1
|
Sun J, Skanata A, Movileanu L. Single-Molecule Observation of Competitive Protein-Protein Interactions Utilizing a Nanopore. ACS NANO 2024. [PMID: 39718930 DOI: 10.1021/acsnano.4c13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Two or more protein ligands may compete against each other to interact transiently with a protein receptor. While this is a ubiquitous phenomenon in cell signaling, existing technologies cannot identify its kinetic complexity because specific subpopulations of binding events of different ligands are hidden in the averaging process in an ensemble. In addition, the limited time resolution of prevailing methods makes detecting and discriminating binding events among diverse interacting partners challenging. Here, we utilize a genetically encoded nanopore sensor to disentangle competitive protein-protein interactions (PPIs) in a one-on-one and label-free fashion. Our measurements involve binary mixtures of protein ligands of varying binding affinity against the same receptor, which was externally immobilized on the nanopore tip. We use the resistive-pulse technique to monitor the kinetics and dynamics of reversible PPIs without the nanopore confinement, with a high-time bandwidth, and at titratable ligand concentrations. In this way, we systematically evaluate how individual protein ligands take their turn to reside on the receptor's binding site. Further, our single-molecule determinations of these interactions are quantitatively compared with data generated by a two-ligand, one-receptor queuing model. The outcomes of this work provide a fundamental basis for future developments aimed at a better mechanistic understanding of competitive PPIs. Moreover, they may also form a platform in drug development pipelines targeting high-complexity PPIs mediated by protein hubs.
Collapse
Affiliation(s)
- Jiaxin Sun
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
| | - Antun Skanata
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- The BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- The BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United States
- Department of Biology, Syracuse University, 114 Life Sciences Complex, Syracuse, New York 13244, United States
| |
Collapse
|
2
|
Lewis JS, van Oijen AM, Spenkelink LM. Embracing Heterogeneity: Challenging the Paradigm of Replisomes as Deterministic Machines. Chem Rev 2023; 123:13419-13440. [PMID: 37971892 PMCID: PMC10790245 DOI: 10.1021/acs.chemrev.3c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
The paradigm of cellular systems as deterministic machines has long guided our understanding of biology. Advancements in technology and methodology, however, have revealed a world of stochasticity, challenging the notion of determinism. Here, we explore the stochastic behavior of multi-protein complexes, using the DNA replication system (replisome) as a prime example. The faithful and timely copying of DNA depends on the simultaneous action of a large set of enzymes and scaffolding factors. This fundamental cellular process is underpinned by dynamic protein-nucleic acid assemblies that must transition between distinct conformations and compositional states. Traditionally viewed as a well-orchestrated molecular machine, recent experimental evidence has unveiled significant variability and heterogeneity in the replication process. In this review, we discuss recent advances in single-molecule approaches and single-particle cryo-EM, which have provided insights into the dynamic processes of DNA replication. We comment on the new challenges faced by structural biologists and biophysicists as they attempt to describe the dynamic cascade of events leading to replisome assembly, activation, and progression. The fundamental principles uncovered and yet to be discovered through the study of DNA replication will inform on similar operating principles for other multi-protein complexes.
Collapse
Affiliation(s)
- Jacob S. Lewis
- Macromolecular
Machines Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Antoine M. van Oijen
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Lisanne M. Spenkelink
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
3
|
Li H, Liu T, Yang H. Amplifying Intermolecular Events by Streptavidin-Induced Proximity. J Am Chem Soc 2022; 144:11377-11385. [PMID: 35715211 DOI: 10.1021/jacs.2c03666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Weak interactions between biomolecules play important roles in many cellular functions. Structural and kinetic analyses of these interactions, however, have been hindered by the transient nature of such events. Here, we pointed out a general approach to overcome this obstacle─anchoring the molecular partners to streptavidin hosts─and achieved constrained proximity and stoichiometry for the sought-after molecular coupling. We elaborated this idea through a series of DNA hybridization reactions and quantitatively characterized them using single-molecule experiments. Compared to a nominally 1 μM solution, for example, the streptavidin-induced proximity (SIP) amounted to an effective molarity of ∼10-30 μM for the binding partners. There was also a significantly increased proportion of molecular association, manifested in both ensemble population and single-molecule residence time. As an application example, we showed how SIP enabled the observation and quantitative characterization of an unstable complex between Cas9-RNA and noncognate DNA substrates, interactions that had been challenging to characterize previously. Conceptually simple and implementationally robust, SIP was shown to considerably enhance the efficacy in capturing weak interactions and, as demonstrated here, could empower scientists to see the otherwise unseeable.
