1
|
Dallo S, Shin J, Zhang S, Ren Q, Bao H. Designer Nanodiscs to Probe and Reprogram Membrane Biology in Synapses. J Mol Biol 2023; 435:167757. [PMID: 35872069 PMCID: PMC9805492 DOI: 10.1016/j.jmb.2022.167757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023]
Abstract
Signal transduction at the synapse is mediated by a variety of protein-lipid interactions, which are vital for the spatial and temporal regulation of synaptic vesicle biogenesis, neurotransmitter release, and postsynaptic receptor activation. Therefore, our understanding of synaptic transmission cannot be completed until the elucidation of these critical protein-lipid interactions. On this front, recent advances in nanodiscs have vastly expanded our ability to probe and reprogram membrane biology in synapses. Here, we summarize the progress of the nanodisc toolbox and discuss future directions in this exciting field.
Collapse
Affiliation(s)
- Sarah Dallo
- Department of Molecular Medicine, UF Scripps Biomedical Research, 130 Scripps Way, Jupiter 33458, FL, USA
| | - Jeehae Shin
- Department of Molecular Medicine, UF Scripps Biomedical Research, 130 Scripps Way, Jupiter 33458, FL, USA
| | - Shanwen Zhang
- Department of Molecular Medicine, UF Scripps Biomedical Research, 130 Scripps Way, Jupiter 33458, FL, USA
| | - Qian Ren
- Department of Molecular Medicine, UF Scripps Biomedical Research, 130 Scripps Way, Jupiter 33458, FL, USA
| | - Huan Bao
- Department of Molecular Medicine, UF Scripps Biomedical Research, 130 Scripps Way, Jupiter 33458, FL, USA.
| |
Collapse
|
2
|
Wang S, Ma C. Stability profile of the neuronal SNARE complex reflects its potency to drive fast membrane fusion. Biophys J 2022; 121:3081-3102. [PMID: 35810329 PMCID: PMC9463651 DOI: 10.1016/j.bpj.2022.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/24/2022] [Accepted: 07/07/2022] [Indexed: 11/02/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) form the SNARE complex to mediate most fusion events of the secretory pathway. The neuronal SNARE complex is featured by its high stability and half-zippered conformation required for driving robust and fast synaptic exocytosis. However, these two features seem to be thermodynamically mutually exclusive. In this study, we have employed temperature-dependent disassociation assays and single-molecule Förster resonance energy transfer (FRET) experiments to analyze the stability and conformation of the neuronal SNARE complex. We reclassified the amino acids of the SNARE motif into four sub-groups (core, core-side I and II, and non-contact). Our data showed that the core residues predominantly contribute to the complex stability to meet a basal requirement for SNARE-mediated membrane fusion, while the core-side residues exert an unbalanced effect on the N- and C-half bundle stability that determines the half-zippered conformation of the neuronal SNARE complex, which would accommodate essential regulations by complexins and synaptotagmins for fast Ca2+-triggered membrane fusion. Furthermore, our data confirmed a strong coupling of folding energy between the N- and C-half assembly of the neuronal SNARE complex, which rationalizes the strong potency of the half-zippered conformation to conduct robust and fast fusion. Overall, these results uncovered that the stability profile of the neuronal SNARE complex reflects its potency to drive fast and robust membrane fusion. Based on these results, we also developed a new parameter, the stability factor (Fs), to characterize the overall stability of the neuronal SNARE complex and resolved a linear correlation between the stability and inter-residue coulombic interactions of the neuronal SNARE complex, which would help rationally design artificial SNARE complexes and remold functional SNARE complexes with desirable stability.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
4
|
Jiang ZJ, Delaney TL, Zanin MP, Haberberger RV, Pitson SM, Huang J, Alford S, Cologna SM, Keating DJ, Gong LW. Extracellular and intracellular sphingosine-1-phosphate distinctly regulates exocytosis in chromaffin cells. J Neurochem 2019; 149:729-746. [PMID: 30963576 DOI: 10.1111/jnc.14703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/28/2018] [Accepted: 03/27/2019] [Indexed: 01/18/2023]
Abstract
