Enzymes DsbB, DsbD, and CcdA. J Mol Biol 2020; 432:5091-5103. [PMID: 32305461 DOI: 10.1016/j.jmb.2020.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/06/2020] [Accepted: 04/08/2020] [Indexed: 12/29/2022]
Abstract
The formation of disulfide bonds in proteins is an essential process in both prokaryotes and eukaryotes. In gram-negative bacteria including Escherichia coli, the proteins DsbA and DsbB mediate the formation of disulfide bonds in the periplasm. DsbA acts as the periplasmic oxidant of periplasmic substrate proteins. DsbA is reoxidized by transfer of reducing equivalents to the 4 TM helix membrane protein DsbB, which transfers reducing equivalents to ubiquinone or menaquinone. Multiple structural studies of DsbB have provided detailed structural information on intermediates in the process of DsbB catalyzed oxidation of DsbA. These structures and the insights gained are described. In proteins with more than one pair of Cys residues, there is the potential for formation of non-native disulfide bonds, making it necessary for the cell to have a mechanism for the isomerization of such non-native disulfide bonds. In E. coli, this is mediated by the proteins DsbC and DsbD. DsbC reduces mis-formed disulfide bonds. The eight-TM-helix protein DsbD reduces DsbC and is itself reduced by cytoplasmic thioredoxin. DsbD also contributes reducing equivalents for the reduction of cytochrome c to facilitate heme attachment. The DsbD functional homolog CcdA is a six-TM-helix membrane protein that provides reducing equivalents for the reduction of cytochrome c. A recent structure determination of CcdA has provided critical insights into how reducing equivalents are transferred across the membrane that likely also provides understanding how this is achieved by DsbD as well. This structure and the insights gained are described.
Collapse
Affiliation(s)
- John H Bushweller
- Department of Molecular Physiology and Biological Physics, Department of Chemistry, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
10
|
Pseudo-Symmetric Assembly of Protodomains as a Common Denominator in the Evolution of Polytopic Helical Membrane Proteins. J Mol Evol 2020; 88:319-344. [PMID: 32189026 PMCID: PMC7162841 DOI: 10.1007/s00239-020-09934-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/16/2020] [Indexed: 11/05/2022]
Abstract
The polytopic helical membrane proteome is dominated by proteins containing seven transmembrane helices (7TMHs). They cannot be grouped under a monolithic fold or superfold. However, a parallel structural analysis of folds around that magic number of seven in distinct protein superfamilies (SWEET, PnuC, TRIC, FocA, Aquaporin, GPCRs) reveals a common homology, not in their structural fold, but in their systematic pseudo-symmetric construction during their evolution. Our analysis leads to guiding principles of intragenic duplication and pseudo-symmetric assembly of ancestral transmembrane helical protodomains, consisting of 3 (or 4) helices. A parallel deconstruction and reconstruction of these domains provides a structural and mechanistic framework for their evolutionary paths. It highlights the conformational plasticity inherent to fold formation itself, the role of structural as well as functional constraints in shaping that fold, and the usefulness of protodomains as a tool to probe convergent vs divergent evolution. In the case of FocA vs. Aquaporin, this protodomain analysis sheds new light on their potential divergent evolution at the protodomain level followed by duplication and parallel evolution of the two folds. GPCR domains, whose function does not seem to require symmetry, nevertheless exhibit structural pseudo-symmetry. Their construction follows the same protodomain assembly as any other pseudo-symmetric protein suggesting their potential evolutionary origins. Interestingly, all the 6/7/8TMH pseudo-symmetric folds in this study also assemble as oligomeric forms in the membrane, emphasizing the role of symmetry in evolution, revealing self-assembly and co-evolution not only at the protodomain level but also at the domain level.
