1
|
Bernardo-Menezes LC, Agrelli A, Oliveira ASLED, Azevedo EDAN, Morais CNLD. Zika virus: Critical crosstalk between pathogenesis, cytopathic effects, and macroautophagy. J Cell Biochem 2024; 125:e30438. [PMID: 37334850 DOI: 10.1002/jcb.30438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/06/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Zika virus (ZIKV) is a re-emerging positive-sense RNA arbovirus. Its genome encodes a polyprotein that is cleaved by proteases into three structural proteins (Envelope, pre-Membrane, and Capsid) and seven nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). These proteins have essential functions in viral replication cycle, cytopathic effects, and host cellular response. When infected by ZIKV, host cells promote macroautophagy, which is believed to favor virus entry. Although several authors have attempted to understand this link between macroautophagy and viral infection, little is known. Herein, we performed a narrative review of the molecular connection between macroautophagy and ZIKV infection while focusing on the roles of the structural and nonstructural proteins. We concluded that ZIKV proteins are major virulence factors that modulate host-cell machinery to its advantage by disrupting and/or blocking specific cellular systems and organelles' function, such as endoplasmic reticulum stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Lucas Coêlho Bernardo-Menezes
- Laboratory of Virology and Experimental Therapeutics (LaViTE), Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Almerinda Agrelli
- Laboratory of Nanostructured Materials (LMNANO), Strategic Technologies Center of Northeast (CETENE), Recife, Pernambuco, Brazil
| | | | - Elisa de Almeida Neves Azevedo
- Laboratory of Virology and Experimental Therapeutics (LaViTE), Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Clarice Neuenschwander Lins de Morais
- Laboratory of Virology and Experimental Therapeutics (LaViTE), Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| |
Collapse
|
2
|
Godoy AS, Mesquita NCMR, Noske GD, Gawriljuk VO, Lithgo RM, Balcomb BH, Aschenbrenner JC, Tomlinson CWE, Winokan M, Scheen J, Marples PG, Chandran AV, Ni X, Thompson W, Fairhead M, Fearon D, Koekemoer L, Xavier MAE, Walsh M, Oliva G, von Delft F. High-throughput crystallographic fragment screening of Zika virus NS3 Helicase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.27.591279. [PMID: 38746241 PMCID: PMC11092484 DOI: 10.1101/2024.04.27.591279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The Zika virus (ZIKV), discovered in Africa in 1947, swiftly spread across continents, causing significant concern due to its recent association with microcephaly in newborns and Guillain-Barré syndrome in adults. Despite a decrease in prevalence, the potential for a resurgence remains, necessitating urgent therapeutic interventions. Like other flaviviruses, ZIKV presents promising drug targets within its replication machinery, notably the NS3 helicase (NS3Hel) protein, which plays critical roles in viral replication. However, a lack of structural information impedes the development of specific inhibitors targeting NS3Hel. Here we applied high-throughput crystallographic fragment screening on ZIKV NS3Hel, which yielded structures that reveal 3D binding poses of 46 fragments at multiple sites of the protein, including 11 unique fragments in the RNA-cleft site. These fragment structures provide templates for direct design of hit compounds and should thus assist the development of novel direct-acting antivirals against ZIKV and related flaviviruses, thus opening a promising avenue for combating future outbreaks.
Collapse
Affiliation(s)
- Andre S Godoy
- São Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100 - Jardim Santa Angelina, São Carlos, 13563-120, Brazil
- ASAP Discovery Consortium: asapdiscovery.org
| | - Nathalya C M R Mesquita
- São Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100 - Jardim Santa Angelina, São Carlos, 13563-120, Brazil
| | - Gabriela Dias Noske
- São Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100 - Jardim Santa Angelina, São Carlos, 13563-120, Brazil
| | - Victor Oliveira Gawriljuk
- São Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100 - Jardim Santa Angelina, São Carlos, 13563-120, Brazil
| | - Ryan M Lithgo
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Blake H Balcomb
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Jasmin Cara Aschenbrenner
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Charles W E Tomlinson
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Max Winokan
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Jenke Scheen
- Open Molecular Sciences Foundation, Davis, CA 95618, USA
- ASAP Discovery Consortium: asapdiscovery.org
| | - Peter George Marples
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Anu V Chandran
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Xiaomin Ni
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Warren Thompson
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Michael Fairhead
- Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, Headington, Oxford, OX3 7FZ, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Daren Fearon
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Lizbé Koekemoer
- Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, Headington, Oxford, OX3 7FZ, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Mary-Ann Elvina Xavier
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, Headington, Oxford, OX3 7FZ, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Martin Walsh
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- ASAP Discovery Consortium: asapdiscovery.org
| | - Glaucius Oliva
- São Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100 - Jardim Santa Angelina, São Carlos, 13563-120, Brazil
| | - Frank von Delft
- Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Fermi Ave, Didcot, OX11 0FA, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, Headington, Oxford, OX3 7FZ, UK
- ASAP Discovery Consortium: asapdiscovery.org
| |
Collapse
|
3
|
Durgam L, Pagag J, Indra Neela Y, Guruprasad L. Mutational analyses, pharmacophore-based inhibitor design and in silico validation for Zika virus NS3-helicase. J Biomol Struct Dyn 2023; 42:9873-9891. [PMID: 37712848 DOI: 10.1080/07391102.2023.2252929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
Zika virus is responsible for causing Zika infections and was declared as a public health emergency of international concern in February 2016. The Zika virus NS3-helicase is a viable drug target for the design of inhibitors due to its essential role in the replication of viral genome. The viral RNA is unwound by the NS3-helicase in order to enable the reproduction of viral genome by the NS5 protein. Zika virus infections in humans are being reported for the last 15 years. We have therefore carried out amino acid mutational analyses of NS3-helicase. NS3-helicase has two crucial binding sites: the ATP and RNA binding sites. The cofactor-ATP based pharmacophore was generated for virtual screening of ZINC database using Pharmit server, that is followed by molecular docking and molecular dynamics simulations of potential hits as probable Zika virus NS3-helicase inhibitors at the cofactor binding site. The drug-like properties of the molecules were analysed and, DFT calculations were performed on the five best molecules to reveal their stability in solvent phase compared to gas phase, the HOMO and LUMO and electrostatic potential maps to analyze the electronic and geometric characteristics. These are significant findings towards the discovery of new inhibitors of Zika virus NS3-helicase, a promising drug target to treat the Zika virus infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Laxman Durgam
- School of Chemistry, University of Hyderabad, Hyderabad, India
| | - Jishu Pagag
- School of Chemistry, University of Hyderabad, Hyderabad, India
| | - Y Indra Neela
- School of Chemistry, University of Hyderabad, Hyderabad, India
| | | |
Collapse
|
4
|
Mishra SS, Kumar N, Karkara BB, Sharma CS, Kalra S. Identification of potential inhibitors of Zika virus targeting NS3 helicase using molecular dynamics simulations and DFT studies. Mol Divers 2023; 27:1689-1701. [PMID: 36063275 DOI: 10.1007/s11030-022-10522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
Despite the various research efforts towards the drug discovery program for Zika virus treatment, no antiviral drugs or vaccines have yet been discovered. The spread of the mosquito vector and ZIKV infection exposure is expected to accelerate globally due to continuing global travel. The NS3-Hel is a non-structural protein part and involved in different functions such as polyprotein processing, genome replication, etc. It makes an NS3-Hel protein an attractive target for designing novel drugs for ZIKV treatment. This investigation identifies the novel, potent ZIKV inhibitors by virtual screening and elucidates the binding pattern using molecular docking and molecular dynamics simulation studies. The molecular dynamics simulation results indicate dynamic stability between protein and ligand complexes, and the structures keep significantly unchanged at the binding site during the simulation period. All inhibitors found within the acceptable range having drug-likeness properties. The synthetic feasibility score suggests that all screened inhibitors can be easily synthesizable. Therefore, possible inhibitors obtained from this study can be considered a potential inhibitor for NS3 Hel, and further, it could be provided as a lead for drug development.
Collapse
Affiliation(s)
- Shashank Shekher Mishra
- Department of Pharmaceutical Chemistry, School of Pharmaceutical & Populations Health Informatics, DIT University, Dehradun, 248009, India.
| | - Neeraj Kumar
- Department of Pharmaceutical Chemistry, Bhupal Nobles' College of Pharmacy, Bhupal Nobles' University, Udaipur, 313001, India
| | - Bidhu Bhusan Karkara
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur, 522213, India
| | - C S Sharma
- Department of Pharmaceutical Chemistry, Bhupal Nobles' College of Pharmacy, Bhupal Nobles' University, Udaipur, 313001, India
| | - Sourav Kalra
- National Institute of Pharmaceutical Education & Research, Mohali, Punjab, India
| |
Collapse
|
5
|
Li D, Lu HT, Ding YZ, Wang HJ, Ye JL, Qin CF, Liu ZY. Specialized cis-Acting RNA Elements Balance Genome Cyclization to Ensure Efficient Replication of Yellow Fever Virus. J Virol 2023; 97:e0194922. [PMID: 37017533 PMCID: PMC10134800 DOI: 10.1128/jvi.01949-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/13/2023] [Indexed: 04/06/2023] Open
Abstract
Genome cyclization is essential for viral RNA (vRNA) replication of the vertebrate-infecting flaviviruses, and yet its regulatory mechanisms are not fully understood. Yellow fever virus (YFV) is a notorious pathogenic flavivirus. Here, we demonstrated that a group of cis-acting RNA elements in YFV balance genome cyclization to govern efficient vRNA replication. It was shown that the downstream of the 5'-cyclization sequence hairpin (DCS-HP) is conserved in the YFV clade and is important for efficient YFV propagation. By using two different replicon systems, we found that the function of the DCS-HP is determined primarily by its secondary structure and, to a lesser extent, by its base-pair composition. By combining in vitro RNA binding and chemical probing assays, we found that the DCS-HP orchestrates the balance of genome cyclization through two different mechanisms, as follows: the DCS-HP assists the correct folding of the 5' end in a linear vRNA to promote genome cyclization, and it also limits the overstabilization of the circular form through a potential crowding effect, which is influenced by the size and shape of the DCS-HP structure. We also provided evidence that an A-rich sequence downstream of the DCS-HP enhances vRNA replication and contributes to the regulation of genome cyclization. Interestingly, diversified regulatory mechanisms of genome cyclization, involving both the downstream of the 5'-cyclization sequence (CS) and the upstream of the 3'-CS elements, were identified among different subgroups of the mosquito-borne flaviviruses. In summary, our work highlighted how YFV precisely controls the balance of genome cyclization to ensure viral replication. IMPORTANCE Yellow fever virus (YFV), the prototype of the Flavivirus genus, can cause devastating yellow fever disease. Although it is preventable by vaccination, there are still tens of thousands of yellow fever cases per year, and no approved antiviral medicine is available. However, the understandings about the regulatory mechanisms of YFV replication are obscure. In this study, by a combination of bioinformatics, reverse genetics, and biochemical approaches, it was shown that the downstream of the 5'-cyclization sequence hairpin (DCS-HP) promotes efficient YFV replication by modulating the conformational balance of viral RNA. Interestingly, we found specialized combinations for the downstream of the 5'-cyclization sequence (CS) and upstream of the 3'-CS elements in different groups of the mosquito-borne flaviviruses. Moreover, possible evolutionary relationships among the various downstream of the 5'-CS elements were implied. This work highlighted the complexity of RNA-based regulatory mechanisms in the flaviviruses and will facilitate the design of RNA structure-targeted antiviral therapies.