Collapse
Affiliation(s)
- Hao Li
- Department of Chemistry, Princeton University,, Princeton, New Jersey 08544, United States
| | - Tao Liu
- Department of Chemistry, Princeton University,, Princeton, New Jersey 08544, United States
| | - Haw Yang
- Department of Chemistry, Princeton University,, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Mayse LA, Imran A, Larimi MG, Cosgrove MS, Wolfe AJ, Movileanu L. Disentangling the recognition complexity of a protein hub using a nanopore. Nat Commun 2022; 13:978. [PMID: 35190547 PMCID: PMC8861093 DOI: 10.1038/s41467-022-28465-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/25/2022] [Indexed: 11/12/2022] Open
Abstract
WD40 repeat proteins are frequently involved in processing cell signaling and scaffolding large multi-subunit machineries. Despite their significance in physiological and disease-like conditions, their reversible interactions with other proteins remain modestly examined. Here, we show the development and validation of a protein nanopore for the detection and quantification of WD40 repeat protein 5 (WDR5), a chromatin-associated hub involved in epigenetic regulation of histone methylation. Our nanopore sensor is equipped with a 14-residue Win motif of mixed lineage leukemia 4 methyltransferase (MLL4Win), a WDR5 ligand. Our approach reveals a broad dynamic range of MLL4Win-WDR5 interactions and three distant subpopulations of binding events, representing three modes of protein recognition. The three binding events are confirmed as specific interactions using a weakly binding WDR5 derivative and various environmental contexts. These outcomes demonstrate the substantial sensitivity of our nanopore sensor, which can be utilized in protein analytics. Nanopores are powerful tools for sampling protein-peptide interactions. Here, the authors convert a protein-based nanopore into a sensitive biosensor to characterize the complex binding of WDR5 protein to a 14-residue ligand.
Collapse
|
5
|
Spinks RR, Spenkelink LM, Dixon NE, van Oijen AM. Single-Molecule Insights Into the Dynamics of Replicative Helicases. Front Mol Biosci 2021; 8:741718. [PMID: 34513934 PMCID: PMC8426354 DOI: 10.3389/fmolb.2021.741718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Helicases are molecular motors that translocate along single-stranded DNA and unwind duplex DNA. They rely on the consumption of chemical energy from nucleotide hydrolysis to drive their translocation. Specialized helicases play a critically important role in DNA replication by unwinding DNA at the front of the replication fork. The replicative helicases of the model systems bacteriophages T4 and T7, Escherichia coli and Saccharomyces cerevisiae have been extensively studied and characterized using biochemical methods. While powerful, their averaging over ensembles of molecules and reactions makes it challenging to uncover information related to intermediate states in the unwinding process and the dynamic helicase interactions within the replisome. Here, we describe single-molecule methods that have been developed in the last few decades and discuss the new details that these methods have revealed about replicative helicases. Applying methods such as FRET and optical and magnetic tweezers to individual helicases have made it possible to access the mechanistic aspects of unwinding. It is from these methods that we understand that the replicative helicases studied so far actively translocate and then passively unwind DNA, and that these hexameric enzymes must efficiently coordinate the stepping action of their subunits to achieve unwinding, where the size of each step is prone to variation. Single-molecule fluorescence microscopy methods have made it possible to visualize replicative helicases acting at replication forks and quantify their dynamics using multi-color colocalization, FRAP and FLIP. These fluorescence methods have made it possible to visualize helicases in replication initiation and dissect this intricate protein-assembly process. In a similar manner, single-molecule visualization of fluorescent replicative helicases acting in replication identified that, in contrast to the replicative polymerases, the helicase does not exchange. Instead, the replicative helicase acts as the stable component that serves to anchor the other replication factors to the replisome.