Collapse
|
11
|
Genome-wide identification and expression analysis of the StSWEET family genes in potato (Solanum tuberosum L.). Genes Genomics 2019; 42:135-153. [PMID: 31782074 DOI: 10.1007/s13258-019-00890-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/13/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND The sugar will eventually be exported transporter (SWEET) family is a novel type of membrane-embedded sugar transporter that contains seven transmembrane helices with two MtN3/saliva domains. The SWEET family plays crucial roles in multiple processes, including carbohydrate transportation, development, environmental adaptability and host-pathogen interactions. Although SWEET genes, especially those involved in response to biotic stresses, have been extensively characterized in many plants, they have not yet been studied in potato. OBJECTIVE The identification of StSWEET genes provides important candidates for further functional analysis and lays the foundation for the production of good quality and high yield potatoes through molecular breeding. METHODS In this study, StSWEET genes were identified using a genome-wide search method. A comprehensive analysis of StSWEET family through bioinformatics methods, such as phylogenetic tree, gene structure and promoter prediction analysis. The expression profiles of StSWEET genes in different potato tissues and under P. infestans attack and sugar stress were studied using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Phylogenetic analysis classified 33 StSWEET genes into four groups containing 12, 5, 12 and 4 genes. Furthermore, the gene structures and conserved motifs found that the StSWEET genes are very conservative during evolution. The chromosomal localization pattern showed that the distribution and density of the StSWEETs on 10 potato chromosomes were uneven and basically clustered. Predictive promoter analysis indicated that StSWEET proteins are associated with cell growth, development, secondary metabolism, and response to biotic and abiotic stresses. Finally, the expression patterns of the StSWEET genes in different tissues and the induction of P. infestans and the process of the sugar stress were investigated to obtain the tissue-specific and stress-responsive candidates. CONCLUSION This study systematically identifies the SWEET gene family in potato at the genome-wide level, providing important candidates for further functional analysis and contributing to a better understanding of the molecular basis of development and tolerance in potato.
Collapse
|
12
|
Jeena GS, Kumar S, Shukla RK. Structure, evolution and diverse physiological roles of SWEET sugar transporters in plants. PLANT MOLECULAR BIOLOGY 2019; 100:351-365. [PMID: 31030374 DOI: 10.1007/s11103-019-00872-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/05/2019] [Indexed: 05/21/2023]
Abstract
Present review describes the structure, evolution, transport mechanism and physiological functions of SWEETs. Their application using TALENs and CRISPR/CAS9 based genomic editing approach is discussed. Sugars Will Eventually be Exported Transporters (SWEET) proteins were first identified in plants as the novel family of sugar transporters which mediates the translocation of sugars across cell membranes. The SWEET family of sugar transporters is unique in terms of their structure which contains seven predicted transmembrane domains with two internal triple-helix bundles which possibly originate due to prokaryotic gene duplication. SWEETs perform diverse physiological functions such as pollen nutrition, nectar secretion, seed filling, phloem loading, and pathogen nutrition which we have discussed in the present review. We also discuss how transcriptional activator-like effector nucleases (TALENs) and CRISPR/CAS9 genome editing tools are used to engineer SWEET mutants which modulate pathogen resistance in plants and its applications in the field of agriculture. The expression of SWEETs promises to implement insights into many other cellular transport mechanisms. To conclude, the present review highlights the recent aspects which will further develop better understanding of molecular evolution, structure, and function of SWEET transporters in plants.
Collapse
Affiliation(s)
- Gajendra Singh Jeena
- Plant Biotechnology Division, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Sunil Kumar
- Plant Biotechnology Division, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Rakesh Kumar Shukla
- Plant Biotechnology Division, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India.
| |
Collapse
|
13
|
Cysteine-mediated decyanation of vitamin B12 by the predicted membrane transporter BtuM. Nat Commun 2018; 9:3038. [PMID: 30072686 PMCID: PMC6072759 DOI: 10.1038/s41467-018-05441-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/04/2018] [Indexed: 01/11/2023] Open
Abstract
Uptake of vitamin B12 is essential for many prokaryotes, but in most cases the membrane proteins involved are yet to be identified. We present the biochemical characterization and high-resolution crystal structure of BtuM, a predicted bacterial vitamin B12 uptake system. BtuM binds vitamin B12 in its base-off conformation, with a cysteine residue as axial ligand of the corrin cobalt ion. Spectroscopic analysis indicates that the unusual thiolate coordination allows for decyanation of vitamin B12. Chemical modification of the substrate is a property other characterized vitamin B12-transport proteins do not exhibit. Uptake of vitamin B12 is essential for many prokaryotes, but in most cases the membrane proteins involved are yet to be identified. Here, the authors use X-ray crystallography and spectroscopy to characterize BtuM, a predicted bacterial substrate-modifying vitamin B12 transporter.