Collapse
Affiliation(s)
- Dan Li
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hai-Tao Lu
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yu-Zhen Ding
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hong-Jiang Wang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- The Chinese People’s Liberation Army Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Jing-Long Ye
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zhong-Yu Liu
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
An immunoinformatics approach to study the epitopes of SARS-CoV-2 helicase, Nsp13. VACUNAS 2023. [PMCID: PMC9977615 DOI: 10.1016/j.vacun.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Introduction and objective. Vaccines are administered worldwide to control on-going coronavirus disease-19 (COVID-19) pandemic caused by SARS-CoV-2. Vaccine efficacy is largely contributed by the epitopes present on the viral proteins and their alteration might help emerging variants to escape host immune surveillance. Therefore, this study was designed to study SARS-CoV-2 Nsp13 protein, its epitopes and evolution. Methods Clustal Omega was used to identify mutations in Nsp13 protein. Secondary structure and disorder score was predicted by CFSSP and PONDR-VSL2 webservers. Protein stability was predicted by DynaMut webserver. B cell epitopes were predicted by IEDB DiscoTope 2.0 tools and their 3D structures were represented by discovery studio. Antigenicity and allergenicity of epitopes were predicted by Vaxijen2.0 and AllergenFPv.1.0. Physiochemical properties of epitopes were predicted by Toxinpred, HLP webserver tool. Results Our data revealed 182 mutations in Nsp13 among Indian SARS-CoV-2 isolates, which were characterised by secondary structure and per-residue disorderness, stability and dynamicity predictions. To correlate the functional impact of these mutations, we characterised the most prominent B cell and T cell epitopes contributed by Nsp13. Our data revealed twenty-one epitopes, which exhibited antigenicity, stability and interactions with MHC class-I and class-II molecules. Subsequently, the physiochemical properties of these epitopes were analysed. Furthermore, eighteen mutations reside in these Nsp13 epitopes. Conclusions We report appearance of eighteen mutations in the predicted twenty-one epitopes of Nsp13. Among these, at least seven epitopes closely matches with the functionally validated epitopes. Altogether, our study shows the pattern of evolution of Nsp13 epitopes and their probable implications.
Collapse
|
7
|
Chen R, Francese R, Wang N, Li F, Sun X, Xu B, Liu J, Liu Z, Donalisio M, Lembo D, Zhou GC. Exploration of novel hexahydropyrrolo[1,2-e]imidazol-1-one derivatives as antiviral agents against ZIKV and USUV. Eur J Med Chem 2023; 248:115081. [PMID: 36623328 DOI: 10.1016/j.ejmech.2022.115081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
Zika virus (ZIKV) and Usutu virus (USUV) are two emerging flaviviruses mostly transmitted by mosquitos. ZIKV is associated with microcephaly in newborns and the less-known USUV, with its reported neurotropism and its extensive spread in Europe, represents a growing concern for human health. There is still no approved vaccine or specific antiviral against ZIKV and USUV infections. The main goal of this study is to investigate the anti-ZIKV and anti-USUV activity of a new library of compounds and to preliminarily investigate the mechanism of action of the selected hit compounds in vitro. Two potent anti-ZIKV and anti-USUV agents, namely ZDL-115 and ZDL-116, were discovered, both presenting low cytotoxicity, cell-line independent antiviral activity in the low micromolar range and ability of reducing viral progeny production. The analysis of the structure-activity relationship (SAR) revealed that introduction of 2-deoxyribose to 3-arene was fundamental to enhance the solubility and improve the antiviral action. Additionally, we demonstrated that ZDL-115 and ZDL-116 are significantly active against both viruses when added on cells for at least 24 h prior to viral inoculation or immediately post-infection. The docking analysis showed that ZDL-116 could target the host vitamin D receptor (VDR) and viral proteins. Future experiments will be focused on compound modification to discover analogues that are more potent and on the clarification of the mechanism of action and the specific drug target. The discovery and the development of a novel anti-flavivirus drug will have a significant impact in a context where there are no fully effective antiviral drugs or vaccines for most flaviviruses.
Collapse
Affiliation(s)
- Ran Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China; Xitaihu Lake Industrial College, Nanjing Tech University, Changzhou, 213149, Jiangsu, China
| | - Rachele Francese
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Turin, Italy
| | - Na Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Feng Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Xia Sun
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Bin Xu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Jinsong Liu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zhuyun Liu
- School of Pharmacy, Taizhou Polytechnic College, Taizhou, 225300, Jiangsu, China
| | - Manuela Donalisio
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Turin, Italy
| | - David Lembo
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Turin, Italy.
| | - Guo-Chun Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China; Xitaihu Lake Industrial College, Nanjing Tech University, Changzhou, 213149, Jiangsu, China.
| |
Collapse
|
8
|
Nucleo-Cytoplasmic Transport of ZIKV Non-Structural 3 Protein Is Mediated by Importin-α/β and Exportin CRM-1. J Virol 2023; 97:e0177322. [PMID: 36475764 PMCID: PMC9888292 DOI: 10.1128/jvi.01773-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Flaviviruses have a cytoplasmic replicative cycle, and crucial events, such as genome translation and replication, occur in the endoplasmic reticulum. However, some viral proteins, such as C, NS1, and NS5 from Zika virus (ZIKV) containing nuclear localization signals (NLSs) and nuclear export signals (NESs), are also located in the nucleus of Vero cells. The NS2A, NS3, and NS4A proteins from dengue virus (DENV) have also been reported to be in the nucleus of A549 cells, and our group recently reported that the NS3 protein is also located in the nucleus of Huh7 and C636 cells during DENV infection. However, the NS3 protease-helicase from ZIKV locates in the perinuclear region of infected cells and alters the morphology of the nuclear lamina, a component of the nuclear envelope. Furthermore, ZIKV NS3 has been reported to accumulate on the concave face of altered kidney-shaped nuclei and may be responsible for modifying other elements of the nuclear envelope. However, nuclear localization of NS3 from ZIKV has not been substantially investigated in human host cells. Our group has recently reported that DENV and ZIKV NS3 alter the nuclear pore complex (NPC) by cleaving some nucleoporins. Here, we demonstrate the presence of ZIKV NS3 in the nucleus of Huh7 cells early in infection and in the cytoplasm at later times postinfection. In addition, we found that ZIKV NS3 contains an NLS and a putative NES and uses the classic import (importin-α/β) and export pathway via CRM-1 to be transported between the cytoplasm and the nucleus. IMPORTANCE Flaviviruses have a cytoplasmic replication cycle, but recent evidence indicates that nuclear elements play a role in their viral replication. Viral proteins, such as NS5 and C, are imported into the nucleus, and blocking their import prevents replication. Because of the importance of the nucleus in viral replication and the role of NS3 in the modification of nuclear components, we investigated whether NS3 can be localized in the nucleus during ZIKV infection. We found that NS3 is imported into the nucleus via the importin pathway and exported to the cytoplasm via CRM-1. The significance of viral protein nuclear import and export and its relationship with infection establishment is highlighted, emphasizing the development of new host-directed antiviral therapeutic strategies.
Collapse
|
9
|
Mottin M, de Paula Sousa BK, de Moraes Roso Mesquita NC, de Oliveira KIZ, Noske GD, Sartori GR, de Oliveira Albuquerque A, Urbina F, Puhl AC, Moreira-Filho JT, Souza GE, Guido RV, Muratov E, Neves BJ, da Silva JHM, Clark AE, Siqueira-Neto JL, Perryman AL, Oliva G, Ekins S, Andrade CH. Discovery of New Zika Protease and Polymerase Inhibitors through the Open Science Collaboration Project OpenZika. J Chem Inf Model 2022; 62:6825-6843. [PMID: 36239304 PMCID: PMC9923514 DOI: 10.1021/acs.jcim.2c00596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Zika virus (ZIKV) is a neurotropic arbovirus considered a global threat to public health. Although there have been several efforts in drug discovery projects for ZIKV in recent years, there are still no antiviral drugs approved to date. Here, we describe the results of a global collaborative crowdsourced open science project, the OpenZika project, from IBM's World Community Grid (WCG), which integrates different computational and experimental strategies for advancing a drug candidate for ZIKV. Initially, molecular docking protocols were developed to identify potential inhibitors of ZIKV NS5 RNA-dependent RNA polymerase (NS5 RdRp), NS3 protease (NS2B-NS3pro), and NS3 helicase (NS3hel). Then, a machine learning (ML) model was built to distinguish active vs inactive compounds for the cytoprotective effect against ZIKV infection. We performed three independent target-based virtual screening campaigns (NS5 RdRp, NS2B-NS3pro, and NS3hel), followed by predictions by the ML model and other filters, and prioritized a total of 61 compounds for further testing in enzymatic and phenotypic assays. This yielded five non-nucleoside compounds which showed inhibitory activity against ZIKV NS5 RdRp in enzymatic assays (IC50 range from 0.61 to 17 μM). Two compounds thermally destabilized NS3hel and showed binding affinity in the micromolar range (Kd range from 9 to 35 μM). Moreover, the compounds LabMol-301 inhibited both NS5 RdRp and NS2B-NS3pro (IC50 of 0.8 and 7.4 μM, respectively) and LabMol-212 thermally destabilized the ZIKV NS3hel (Kd of 35 μM). Both also protected cells from death induced by ZIKV infection in in vitro cell-based assays. However, while eight compounds (including LabMol-301 and LabMol-212) showed a cytoprotective effect and prevented ZIKV-induced cell death, agreeing with our ML model for prediction of this cytoprotective effect, no compound showed a direct antiviral effect against ZIKV. Thus, the new scaffolds discovered here are promising hits for future structural optimization and for advancing the discovery of further drug candidates for ZIKV. Furthermore, this work has demonstrated the importance of the integration of computational and experimental approaches, as well as the potential of large-scale collaborative networks to advance drug discovery projects for neglected diseases and emerging viruses, despite the lack of available direct antiviral activity and cytoprotective effect data, that reflects on the assertiveness of the computational predictions. The importance of these efforts rests with the need to be prepared for future viral epidemic and pandemic outbreaks.