Collapse
Affiliation(s)
- Richard R Spinks
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Nicholas E Dixon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| |
Collapse
|
6
|
Single-Molecule Fluorescence Methods to Study Protein Exchange Kinetics in Supramolecular Complexes. Methods Mol Biol 2021; 2281:49-65. [PMID: 33847951 DOI: 10.1007/978-1-0716-1290-3_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Recent single-molecule studies have demonstrated that the composition of multi-protein complexes can strike a balance between stability and dynamics. Proteins can dynamically exchange in and out of the complex depending on their concentration in solution. These exchange dynamics are a key determinant of the molecular pathways available to multi-protein complexes. It is therefore important that we develop robust and reproducible assays to study protein exchange. Using DNA replication as an example, we describe three single-molecule fluorescence assays used to study protein exchange dynamics. In the chase exchange assay, fluorescently labeled proteins are challenged by unlabeled proteins, where exchange results in the disappearance of the fluorescence signal. In the FRAP exchange assay, fluorescently labeled proteins are photobleached before exchange is measured by an increase in fluorescence as non-bleached proteins exchange into the complex. Finally, in the two-color exchange assay, proteins are labeled with two different fluorophores and exchange is visualized by detecting changes in color. All three assays compliment in their ability to elucidate the dynamic behavior of proteins in large biological systems.
Collapse
|
7
|
Monachino E, Jergic S, Lewis JS, Xu ZQ, Lo ATY, O'Shea VL, Berger JM, Dixon NE, van Oijen AM. A Primase-Induced Conformational Switch Controls the Stability of the Bacterial Replisome. Mol Cell 2020; 79:140-154.e7. [PMID: 32464091 DOI: 10.1016/j.molcel.2020.04.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/12/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Recent studies of bacterial DNA replication have led to a picture of the replisome as an entity that freely exchanges DNA polymerases and displays intermittent coupling between the helicase and polymerase(s). Challenging the textbook model of the polymerase holoenzyme acting as a stable complex coordinating the replisome, these observations suggest a role of the helicase as the central organizing hub. We show here that the molecular origin of this newly found plasticity lies in the 500-fold increase in strength of the interaction between the polymerase holoenzyme and the replicative helicase upon association of the primase with the replisome. By combining in vitro ensemble-averaged and single-molecule assays, we demonstrate that this conformational switch operates during replication and promotes recruitment of multiple holoenzymes at the fork. Our observations provide a molecular mechanism for polymerase exchange and offer a revised model for the replication reaction that emphasizes its stochasticity.
Collapse
Affiliation(s)
- Enrico Monachino
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747, the Netherlands
| | - Slobodan Jergic
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Jacob S Lewis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Zhi-Qiang Xu
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Allen T Y Lo
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Valerie L O'Shea
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas E Dixon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| |
Collapse
|
8
|
Spenkelink LM, Lewis JS, Jergic S, Xu ZQ, Robinson A, Dixon NE, van Oijen AM. Recycling of single-stranded DNA-binding protein by the bacterial replisome. Nucleic Acids Res 2019; 47:4111-4123. [PMID: 30767010 PMCID: PMC6486552 DOI: 10.1093/nar/gkz090] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/30/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) support DNA replication by protecting single-stranded DNA from nucleolytic attack, preventing intra-strand pairing events and playing many other regulatory roles within the replisome. Recent developments in single-molecule approaches have led to a revised picture of the replisome that is much more complex in how it retains or recycles protein components. Here, we visualize how an in vitro reconstituted Escherichia coli replisome recruits SSB by relying on two different molecular mechanisms. Not only does it recruit new SSB molecules from solution to coat newly formed single-stranded DNA on the lagging strand, but it also internally recycles SSB from one Okazaki fragment to the next. We show that this internal transfer mechanism is balanced against recruitment from solution in a manner that is concentration dependent. By visualizing SSB dynamics in live cells, we show that both internal transfer and external exchange mechanisms are physiologically relevant.
