1
|
Yang X, Wu H. RAS signaling in carcinogenesis, cancer therapy and resistance mechanisms. J Hematol Oncol 2024; 17:108. [PMID: 39522047 PMCID: PMC11550559 DOI: 10.1186/s13045-024-01631-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Variants in the RAS family (HRAS, NRAS and KRAS) are among the most common mutations found in cancer. About 19% patients with cancer harbor RAS mutations, which are typically associated with poor clinical outcomes. Over the past four decades, KRAS has long been considered an undruggable target due to the absence of suitable small-molecule binding sites within its mutant isoforms. However, recent advancements in drug design have made RAS-targeting therapies viable, particularly with the approval of direct KRASG12C inhibitors, such as sotorasib and adagrasib, for treating non-small cell lung cancer (NSCLC) with KRASG12C mutations. Other KRAS-mutant inhibitors targeting KRASG12D are currently being developed for use in the clinic, particularly for treating highly refractory malignancies like pancreatic cancer. Herein, we provide an overview of RAS signaling, further detailing the roles of the RAS signaling pathway in carcinogenesis. This includes a summary of RAS mutations in human cancers and an emphasis on therapeutic approaches, as well as de novo, acquired, and adaptive resistance in various malignancies.
Collapse
Affiliation(s)
- Xiaojuan Yang
- Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, P.R. China
| | - Hong Wu
- Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, P.R. China.
- Liver Transplantation Center, Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
2
|
Buday L, Vas V. Novel regulation of Ras proteins by direct tyrosine phosphorylation and dephosphorylation. Cancer Metastasis Rev 2020; 39:1067-1073. [PMID: 32936431 PMCID: PMC7680326 DOI: 10.1007/s10555-020-09918-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 06/19/2020] [Indexed: 12/01/2022]
Abstract
Somatic mutations in the RAS genes are frequent in human tumors, especially in pancreatic, colorectal, and non-small-cell lung cancers. Such mutations generally decrease the ability of Ras to hydrolyze GTP, maintaining the protein in a constitutively active GTP-bound form that drives uncontrolled cell proliferation. Efforts to develop drugs that target Ras oncoproteins have been unsuccessful. Recent emerging data suggest that Ras regulation is more complex than the scientific community has believed for decades. In this review, we summarize advances in the "textbook" view of Ras activation. We also discuss a novel type of Ras regulation that involves direct phosphorylation and dephosphorylation of Ras tyrosine residues. The discovery that pharmacological inhibition of the tyrosine phosphoprotein phosphatase SHP2 maintains mutant Ras in an inactive state suggests that SHP2 could be a novel drug target for the treatment of Ras-driven human cancers.
Collapse
Affiliation(s)
- László Buday
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117, Hungary.
- Department of Medical Chemistry, Semmelweis University Medical School, Budapest, 1094, Hungary.
| | - Virág Vas
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117, Hungary
| |
Collapse
|
3
|
Bandaru P, Kondo Y, Kuriyan J. The Interdependent Activation of Son-of-Sevenless and Ras. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a031534. [PMID: 29610148 DOI: 10.1101/cshperspect.a031534] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The guanine-nucleotide exchange factor (GEF) Son-of-Sevenless (SOS) plays a critical role in metazoan signaling by converting Ras•GDP (guanosine diphosphate) to Ras•GTP (guanosine triphosphate) in response to tyrosine kinase activation. Structural studies have shown that SOS differs from other Ras-specific GEFs in that SOS is itself activated by Ras•GTP binding to an allosteric site, distal to the site of nucleotide exchange. The activation of SOS involves membrane recruitment and conformational changes, triggered by lipid binding, that open the allosteric binding site for Ras•GTP. This is in contrast to other Ras-specific GEFs, which are activated by second messengers that more directly affect the active site. Allosteric Ras•GTP binding stabilizes SOS at the membrane, where it can turn over other Ras molecules processively, leading to an ultrasensitive response that is distinct from that of other Ras-specific GEFs.