Collapse
Affiliation(s)
- Melina Mottin
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-170, Brazil
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Bruna Katiele de Paula Sousa
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-170, Brazil
| | | | | | - Gabriela Dias Noske
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone, 1100, São Carlos, São Paulo, 13563-120, Brazil
| | | | | | - Fabio Urbina
- Collaborations Pharmaceuticals, Inc., Raleigh, NC, 27606, USA
| | - Ana C. Puhl
- Collaborations Pharmaceuticals, Inc., Raleigh, NC, 27606, USA
| | - José Teófilo Moreira-Filho
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-170, Brazil
| | - Guilherme E. Souza
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone, 1100, São Carlos, São Paulo, 13563-120, Brazil
| | - Rafael V.C. Guido
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone, 1100, São Carlos, São Paulo, 13563-120, Brazil
| | - Eugene Muratov
- University of North Carolina - University of North Carolina at Chapel Hill, 27599, USA
- Universidade Federal de Paraíba, Joao Pessoa, PB, 58051-900, Brazil
| | - Bruno Junior Neves
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-170, Brazil
| | | | - Alex E. Clark
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, 92093, USA
| | - Jair L. Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, 92093, USA
| | - Alexander L. Perryman
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University–New Jersey Medical School, Newark, NJ 07103, United States
- Repare Therapeutics, 7210 Rue Frederick-Banting, Suite 100, Montreal, QC, H4S 2A1, Canada
| | - Glaucius Oliva
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone, 1100, São Carlos, São Paulo, 13563-120, Brazil
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., Raleigh, NC, 27606, USA
| | - Carolina Horta Andrade
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-170, Brazil
| |
Collapse
|
10
|
Dos Santos Nascimento IJ, da Silva Rodrigues ÉE, da Silva MF, de Araújo-Júnior JX, de Moura RO. Advances in Computational Methods to Discover New NS2B-NS3 Inhibitors Useful Against Dengue and Zika Viruses. Curr Top Med Chem 2022; 22:2435-2462. [PMID: 36415099 DOI: 10.2174/1568026623666221122121330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022]
Abstract
The Flaviviridae virus family consists of the genera Hepacivirus, Pestivirus, and Flavivirus, with approximately 70 viral types that use arthropods as vectors. Among these diseases, dengue (DENV) and zika virus (ZIKV) serotypes stand out, responsible for thousands of deaths worldwide. Due to the significant increase in cases, the World Health Organization (WHO) declared DENV a potential threat for 2019 due to being transmitted by infected travelers. Furthermore, ZIKV also has a high rate of transmissibility, highlighted in the outbreak in 2015, generating consequences such as Guillain-Barré syndrome and microcephaly. According to clinical outcomes, those infected with DENV can be asymptomatic, and in other cases, it can be lethal. On the other hand, ZIKV has severe neurological symptoms in newborn babies and adults. More serious symptoms include microcephaly, brain calcifications, intrauterine growth restriction, and fetal death. Despite these worrying data, no drug or vaccine is approved to treat these diseases. In the drug discovery process, one of the targets explored against these diseases is the NS2B-NS3 complex, which presents the catalytic triad His51, Asp75, and Ser135, with the function of cleaving polyproteins, with specificity for basic amino acid residues, Lys- Arg, Arg-Arg, Arg-Lys or Gln-Arg. Since NS3 is highly conserved in all DENV serotypes and plays a vital role in viral replication, this complex is an excellent drug target. In recent years, computer-aided drug discovery (CADD) is increasingly essential in drug discovery campaigns, making the process faster and more cost-effective, mainly explained by discovering new drugs against DENV and ZIKV. Finally, the main advances in computational methods applied to discover new compounds against these diseases will be presented here. In fact, molecular dynamics simulations and virtual screening is the most explored approach, providing several hit and lead compounds that can be used in further optimizations. In addition, fragment-based drug design and quantum chemistry/molecular mechanics (QM/MM) provides new insights for developing anti-DENV/ZIKV drugs. We hope that this review offers further helpful information for researchers worldwide and stimulates the use of computational methods to find a promising drug for treating DENV and ZIKV.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Department of Pharmacy, Estácio of Alagoas College, Maceió, Brazil.,Department of Pharmacy, Cesmac University Center, Maceió, Brazil.,Department of Pharmacy, Drug Development and Synthesis Laboratory, State University of Paraíba, Campina Grande, Brazil
| | | | - Manuele Figueiredo da Silva
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió, Brazil
| | - João Xavier de Araújo-Júnior
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió, Brazil
| | - Ricardo Olimpio de Moura
- Department of Pharmacy, Drug Development and Synthesis Laboratory, State University of Paraíba, Campina Grande, Brazil
| |
Collapse
|
11
|
Zu S, Li C, Li L, Deng YQ, Chen X, Luo D, Ye Q, Huang YJ, Li XF, Zhang RR, Sun N, Zhang X, Aliyari SR, Nielsen-Saines K, Jung JU, Yang H, Qin CF, Cheng G. TRIM22 suppresses Zika virus replication by targeting NS1 and NS3 for proteasomal degradation. Cell Biosci 2022; 12:139. [PMID: 36042495 PMCID: PMC9429444 DOI: 10.1186/s13578-022-00872-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Background Recognition of viral invasion by innate antiviral immune system triggers activation of the type I interferon (IFN-I) and proinflammatory signaling pathways. Subsequently, IFN-I induction regulates expression of a group of genes known as IFN-I-stimulated genes (ISGs) to block viral infection. The tripartite motif containing 22 (TRIM22) is an ISG with strong antiviral functions. Results Here we have shown that the TRIM22 has been strongly upregulated both transcriptionally and translationally upon Zika virus (ZIKV) infection. ZIKV infection is associated with a wide range of clinical manifestations in human from mild to severe symptoms including abnormal fetal brain development. We found that the antiviral function of TRIM22 plays a crucial role in counterattacking ZIKV infection. Overexpression of TRIM22 protein inhibited ZIKV growth whereas deletion of TRIM22 in host cells increased ZIKV infectivity. Mechanistically, TRIM22, as a functional E3 ubiquitin ligase, promoted the ubiquitination and degradation of ZIKV nonstructural protein 1 (NS1) and nonstructural protein 3 (NS3). Further studies showed that the SPRY domain and Ring domain of TRIM22 played important roles in protein interaction and degradation, respectively. In addition, we found that TRIM22 also inhibited other flaviviruses infection including dengue virus (DENV) and yellow fever virus (YFV). Conclusion Thus, TRIM22 is an ISG with important role in host defense against flaviviruses through binding and degradation of the NS1 and NS3 proteins. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00872-w.
Collapse
|
12
|
Kullappan M, Benedict BA, Rajajagadeesan A, Baskaran P, Periadurai ND, Ambrose JM, Gandhamaneni SH, Nakkella AK, Agarwal A, Veeraraghavan VP, Surapaneni KM. Ellagic Acid as a Potential Inhibitor against the Nonstructural Protein NS3 Helicase of Zika Virus: A Molecular Modelling Study. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2044577. [PMID: 36046457 PMCID: PMC9420600 DOI: 10.1155/2022/2044577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/27/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022]
Abstract
Zika virus is a member of the Flaviviridae family and genus Flavivirus, which has a phylogenetic relationship with spondweni virus. It spreads to humans through a mosquito bite. To identify potential inhibitors for the Zika virus with biosafety, we selected natural antiviral compounds isolated from plant sources and screened against NS3 helicase of the Zika virus. The enzymatic activity of the NS3 helicase is associated with the C-terminal region and is concerned with RNA synthesis and genome replication. It serves as a crucial target for the Zika virus. We carried out molecular docking for the target NS3 helicase against the selected 25 phytochemicals using AutoDock Vina software. Among the 25 plant compounds, we identified NS3 helicase-ellagic acid (-9.9 kcal/mol), NS3 helicase-hypericin (-9.8 kcal/mol), and NS3 helicase-pentagalloylglucose (-9.5 kcal/mol) as the best binding affinity compounds based on their binding energies. To understand the stability of these complexes, molecular dynamic simulations were executed and the trajectory analysis exposed that the NS3 helicase-ellagic acid complex possesses greater stability than the other two complexes such as NS3 helicase-hypericin and NS3 helicase-pentagalloylglucose. The ADMET property prediction of these compounds resulted in nontoxicity and noncarcinogenicity.
Collapse
Affiliation(s)
- Malathi Kullappan
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, India
| | - Balakrishnan Anna Benedict
- Department of Chemistry, Panimalar Institute of Technology, Poonamallee, Chennai, 600 123 Tamil Nadu, India
| | - Anusha Rajajagadeesan
- Department of Biochemistry, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, India
| | - Padmasini Baskaran
- Department of Emergency Medicine, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Chennai, 600 123 Tamil Nadu, India
| | - Nanthini Devi Periadurai
- Departments of Microbiology and Molecular Virology, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, India
| | - Jenifer Mallavarpu Ambrose
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, India
| | - Sri Harshini Gandhamaneni
- Department of General Medicine, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Chennai, 600 123 Tamil Nadu, India
| | - Aruna Kumari Nakkella
- Department of Engineering Chemistry, Dr. B R Ambedkar University, Etcherla, Srikakulam, 532 410 Andhra Pradesh, India
| | - Alok Agarwal
- Department of Chemistry, Chinmaya Degree College, BHEL, Haridwar, 249403 Uttarakhand, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Krishna Mohan Surapaneni
- Departments of Biochemistry, Molecular Virology, Research, Clinical Skills & Simulation, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, 600 123 Tamil Nadu, India
| |
Collapse
|
13
|
Kumar A, Kumar D, Jose J, Giri R, Mysorekar IU. Drugs to limit Zika virus infection and implication for maternal-fetal health. FRONTIERS IN VIROLOGY 2022; 2. [PMID: 37064602 PMCID: PMC10104533 DOI: 10.3389/fviro.2022.928599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although the placenta has robust defense mechanisms that protect the fetus from a viral infection, some viruses can manipulate or evade these mechanisms and disrupt physiology or cross the placental barrier. It is well established that the Zika virus is capable of vertical transmission from mother to fetus and can cause malformation of the fetal central nervous system (i.e., microcephaly), as well as Guillain-Barre syndrome in adults. This review seeks to gather and assess the contributions of translational research associated with Zika virus infection, including maternal-fetal vertical transmission of the virus. Nearly 200 inhibitors that have been evaluated in vivo and/or in vitro for their therapeutic properties against the Zika virus are summarized in this review. We also review the status of current vaccine candidates. Our main objective is to provide clinically relevant information that can guide future research directions and strategies for optimized treatment and preventive care of infections caused by Zika virus or similar pathogens.
Collapse
Affiliation(s)
- Ankur Kumar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO-Kamand, Mandi, India
| | - Deepak Kumar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, State College, United States
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO-Kamand, Mandi, India
| | - Indira U. Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- CORRESPONDENCE Indira U. Mysorekar,
| |
Collapse
|
14
|
Dengue Virus NS4b N-Terminus Disordered Region Interacts with NS3 Helicase C-Terminal Subdomain to Enhance Helicase Activity. Viruses 2022; 14:v14081712. [PMID: 36016333 PMCID: PMC9412862 DOI: 10.3390/v14081712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Dengue virus replicates its single-stranded RNA genome in membrane-bound complexes formed on the endoplasmic reticulum, where viral non-structural proteins (NS) and RNA co-localize. The NS proteins interact with one another and with the host proteins. The interaction of the viral helicase and protease, NS3, with the RNA-dependent RNA polymerase, NS5, and NS4b proteins is critical for replication. In vitro, NS3 helicase activity is enhanced by interaction with NS4b. We characterized the interaction between NS3 and NS4b and explained a possible mechanism for helicase activity modulation by NS4b. Our bacterial two-hybrid assay results showed that the N-terminal 57 residues region of NS4b is enough to interact with NS3. The molecular docking of the predicted NS4b structure onto the NS3 structure revealed that the N-terminal disordered region of NS4b wraps around the C-terminal subdomain (CTD) of the helicase. Further, NS3 helicase activity is enhanced upon interaction with NS4b. Molecular dynamics simulations on the NS4b-docked NS3 crystal structure and intrinsic tryptophan fluorescence studies suggest that the interaction results in NS3 CTD domain motions. Based on the interpretation of our results in light of the mechanism explained for NS3 helicase, NS4b–NS3 interaction modulating CTD dynamics is a plausible explanation for the helicase activity enhancement.