Collapse
Affiliation(s)
- Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.,Zernike Institute for Advanced Materials, University of Groningen, Groningen, 9747 AG, the Netherlands
| | - Jacob S Lewis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Slobodan Jergic
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Zhi-Qiang Xu
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Andrew Robinson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Nicholas E Dixon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
9
|
Lewis JS, Spenkelink LM, Schauer GD, Yurieva O, Mueller SH, Natarajan V, Kaur G, Maher C, Kay C, O'Donnell ME, van Oijen AM. Tunability of DNA Polymerase Stability during Eukaryotic DNA Replication. Mol Cell 2019; 77:17-25.e5. [PMID: 31704183 DOI: 10.1016/j.molcel.2019.10.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/25/2019] [Accepted: 10/01/2019] [Indexed: 12/29/2022]
Abstract
Structural and biochemical studies have revealed the basic principles of how the replisome duplicates genomic DNA, but little is known about its dynamics during DNA replication. We reconstitute the 34 proteins needed to form the S. cerevisiae replisome and show how changing local concentrations of the key DNA polymerases tunes the ability of the complex to efficiently recycle these proteins or to dynamically exchange them. Particularly, we demonstrate redundancy of the Pol α-primase DNA polymerase activity in replication and show that Pol α-primase and the lagging-strand Pol δ can be re-used within the replisome to support the synthesis of large numbers of Okazaki fragments. This unexpected malleability of the replisome might allow it to deal with barriers and resource challenges during replication of large genomes.
Collapse
Affiliation(s)
- Jacob S Lewis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Grant D Schauer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Olga Yurieva
- Laboratory of DNA Replication, Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Cambridge, MA 02138, USA
| | - Stefan H Mueller
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Varsha Natarajan
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Gurleen Kaur
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Claire Maher
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Callum Kay
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Michael E O'Donnell
- Laboratory of DNA Replication, Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Cambridge, MA 02138, USA.
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia.
| |
Collapse
|
10
|
Krainer G, Keller S, Schlierf M. Structural dynamics of membrane-protein folding from single-molecule FRET. Curr Opin Struct Biol 2019; 58:124-137. [DOI: 10.1016/j.sbi.2019.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022]
|
11
|
Larimi MG, Mayse LA, Movileanu L. Interactions of a Polypeptide with a Protein Nanopore Under Crowding Conditions. ACS NANO 2019; 13:4469-4477. [PMID: 30925041 PMCID: PMC6482057 DOI: 10.1021/acsnano.9b00008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Molecular crowding, a ubiquitous feature of the cellular environment, has significant implications in the kinetics and equilibrium of biopolymer interactions. In this study, a single charged polypeptide is exposed to competing forces that drive it into a transmembrane protein pore versus forces that pull it outside. Using single-molecule electrophysiology, we provide compelling experimental evidence that the kinetic details of the polypeptide-pore interactions are substantially affected by high concentrations of less-penetrating polyethylene glycols (PEGs). At a polymer concentration above a critical value, the presence of these neutral macromolecular crowders increases the rate constant of association but decreases the rate constant of dissociation, resulting in a stronger polypeptide-pore interaction. Moreover, a larger-molecular weight PEG exhibits a lower rate constant of association but a higher rate constant of dissociation than those values corresponding to a smaller-molecular weight PEG. These outcomes are in accord with a lower diffusion constant of the polypeptide and higher depletion-attraction forces between the polypeptide and transmembrane protein pore under crowding and confinement conditions.
Collapse
Affiliation(s)
- Motahareh Ghahari Larimi
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Lauren Ashley Mayse
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, USA
| |
Collapse
|
12
|
Xu ZQ, Dixon NE. Bacterial replisomes. Curr Opin Struct Biol 2018; 53:159-168. [PMID: 30292863 DOI: 10.1016/j.sbi.2018.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 01/18/2023]
Abstract
Bacterial replisomes are dynamic multiprotein DNA replication machines that are inherently difficult for structural studies. However, breakthroughs continue to come. The structures of Escherichia coli DNA polymerase III (core)-clamp-DNA subcomplexes solved by single-particle cryo-electron microscopy in both polymerization and proofreading modes and the discovery of the stochastic nature of the bacterial replisomes represent notable progress. The structures reveal an intricate interaction network in the polymerase-clamp subassembly, providing insights on how replisomes may work. Meantime, ensemble and single-molecule functional assays and fluorescence microscopy show that the bacterial replisomes can work in a decoupled and uncoordinated way, with polymerases quickly exchanging and both leading-strand and lagging-strand polymerases and the helicase working independently, contradictory to the elegant textbook view of a highly coordinated machine.