Collapse
Affiliation(s)
- Pradeep Bandaru
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| | - Yasushi Kondo
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| | - John Kuriyan
- Departments of Molecular and Cell Biology and of Chemistry, California Institute for Quantitative Biosciences, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| |
Collapse
|
4
|
Howes JE, Akan DT, Burns MC, Rossanese OW, Waterson AG, Fesik SW. Small Molecule-Mediated Activation of RAS Elicits Biphasic Modulation of Phospho-ERK Levels that Are Regulated through Negative Feedback on SOS1. Mol Cancer Ther 2018; 17:1051-1060. [PMID: 29440291 DOI: 10.1158/1535-7163.mct-17-0666] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/11/2017] [Accepted: 01/11/2018] [Indexed: 11/16/2022]
Abstract
Oncogenic mutation of RAS results in aberrant cellular signaling and is responsible for more than 30% of all human tumors. Therefore, pharmacologic modulation of RAS has attracted great interest as a therapeutic strategy. Our laboratory has recently discovered small molecules that activate Son of Sevenless (SOS)-catalyzed nucleotide exchange on RAS and inhibit downstream signaling. Here, we describe how pharmacologically targeting SOS1 induced biphasic modulation of RAS-GTP and ERK phosphorylation levels, which we observed in a variety of cell lines expressing different RAS-mutant isoforms. We show that compound treatment caused an increase in phosphorylation at ERK consensus motifs on SOS1 that was not observed with the expression of a non-phosphorylatable S1178A SOS1 mutant or after pretreatment with an ERK inhibitor. Phosphorylation at S1178 on SOS1 is known to inhibit the association between SOS1 and GRB2 and disrupt SOS1 membrane localization. Consistent with this, we show that wild-type SOS1 and GRB2 dissociated in a time-dependent fashion in response to compound treatment, and conversely, this interaction was enhanced with the expression of an S1178A SOS1 mutant. Furthermore, in cells expressing either S1178A SOS1 or a constitutively membrane-bound CAAX box tagged SOS1 mutant, we observed elevated RAS-GTP levels over time in response to compound, as compared with the biphasic changes in RAS-GTP exhibited in cells expressing wild-type SOS1. These results suggest that small molecule targeting of SOS1 can elicit a biphasic modulation of RAS-GTP and phospho-ERK levels through negative feedback on SOS1 that regulates the interaction between SOS1 and GRB2. Mol Cancer Ther; 17(5); 1051-60. ©2018 AACR.
Collapse
Affiliation(s)
- Jennifer E Howes
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Denis T Akan
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Michael C Burns
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | | | - Alex G Waterson
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Stephen W Fesik
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
5
|
78495111110.3390/cancers9050052" />
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is commonly upregulated in cancers such as in non-small-cell lung cancer, metastatic colorectal cancer, glioblastoma, head and neck cancer, pancreatic cancer, and breast cancer. Various mechanisms mediate the upregulation of EGFR activity, including common mutations and truncations to its extracellular domain, such as in the EGFRvIII truncations, as well as to its kinase domain, such as the L858R and T790M mutations, or the exon 19 truncation. These EGFR aberrations over-activate downstream pro-oncogenic signaling pathways, including the RAS-RAF-MEK-ERK MAPK and AKT-PI3K-mTOR pathways. These pathways then activate many biological outputs that are beneficial to cancer cell proliferation, including their chronic initiation and progression through the cell cycle. Here, we review the molecular mechanisms that regulate EGFR signal transduction, including the EGFR structure and its mutations, ligand binding and EGFR dimerization, as well as the signaling pathways that lead to G1 cell cycle progression. We focus on the induction of CYCLIN D expression, CDK4/6 activation, and the repression of cyclin-dependent kinase inhibitor proteins (CDKi) by EGFR signaling pathways. We also discuss the successes and challenges of EGFR-targeted therapies, and the potential for their use in combination with CDK4/6 inhibitors.