Collapse
|
15
|
Modulation of Zika virus replication via glycosphingolipids. Virology 2022; 572:17-27. [DOI: 10.1016/j.virol.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022]
|
16
|
Zhang C, Li Y, Samad A, Zheng P, Ji Z, Chen F, Zhang H, Jin T. Structure and mutation analysis of the hexameric P4 from Pseudomonas aeruginosa phage phiYY. Int J Biol Macromol 2022; 194:42-49. [PMID: 34856215 DOI: 10.1016/j.ijbiomac.2021.11.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/27/2022]
Abstract
phiYY is a foremost member of Cystoviridae isolated from Pseudomonas aeruginosa. Its P4 protein with NTPase activity is a molecular motor for their genome packing during viral particle assembly. Previously studies on the P4 from four Pseudomonas phages phi6, phi8, phi12 and phi13 reveal that despite of belonging to the same protein family, they are unique in sequence, structure and biochemical properties. To better understand the structure and function of phiYY P4, four crystal structures of phiYY P4 in apo-form or combined with different ligands were solved at the resolution between 1.85 Å and 2.43 Å, which showed drastic conformation change of the H1 motif in ligand-bound forms compared with in apo-form, a four residue-mutation at the ligand binding pocket abolished its ATPase activity. Furthermore, the truncation mutation of the 50 residues at the C-terminal did not impair the hexamerization and ATP hydrolysis.
Collapse
Affiliation(s)
- Caiying Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yuelong Li
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Abdus Samad
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Peiyi Zheng
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Zheng Ji
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Feng Chen
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; CAS Center for Excellence in Molecular Cell Science, Shanghai, China.
| |
Collapse
|
17
|
Insights on Dengue and Zika NS5 RNA-dependent RNA polymerase (RdRp) inhibitors. Eur J Med Chem 2021; 224:113698. [PMID: 34274831 DOI: 10.1016/j.ejmech.2021.113698] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 11/20/2022]
Abstract
Over recent years, many outbreaks caused by (re)emerging RNA viruses have been reported worldwide, including life-threatening Flaviviruses, such as Dengue (DENV) and Zika (ZIKV). Currently, there is only one licensed vaccine against Dengue, Dengvaxia®. However, its administration is not recommended for children under nine years. Still, there are no specific inhibitors available to treat these infectious diseases. Among the flaviviral proteins, NS5 RNA-dependent RNA polymerase (RdRp) is a metalloenzyme essential for viral replication, suggesting that it is a promising macromolecular target since it has no human homolog. Nowadays, several NS5 RdRp inhibitors have been reported, while none inhibitors are currently in clinical development. In this context, this review constitutes a comprehensive work focused on RdRp inhibitors from natural, synthetic, and even repurposing sources. Furthermore, their main aspects associated with the structure-activity relationship (SAR), proposed mechanisms of action, computational studies, and other topics will be discussed in detail.
Collapse
|
18
|
Molecular Insights into the Flavivirus Replication Complex. Viruses 2021; 13:v13060956. [PMID: 34064113 PMCID: PMC8224304 DOI: 10.3390/v13060956] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Flaviviruses are vector-borne RNA viruses, many of which are clinically relevant human viral pathogens, such as dengue, Zika, Japanese encephalitis, West Nile and yellow fever viruses. Millions of people are infected with these viruses around the world each year. Vaccines are only available for some members of this large virus family, and there are no effective antiviral drugs to treat flavivirus infections. The unmet need for vaccines and therapies against these flaviviral infections drives research towards a better understanding of the epidemiology, biology and immunology of flaviviruses. In this review, we discuss the basic biology of the flavivirus replication process and focus on the molecular aspects of viral genome replication. Within the virus-induced intracellular membranous compartments, flaviviral RNA genome replication takes place, starting from viral poly protein expression and processing to the assembly of the virus RNA replication complex, followed by the delivery of the progeny viral RNA to the viral particle assembly sites. We attempt to update the latest understanding of the key molecular events during this process and highlight knowledge gaps for future studies.
Collapse
|
19
|
Molecular docking and antiviral activities of plant derived compounds against zika virus. Microb Pathog 2020; 149:104540. [PMID: 33045342 DOI: 10.1016/j.micpath.2020.104540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 04/16/2020] [Accepted: 09/28/2020] [Indexed: 01/24/2023]
Abstract
Zika virus (ZIKV), a recently emerged pathogen of the genus flavivirus causes Guillain-Barré syndrome and microcephaly in fetus and newborns . Until date, there are no licensed vaccine or approved drug to treat ZIKV infection. Thus, in this study, 5550 phytochemicals retrieved from various databases were subjected for molecular docking in Discovery studio V.4.0 against the ZIKV helicase protein and envelope protein domain III. In addition, in silico ADMET and Density function theory studies were performed to retain the final hit compounds. Further, four of the identified compounds (eleutheroside B, neoandrographolide, apigenin, and madecassic acid) were tested for in vitro cytotoxicity and antiviral activities against ZIKV. Except madecassic acid, the other three compounds reduced ZIKV infection at non-cytotoxic concentrations. Hence, this study encourages the screening of more phytochemicals against druggable targets of ZIKV to identify new promising drug candidates.
Collapse
|
20
|
SARS-Coronavirus-2 Nsp13 Possesses NTPase and RNA Helicase Activities That Can Be Inhibited by Bismuth Salts. Virol Sin 2020; 35:321-329. [PMID: 32500504 PMCID: PMC7271831 DOI: 10.1007/s12250-020-00242-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022] Open
Abstract
The ongoing outbreak of Coronavirus Disease 2019 (COVID-19) has become a global public health emergency. SARS-coronavirus-2 (SARS-CoV-2), the causative pathogen of COVID-19, is a positive-sense single-stranded RNA virus belonging to the family Coronaviridae. For RNA viruses, virus-encoded RNA helicases have long been recognized to play pivotal roles during viral life cycles by facilitating the correct folding and replication of viral RNAs. Here, our studies show that SARS-CoV-2-encoded nonstructural protein 13 (nsp13) possesses the nucleoside triphosphate hydrolase (NTPase) and RNA helicase activities that can hydrolyze all types of NTPs and unwind RNA helices dependently of the presence of NTP, and further characterize the biochemical characteristics of these two enzymatic activities associated with SARS-CoV-2 nsp13. Moreover, we found that some bismuth salts could effectively inhibit both the NTPase and RNA helicase activities of SARS-CoV-2 nsp13 in a dose-dependent manner. Thus, our findings demonstrate the NTPase and helicase activities of SARS-CoV-2 nsp13, which may play an important role in SARS-CoV-2 replication and serve as a target for antivirals.
Collapse
|
21
|
Yun SI, Song BH, Woolley ME, Frank JC, Julander JG, Lee YM. Development, Characterization, and Application of Two Reporter-Expressing Recombinant Zika Viruses. Viruses 2020; 12:v12050572. [PMID: 32456014 PMCID: PMC7290298 DOI: 10.3390/v12050572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
Zika virus (ZIKV), a mosquito-borne transplacentally transmissible flavivirus, is an enveloped virus with an ~10.8 kb plus-strand RNA genome that can cause neurological disease. To facilitate the identification of potential antivirals, we developed two reporter-expressing ZIKVs, each capable of expressing an enhanced green fluorescent protein or an improved luminescent NanoLuc luciferase. First, a full-length functional ZIKV cDNA clone was engineered as a bacterial artificial chromosome, with each reporter gene under the cap-independent translational control of a cardiovirus-derived internal ribosome entry site inserted downstream of the single open reading frame of the viral genome. Two reporter-expressing ZIKVs were then generated by transfection of ZIKV-susceptible BHK-21 cells with infectious RNAs derived by in vitro run-off transcription from the respective cDNAs. As compared to the parental virus, the two reporter-expressing ZIKVs grew to lower titers with slower growth kinetics and formed smaller foci; however, they displayed a genome-wide viral protein expression profile identical to that of the parental virus, except for two previously unrecognized larger forms of the C and NS1 proteins. We then used the NanoLuc-expressing ZIKV to assess the in vitro antiviral activity of three inhibitors (T-705, NITD-008, and ribavirin). Altogether, our reporter-expressing ZIKVs represent an excellent molecular tool for the discovery of novel antivirals.
Collapse
Affiliation(s)
- Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (S.-I.Y.); (B.-H.S.); (M.E.W.); (J.C.F.); (J.G.J.)
| | - Byung-Hak Song
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (S.-I.Y.); (B.-H.S.); (M.E.W.); (J.C.F.); (J.G.J.)
| | - Michael E. Woolley
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (S.-I.Y.); (B.-H.S.); (M.E.W.); (J.C.F.); (J.G.J.)
| | - Jordan C. Frank
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (S.-I.Y.); (B.-H.S.); (M.E.W.); (J.C.F.); (J.G.J.)
| | - Justin G. Julander
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (S.-I.Y.); (B.-H.S.); (M.E.W.); (J.C.F.); (J.G.J.)
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (S.-I.Y.); (B.-H.S.); (M.E.W.); (J.C.F.); (J.G.J.)
- Veterinary Diagnostics and Infectious Diseases, Utah Science Technology and Research, Utah State University, Logan, UT 84341, USA
- Correspondence: ; Tel.: +1-435-797-9667
| |
Collapse
|
22
|
Kumar D, Sharma N, Aarthy M, Singh SK, Giri R. Mechanistic Insights into Zika Virus NS3 Helicase Inhibition by Epigallocatechin-3-Gallate. ACS OMEGA 2020; 5:11217-11226. [PMID: 32455246 PMCID: PMC7241040 DOI: 10.1021/acsomega.0c01353] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Since 2007, repeated outbreaks of Zika virus (ZIKV) have affected millions of people worldwide and created a global health concern with major complications like microcephaly and Guillain Barre's syndrome. To date, there is not a single Zika-specific licensed drug present in the market. However, in recent months, several antiviral molecules have been screened against ZIKV. Among those, (-)-epigallocatechin-3-gallate (EGCG), a green tea polyphenol, has shown great virucidal potential against flaviviruses including ZIKV. The mechanistic understanding of EGCG-targeting viral proteins is not yet entirely deciphered except that little is known about its interaction with viral envelope protein and viral protease. We designed our current study to find inhibitory actions of EGCG against ZIKV NS3 helicase. NS3 helicase performs a significant role in viral replication by unwinding RNA after hydrolyzing NTP. We employed molecular docking and simulation approach and found significant interactions at the ATPase site and also at the RNA binding site. Further, the enzymatic assay has shown significant inhibition of NTPase activity with an IC50 value of 295.7 nM and Ki of 0.387 ± 0.034 μM. Our study suggests the possibility that EGCG could be considered as a prime backbone molecule for further broad-spectrum inhibitor development against ZIKV and other flaviviruses.