Collapse
Affiliation(s)
- Zhi-Qiang Xu
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Nicholas E Dixon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.
| |
Collapse
|
13
|
Peng S, Sun R, Wang W, Chen C. Single-molecule FRET studies on interactions between elongation factor 4 (LepA) and ribosomes. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
ATPase and Protease Domain Movements in the Bacterial AAA+ Protease FtsH Are Driven by Thermal Fluctuations. J Mol Biol 2018; 430:4592-4602. [PMID: 30044948 DOI: 10.1016/j.jmb.2018.07.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/10/2018] [Accepted: 07/17/2018] [Indexed: 01/27/2023]
Abstract
AAA+ proteases are essential players in cellular pathways of protein degradation. Elucidating their conformational behavior is key for understanding their reaction mechanism and, importantly, for elaborating our understanding of mutation-induced protease deficiencies. Here, we study the structural dynamics of the Thermotoga maritima AAA+ hexameric ring metalloprotease FtsH (TmFtsH). Using a single-molecule Förster resonance energy transfer approach to monitor ATPase and protease inter-domain conformational changes in real time, we show that TmFtsH-even in the absence of nucleotide-is a highly dynamic protease undergoing sequential transitions between five states on the second timescale. Addition of ATP does not influence the number of states or change the timescale of domain motions but affects the state occupancy distribution leading to an inter-domain compaction. These findings suggest that thermal energy, but not chemical energy, provides the major driving force for conformational switching, while ATP, through a state reequilibration, introduces directionality into this process. The TmFtsH A359V mutation, a homolog of the human pathogenic A510V mutation of paraplegin (SPG7) causing hereditary spastic paraplegia, does not affect the dynamic behavior of the protease but impairs the ATP-coupled domain compaction and, thus, may account for protease malfunctioning and pathogenesis in hereditary spastic paraplegia.
Collapse
|
15
|
Nanoparticles for super-resolution microscopy and single-molecule tracking. Nat Methods 2018; 15:415-423. [PMID: 29808018 DOI: 10.1038/s41592-018-0012-4] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 04/16/2018] [Indexed: 01/23/2023]
Abstract
We review the use of luminescent nanoparticles in super-resolution imaging and single-molecule tracking, and showcase novel approaches to super-resolution imaging that leverage the brightness, stability, and unique optical-switching properties of these nanoparticles. We also discuss the challenges associated with their use in biological systems, including intracellular delivery and molecular targeting. In doing so, we hope to provide practical guidance for biologists and continue to bridge the fields of super-resolution imaging and nanoparticle engineering to support their mutual advancement.
Collapse
|
16
|
Peng S, Wang W, Chen C. Surface Transient Binding-Based Fluorescence Correlation Spectroscopy (STB-FCS), a Simple and Easy-to-Implement Method to Extend the Upper Limit of the Time Window to Seconds. J Phys Chem B 2018; 122:4844-4850. [PMID: 29668282 DOI: 10.1021/acs.jpcb.8b03476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescence correlation spectroscopy is a powerful single-molecule tool that is able to capture kinetic processes occurring at the nanosecond time scale. However, the upper limit of its time window is restricted by the dwell time of the molecule of interest in the confocal detection volume, which is usually around submilliseconds for a freely diffusing biomolecule. Here, we present a simple and easy-to-implement method, named surface transient binding-based fluorescence correlation spectroscopy (STB-FCS), which extends the upper limit of the time window to seconds. We further demonstrated that STB-FCS enables capture of both intramolecular and intermolecular kinetic processes whose time scales cross several orders of magnitude.