Collapse
|
6
|
Wee P, Wang Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers (Basel) 2017; 9:cancers9050052. [PMID: 28513565 PMCID: PMC5447962 DOI: 10.3390/cancers9050052] [Citation(s) in RCA: 1096] [Impact Index Per Article: 137.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is commonly upregulated in cancers such as in non-small-cell lung cancer, metastatic colorectal cancer, glioblastoma, head and neck cancer, pancreatic cancer, and breast cancer. Various mechanisms mediate the upregulation of EGFR activity, including common mutations and truncations to its extracellular domain, such as in the EGFRvIII truncations, as well as to its kinase domain, such as the L858R and T790M mutations, or the exon 19 truncation. These EGFR aberrations over-activate downstream pro-oncogenic signaling pathways, including the RAS-RAF-MEK-ERK MAPK and AKT-PI3K-mTOR pathways. These pathways then activate many biological outputs that are beneficial to cancer cell proliferation, including their chronic initiation and progression through the cell cycle. Here, we review the molecular mechanisms that regulate EGFR signal transduction, including the EGFR structure and its mutations, ligand binding and EGFR dimerization, as well as the signaling pathways that lead to G1 cell cycle progression. We focus on the induction of CYCLIN D expression, CDK4/6 activation, and the repression of cyclin-dependent kinase inhibitor proteins (CDKi) by EGFR signaling pathways. We also discuss the successes and challenges of EGFR-targeted therapies, and the potential for their use in combination with CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Ping Wee
- Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Zhixiang Wang
- Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
7
|
Mechanism of SOS PR-domain autoinhibition revealed by single-molecule assays on native protein from lysate. Nat Commun 2017; 8:15061. [PMID: 28452363 PMCID: PMC5414354 DOI: 10.1038/ncomms15061] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 02/23/2017] [Indexed: 12/16/2022] Open
Abstract
The guanine nucleotide exchange factor (GEF) Son of Sevenless (SOS) plays a critical role in signal transduction by activating Ras. Here we introduce a single-molecule assay in which individual SOS molecules are captured from raw cell lysate using Ras-functionalized supported membrane microarrays. This enables characterization of the full-length SOS protein, which has not previously been studied in reconstitution due to difficulties in purification. Our measurements on the full-length protein reveal a distinct role of the C-terminal proline-rich (PR) domain to obstruct the engagement of allosteric Ras independently of the well-known N-terminal domain autoinhibition. This inhibitory role of the PR domain limits Grb2-independent recruitment of SOS to the membrane through binding of Ras·GTP in the SOS allosteric binding site. More generally, this assay strategy enables characterization of the functional behaviour of GEFs with single-molecule precision but without the need for purification.
Collapse
|
8
|
Parag-Sharma K, Leyme A, DiGiacomo V, Marivin A, Broselid S, Garcia-Marcos M. Membrane Recruitment of the Non-receptor Protein GIV/Girdin (Gα-interacting, Vesicle-associated Protein/Girdin) Is Sufficient for Activating Heterotrimeric G Protein Signaling. J Biol Chem 2016; 291:27098-27111. [PMID: 27864364 DOI: 10.1074/jbc.m116.764431] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 11/17/2016] [Indexed: 11/06/2022] Open
Abstract
GIV (aka Girdin) is a guanine nucleotide exchange factor that activates heterotrimeric G protein signaling downstream of RTKs and integrins, thereby serving as a platform for signaling cascade cross-talk. GIV is recruited to the cytoplasmic tail of receptors upon stimulation, but the mechanism of activation of its G protein regulatory function is not well understood. Here we used assays in humanized yeast models and G protein activity biosensors in mammalian cells to investigate the role of GIV subcellular compartmentalization in regulating its ability to promote G protein signaling. We found that in unstimulated cells GIV does not co-fractionate with its substrate G protein Gαi3 on cell membranes and that constitutive membrane anchoring of GIV in yeast cells or rapid membrane translocation in mammalian cells via chemically induced dimerization leads to robust G protein activation. We show that membrane recruitment of the GIV "Gα binding and activating" motif alone is sufficient for G protein activation and that it does not require phosphomodification. Furthermore, we engineered a synthetic protein to show that recruitment of the GIV "Gα binding and activating" motif to membranes via association with active RTKs, instead of via chemically induced dimerization, is also sufficient for G protein activation. These results reveal that recruitment of GIV to membranes in close proximity to its substrate G protein is a major mechanism responsible for the activation of its G protein regulatory function.
Collapse
Affiliation(s)
- Kshitij Parag-Sharma
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Anthony Leyme
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Vincent DiGiacomo
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Arthur Marivin
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Stefan Broselid
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Mikel Garcia-Marcos
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| |
Collapse
|
9
|
Christensen SM, Tu HL, Jun JE, Alvarez S, Triplet MG, Iwig JS, Yadav KK, Bar-Sagi D, Roose JP, Groves JT. One-way membrane trafficking of SOS in receptor-triggered Ras activation. Nat Struct Mol Biol 2016; 23:838-46. [PMID: 27501536 PMCID: PMC5016256 DOI: 10.1038/nsmb.3275] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 07/08/2016] [Indexed: 02/07/2023]
Abstract
SOS is a key activator of the small GTPase Ras. In cells, SOS-Ras signaling is thought to be initiated predominantly by membrane recruitment of SOS via the adaptor Grb2 and balanced by rapidly reversible Grb2-SOS binding kinetics. However, SOS has multiple protein and lipid interactions that provide linkage to the membrane. In reconstituted-membrane experiments, these Grb2-independent interactions were sufficient to retain human SOS on the membrane for many minutes, during which a single SOS molecule could processively activate thousands of Ras molecules. These observations raised questions concerning how receptors maintain control of SOS in cells and how membrane-recruited SOS is ultimately released. We addressed these questions in quantitative assays of reconstituted SOS-deficient chicken B-cell signaling systems combined with single-molecule measurements in supported membranes. These studies revealed an essentially one-way trafficking process in which membrane-recruited SOS remains trapped on the membrane and continuously activates Ras until being actively removed via endocytosis.