Sphingosine-1-phosphate (S1P) is an essential bioactive sphingosine lipid involved in many neurological disorders. Sphingosine kinase 1 (SphK1), a key enzyme for S1P production, is concentrated in presynaptic terminals. However, the role of S1P/SphK1 signaling in exocytosis remains elusive. By detecting catecholamine release from single vesicles in chromaffin cells, we show that a dominant negative SphK1 (SphK1DN ) reduces the number of amperometric spikes and increases the duration of foot, which reflects release through a fusion pore, implying critical roles for S1P in regulating the rate of exocytosis and fusion pore expansion. Similar phenotypes were observed in chromaffin cells obtained from SphK1 knockout mice compared to those from wild-type mice. In addition, extracellular S1P treatment increased the number of amperometric spikes, and this increase, in turn, was inhibited by a selective S1P3 receptor blocker, suggesting extracellular S1P may regulate the rate of exocytosis via activation of S1P3. Furthermore, intracellular S1P application induced a decrease in foot duration of amperometric spikes in control cells, indicating intracellular S1P may regulate fusion pore expansion during exocytosis. Taken together, our study represents the first demonstration that S1P regulates exocytosis through distinct mechanisms: extracellular S1P may modulate the rate of exocytosis via activation of S1P receptors while intracellular S1P may directly control fusion pore expansion during exocytosis. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Zhong-Jiao Jiang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Taylor L Delaney
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mark P Zanin
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Rainer V Haberberger
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Jian Huang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Damien J Keating
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Liang-Wei Gong
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Fusion assays for model membranes: a critical review. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2019. [DOI: 10.1016/bs.abl.2019.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
6
|
Abbineni PS, Bittner MA, Axelrod D, Holz RW. Chromogranin A, the major lumenal protein in chromaffin granules, controls fusion pore expansion. J Gen Physiol 2018; 151:118-130. [PMID: 30504267 PMCID: PMC6363410 DOI: 10.1085/jgp.201812182] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/07/2018] [Indexed: 01/03/2023] Open
Abstract
Upon fusion of the secretory granule with the plasma membrane, small molecules are discharged through the immediately formed narrow fusion pore, but protein discharge awaits pore expansion. Recently, fusion pore expansion was found to be regulated by tissue plasminogen activator (tPA), a protein present within the lumen of chromaffin granules in a subpopulation of chromaffin cells. Here, we further examined the influence of other lumenal proteins on fusion pore expansion, especially chromogranin A (CgA), the major and ubiquitous lumenal protein in chromaffin granules. Polarized TIRF microscopy demonstrated that the fusion pore curvature of granules containing CgA-EGFP was long lived, with curvature lifetimes comparable to those of tPA-EGFP-containing granules. This was surprising because fusion pore curvature durations of granules containing exogenous neuropeptide Y-EGFP (NPY-EGFP) are significantly shorter (80% lasting <1 s) than those containing CgA-EGFP, despite the anticipated expression of endogenous CgA. However, quantitative immunocytochemistry revealed that transiently expressed lumenal proteins, including NPY-EGFP, caused a down-regulation of endogenously expressed proteins, including CgA. Fusion pore curvature durations in nontransfected cells were significantly longer than those of granules containing overexpressed NPY but shorter than those associated with granules containing overexpressed tPA, CgA, or chromogranin B. Introduction of CgA to NPY-EGFP granules by coexpression converted the fusion pore from being transient to being longer lived, comparable to that found in nontransfected cells. These findings demonstrate that several endogenous chromaffin granule lumenal proteins are regulators of fusion pore expansion and that alteration of chromaffin granule contents affects fusion pore lifetimes. Importantly, the results indicate a new role for CgA. In addition to functioning as a prohormone, CgA plays an important role in controlling fusion pore expansion.