Collapse
Affiliation(s)
- Deepak Kumar
- School
of Basic Sciences, Indian Institute of Technology
Mandi, VPO Kamand, Mandi, Himachal Pradesh 175005, India
| | - Nitin Sharma
- School
of Basic Sciences, Indian Institute of Technology
Mandi, VPO Kamand, Mandi, Himachal Pradesh 175005, India
| | - Murali Aarthy
- Department
of Bioinformatics, Computer Aided Drug Design and Molecular Modeling
Lab, Alagappa University, Science Block, Karaikudi 630003, Tamilnadu, India
| | - Sanjeev Kumar Singh
- Department
of Bioinformatics, Computer Aided Drug Design and Molecular Modeling
Lab, Alagappa University, Science Block, Karaikudi 630003, Tamilnadu, India
| | - Rajanish Giri
- School
of Basic Sciences, Indian Institute of Technology
Mandi, VPO Kamand, Mandi, Himachal Pradesh 175005, India
- BioX
Centre, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| |
Collapse
|
23
|
Gao X, Zhu K, Wojdyla JA, Chen P, Qin B, Li Z, Wang M, Cui S. Crystal structure of the NS3-like helicase from Alongshan virus. IUCRJ 2020; 7:375-382. [PMID: 32431821 PMCID: PMC7201283 DOI: 10.1107/s2052252520003632] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/11/2020] [Indexed: 05/05/2023]
Abstract
Alongshan virus (ALSV) is an emerging human pathogen that was identified in China and rapidly spread to the European continent in 2019, raising concerns about public health. ALSV belongs to the distinct Jingmenvirus group within the Flaviviridae family with segmented RNA genomes. While segments 2 and 4 of the ALSV genome encode the VP1-VP3 proteins of unknown origin, segments 1 and 3 encode the NS2b-NS3 and NS5 proteins, which are related to Flavivirus nonstructural proteins, suggesting an evolutionary link between segmented and unsegmented viruses within the Flaviviridae family. Here, the enzymatic activity of the ALSV NS3-like helicase (NS3-Hel) was characterized and its crystal structure was determined to 2.9 Å resolution. ALSV NS3-Hel exhibits an ATPase activity that is comparable to those measured for Flavivirus NS3 helicases. The structure of ALSV NS3-Hel exhibits an overall fold similar to those of Flavivirus NS3 helicases. Despite the limited amino-acid sequence identity between ALSV NS3-Hel and Flavivirus NS3 helicases, structural features at the ATPase active site and the RNA-binding groove remain conserved in ALSV NS3-Hel. These findings provide a structural framework for drug design and suggest the possibility of developing a broad-spectrum antiviral drug against both Flavivirus and Jingmenvirus.
Collapse
Affiliation(s)
- Xiaopan Gao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People’s Republic of China
| | - Kaixiang Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People’s Republic of China
| | | | - Pu Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People’s Republic of China
| | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People’s Republic of China
| | - Ziheng Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People’s Republic of China
| | - Meitian Wang
- Swiss Light Source at the Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People’s Republic of China
| |
Collapse
|
24
|
Chen H, Lao Z, Xu J, Li Z, Long H, Li D, Lin L, Liu X, Yu L, Liu W, Li G, Wu J. Antiviral activity of lycorine against Zika virus in vivo and in vitro. Virology 2020; 546:88-97. [PMID: 32452420 PMCID: PMC7194111 DOI: 10.1016/j.virol.2020.04.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/09/2022]
Abstract
The emergence and re-emergence of Zika virus (ZIKV), is a cause for international concern. These highly pathogenic arboviruses represent a serious health burden in tropical and subtropical areas worldwide. Despite these burdens, antiviral therapies do not exist, and inhibitors of ZIKV are therefore urgently needed. To elucidate the anti-ZIKV effect of lycorine, we used reverse transcription-quantitative real-time PCR (qRT-PCR), immunofluorescence, Westernwestern blot, and plaque forming assay to analyse viral RNA (vRNA), viral protein, progeny virus counts, and validated inhibitors in vitro using a variety of cell lines. Additionally, we found that lycorine acts post-infection according to time-of-addition assay, and inhibits RdRp activity. Lycorine protected AG6 mice against ZIKV-induced lethality by decreasing the viral load in the blood. Due to its potency and ability to target ZIKV infection in vivo and in vitro, lycorine might offer promising therapeutic possibilities for combatting ZIKV infections in the future.
Collapse
Affiliation(s)
- Huini Chen
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China
| | - Zizhao Lao
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jiangtao Xu
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhaoxin Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Haishan Long
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Detang Li
- Department of Pharmacy, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Luping Lin
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, China
| | - Xiaohong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Liangwen Yu
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Weiyong Liu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Geng Li
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China; Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jianguo Wu
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
25
|
Davidson RB, Hendrix J, Geiss BJ, McCullagh M. RNA-Dependent Structures of the RNA-Binding Loop in the Flavivirus NS3 Helicase. J Phys Chem B 2020; 124:2371-2381. [PMID: 32105483 DOI: 10.1021/acs.jpcb.0c00457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The flavivirus NS3 protein is a helicase that has pivotal functions during the viral genome replication process, where it unwinds double-stranded RNA and translocates along the nucleic acid polymer in a nucleoside triphosphate hydrolysis-dependent mechanism. Crystallographic and computational studies of the flavivirus NS3 helicase have identified the RNA-binding loop as an interesting structural element that may function as a component of the RNA-enhanced NTPase activity observed for this family of helicases. Microsecond-long unbiased molecular dynamics and extensive replica exchange umbrella sampling simulations of the Zika NS3 helicase have been performed to investigate the RNA dependence of this loop's structural conformations. Specifically, the effect of the bound single-stranded RNA (ssRNA) oligomer on the putative "open" and "closed" conformations of this loop is studied. In the Apo substrate state, the two loop conformations are nearly isoergonic (ΔAO→C = -0.22 kcal mol-1), explaining the structural ambiguity observed in Apo NS3h crystal structures. The bound ssRNA is seen to stabilize the "open" conformation (ΔAO→C = 1.97 kcal mol-1) through direct protein-RNA interactions at the top of the loop. Interestingly, a small ssRNA oligomer bound over 13 Å away from the loop is seen to affect the free energy surface to favor the "open" structure, while minimizing barriers between the two states. Both the mechanism of the "open" to "closed" transition and important residues of the RNA-binding loop structures are characterized. From these results, point mutations that are hypothesized to stabilize the "closed" RNA-binding loop and negatively impact RNA-binding and the RNA-enhanced NTPase activity are posited.
Collapse
Affiliation(s)
- Russell B Davidson
- Department of Chemistry, Colorado State University, Fort Collins 80523, Colorado, United States
| | - Josie Hendrix
- Department of Chemistry, Colorado State University, Fort Collins 80523, Colorado, United States
| | - Brian J Geiss
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins 80523, Colorado, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins 80523, Colorado, United States
| | - Martin McCullagh
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74074, United States
| |
Collapse
|
26
|
Abstract
Zika virus (ZIKV) was once considered an obscure member of the large and diverse family of mosquito-borne flaviviruses, and human infections with ZIKV were thought to be sporadic, with mild and self-limiting symptoms. The large-scale ZIKV epidemics in the Americas and the unexpected uncovering of a link to congenital birth defects escalated ZIKV infections to the status of a global public health emergency. Recent studies that combined reverse genetics with modelling in multiple systems have provided evidence that ZIKV has acquired additional amino acid substitutions at the same time as congenital Zika syndrome and other birth defects were detected. In this Progress article, we summarize the evolution of ZIKV during its spread from Asia to the Americas and discuss potential links to pathogenesis.
Collapse
|
27
|
Mayank, Kumar D, Kaur N, Giri R, Singh N. A biscoumarin scaffold as an efficient anti-Zika virus lead with NS3-helicase inhibitory potential: in vitro and in silico investigations. NEW J CHEM 2020. [DOI: 10.1039/c9nj05225a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Competitive NTPase inhibition and the potential binding to the RNA binding pocket of Zika NS3-helicase were observed using biscoumarin derivatives. The SAR was established, and MN-9 and MN-10 were identified as potent anti-Zika leads.
Collapse
Affiliation(s)
- Mayank
- Department of Chemistry, Indian Institute of Technology Ropar
- India
| | - Deepak Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi
- India
| | | | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi
- India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar
- India
| |
Collapse
|
28
|
Shu T, Gan T, Bai P, Wang X, Qian Q, Zhou H, Cheng Q, Qiu Y, Yin L, Zhong J, Zhou X. Ebola virus VP35 has novel NTPase and helicase-like activities. Nucleic Acids Res 2019; 47:5837-5851. [PMID: 31066445 PMCID: PMC6582406 DOI: 10.1093/nar/gkz340] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/21/2019] [Accepted: 04/25/2019] [Indexed: 12/13/2022] Open
Abstract
Ebola virus (EBOV) is a non-segmented, negative-sense RNA virus (NNSV) in the family Filoviridae, and is recognized as one of the most lethal pathogens in the planet. For RNA viruses, cellular or virus-encoded RNA helicases play pivotal roles in viral life cycles by remodelling viral RNA structures and/or unwinding viral dsRNA produced during replication. However, no helicase or helicase-like activity has ever been found to associate with any NNSV-encoded proteins, and it is unknown whether the replication of NNSVs requires the participation of any viral or cellular helicase. Here, we show that despite of containing no conserved NTPase/helicase motifs, EBOV VP35 possesses the NTPase and helicase-like activities that can hydrolyse all types of NTPs and unwind RNA helices in an NTP-dependent manner, respectively. Moreover, guanidine hydrochloride, an FDA-approved compound and inhibitor of certain viral helicases, inhibited the NTPase and helicase-like activities of VP35 as well as the replication/transcription of an EBOV minigenome replicon in cells, highlighting the importance of VP35 helicase-like activity during EBOV life cycle. Together, our findings provide the first demonstration of the NTPase/helicase-like activity encoded by EBOV, and would foster our understanding of EBOV and NNSVs.
Collapse
Affiliation(s)
- Ting Shu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Tianyu Gan
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, CAS, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Bai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiaotong Wang
- University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430071, China.,Wuhan National Biosafety Laboratory, Mega-Science Center for Bio-Safety Research, CAS, Wuhan, Hubei 430071, China
| | - Qi Qian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430071, China.,Wuhan National Biosafety Laboratory, Mega-Science Center for Bio-Safety Research, CAS, Wuhan, Hubei 430071, China
| | - Hui Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430071, China.,Wuhan National Biosafety Laboratory, Mega-Science Center for Bio-Safety Research, CAS, Wuhan, Hubei 430071, China
| | - Qi Cheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yang Qiu
- University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430071, China.,Wuhan National Biosafety Laboratory, Mega-Science Center for Bio-Safety Research, CAS, Wuhan, Hubei 430071, China
| | - Lei Yin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Jin Zhong
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, CAS, Shanghai 200031, China.,Wuhan National Biosafety Laboratory, Mega-Science Center for Bio-Safety Research, CAS, Wuhan, Hubei 430071, China
| | - Xi Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430071, China.,Wuhan National Biosafety Laboratory, Mega-Science Center for Bio-Safety Research, CAS, Wuhan, Hubei 430071, China
| |
Collapse
|
29
|
Khade PM, Kumar A, Jernigan RL. Characterizing and Predicting Protein Hinges for Mechanistic Insight. J Mol Biol 2019; 432:508-522. [PMID: 31786268 DOI: 10.1016/j.jmb.2019.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/01/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022]
Abstract
The functioning of proteins requires highly specific dynamics, which depend critically on the details of how amino acids are packed. Hinge motions are the most common type of large motion, typified by the opening and closing of enzymes around their substrates. The packing and geometries of residues are characterized here by graph theory. This characterization is sufficient to enable reliable hinge predictions from a single static structure, and notably, this can be from either the open or the closed form of a structure. This new method to identify hinges within protein structures is called PACKMAN. The predicted hinges are validated by using permutation tests on B-factors. Hinge prediction results are compared against lists of manually curated hinge residues, and the results suggest that PACKMAN is robust enough to reproduce the known conformational changes and is able to predict hinge regions equally well from either the open or the closed forms of a protein. A group of 167 protein pairs with open and closed structures has been investigated Examples are shown for several additional proteins, including Zika virus nonstructured (NS) proteins where there are 6 hinge regions in the NS5 protein, 5 hinge regions in the NS2B bound in the NS3 protease complex and 5 hinges in the NS3- helicase protein. Results obtained from this method can be important for generating conformational ensembles of protein targets for drug design. PACKMAN is freely accessible at (https://PACKMAN.bb.iastate.edu/).