Collapse
Affiliation(s)
- Sune M. Christensen
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Hsiung-Lin Tu
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Jesse E. Jun
- Department of Anatomy, University of California, San Francisco, California, USA
| | - Steven Alvarez
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Meredith G. Triplet
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Jeffrey S. Iwig
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Kamlesh K. Yadav
- Department of Biochemistry, New York University School of Medicine, New York, USA
| | - Dafna Bar-Sagi
- Department of Biochemistry, New York University School of Medicine, New York, USA
| | - Jeroen P. Roose
- Department of Anatomy, University of California, San Francisco, California, USA
| | - Jay T. Groves
- Department of Chemistry, University of California, Berkeley, California, USA
| |
Collapse
|
10
|
Christensen SM, Triplet MG, Rhodes C, Iwig JS, Tu HL, Stamou D, Groves JT. Monitoring the Waiting Time Sequence of Single Ras GTPase Activation Events Using Liposome Functionalized Zero-Mode Waveguides. NANO LETTERS 2016; 16:2890-5. [PMID: 27013033 PMCID: PMC5515077 DOI: 10.1021/acs.nanolett.6b00969] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Activation of small GTPases of the Ras superfamily by guanine nucleotide exchange factors (GEFs) is a key step in numerous cell signaling processes. Unveiling the detailed molecular mechanisms of GEF-GTPase signaling interactions is of great importance due to their central roles in cell biology, including critical disease states, and their potential as therapeutic targets. Here we present an assay to monitor individual Ras activation events catalyzed by single molecules of the GEF Son of Sevenless (SOS) in the natural membrane environment. The assay employs zero-mode waveguide (ZMW) nanostructures containing a single Ras-functionalized liposome. The ZMWs facilitate highly localized excitation of fluorophores in the vicinity of the liposome membrane, allowing direct observation of individual Ras activation events as single SOS enzymes catalyze exchange of unlabeled nucleotides bound to Ras with fluorescently labeled nucleotides from solution. The system is compatible with continuous recording of long sequences of individual enzymatic turnover events over hour-long time scales. The single turnover waiting time sequence is a molecular footprint that details the temporal characteristics of the system. Data reported here reveal long-lived activity states that correspond to well-defined conformers of SOS at the membrane. Liposome functionalized ZMWs allow for studies of nucleotide exchange reactions at single GTPase resolution, providing a platform to gauge the mechanisms of these processes.
Collapse
Affiliation(s)
- Sune M. Christensen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Meredith G. Triplet
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher Rhodes
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jeffrey S. Iwig
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Hsiung-Lin Tu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Dimitrios Stamou
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Copenhagen, Denmark
| | - Jay T. Groves
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Clark JABJ, Tully SJ, Dawn Marshall H. Sequence analysis of the Ras-MAPK pathway genes SOS1, EGFR & GRB2 in silver foxes (Vulpes vulpes): candidate genes for hereditary hyperplastic gingivitis. Genetica 2014; 142:517-23. [PMID: 25377643 DOI: 10.1007/s10709-014-9798-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 10/28/2014] [Indexed: 11/30/2022]
Abstract
Hereditary hyperplastic gingivitis (HHG) is an autosomal recessive disease that presents with progressive gingival proliferation in farmed silver foxes. Hereditary gingival fibromatosis (HGF) is an analogous condition in humans that is genetically heterogeneous with several known autosomal dominant loci. For one locus the causative mutation is in the Son of sevenless homologue 1 (SOS1) gene. For the remaining loci, the molecular mechanisms are unknown but Ras pathway involvement is suspected. Here we compare sequences for the SOS1 gene, and two adjacent genes in the Ras pathway, growth receptor bound protein 2 (GRB2) and epidermal growth factor receptor (EGFR), between HHG-affected and unaffected foxes. We conclude that the known HGF causative mutation does not cause HHG in foxes, nor do the coding regions or intron-exon boundaries of these three genes contain any candidate mutations for fox gum disease. Patterns of molecular evolution among foxes and other mammals reflect high conservation and strong functional constraints for SOS1 and GRB2 but reveal a lineage-specific pattern of variability in EGFR consistent with mutational rate differences, relaxed functional constraints, and possibly positive selection.