Collapse
|
14
|
Bali AP, Genee HJ, Sommer MOA. Directed Evolution of Membrane Transport Using Synthetic Selections. ACS Synth Biol 2018; 7:789-793. [PMID: 29474058 DOI: 10.1021/acssynbio.7b00407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Understanding and engineering solute transporters is important for metabolic engineering and the development of therapeutics. However, limited available experimental data on membrane transporters makes sequence-function relationships complex to predict. Here we apply ligand-responsive biosensor systems that enable selective growth of E. coli cells only if they functionally express an importer that is specific to the biosensor ligand. Using this system in a directed evolution framework, we successfully engineer the specificity of nicotinamide riboside transporters, PnuC, to accept thiamine as a substrate. Our results provide insight into the molecular determinants of substrate recognition of the PnuC transporter family and demonstrate how synthetic biology can be deployed to engineer the substrate spectrum of small molecule transporters.
Collapse
Affiliation(s)
- Anne P. Bali
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Biosyntia
ApS, Fruebjergvej 3, DK-2100, Østerbro, Denmark
| | - Hans J. Genee
- Biosyntia
ApS, Fruebjergvej 3, DK-2100, Østerbro, Denmark
| | - Morten O. A. Sommer
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
15
|
Zhou Y, Bushweller JH. Solution structure and elevator mechanism of the membrane electron transporter CcdA. Nat Struct Mol Biol 2018; 25:163-169. [PMID: 29379172 PMCID: PMC5805637 DOI: 10.1038/s41594-018-0022-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/28/2017] [Indexed: 01/25/2023]
Abstract
Membrane oxidoredutase CcdA plays a central role in supplying reducing equivalents from the bacterial cytoplasm to the envelope. It transports electrons across the membrane using a single pair of cysteines by a mechanism which has not been elucidated. Here we report an NMR structure of the Thermus thermophilus CcdA (TtCcdA) in an oxidized and outward-facing state. CcdA consists of two inverted structural repeats of three transmembrane helices (2 × 3-TM). We computationally modeled and experimentally validated an inward-facing state, which suggests that CcdA uses an elevator-type movement to shuttle the reactive cysteines across the membrane. CcdA belongs to the LysE superfamily. Its structure may be relevant to other LysE clan transporters. Structure comparisons of CcdA, semiSWEET, Pnu, and major facilitator superfamily (MFS) transporters provide insights about membrane transporter architecture and mechanism.
Collapse
Affiliation(s)
- Yunpeng Zhou
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
| | - John H Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA. .,Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
16
|
Jaehme M, Singh R, Garaeva AA, Duurkens RH, Slotboom DJ. PnuT uses a facilitated diffusion mechanism for thiamine uptake. J Gen Physiol 2017; 150:41-50. [PMID: 29203477 PMCID: PMC5749112 DOI: 10.1085/jgp.201711850] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/26/2017] [Indexed: 12/17/2022] Open
Abstract
Membrane transporters of the bacterial pyridine nucleotide uptake (Pnu) family mediate the uptake of various B-type vitamins. For example, the PnuT transporters have specificity for vitamin B1 (thiamine). It has been hypothesized that Pnu transporters are facilitators that allow passive transport of the vitamin substrate across the membrane. Metabolic trapping by phosphorylation would then lead to accumulation of the transported substrates in the cytoplasm. However, experimental evidence for such a transport mechanism is lacking. Here, to determine the mechanism of thiamine transport, we purify PnuTSw from Shewanella woodyi and reconstitute it in liposomes to determine substrate binding and transport properties. We show that the electrochemical gradient of thiamine solely determines the direction of transport, consistent with a facilitated diffusion mechanism. Further, PnuTSw can bind and transport thiamine as well as the thiamine analogues pyrithiamine and oxythiamine, but does not recognize the phosphorylated derivatives thiamine monophosphate and thiamine pyrophosphate as substrates, consistent with a metabolic trapping mechanism. Guided by the crystal structure of the homologous nicotinamide riboside transporter PnuC, we perform mutagenesis experiments, which reveal residues involved in substrate binding and gating. The facilitated diffusion mechanism of transport used by PnuTSw contrasts sharply with the active transport mechanisms used by other bacterial thiamine transporters.