Collapse
Affiliation(s)
| | - Mary A Bittner
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Daniel Axelrod
- Department of Pharmacology, University of Michigan, Ann Arbor, MI.,Department of Physics, LSA Biophysics, University of Michigan, Ann Arbor, MI
| | - Ronald W Holz
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
7
|
McDargh ZA, Polley A, O'Shaughnessy B. SNARE-mediated membrane fusion is a two-stage process driven by entropic forces. FEBS Lett 2018; 592:3504-3515. [PMID: 30346036 DOI: 10.1002/1873-3468.13277] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 11/08/2022]
Abstract
SNARE proteins constitute the core of the exocytotic membrane fusion machinery. Fusion occurs when vesicle-associated and target membrane-associated SNAREs zipper into trans-SNARE complexes ('SNAREpins'), but the number required is controversial and the mechanism of cooperative fusion is poorly understood. We developed a highly coarse-grained molecular dynamics simulation to access the long fusion timescales, which revealed a two-stage process. First, zippering energy was dissipated and cooperative entropic forces assembled the SNAREpins into a ring; second, entropic forces expanded the ring, pressing membranes together and catalyzing fusion. We predict that any number of SNAREs fuses membranes, but fusion is faster with more SNAREs.
Collapse
Affiliation(s)
- Zachary A McDargh
- Department of Chemical Engineering, Columbia University, New York City, NY, USA
| | - Anirban Polley
- Department of Chemical Engineering, Columbia University, New York City, NY, USA
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York City, NY, USA
| |
Collapse
|
8
|
Álvarez de Toledo G, Montes MÁ, Montenegro P, Borges R. Phases of the exocytotic fusion pore. FEBS Lett 2018; 592:3532-3541. [PMID: 30169901 DOI: 10.1002/1873-3468.13234] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/25/2018] [Accepted: 08/28/2018] [Indexed: 01/19/2023]
Abstract
Membrane fusion and fission are fundamental processes in living organisms. Membrane fusion occurs through the formation of a fusion pore, which is the structure that connects two lipid membranes during their fusion. Fusion pores can form spontaneously, but cells endow themselves with a set of proteins that make the process of fusion faster and regulatable. The fusion pore starts with a narrow diameter and dilates relatively slowly; it may fluctuate in size or can even close completely, producing a transient vesicle fusion (kiss-and-run), or can finally expand abruptly to release all vesicle contents. A set of proteins control the formation, dilation, and eventual closure of the fusion pore and, therefore, the velocity at which the contents of secretory vesicles are released to the extracellular medium. Thus, the regulation of fusion pore expansion or closure is key to regulate the release of neurotransmitters and hormones. Here, we review the phases of the fusion pore and discuss the implications in the modes of exocytosis.
Collapse
Affiliation(s)
| | - María Ángeles Montes
- Dpto. Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain
| | - Pablo Montenegro
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, Spain
| | - Ricardo Borges
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, Spain
| |
Collapse
|
9
|
Sharma S, Lindau M. The fusion pore, 60 years after the first cartoon. FEBS Lett 2018; 592:3542-3562. [PMID: 29904915 DOI: 10.1002/1873-3468.13160] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 11/10/2022]
Abstract
Neurotransmitter release occurs in the form of quantal events by fusion of secretory vesicles with the plasma membrane, and begins with the formation of a fusion pore that has a conductance similar to that of a large ion channel or gap junction. In this review, we propose mechanisms of fusion pore formation and discuss their implications for fusion pore structure and function. Accumulating evidence indicates a direct role of soluble N-ethylmaleimide-sensitive-factor attachment receptor proteins in the opening of fusion pores. Fusion pores are likely neither protein channels nor purely lipid, but are of proteolipidic composition. Future perspectives to gain better insight into the molecular structure of fusion pores are discussed.
Collapse
Affiliation(s)
- Satyan Sharma
- Laboratory for Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Manfred Lindau
- Laboratory for Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.,School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
10
|
Hastoy B, Clark A, Rorsman P, Lang J. Fusion pore in exocytosis: More than an exit gate? A β-cell perspective. Cell Calcium 2017; 68:45-61. [PMID: 29129207 DOI: 10.1016/j.ceca.2017.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022]
Abstract
Secretory vesicle exocytosis is a fundamental biological event and the process by which hormones (like insulin) are released into the blood. Considerable progress has been made in understanding this precisely orchestrated sequence of events from secretory vesicle docked at the cell membrane, hemifusion, to the opening of a membrane fusion pore. The exact biophysical and physiological regulation of these events implies a close interaction between membrane proteins and lipids in a confined space and constrained geometry to ensure appropriate delivery of cargo. We consider some of the still open questions such as the nature of the initiation of the fusion pore, the structure and the role of the Soluble N-ethylmaleimide-sensitive-factor Attachment protein REceptor (SNARE) transmembrane domains and their influence on the dynamics and regulation of exocytosis. We discuss how the membrane composition and protein-lipid interactions influence the likelihood of the nascent fusion pore forming. We relate these factors to the hypothesis that fusion pore expansion could be affected in type-2 diabetes via changes in disease-related gene transcription and alterations in the circulating lipid profile. Detailed characterisation of the dynamics of the fusion pore in vitro will contribute to understanding the larger issue of insulin secretory defects in diabetes.