Collapse
Affiliation(s)
- Jo-Anna B J Clark
- Department of Biology, Memorial University of Newfoundland, St. John's NL, A1B 3X9, Canada,
| | | | | |
Collapse
|
12
|
Wu JG, Yu JW, Wu HB, Zheng LH, Ni XC, Li XQ, Du GY, Jiang BJ. Expressions and clinical significances of c-MET, p-MET and E2f-1 in human gastric carcinoma. BMC Res Notes 2014; 7:6. [PMID: 24393368 PMCID: PMC3895664 DOI: 10.1186/1756-0500-7-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 12/31/2013] [Indexed: 12/18/2022] Open
Abstract
Background To investigate on the expressions and the clinical significances of hepatocyte growth factor receptor (c-MET), phosphorylated c-MET (p-MET) and e2f-1 transcription factor in primary lesion of gastric adenocarcinoma (GC). Method Tissue samples from the primary lesion of GC in patients who accepted D2/D3 radical gastrectomy with R0/R1 resection were stained by immunohistochemistry of c-MET, p-MET, e2f-1 and Ki-67. The univariate and the multivariate analyses involving in clinicopathological parameters and prognostic factors were evaluated. Results The positivity rates for c-MET (66.12%, 80 cases/121 cases), p-MET (59.50%, 72 cases/121 cases), e2f-1 (38.84%, 47 cases/121 cases) and Ki-67 (72.73%, 88 cases/121 cases) in primary lesion of GC was significantly higher than that in non-cancerous tissue at 5 cm places far from the margin of primary lesion (P < 0.05, respectively). The deeper tumor invasion, the severer lymph node metastasis, the later stage of TNM and the higher expression of Ki-67 was respectively an independent risk factor for the higher expression of c-MET or p-MET, but the younger age and the shorter survival time was an independent risk factor for the higher expression of e2f-1 respectively. Survival analysis showed that the worse prognosis could be observed in the patients with the combination of both c-MET-positive and e2f-1-negative (P = 0.038) or both p-MET-positive and e2f-1-negative (P = 0.042). Cox analysis demonstrated that the severer lymphatic node metastasis and the higher positivity rate of c-MET, p-MET or e2f-1 were an independent prognosis factor respectively. The higher expression of e2f-1 was identified in patients with Stage I-II, which correlated with a shorter survival time. Survival analysis also revealed that the prognosis of patients with positive expression of e2f-1 at Stage I-II was significantly worse than that in patients with negative expression of e2f-1 (χ2 = 13.437, P = 0.001). However, in the cases with Stage III-IV, no significant difference could be identified in the prognostic comparison between positive and negative expressions of e2f-1. Conclusions The expression of c-MET or p-MET is an independent prognosis factor. It has been observed that the higher expression of e2f-1 occurred in the early stages while the lower expression of it in the later stages in GC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo-jian Jiang
- 1st Department of General Surgery, Shanghai 3rd People's Hospital, School of Medicine, Shanghai Jiao Tong University, No, 280, Mohe Road, Shanghai 201900, China.
| |
Collapse
|
13
|
Interaction domains of Sos1/Grb2 are finely tuned for cooperative control of embryonic stem cell fate. Cell 2013; 152:1008-20. [PMID: 23452850 DOI: 10.1016/j.cell.2013.01.056] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 10/18/2012] [Accepted: 01/31/2013] [Indexed: 12/28/2022]
Abstract
Metazoan evolution involves increasing protein domain complexity, but how this relates to control of biological decisions remains uncertain. The Ras guanine nucleotide exchange factor (RasGEF) Sos1 and its adaptor Grb2 are multidomain proteins that couple fibroblast growth factor (FGF) signaling to activation of the Ras-Erk pathway during mammalian development and drive embryonic stem cells toward the primitive endoderm (PrE) lineage. We show that the ability of Sos1/Grb2 to appropriately regulate pluripotency and differentiation factors and to initiate PrE development requires collective binding of multiple Sos1/Grb2 domains to their protein and phospholipid ligands. This provides a cooperative system that only allows lineage commitment when all ligand-binding domains are occupied. Furthermore, our results indicate that the interaction domains of Sos1 and Grb2 have evolved so as to bind ligands not with maximal strength but with specificities and affinities that maintain cooperativity. This optimized system ensures that PrE lineage commitment occurs in a timely and selective manner during embryogenesis.