Collapse
Affiliation(s)
- Michael Jaehme
- Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Rajkumar Singh
- Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Alisa A Garaeva
- Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Ria H Duurkens
- Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Dirk-Jan Slotboom
- Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
17
|
Macdonald CB, Stockbridge RB. A topologically diverse family of fluoride channels. Curr Opin Struct Biol 2017; 45:142-149. [PMID: 28514705 DOI: 10.1016/j.sbi.2017.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 01/13/2023]
Abstract
Dual-topology proteins are likely evolutionary antecedents to a common motif in membrane protein structures, the inverted repeat. A family of fluoride channels, the Flucs, which protect microorganisms, fungi, and plants against cytoplasmic fluoride accumulation, has representatives of all topologies along this evolutionary trajectory, including dual-topology homodimers, antiparallel heterodimers, and, in eukaryotes, fused two-domain proteins with an inverted repeat motif. Recent high-resolution crystal structures of dual-topology homodimers, coupled with extensive functional information about both the homodimers and two-domain Flucs, provide a case study of the co-evolution of fold and function.
Collapse
Affiliation(s)
- Christian B Macdonald
- Program in Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Randy B Stockbridge
- Program in Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA.
| |
Collapse
|
18
|
Afzal M, Kuipers OP, Shafeeq S. Niacin-mediated Gene Expression and Role of NiaR as a Transcriptional Repressor of niaX, nadC, and pnuC in Streptococcus pneumoniae. Front Cell Infect Microbiol 2017; 7:70. [PMID: 28337428 PMCID: PMC5343564 DOI: 10.3389/fcimb.2017.00070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/24/2017] [Indexed: 12/21/2022] Open
Abstract
NAD (Nicotinamide Adenine Dinucleotide) biosynthesis is vital for bacterial physiology and plays an important role in cellular metabolism. A naturally occurring vitamin B complex, niacin (nicotinic acid), is a precursor of coenzymes NAD and NADP. Here, we study the impact of niacin on global gene expression of Streptococcus pneumoniae D39 and elucidate the role of NiaR as a transcriptional regulator of niaX, nadC, and pnuC. Transcriptome comparison of the D39 wild-type grown in chemically defined medium (CDM) with 0 to 10 mM niacin revealed elevated expression of various genes, including niaX, nadC, pnuC, fba, rex, gapN, pncB, gap, adhE, and adhB2 that are putatively involved in the transport and utilization of niacin. Niacin-dependent expression of these genes is confirmed by promoter lacZ-fusion studies. Moreover, the role of transcriptional regulator NiaR in the regulation of these genes is explored by DNA microarray analysis. Our transcriptomic comparison of D39 ΔniaR to D39 wild-type revealed that the transcriptional regulator NiaR acts as a transcriptional repressor of niaX, pnuC, and nadC. NiaR-dependent regulation of niaX, nadC, and pnuC is further confirmed by promoter lacZ-fusion studies. The putative operator site of NiaR (5′-TACWRGTGTMTWKACASYTRWAW-3′) in the promoter regions of niaX, nadC, and pnuC is predicted and further confirmed by promoter mutational experiments.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands; Department of Bioinformatics and Biotechnology, Government College UniversityFaisalabad, Pakistan
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands
| | - Sulman Shafeeq
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
19
|
Structure and elevator mechanism of the Na +-citrate transporter CitS. Curr Opin Struct Biol 2016; 45:1-9. [PMID: 27776291 DOI: 10.1016/j.sbi.2016.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 10/20/2022]
Abstract
The recently determined crystal structure of the bacterial Na+-citrate symporter CitS provides unexpected structural and mechanistic insights. The protein has a fold that has not been seen in other proteins, but the oligomeric state, domain organization and proposed transport mechanism strongly resemble those of the sodium-dicarboxylate symporter vcINDY, and the putative exporters YdaH and MtrF, thus hinting at convergence in structure and function. CitS and the related proteins are predicted to translocate their substrates by an elevator-like mechanism, in which a compact transport domain slides up and down through the membrane while the dimerization domain is stably anchored. Here we review the large body of available biochemical data on CitS in the light of the new crystal structure. We show that the biochemical data are fully consistent with the proposed elevator mechanism, but also demonstrate that the current structural data cannot explain how strict coupling of citrate and Na+ transport is achieved. We propose a testable model for the coupling mechanism.