Collapse
Affiliation(s)
- Benoit Hastoy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK.
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK; Metabolic Research, Institute of Neuroscience and Physiology, University of Goteborg, Medicinaregatan 11, S-41309 Göteborg, Sweden
| | - Jochen Lang
- Laboratoire de Chimie et Biologie des Membranes et Nano-objets (CBMN), CNRS UMR 5248, Université de Bordeaux, Allée de Geoffrey St Hilaire, 33600 Pessac, France.
| |
Collapse
|
11
|
Fathali H, Cans AS. Amperometry methods for monitoring vesicular quantal size and regulation of exocytosis release. Pflugers Arch 2017; 470:125-134. [PMID: 28951968 PMCID: PMC5748430 DOI: 10.1007/s00424-017-2069-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 11/30/2022]
Abstract
Chemical signaling strength during intercellular communication can be regulated by secretory cells through controlling the amount of signaling molecules that are released from a secretory vesicle during the exocytosis process. In addition, the chemical signal can also be influenced by the amount of neurotransmitters that is accumulated and stored inside the secretory vesicle compartment. Here, we present the development of analytical methodologies and cell model systems that have been applied in neuroscience research for gaining better insights into the biophysics and the molecular mechanisms, which are involved in the regulatory aspects of the exocytosis machinery affecting the output signal of chemical transmission at neuronal and neuroendocrine cells.
Collapse
Affiliation(s)
- Hoda Fathali
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 42196, Gothenburg, Sweden
| | - Ann-Sofie Cans
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 42196, Gothenburg, Sweden.
| |
Collapse
|
12
|
Yang Z, Gou L, Chen S, Li N, Zhang S, Zhang L. Membrane Fusion Involved in Neurotransmission: Glimpse from Electron Microscope and Molecular Simulation. Front Mol Neurosci 2017. [PMID: 28638320 PMCID: PMC5461332 DOI: 10.3389/fnmol.2017.00168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Membrane fusion is one of the most fundamental physiological processes in eukaryotes for triggering the fusion of lipid and content, as well as the neurotransmission. However, the architecture features of neurotransmitter release machinery and interdependent mechanism of synaptic membrane fusion have not been extensively studied. This review article expounds the neuronal membrane fusion processes, discusses the fundamental steps in all fusion reactions (membrane aggregation, membrane association, lipid rearrangement and lipid and content mixing) and the probable mechanism coupling to the delivery of neurotransmitters. Subsequently, this work summarizes the research on the fusion process in synaptic transmission, using electron microscopy (EM) and molecular simulation approaches. Finally, we propose the future outlook for more exciting applications of membrane fusion involved in synaptic transmission, with the aid of stochastic optical reconstruction microscopy (STORM), cryo-EM (cryo-EM), and molecular simulations.