Collapse
Affiliation(s)
- Sijia Peng
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, and Beijing Advanced Innovation Center for Structural Biology , Tsinghua University , Beijing , China
| | - Wenjuan Wang
- School of Life Sciences and Technology Center for Protein Sciences , Tsinghua University , Beijing , China
| | - Chunlai Chen
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, and Beijing Advanced Innovation Center for Structural Biology , Tsinghua University , Beijing , China
| |
Collapse
|
17
|
Peng S, Wang W, Chen C. Breaking the Concentration Barrier for Single-Molecule Fluorescence Measurements. Chemistry 2017; 24:1002-1009. [DOI: 10.1002/chem.201704065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Sijia Peng
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, and Beijing Advanced Innovation Center for Structural Biology; Tsinghua University; Beijing, 100084 P.R. China
| | - Wenjuan Wang
- School of Life Sciences and Technology Center for Protein Sciences; Tsinghua University; Beijing, 100084 P.R. China
| | - Chunlai Chen
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, and Beijing Advanced Innovation Center for Structural Biology; Tsinghua University; Beijing, 100084 P.R. China
| |
Collapse
|
18
|
Berghuis BA, Raducanu VS, Elshenawy MM, Jergic S, Depken M, Dixon NE, Hamdan SM, Dekker NH. What is all this fuss about Tus? Comparison of recent findings from biophysical and biochemical experiments. Crit Rev Biochem Mol Biol 2017; 53:49-63. [DOI: 10.1080/10409238.2017.1394264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Bojk A. Berghuis
- Department of Bionanoscience, Kavli institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Vlad-Stefan Raducanu
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mohamed M. Elshenawy
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Slobodan Jergic
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Martin Depken
- Department of Bionanoscience, Kavli institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Nicholas E. Dixon
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Samir M. Hamdan
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Nynke H. Dekker
- Department of Bionanoscience, Kavli institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
19
|
Monachino E, Spenkelink LM, van Oijen AM. Watching cellular machinery in action, one molecule at a time. J Cell Biol 2016; 216:41-51. [PMID: 27979907 PMCID: PMC5223611 DOI: 10.1083/jcb.201610025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 12/03/2022] Open
Abstract
Monachino et al. review recent developments in single-molecule biophysical approaches and the cell biological advances they allow. Single-molecule manipulation and imaging techniques have become important elements of the biologist’s toolkit to gain mechanistic insights into cellular processes. By removing ensemble averaging, single-molecule methods provide unique access to the dynamic behavior of biomolecules. Recently, the use of these approaches has expanded to the study of complex multiprotein systems and has enabled detailed characterization of the behavior of individual molecules inside living cells. In this review, we provide an overview of the various force- and fluorescence-based single-molecule methods with applications both in vitro and in vivo, highlighting these advances by describing their applications in studies on cytoskeletal motors and DNA replication. We also discuss how single-molecule approaches have increased our understanding of the dynamic behavior of complex multiprotein systems. These methods have shown that the behavior of multicomponent protein complexes is highly stochastic and less linear and deterministic than previously thought. Further development of single-molecule tools will help to elucidate the molecular dynamics of these complex systems both inside the cell and in solutions with purified components.
Collapse
Affiliation(s)
- Enrico Monachino
- Centre for Medical and Molecular Bioscience, Illawarra Health and Medical Research Institute and University of Wollongong, New South Wales 2522, Australia.,Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, Netherlands
| | - Lisanne M Spenkelink
- Centre for Medical and Molecular Bioscience, Illawarra Health and Medical Research Institute and University of Wollongong, New South Wales 2522, Australia.,Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, Netherlands
| | - Antoine M van Oijen
- Centre for Medical and Molecular Bioscience, Illawarra Health and Medical Research Institute and University of Wollongong, New South Wales 2522, Australia
| |
Collapse
|
20
|
Wang W, Chen C. Tracking translation of single mRNA molecule in live cells. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-016-1116-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Tian H, Fürstenberg A, Huber T. Labeling and Single-Molecule Methods To Monitor G Protein-Coupled Receptor Dynamics. Chem Rev 2016; 117:186-245. [DOI: 10.1021/acs.chemrev.6b00084] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- He Tian
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Alexandre Fürstenberg
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Thomas Huber
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| |
Collapse
|
22
|
Abstract
DNA replication in Escherichia coli initiates at oriC, the origin of replication and proceeds bidirectionally, resulting in two replication forks that travel in opposite directions from the origin. Here, we focus on events at the replication fork. The replication machinery (or replisome), first assembled on both forks at oriC, contains the DnaB helicase for strand separation, and the DNA polymerase III holoenzyme (Pol III HE) for DNA synthesis. DnaB interacts transiently with the DnaG primase for RNA priming on both strands. The Pol III HE is made up of three subassemblies: (i) the αɛθ core polymerase complex that is present in two (or three) copies to simultaneously copy both DNA strands, (ii) the β2 sliding clamp that interacts with the core polymerase to ensure its processivity, and (iii) the seven-subunit clamp loader complex that loads β2 onto primer-template junctions and interacts with the α polymerase subunit of the core and the DnaB helicase to organize the two (or three) core polymerases. Here, we review the structures of the enzymatic components of replisomes, and the protein-protein and protein-DNA interactions that ensure they remain intact while undergoing substantial dynamic changes as they function to copy both the leading and lagging strands simultaneously during coordinated replication.
Collapse
Affiliation(s)
- J S Lewis
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - S Jergic
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - N E Dixon
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|