Collapse
|
20
|
Functional mining of transporters using synthetic selections. Nat Chem Biol 2016; 12:1015-1022. [DOI: 10.1038/nchembio.2189] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 07/28/2016] [Indexed: 12/11/2022]
|
21
|
Affiliation(s)
- David Drew
- Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065;
| |
Collapse
|
22
|
Abstract
Symmetry is a common feature among natural systems, including protein structures. A strong propensity toward symmetric architectures has long been recognized for water-soluble proteins, and this propensity has been rationalized from an evolutionary standpoint. Proteins residing in cellular membranes, however, have traditionally been less amenable to structural studies, and thus the prevalence and significance of symmetry in this important class of molecules is not as well understood. In the past two decades, researchers have made great strides in this area, and these advances have provided exciting insights into the range of architectures adopted by membrane proteins. These structural studies have revealed a similarly strong bias toward symmetric arrangements, which were often unexpected and which occurred despite the restrictions imposed by the membrane environment on the possible symmetry groups. Moreover, membrane proteins disproportionately contain internal structural repeats resulting from duplication and fusion of smaller segments. This article discusses the types and origins of symmetry in membrane proteins and the implications of symmetry for protein function.
Collapse
Affiliation(s)
- Lucy R Forrest
- Computational Structural Biology Group, Porter Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20852;
| |
Collapse
|
23
|
Evolution of Transporters: The Relationship of SWEETs, PQ-loop, and PnuC Transporters. Trends Biochem Sci 2015; 41:118-119. [PMID: 26749089 DOI: 10.1016/j.tibs.2015.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 11/23/2022]
|
24
|
Jaehme M, Guskov A, Slotboom DJ. Pnu Transporters: Ain't They SWEET? Trends Biochem Sci 2015; 41:117-118. [PMID: 26692123 DOI: 10.1016/j.tibs.2015.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Affiliation(s)
- Michael Jaehme
- Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4 Groningen, 9747 AG, The Netherlands
| | - Albert Guskov
- Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4 Groningen, 9747 AG, The Netherlands
| | - Dirk Jan Slotboom
- Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4 Groningen, 9747 AG, The Netherlands.
| |
Collapse
|
25
|
Tao Y, Cheung LS, Li S, Eom JS, Chen LQ, Xu Y, Perry K, Frommer WB, Feng L. Structure of a eukaryotic SWEET transporter in a homotrimeric complex. Nature 2015; 527:259-263. [PMID: 26479032 DOI: 10.1038/nature15391] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/10/2015] [Indexed: 12/18/2022]
Abstract
Eukaryotes rely on efficient distribution of energy and carbon skeletons between organs in the form of sugars. Glucose in animals and sucrose in plants serve as the dominant distribution forms. Cellular sugar uptake and release require vesicular and/or plasma membrane transport proteins. Humans and plants use proteins from three superfamilies for sugar translocation: the major facilitator superfamily (MFS), the sodium solute symporter family (SSF; only in the animal kingdom), and SWEETs. SWEETs carry mono- and disaccharides across vacuolar or plasma membranes. Plant SWEETs play key roles in sugar translocation between compartments, cells, and organs, notably in nectar secretion, phloem loading for long distance translocation, pollen nutrition, and seed filling. Plant SWEETs cause pathogen susceptibility possibly by sugar leakage from infected cells. The vacuolar Arabidopsis thaliana AtSWEET2 sequesters sugars in root vacuoles; loss-of-function mutants show increased susceptibility to Pythium infection. Here we show that its orthologue, the vacuolar glucose transporter OsSWEET2b from rice (Oryza sativa), consists of an asymmetrical pair of triple-helix bundles, connected by an inversion linker transmembrane helix (TM4) to create the translocation pathway. Structural and biochemical analyses show OsSWEET2b in an apparent inward (cytosolic) open state forming homomeric trimers. TM4 tightly interacts with the first triple-helix bundle within a protomer and mediates key contacts among protomers. Structure-guided mutagenesis of the close paralogue SWEET1 from Arabidopsis identified key residues in substrate translocation and protomer crosstalk. Insights into the structure-function relationship of SWEETs are valuable for understanding the transport mechanism of eukaryotic SWEETs and may be useful for engineering sugar flux.