Collapse
Affiliation(s)
- Pranav M Khade
- Bioinformatics and Computational Biology Program, Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Ambuj Kumar
- Bioinformatics and Computational Biology Program, Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Robert L Jernigan
- Bioinformatics and Computational Biology Program, Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
30
|
Kumar D, Aarthy M, Kumar P, Singh SK, Uversky VN, Giri R. Targeting the NTPase site of Zika virus NS3 helicase for inhibitor discovery. J Biomol Struct Dyn 2019; 38:4827-4837. [DOI: 10.1080/07391102.2019.1689851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Deepak Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Murali Aarthy
- Department of Bioinformatics, Computer Aided Drug Design and Molecular Modeling Lab, Alagappa University, Karaikudi, Tamilnadu
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Sanjeev Kumar Singh
- Department of Bioinformatics, Computer Aided Drug Design and Molecular Modeling Lab, Alagappa University, Karaikudi, Tamilnadu
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Moscow, Russia
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
- BioX Centre, Indian Institute of Technology Mandi, Mandi, India
| |
Collapse
|
31
|
Xing H, Xu S, Jia F, Yang Y, Xu C, Qin C, Shi L. Zika NS2B is a crucial factor recruiting NS3 to the ER and activating its protease activity. Virus Res 2019; 275:197793. [PMID: 31676367 DOI: 10.1016/j.virusres.2019.197793] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 01/10/2023]
Abstract
Zika virus (ZIKV) is an emergent flavivirus associated with severe neurological disorders. ZIKV NS3 protein is a viral protease that cleaves the ZIKV polyprotein precursor into individual viral proteins. In this study, we found that ZIKV NS3 by itself exhibited mitochondrial localization, which was quite different from its endoplasmic reticulum (ER) localization in ZIKV-infected cells. We screened viral proteins and identified NS2B as the bona fide recruiter of NS3 to the ER. The NS2B C-terminal tail interacted with NS3 protease domain to retain NS3 on the ER. β-Sheet motifs that formed between NS2B and the NS3 protease domain played important roles in their interaction, while mutation in the β-strand of NS2B attenuated NS2B-NS3 interaction and impaired the ability of NS3 protease to cleave the polyprotein precursor into multiple viral proteins. Consequently, NS2B mutations led to severe inhibition of ZIKV replication and production due to insufficient NS3 protease activity. In summary, our study reveals the critical role of NS2B in NS3 recruitment and protease function and provides mechanistic insight into ZIKV replication.
Collapse
Affiliation(s)
- Huaipeng Xing
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Shan Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Fangfei Jia
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Yang Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Caimin Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Chengfeng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100005, China.
| | - Lei Shi
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
32
|
Basak SC, Majumdar S, Nandy A, Roy P, Dutta T, Vracko M, Bhattacharjee AK. Computer-Assisted and Data Driven Approaches for Surveillance, Drug Discovery, and Vaccine Design for the Zika Virus. Pharmaceuticals (Basel) 2019; 12:E157. [PMID: 31623241 PMCID: PMC6958466 DOI: 10.3390/ph12040157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
Human life has been at the edge of catastrophe for millennia due diseases which emerge and reemerge at random. The recent outbreak of the Zika virus (ZIKV) is one such menace that shook the global public health community abruptly. Modern technologies, including computational tools as well as experimental approaches, need to be harnessed fast and effectively in a coordinated manner in order to properly address such challenges. In this paper, based on our earlier research, we have proposed a four-pronged approach to tackle the emerging pathogens like ZIKV: (a) Epidemiological modelling of spread mechanisms of ZIKV; (b) assessment of the public health risk of newly emerging strains of the pathogens by comparing them with existing strains/pathogens using fast computational sequence comparison methods; (c) implementation of vaccine design methods in order to produce a set of probable peptide vaccine candidates for quick synthesis/production and testing in the laboratory; and (d) designing of novel therapeutic molecules and their laboratory testing as well as validation of new drugs or repurposing of drugs for use against ZIKV. For each of these stages, we provide an extensive review of the technical challenges and current state-of-the-art. Further, we outline the future areas of research and discuss how they can work together to proactively combat ZIKV or future emerging pathogens.
Collapse
Affiliation(s)
- Subhash C Basak
- Department of Chemistry and Biochemistry, University of Minnesota, Duluth, MN 55812, USA.
| | | | - Ashesh Nandy
- Centre for Interdisciplinary Research and Education, Kolkata 700068, India.
| | - Proyasha Roy
- Centre for Interdisciplinary Research and Education, Kolkata 700068, India.
| | - Tathagata Dutta
- Centre for Interdisciplinary Research and Education, Kolkata 700068, India.
| | - Marjan Vracko
- National Institute of Chemistry, Hajdrihova 19, Ljubljana 1000, Slovenia.
| | - Apurba K Bhattacharjee
- Biomedical Graduate Research Organization, Department of Microbiology and Immunology School of Medicine, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
33
|
Duan Y, Zeng M, Jiang B, Zhang W, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Liu Y, Zhang L, Yu Y, Pan L, Chen S, Cheng A. Flavivirus RNA-Dependent RNA Polymerase Interacts with Genome UTRs and Viral Proteins to Facilitate Flavivirus RNA Replication. Viruses 2019; 11:v11100929. [PMID: 31658680 PMCID: PMC6832647 DOI: 10.3390/v11100929] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
Flaviviruses, most of which are emerging and re-emerging human pathogens and significant public health concerns worldwide, are positive-sense RNA viruses. Flavivirus replication occurs on the ER and is regulated by many mechanisms and factors. NS5, which consists of a C-terminal RdRp domain and an N-terminal methyltransferase domain, plays a pivotal role in genome replication and capping. The C-terminal RdRp domain acts as the polymerase for RNA synthesis and cooperates with diverse viral proteins to facilitate productive RNA proliferation within the replication complex. Here, we provide an overview of the current knowledge of the functions and characteristics of the RdRp, including the subcellular localization of NS5, as well as the network of interactions formed between the RdRp and genome UTRs, NS3, and the methyltransferase domain. We posit that a detailed understanding of RdRp functions may provide a target for antiviral drug discovery and therapeutics.
Collapse
Affiliation(s)
- YanPing Duan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
| | - Miao Zeng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
| | - Bowen Jiang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
| | - Wei Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, China.
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, China.
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, China.
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, China.
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, China.
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, China.
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, China.
| | - ShaQiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, China.
| | - YunYa Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
| | - YanLing Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
| | - Leichang Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, China.
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, China.
| |
Collapse
|
34
|
Xu S, Ci Y, Wang L, Yang Y, Zhang L, Xu C, Qin C, Shi L. Zika virus NS3 is a canonical RNA helicase stimulated by NS5 RNA polymerase. Nucleic Acids Res 2019; 47:8693-8707. [PMID: 31361901 PMCID: PMC6895266 DOI: 10.1093/nar/gkz650] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 01/19/2023] Open
Abstract
Zika virus is a positive single-strand RNA virus whose replication involved RNA unwinding and synthesis. ZIKV NS3 contains a helicase domain, but its enzymatic activity is not fully characterized. Here, we established a dsRNA unwinding assay based on the FRET effect to study the helicase activity of ZIKV NS3, which provided kinetic information in real time. We found that ZIKV NS3 specifically unwound dsRNA/dsDNA with a 3' overhang in the 3' to 5' direction. The RNA unwinding ability of NS3 significantly decreased when the duplex was longer than 18 base pairs. The helicase activity of NS3 depends on ATP hydrolysis and binding to RNA. Mutations in the ATP binding region or the RNA binding region of NS3 impair its helicase activity, thus blocking viral replication in the cell. Furthermore, we showed that ZIKV NS5 interacted with NS3 and stimulated its helicase activity. Disrupting NS3-NS5 interaction resulted in a defect in viral replication, revealing the tight coupling of RNA unwinding and synthesis. We suggest that NS3 helicase activity is stimulated by NS5; thus, viral replication can be carried out efficiently. Our work provides a molecular mechanism of ZIKV NS3 unwinding and novel insights into ZIKV replication.
Collapse
MESH Headings
- Adenosine Triphosphate/chemistry
- Adenosine Triphosphate/metabolism
- Animals
- Binding Sites
- Chlorocebus aethiops
- Cloning, Molecular
- Cricetulus
- Epithelial Cells/virology
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Gene Expression Regulation, Viral
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Kinetics
- Models, Molecular
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Structure, Tertiary
- RNA Helicases/chemistry
- RNA Helicases/genetics
- RNA Helicases/metabolism
- RNA, Double-Stranded/chemistry
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Serine Endopeptidases/chemistry
- Serine Endopeptidases/genetics
- Serine Endopeptidases/metabolism
- Substrate Specificity
- Vero Cells
- Viral Nonstructural Proteins/chemistry
- Viral Nonstructural Proteins/genetics
- Viral Nonstructural Proteins/metabolism
- Zika Virus/genetics
- Zika Virus/metabolism
Collapse
Affiliation(s)
- Shan Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yali Ci
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Leijie Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yang Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Leiliang Zhang
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | - Caimin Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Chengfeng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Lei Shi
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
35
|
Felisberto-Rodrigues C, Thomas JC, McAndrew C, Le Bihan YV, Burke R, Workman P, van Montfort RLM. Structural and functional characterisation of human RNA helicase DHX8 provides insights into the mechanism of RNA-stimulated ADP release. Biochem J 2019; 476:2521-2543. [PMID: 31409651 DOI: 10.1042/bcj20190383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 01/04/2023]
Abstract
DHX8 is a crucial DEAH-box RNA helicase involved in splicing and required for the release of mature mRNA from the spliceosome. Here, we report the biochemical characterisation of full-length human DHX8 and the catalytically active helicase core DHX8Δ547, alongside crystal structures of DHX8Δ547 bound to ADP and a structure of DHX8Δ547 bound to poly(A)6 single-strand RNA. Our results reveal that DHX8 has an in vitro binding preference for adenine-rich RNA and that RNA binding triggers the release of ADP through significant conformational flexibility in the conserved DEAH-, P-loop and hook-turn motifs. We demonstrate the importance of R620 and both the hook-turn and hook-loop regions for DHX8 helicase activity and propose that the hook-turn acts as a gatekeeper to regulate the directional movement of the 3' end of RNA through the RNA-binding channel. This study provides an in-depth understanding of the activity of DHX8 and contributes insights into the RNA-unwinding mechanisms of the DEAH-box helicase family.
Collapse
Affiliation(s)
- Catarina Felisberto-Rodrigues
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, U.K
- Division of Structural Biology, The Institute of Cancer Research, London SW3 6JB, U.K
| | - Jemima C Thomas
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, U.K
| | - Craig McAndrew
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, U.K
| | - Yann-Vaï Le Bihan
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, U.K
- Division of Structural Biology, The Institute of Cancer Research, London SW3 6JB, U.K
| | - Rosemary Burke
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, U.K
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, U.K
| | - Rob L M van Montfort
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, U.K.