Collapse
Affiliation(s)
- Zhiwei Yang
- Department of Applied Physics, Xi'an Jiaotong UniversityXi'an, China.,Department of Applied Chemistry, Xi'an Jiaotong UniversityXi'an, China.,School of Life Science and Technology, Xi'an Jiaotong UniversityXi'an, China
| | - Lu Gou
- Department of Applied Physics, Xi'an Jiaotong UniversityXi'an, China
| | - Shuyu Chen
- Department of Applied Physics, Xi'an Jiaotong UniversityXi'an, China
| | - Na Li
- Department of Applied Physics, Xi'an Jiaotong UniversityXi'an, China
| | - Shengli Zhang
- Department of Applied Physics, Xi'an Jiaotong UniversityXi'an, China
| | - Lei Zhang
- Department of Applied Physics, Xi'an Jiaotong UniversityXi'an, China
| |
Collapse
|
13
|
Hastoy B, Scotti PA, Milochau A, Fezoua-Boubegtiten Z, Rodas J, Megret R, Desbat B, Laguerre M, Castano S, Perrais D, Rorsman P, Oda R, Lang J. A Central Small Amino Acid in the VAMP2 Transmembrane Domain Regulates the Fusion Pore in Exocytosis. Sci Rep 2017; 7:2835. [PMID: 28588281 PMCID: PMC5460238 DOI: 10.1038/s41598-017-03013-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/27/2017] [Indexed: 11/30/2022] Open
Abstract
Exocytosis depends on cytosolic domains of SNARE proteins but the function of the transmembrane domains (TMDs) in membrane fusion remains controversial. The TMD of the SNARE protein synaptobrevin2/VAMP2 contains two highly conserved small amino acids, G100 and C103, in its central portion. Substituting G100 and/or C103 with the β-branched amino acid valine impairs the structural flexibility of the TMD in terms of α-helix/β-sheet transitions in model membranes (measured by infrared reflection-absorption or evanescent wave spectroscopy) during increase in protein/lipid ratios, a parameter expected to be altered by recruitment of SNAREs at fusion sites. This structural change is accompanied by reduced membrane fluidity (measured by infrared ellipsometry). The G100V/C103V mutation nearly abolishes depolarization-evoked exocytosis (measured by membrane capacitance) and hormone secretion (measured biochemically). Single-vesicle optical (by TIRF microscopy) and biophysical measurements of ATP release indicate that G100V/C103V retards initial fusion-pore opening, hinders its expansion and leads to premature closure in most instances. We conclude that the TMD of VAMP2 plays a critical role in membrane fusion and that the structural mobility provided by the central small amino acids is crucial for exocytosis by influencing the molecular re-arrangements of the lipid membrane that are necessary for fusion pore opening and expansion.
Collapse
Affiliation(s)
- Benoît Hastoy
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France.,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Pier A Scotti
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France
| | - Alexandra Milochau
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France
| | - Zahia Fezoua-Boubegtiten
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France
| | - Jorge Rodas
- Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France.,Laboratoire de l'Intégration du Matériau au Système, UMR CNRS 5218, 351 Cours de la Libération, 33400 Talence, France.,Institut Polytechnique de Bordeaux, Avernue des Facultés, 33405, Talence, France
| | - Rémi Megret
- Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France.,Laboratoire de l'Intégration du Matériau au Système, UMR CNRS 5218, 351 Cours de la Libération, 33400 Talence, France.,Institut Polytechnique de Bordeaux, Avernue des Facultés, 33405, Talence, France
| | - Bernard Desbat
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France
| | - Michel Laguerre
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France
| | - Sabine Castano
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France
| | - David Perrais
- Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France.,Interdisciplinary Institute for Neuroscience, UMR CNRS 5287, 146, rue Léo-Saignat, 33077, Bordeaux, France
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Reiko Oda
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France
| | - Jochen Lang
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France. .,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France.
| |
Collapse
|
14
|
Liang K, Wei L, Chen L. Exocytosis, Endocytosis, and Their Coupling in Excitable Cells. Front Mol Neurosci 2017; 10:109. [PMID: 28469555 PMCID: PMC5395637 DOI: 10.3389/fnmol.2017.00109] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/31/2017] [Indexed: 11/13/2022] Open
Abstract
Evoked exocytosis in excitable cells is fast and spatially confined and must be followed by coupled endocytosis to enable sustained exocytosis while maintaining the balance of the vesicle pool and the plasma membrane. Various types of exocytosis and endocytosis exist in these excitable cells, as those has been found from different types of experiments conducted in different cell types. Correlating these diversified types of exocytosis and endocytosis is problematic. By providing an outline of different exocytosis and endocytosis processes and possible coupling mechanisms here, we emphasize that the endocytic pathway may be pre-determined at the time the vesicle chooses to fuse with the plasma membrane in one specific mode. Therefore, understanding the early intermediate stages of vesicle exocytosis may be instrumental in exploring the mechanism of tailing endocytosis.
Collapse
Affiliation(s)
- Kuo Liang
- Department of General Surgery, XuanWu Hospital, Capital Medical UniversityBeijing, China
| | - Lisi Wei
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking UniversityBeijing, China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking UniversityBeijing, China
| |
Collapse
|