Collapse
|
14
|
Extensions of PSD-95/discs large/ZO-1 (PDZ) domains influence lipid binding and membrane targeting of syntenin-1. FEBS Lett 2012; 586:1445-51. [DOI: 10.1016/j.febslet.2012.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 04/10/2012] [Accepted: 04/12/2012] [Indexed: 11/21/2022]
|
15
|
Sacco E, Farina M, Greco C, Lamperti S, Busti S, Degioia L, Alberghina L, Liberati D, Vanoni M. Regulation of hSos1 activity is a system-level property generated by its multi-domain structure. Biotechnol Adv 2011; 30:154-68. [PMID: 21851854 DOI: 10.1016/j.biotechadv.2011.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 07/22/2011] [Accepted: 07/25/2011] [Indexed: 12/22/2022]
Abstract
The multi-domain protein hSos1 plays a major role in cell growth and differentiation through its Ras-specific guanine nucleotide exchange domain whose complex regulation involves intra-molecular, inter-domain rearrangements. We present a stochastic mathematical model describing intra-molecular regulation of hSos1 activity. The population macroscopic effect is reproduced through a Monte-Carlo approach. Key model parameters have been experimentally determined by BIAcore analysis. Complementation experiments of a Saccharomyces cerevisiae cdc25(ts) strain with Sos deletion mutants provided a comprehensive data set for estimation of unknown parameters and model validation. The model is robust against parameter alteration and describes both the behavior of Sos deletion mutants and modulation of activity of the full length molecule under physiological conditions. By incorporating the calculated effect of amino acid changes at an inter-domain interface, the behavior of a mutant correlating with a developmental syndrome could be simulated, further validating the model. The activation state of Ras-specific guanine nucleotide exchange domain of hSos1 arises as an "emergent property" of its multi-domain structure that allows multi-level integration of a complex network of intra- and inter-molecular signals.
Collapse
Affiliation(s)
- Elena Sacco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pierre S, Bats AS, Chevallier A, Bui LC, Ambolet-Camoit A, Garlatti M, Aggerbeck M, Barouki R, Coumoul X. Induction of the Ras activator Son of Sevenless 1 by environmental pollutants mediates their effects on cellular proliferation. Biochem Pharmacol 2010; 81:304-13. [PMID: 20950586 DOI: 10.1016/j.bcp.2010.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/03/2010] [Accepted: 10/05/2010] [Indexed: 01/01/2023]
Abstract
TCDD (2,3,7,8-tetrachlorodibenzodioxin), a highly persistent environmental pollutant and a human carcinogen, is the ligand with the highest affinity for the Aryl Hydrocarbon Receptor (AhR) that induces via the AhR, xenobiotic metabolizing enzyme genes as well as several other genes. This pollutant elicits a variety of systemic toxic effects, which include cancer promotion and diverse cellular alterations that modify cell cycle progression and cell proliferation. Large-scale studies have shown that the expression of Son of Sevenless 1 (SOS1), the main mediator of Ras activation, is one of the targets of dioxin in human cultured cells. In this study, we investigated the regulation of the previously uncharacterized SOS1 gene promoter by the AhR and its ligands in the human hepatocarcinoma cell line, HepG2. We found that several environmental pollutants (AhR ligands) induce SOS1 gene expression by increasing its transcription. Chromatin immunoprecipitation experiments demonstrated that the AhR binds directly and activates the SOS1 gene promoter. We also showed that dioxin treatment leads to an activated Ras-GTP state, to ERK activation and to accelerated cellular proliferation. All these effects were mediated by SOS1 induction as shown by knock down experiments. Our data indicate that dioxin-induced cellular proliferation is mediated, at least partially, by SOS1 induction. Remarkably, our studies also suggest that SOS1 induction leads to functional effects similar to those elicited by the well-characterized oncogenic Ras mutations.
Collapse
Affiliation(s)
- Stéphane Pierre
- INSERM UMR-S 747, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints Pères, 75006 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|