Collapse
Affiliation(s)
- Yuyong Tao
- Department of Molecular and Cellular Physiology, 279 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lily S Cheung
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
| | - Shuo Li
- Department of Molecular and Cellular Physiology, 279 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305, USA.,Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610014, China
| | - Joon-Seob Eom
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
| | - Li-Qing Chen
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
| | - Yan Xu
- Department of Molecular and Cellular Physiology, 279 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kay Perry
- NE-CAT and Dep. of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Wolf B Frommer
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
| | - Liang Feng
- Department of Molecular and Cellular Physiology, 279 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
26
|
Structure, function, evolution, and application of bacterial Pnu-type vitamin transporters. Biol Chem 2015; 396:955-66. [DOI: 10.1515/hsz-2015-0113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/17/2015] [Indexed: 11/15/2022]
Abstract
AbstractMany bacteria can take up vitamins from the environment via specific transport machineries. Uptake is essential for organisms that lack complete vitamin biosynthesis pathways, but even in the presence of biosynthesis routes uptake is likely preferred, because it is energetically less costly. Pnu transporters represent a class of membrane transporters for a diverse set of B-type vitamins. They were identified 30 years ago and catalyze transport by the mechanism of facilitated diffusion, without direct coupling to ATP hydrolysis or transport of coupling ions. Instead, directionality is achieved by metabolic trapping, in which the vitamin substrate is converted into a derivative that cannot be transported, for instance by phosphorylation. The recent crystal structure of the nicotinamide riboside transporter PnuC has provided the first insights in substrate recognition and selectivity. Here, we will summarize the current knowledge about the function, structure, and evolution of Pnu transporters. Additionally, we will highlight their role for potential biotechnological and pharmaceutical applications.
Collapse
|
27
|
Johnson MDL, Echlin H, Dao TH, Rosch JW. Characterization of NAD salvage pathways and their role in virulence in Streptococcus pneumoniae. MICROBIOLOGY-SGM 2015; 161:2127-36. [PMID: 26311256 DOI: 10.1099/mic.0.000164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
NAD is a necessary cofactor present in all living cells. Some bacteria cannot de novo synthesize NAD and must use the salvage pathway to import niacin or nicotinamide riboside via substrate importers NiaX and PnuC, respectively. Although homologues of these two importers and their substrates have been identified in other organisms, limited data exist in Streptococcus pneumoniae, specifically, on its effect on overall virulence. Here, we sought to characterize the substrate specificity of NiaX and PnuC in Str. pneumoniae TIGR4 and the contribution of these proteins to virulence of the pathogen. Although binding affinity of each importer for nicotinamide mononucleotide may overlap, we found NiaX to specifically import nicotinamide and nicotinic acid, and PnuC to be primarily responsible for nicotinamide riboside import. Furthermore, a pnuC mutant is completely attenuated during both intranasal and intratracheal infections in mice. Taken together, these findings underscore the importance of substrate salvage in pneumococcal pathogenesis and indicate that PnuC could potentially be a viable small-molecule therapeutic target to alleviate disease progression in the host.
Collapse
Affiliation(s)
- Michael D L Johnson
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Haley Echlin
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Tina H Dao
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Jason W Rosch
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| |
Collapse
|
28
|
Feng L, Frommer WB. Structure and function of SemiSWEET and SWEET sugar transporters. Trends Biochem Sci 2015; 40:480-6. [PMID: 26071195 DOI: 10.1016/j.tibs.2015.05.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/12/2015] [Accepted: 05/18/2015] [Indexed: 11/20/2022]
Abstract
SemiSWEETs and SWEETs have emerged as unique sugar transporters. First discovered in plants with the help of fluorescent biosensors, homologs exist in all kingdoms of life. Bacterial and plant homologs transport hexoses and sucrose, whereas animal SWEETs transport glucose. Prokaryotic SemiSWEETs are small and comprise a parallel homodimer of an approximately 100 amino acid-long triple helix bundle (THB). Duplicated THBs are fused to create eukaryotic SWEETs in a parallel orientation via an inversion linker helix, producing a similar configuration to that of SemiSWEET dimers. Structures of four SemiSWEETs have been resolved in three states: open outside, occluded, and open inside, indicating alternating access. As we discuss here, these atomic structures provide a basis for exploring the evolution of structure-function relations in this new class of transporters.