- Division of Structural Biology, The Institute of Cancer Research, London SW3 6JB, U.K
| |
Collapse
|
36
|
Ren J, Lee H, Kotak A, Johnson ME. MD simulations reveal alternate conformations of the oxyanion hole in the Zika virus NS2B/NS3 protease. Proteins 2019; 88:345-354. [PMID: 31461176 DOI: 10.1002/prot.25809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/02/2019] [Accepted: 08/19/2019] [Indexed: 12/29/2022]
Abstract
Recent crystallography studies have shown that the binding site oxyanion hole plays an important role in inhibitor binding, but can exist in two conformations (active/inactive). We have undertaken molecular dynamics (MD) calculations to better understand oxyanion hole dynamics and thermodynamics. We find that the Zika virus (ZIKV) NS2B/NS3 protease maintains a stable closed conformation over multiple 100-ns conventional MD simulations in both the presence and absence of inhibitors. The S1, S2, and S3 pockets are stable as well. However, in two of eight simulations, the A132-G133 peptide bond in the binding pocket of S1' spontaneously flips to form a 310 -helix that corresponds to the inactive conformation of the oxyanion hole, and then maintains this conformation until the end of the 100-ns conventional MD simulations without inversion of the flip. This conformational change affects the S1' pocket in ZIKV NS2B/NS3 protease active site, which is important for small molecule binding. The simulation results provide evidence at the atomic level that the inactive conformation of the oxyanion hole is more favored energetically when no specific interactions are formed between substrate/inhibitor and oxyanion hole residues. Interestingly, however, transition between the active and inactive conformation of the oxyanion hole can be observed by boosting the valley potential in accelerated MD simulations. This supports a proposed induced-fit mechanism of ZIKV NS2B/NS3 protease from computational methods and provides useful direction to enhance inhibitor binding predictions in structure-based drug design.
Collapse
Affiliation(s)
- Jinhong Ren
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Hyun Lee
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois.,Research Resource Center Biophysics Core, University of Illinois at Chicago, Chicago, Illinois.,Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois
| | - Alpa Kotak
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Michael E Johnson
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois.,Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
37
|
Valente AP, Moraes AH. Zika virus proteins at an atomic scale: how does structural biology help us to understand and develop vaccines and drugs against Zika virus infection? J Venom Anim Toxins Incl Trop Dis 2019; 25:e20190013. [PMID: 31523227 PMCID: PMC6727858 DOI: 10.1590/1678-9199-jvatitd-2019-0013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In Brazil and in other tropical areas Zika virus infection was directly associated with clinical complications as microcephaly in newborn children whose mothers were infected during pregnancy and the Guillain-Barré syndrome in adults. Recently, research has been focused on developing new vaccines and drug candidates against Zika virus infection since none of those are available. In order to contribute to vaccine and drug development efforts, it becomes important the understanding of the molecular basis of the Zika virus recognition, infection and blockade. To this purpose, it is essential the structural determination of the Zika virus proteins. The genome sequencing of the Zika virus identified ten proteins, being three structural (protein E, protein C and protein prM) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5). Together, these proteins are the main targets for drugs and antibody recognition. Here we examine new discoveries on high-resolution structural biology of Zika virus, observing the interactions and functions of its proteins identified via state-of-art structural methodologies as X-ray crystallography, nuclear magnetic resonance spectroscopy and cryogenic electronic microscopy. The aim of the present study is to contribute to the understanding of the structural basis of Zika virus infection at an atomic level and to point out similarities and differences to others flaviviruses.
Collapse
Affiliation(s)
- Ana Paula Valente
- National Center of Magnetic Resonance, Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Adolfo Henrique Moraes
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
38
|
Palmatine inhibits Zika virus infection by disrupting virus binding, entry, and stability. Biochem Biophys Res Commun 2019; 518:732-738. [PMID: 31472967 DOI: 10.1016/j.bbrc.2019.08.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022]
Abstract
Zika virus (ZIKV) is an emerging vector-borne virus that is associated with severe congenital cerebral anomalies in fetuses and paralytic Guillain-Barré syndrome in adults. In the current global health crisis, there are no vaccines or therapeutics available for the treatment of ZIKV infection. In the present study, we evaluated the efficacy of the protoberberine alkaloid, palmatine, in inhibiting ZIKV and Japanese encephalitis virus (JEV). Palmatine was shown to bind to restricted viruses, inhibit ZIKV infection, and resist ZIKV-induced cytopathic effects. Palmatine was also shown to inhibit JEV infection in multiple cell lines. Overall, the effects of palmatine in disrupting ZIKV binding, entry, and stability indicate that this small molecule would be a good starting point for the development of treatments aimed at inhibiting ZIKV infection.
Collapse
|
39
|
Rassias G, Zogali V, Swarbrick CMD, Ki Chan KW, Chan SA, Gwee CP, Wang S, Kaplanai E, Canko A, Kiousis D, Lescar J, Luo D, Matsoukas MT, Vasudevan SG. Cell-active carbazole derivatives as inhibitors of the zika virus protease. Eur J Med Chem 2019; 180:536-545. [PMID: 31344613 DOI: 10.1016/j.ejmech.2019.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 11/29/2022]
Abstract
Zika virus (ZIKV) infection recently resulted in an international health emergency the Americas in and despite its high profile there is currently no approved treatment for ZIKV infection with millions of people being at risk. ZIKV is a member of Flaviviridae family which includes prominent members such as dengue virus (DENV) and West Nile virus (WNV). One of the best validated targets for developing anti-flaviviral treatment for DENV and WNV infection is the NS2B/NS3 protease. However the inhibitors reported to date have shown limited promise for further clinical development largely due to poor cellular activity. Prompted by the conserved nature of the viral NS2B/NS3 protease across flaviviruses, we envisaged that small molecule inhibitors of the ZIKVpro may be developed by applying rational design on previously reported scaffolds with demonstrated activity against other flaviviral proteases. Starting with an earlier WNVpro hit we performed a scaffold hopping exercise and discovered that certain carbazole derivatives bearing amidine groups possessed submicromolar potency and significant cellular activity against ZIKV. We successfully addressed various issues with the synthesis of novel N-substituted carbazole-based amidines thus permitting a targeted SAR campaign. The in vitro biochemical and cell-based inhibitory profiles exhibited by the lead molecule described in this work (ZIKVpro IC50 0.52 μM, EC50 1.25 μM), is among the best reported to date. Furthermore, these molecules possess capacity for further optimization of pharmacokinetics and may evolve to broad spectrum flaviviral protease inhibitors.
Collapse
Affiliation(s)
- Gerasimos Rassias
- Department of Chemistry, University of Patras, Patra, 26504, Greece.
| | - Vasiliki Zogali
- Department of Chemistry, University of Patras, Patra, 26504, Greece
| | - Crystall M D Swarbrick
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road 169857, Singapore; Institute for Glycomics, Griffith University, Gold Coast Campus, Australia
| | - Kitti Wing Ki Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road 169857, Singapore
| | - Shu Ann Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road 169857, Singapore
| | - Chin Piaw Gwee
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road 169857, Singapore
| | - Sai Wang
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road 169857, Singapore
| | - Entzy Kaplanai
- Department of Chemistry, University of Patras, Patra, 26504, Greece
| | - Aleksander Canko
- Department of Chemistry, University of Patras, Patra, 26504, Greece
| | | | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road 169857, Singapore.
| |
Collapse
|
40
|
Hu Y, Sun L. Systematic Analysis of Structure Similarity between Zika Virus and Other Flaviviruses. ACS Infect Dis 2019; 5:1070-1080. [PMID: 31038920 DOI: 10.1021/acsinfecdis.9b00047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Zika virus (ZIKV) infection has caused global concern because of its association with fetal microcephaly and serious neurological complications in adults since 2016. Currently, no specific anti-ZIKV therapy is available to control ZIKV infection. During the last couple of years, the intensive investigation of ZIKV structure has provided significant information for structure-based vaccine and drug design. In this review, we summarized the research progress on the structures of ZIKV and its component proteins. We analyzed the structure identity and the differences between ZIKV and other flaviviruses. This information is crucial to guiding structure-based anti-ZIKV inhibitors and vaccine discovery.
Collapse
Affiliation(s)
- Yuxia Hu
- The Fifth People’s Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 20032, China
| | - Lei Sun
- The Fifth People’s Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 20032, China
| |
Collapse
|
41
|
Faizan MI, Naqvi AT, Hassan MI, Abdullah M, Tazeen A, Shafat Z, Hisamuddin M, Alam A, Ali S, Ali S, Farooqui A, Hamza A, Parveen N, Deeba F, Ahmed A, Parveen S. Structure Based Identification of Potential Inhibitors of NS3 Protein of Zika Virus. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180821105012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:The re-emerging Zika virus has posed a serious threat to human health due to its association with the neurological disorders. The NS3 protein of Zika virus plays a pivotal role in the genome replication and thus may prove to be a critical target for the drug designing studies.Objective:The present study was conceptualized to analyze the crystal structure of NS3 protein of Zika virus followed by the identification of it’s potential inhibitors.Methods:Crystal structure of the NS3 protein was evaluated in detail. Docking of the NS3 protein was done with 130 different ligands including dengue virus inhibitors and their similar compounds along with some approved drugs. The drug likeliness properties were checked for non drug compounds.Results:Structural analysis of the NS3 protein revealed three important sites namely ATP- and RNAbinding sites as well as a central cavity. The selected ten ligands (ZINC05487635, ZINC0092398, ZINC13345444, 4-methoxyphenyl 4-chloro-3-nitrobenzoate, Luteolin, Ivermectin, Suramin, Dasatinib, Panduratin A, and ARDP0009) showed a higher binding affinity for the NS3 protein and good drug likeliness properties.Conclusion:These inhibitors could possibly act as potential lead molecules for future drug designing studies. Our present computational data is envisaged to be useful for gathering experimental evidences towards the development of potential therapeutic molecules against this arthropod mediated pathogen.
Collapse
Affiliation(s)
- Md. Imam Faizan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Abu Turab Naqvi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohd. Abdullah
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ayesha Tazeen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Zoya Shafat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Malik Hisamuddin
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Aftab Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Shahnawaz Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sher Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anam Farooqui
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Abu Hamza
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Nazish Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Farah Deeba
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anwar Ahmed
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
42
|
Saw WG, Chan KWK, Vasudevan SG, Grüber G. Zika virus nonstructural protein 5 residue R681 is critical for dimer formation and enzymatic activity. FEBS Lett 2019; 593:1272-1291. [PMID: 31090058 DOI: 10.1002/1873-3468.13437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 11/07/2022]
Abstract
Zika virus (ZIKV) relies on its nonstructural protein 5 (NS5) for capping and synthesis of the viral RNA. Recent small-angle X-ray scattering (SAXS) data of recombinant ZIKV NS5 protein showed that it is dimeric in solution. Here, we present insights into the critical residues responsible for its dimer formation. SAXS studies of the engineered ZIKV NS5 mutants revealed that R681A mutation on NS5 (NS5R681A ) disrupts the dimer formation and affects its RNA-dependent RNA polymerase activity as well as the subcellular localization of NS5R681A in mammalian cells. The critical residues involved in the dimer arrangement of ZIKV NS5 are discussed, and the data provide further insights into the diversity of flaviviral NS5 proteins in terms of their propensity for oligomerization.
Collapse
Affiliation(s)
- Wuan-Geok Saw
- Nanyang Technological University, School of Biological Sciences, Singapore
| | - Kitti Wing-Ki Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gerhard Grüber
- Nanyang Technological University, School of Biological Sciences, Singapore
| |
Collapse
|
43
|
Badshah SL, Ahmad N, Ur Rehman A, Khan K, Ullah A, Alsayari A, Muhsinah AB, N Mabkhot Y. Molecular docking and simulation of Zika virus NS3 helicase. BMC Chem 2019; 13:67. [PMID: 31384814 PMCID: PMC6661806 DOI: 10.1186/s13065-019-0582-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/02/2019] [Indexed: 02/06/2023] Open
Abstract
The Zika virus (ZIKV) has gained attention for the last few years due to the congenital microcephaly and Guillain–Barre Syndrome that resulted in humans. The non-structural protein-3 (NS3) helicase of ZIKV play an important role in viral RNA replication. In this article, we performed hundred nanosecond molecular dynamics simulation and molecular docking of the NS3 helicase of ZIKV with 1,4-benzothiazine derivatives. The root mean square deviation (RMSD) analyses showed the stability of the NS3 helicase. The simulation showed that the flexible and rigid domains of the protein play a crucial role during the RNA replication process. All such domains with ligand binding pockets can be targeted for drug design. The molecular docking showed that the strong hydrogen bonding and arene-cation interactions are responsible for the binding between NS3 and 1,4-benzothiazine derivatives, which provides a new dimension for potent drug design for ZIKV.