Collapse
Affiliation(s)
- Liang Feng
- Department of Molecular and Cellular Physiology, 279 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Wolf B Frommer
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St, Stanford, CA 94305, USA.
| |
Collapse
|
29
|
Jaehme M, Guskov A, Slotboom DJ. The twisted relation between Pnu and SWEET transporters. Trends Biochem Sci 2015; 40:183-8. [PMID: 25757400 DOI: 10.1016/j.tibs.2015.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/30/2015] [Accepted: 02/11/2015] [Indexed: 02/02/2023]
Abstract
The evolutionary relation between sugar and vitamin transporters from the SWEET and Pnu families is unclear. They have similar 3D structures, but differ in the topology of their secondary structure elements, and lack significant sequence similarity. Here we analyze the structures and sequences of different members of the SWEET and Pnu transporter families and propose an evolutionary pathway by which they may have diverged from a common ancestor. A 3D domain swapping event can explain the topological differences between the families, as well as the puzzling observation that a highly conserved and essential sequence motif of the SWEET family (the PQ loop) is absent from the Pnu transporters.
Collapse
Affiliation(s)
- Michael Jaehme
- University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Albert Guskov
- University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Dirk Jan Slotboom
- University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands.
| |
Collapse
|
30
|
Stehr M, Elamin AA, Singh M. Pyrazinamide: the importance of uncovering the mechanisms of action in mycobacteria. Expert Rev Anti Infect Ther 2015; 13:593-603. [PMID: 25746054 DOI: 10.1586/14787210.2015.1021784] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pyrazinamide (PZA) is still one of the key drugs used in current therapeutic regimens for tuberculosis (TB). Despite its importance for TB therapy, the mode of action of PZA remains unknown. PZA has to be converted to its active form pyrazinoic acid (POA) by the nicotinamidase PncA and is then excreted by an unknown efflux pump. At acidic conditions, POA is protonated to HPOA and is reabsorbed into the cell where it causes cellular damage. For a long time, it has been thought that PZA/POA has no defined target of action, but recent studies have shown that both PZA and POA have several different targets interfering with diverse biochemical pathways, especially in the NAD(+) and energy metabolism. PZA resistance seems to depend not only on a defective pyrazinamidase but is also rather a result of the interplay of many different enzyme targets and transport mechanisms.
Collapse
Affiliation(s)
- Matthias Stehr
- LIONEX Diagnostics and Therapeutics GmbH, Salzdahlumer Straße 196, D-38126, Braunschweig, Germany
| | | | | |
Collapse
|
31
|
Crystal structure of a phosphorylation-coupled vitamin C transporter. Nat Struct Mol Biol 2015; 22:238-41. [PMID: 25686089 DOI: 10.1038/nsmb.2975] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 01/14/2015] [Indexed: 12/16/2022]
Abstract
Bacteria use vitamin C (L-ascorbic acid) as a carbon source under anaerobic conditions. The phosphoenolpyruvate-dependent phosphotransferase system (PTS), comprising a transporter (UlaA), a IIB-like enzyme (UlaB) and a IIA-like enzyme (UlaC), is required for the anaerobic uptake of vitamin C and its phosphorylation to L-ascorbate 6-phosphate. Here, we present the crystal structures of vitamin C-bound UlaA from Escherichia coli in two conformations at 1.65-Å and 2.35-Å resolution. UlaA forms a homodimer and exhibits a new fold. Each UlaA protomer consists of 11 transmembrane segments arranged into a 'V-motif' domain and a 'core' domain. The V motifs form the interface between the two protomers, and the core-domain residues coordinate vitamin C. The alternating access of the substrate from the opposite side of the cell membrane may be achieved through rigid-body rotation of the core relative to the V motif.
Collapse
|