Collapse
Affiliation(s)
- Syed Lal Badshah
- 1Department of Chemistry, Islamia College University, Peshawar, Khyber Pakhtunkhwa Pakistan
| | - Nasir Ahmad
- 1Department of Chemistry, Islamia College University, Peshawar, Khyber Pakhtunkhwa Pakistan
| | - Ashfaq Ur Rehman
- 2State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Khalid Khan
- 1Department of Chemistry, Islamia College University, Peshawar, Khyber Pakhtunkhwa Pakistan
| | - Asad Ullah
- 1Department of Chemistry, Islamia College University, Peshawar, Khyber Pakhtunkhwa Pakistan
| | - Abdulrhman Alsayari
- 3Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529 Saudi Arabia
| | - Abdullatif Bin Muhsinah
- 3Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529 Saudi Arabia
| | - Yahia N Mabkhot
- 4Department of Pharmaceutical Chemistry, College of Pharamacy, King Khalid University, Abha, 61441 Saudi Arabia
| |
Collapse
|
44
|
Discovery and Computational Analyses of Novel Small Molecule Zika Virus Inhibitors. Molecules 2019; 24:molecules24081465. [PMID: 31013906 PMCID: PMC6514826 DOI: 10.3390/molecules24081465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/04/2019] [Accepted: 04/12/2019] [Indexed: 01/19/2023] Open
Abstract
Zika virus (ZIKV), one of the flaviviruses, has attracted worldwide attention since its large epidemics around Brazil. Association of ZIKV infection with microcephaly and neurological problems such as Guillain–Barré syndrome has prompted intensive pathological investigations. However, there is still a long way to go on the discovery of effective anti-ZIKV therapeutics. In this study, an in silico screening of the National Cancer Institute (NCI) diversity set based on ZIKV NS3 helicase was performed using a molecular docking approach. Selected compounds with drug-like properties were subjected to cell-based antiviral assays resulting in the identification of two novel lead compounds (named Compounds 1 and 2). They inhibited ZIKV infection with IC50 values at the micro-molar level (8.5 μM and 15.2 μM, respectively). Binding mode analysis, absolute binding free energy calculation, and structure–activity relationship studies of these two compounds revealed their possible interactions with ZIKV NS3 helicase, suggesting a mechanistic basis for further optimization. These two novel small molecules may represent new leads for the development of inhibitory drugs against ZIKV.
Collapse
|
45
|
Zou J, Shi PY. Strategies for Zika drug discovery. Curr Opin Virol 2019; 35:19-26. [PMID: 30852345 DOI: 10.1016/j.coviro.2019.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/15/2022]
Abstract
Zika virus (ZIKV) can cause devastating congenital syndrome in fetuses from pregnant women and autoimmune disorder Guillain-Barré syndrome in adults. No clinically approved vaccine or drug is currently available for ZIKV. This unmet medical need has motivated a global effort to develop countermeasures. Several promising ZIKV vaccine candidates have already entered clinical trials. In contrast, antiviral development of ZIKV is lagging behind. Here, we review the overall strategies for ZIKV drug discovery, including (i) repurposing of clinically approved drugs, (ii) viral replication-based phenotypic screening for inhibitors, and (iii) targeted drug discovery of viral proteins. Along with vaccines, the development of antiviral treatment will provide a complementary means to control ZIKV infections.
Collapse
Affiliation(s)
- Jing Zou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; Department of Phamarcology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
46
|
Fang J, Jing X, Lu G, Xu Y, Gong P. Crystallographic Snapshots of the Zika Virus NS3 Helicase Help Visualize the Reactant Water Replenishment. ACS Infect Dis 2019; 5:177-183. [PMID: 30672289 DOI: 10.1021/acsinfecdis.8b00214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Zika virus (ZIKV), a positive-strand RNA virus belonging to the Flavivirus genus, has become an urgent public health concern since recent outbreaks worldwide. Its genome replication is facilitated by the viral NS3 protein bearing helicase function. The NS3 helicase uses energy derived from adenosine triphosphate (ATP) hydrolysis to unwind RNA duplexed regions. Structural studies of the flavivirus NS3 helicases have suggested a conserved mechanism of ATP hydrolysis. However, the process of the reactant water replenishment, a key part of the hydrolysis cycle, remains elusive. Here, we report two high-resolution crystal structures of ZIKV NS3 helicase in complex with adenosine diphosphate (ADP) and Mn2+, one with the reactant water already loaded as previously observed and the other with the water molecule still in a loading state. These data suggest that the reactant water replenishment can occur between the release of phosphate and the release of ADP and improves the structural basis of the NS3 ATP hydrolysis cycle.
Collapse
Affiliation(s)
- Junnan Fang
- The Joint Center of Translational
Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women
and Children’s Medical Center, No. 318 Renminzhonglu, Guangzhou, Guangdong 510623, China
- The Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuhan, Hubei, 430071, China
| | - Xuping Jing
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Lu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Xu
- The Joint Center of Translational
Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women
and Children’s Medical Center, No. 318 Renminzhonglu, Guangzhou, Guangdong 510623, China
- The Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuhan, Hubei, 430071, China
| | - Peng Gong
- The Joint Center of Translational
Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women
and Children’s Medical Center, No. 318 Renminzhonglu, Guangzhou, Guangdong 510623, China
- The Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuhan, Hubei, 430071, China
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44 Xiao Hong Shan, Wuhan, Hubei 430071, China
| |
Collapse
|
47
|
Devnarain N, Soliman MES. Molecular mechanism of resveratrol inhibition of Zika virus NS3 helicase: behind the scenes. Future Virol 2019. [DOI: 10.2217/fvl-2018-0170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Aim: Zika virus (ZIKV) still poses a health risk to women and their babies without US FDA-approved vaccines or treatments. Experimentation has proved resveratrol inhibition of ZIKV NS3 helicase without specifying the molecular events during inhibition. Materials & methods: Herein, we leaped forward to study the molecular dynamics of the bound and unbound enzyme, identifying precise binding residues and interactions, and the enzyme's adaptation to support binding, since loop dynamics affect viral RNA replication. Results: Resveratrol stabilizes the P-loop and causes the RNA-binding loop to block the RNA-binding pocket for 200 ns, which is concurrent with experimental evidence that resveratrol binding significantly reduces ATP hydrolysis activity. Conclusion: This study illuminates the structural dynamics of ZIKV helicase and druglikeness of resveratrol, which will advance anti-ZIKV drug development.
Collapse
Affiliation(s)
- Nikita Devnarain
- Molecular Bio-computation & Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4001, South Africa
| | - Mahmoud ES Soliman
- Molecular Bio-computation & Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4001, South Africa
| |
Collapse
|
48
|
Human T cell leukemia virus type 1 and Zika virus: tale of two reemerging viruses with neuropathological sequelae of public health concern. J Neurovirol 2019; 25:289-300. [PMID: 30693421 DOI: 10.1007/s13365-019-00720-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/16/2018] [Accepted: 01/03/2019] [Indexed: 01/17/2023]
Abstract
Human T cell leukemia virus type 1 (HTLV-1) and Zika virus (ZIKV) have been considered neglected viruses of low public health concern until recently when incidences of HTLV-1 and ZIKV were observed to be linked to serious immune-related disease and neurological complications. This review will discuss the epidemiology, genomic evolution, virus-host interactions, virulence factors, neuropathological sequelae, and current perspectives of these reemerging viruses. There are no FDA-approved therapeutics or vaccines against these viruses, and as such, it is important for clinical trials to focus on developing vaccines that can induce cell-mediated immune response to confer long-term protective immunity. Furthermore, attention should be paid to reducing the transmission of these viruses through unprotected sex, infected blood during sharing of contaminated needles, donated blood and organs, and vertical transmission from mother to baby via breastfeeding. There is an urgent need to re-evaluate repurposing current antiviral therapies as well as developing novel antiviral agents with enhanced efficacy due to the high morbidity rate associated with these two reemerging chronic viral diseases.
Collapse
|
49
|
Discovery of Novel Druggable Sites on Zika Virus NS3 Helicase Using X-ray Crystallography-Based Fragment Screening. Int J Mol Sci 2018; 19:ijms19113664. [PMID: 30463319 PMCID: PMC6274715 DOI: 10.3390/ijms19113664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/28/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022] Open
Abstract
The flavivirus family contains several important human pathogens, such as Zika virus (ZIKV), dengue, West Nile, and Yellow Fever viruses, that collectively lead to a large, global disease burden. Currently, there are no approved medicines that can target these viruses. The sudden outbreak of ZIKV infections in 2015⁻2016 posed a serious threat to global public health. While the epidemic has receded, persistent reservoirs of ZIKV infection can cause reemergence. Here, we have used X-ray crystallography-based screening to discover two novel sites on ZIKV NS3 helicase that can bind drug-like fragments. Both sites are structurally conserved in other flaviviruses, and mechanistically significant. The binding poses of four fragments, two for each of the binding sites, were characterized at atomic precision. Site A is a surface pocket on the NS3 helicase that is vital to its interaction with NS5 polymerase and formation of the flaviviral replication complex. Site B corresponds to a flexible, yet highly conserved, allosteric site at the intersection of the three NS3 helicase domains. Saturation transfer difference nuclear magnetic resonance (NMR) experiments were additionally used to evaluate the binding strength of the fragments, revealing dissociation constants (KD) in the lower mM range. We conclude that the NS3 helicase of flaviviruses is a viable drug target. The data obtained open opportunities towards structure-based design of first-in-class anti-ZIKV compounds, as well as pan-flaviviral therapeutics.
Collapse
|
50
|
Zhu G, Pan A, Grüber G, Lu L. Conformational states of Zika virus non-structural protein 3 determined by molecular dynamics simulations with small-angle X-Ray scattering data. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 143:13-19. [PMID: 30291845 DOI: 10.1016/j.pbiomolbio.2018.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 09/17/2018] [Accepted: 09/29/2018] [Indexed: 11/16/2022]
Abstract
Zika virus (ZIKV) has become a great public health emergency. Its non-structural protein 3 (NS3) is a key enzyme in viral replication and has been considered as a potential therapeutic target. A conformational characterization of ZIKV NS3 is critical for a comprehensive understanding of its molecular interactions and functions. However, the high conformational flexibility of solution NS3 obstacles the structural characterization of NS3 solely from the experimental observable that averages over its heterogeneous conformations. Here, we employed replica exchange with solute tempering (REST) method to simulate the di-domain protein ZIKV NS3. Three independent MD simulations identified a conserved conformational ensemble of NS3, consisting of a major conformational state and several minor states from compact to loose conformations. The major state agrees well with the scattering profile from small-angle X-ray scattering (SAXS) experiments. Moreover, the simulated ensemble is supported by a direct data-fitting result that requires both short- and long-range structural contacts to recover the experimental data. We discussed the interplay between simulation and experiment in ensemble construction of flexible biomolecules and shed light on the physically derived conformational ensembles.
Collapse
Affiliation(s)
- Guanhua Zhu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Ankita Pan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore.
| |
Collapse
|