1
|
Arias Del Angel JA, Nanjundiah V, Benítez M, Newman SA. Interplay of mesoscale physics and agent-like behaviors in the parallel evolution of aggregative multicellularity. EvoDevo 2020; 11:21. [PMID: 33062243 PMCID: PMC7549232 DOI: 10.1186/s13227-020-00165-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Myxobacteria and dictyostelids are prokaryotic and eukaryotic multicellular lineages, respectively, that after nutrient depletion aggregate and develop into structures called fruiting bodies. The developmental processes and resulting morphological outcomes resemble one another to a remarkable extent despite their independent origins, the evolutionary distance between them and the lack of traceable homology in molecular mechanisms. We hypothesize that the morphological parallelism between the two lineages arises as the consequence of the interplay within multicellular aggregates between generic processes, physical and physicochemical processes operating similarly in living and non-living matter at the mesoscale (~10-3-10-1 m) and agent-like behaviors, unique to living systems and characteristic of the constituent cells, considered as autonomous entities acting according to internal rules in a shared environment. Here, we analyze the contributions of generic and agent-like determinants in myxobacteria and dictyostelid development and their roles in the generation of their common traits. Consequent to aggregation, collective cell-cell contacts mediate the emergence of liquid-like properties, making nascent multicellular masses subject to novel patterning and morphogenetic processes. In both lineages, this leads to behaviors such as streaming, rippling, and rounding-up, as seen in non-living fluids. Later the aggregates solidify, leading them to exhibit additional generic properties and motifs. Computational models suggest that the morphological phenotypes of the multicellular masses deviate from the predictions of generic physics due to the contribution of agent-like behaviors of cells such as directed migration, quiescence, and oscillatory signal transduction mediated by responses to external cues. These employ signaling mechanisms that reflect the evolutionary histories of the respective organisms. We propose that the similar developmental trajectories of myxobacteria and dictyostelids are more due to shared generic physical processes in coordination with analogous agent-type behaviors than to convergent evolution under parallel selection regimes. Insights from the biology of these aggregative forms may enable a unified understanding of developmental evolution, including that of animals and plants.
Collapse
Affiliation(s)
- Juan A Arias Del Angel
- Laboratorio Nacional de Ciencias de La Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de La Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595 USA.,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Mariana Benítez
- Laboratorio Nacional de Ciencias de La Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de La Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595 USA
| |
Collapse
|
2
|
Farinholt T, Dinh C, Kuspa A. Social amoebae establish a protective interface with their bacterial associates by lectin agglutination. SCIENCE ADVANCES 2019; 5:eaav4367. [PMID: 31355329 PMCID: PMC6656538 DOI: 10.1126/sciadv.aav4367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 06/20/2019] [Indexed: 05/13/2023]
Abstract
Both animals and amoebae use phagocytosis and DNA-based extracellular traps as anti-bacterial defense mechanisms. Whether, like animals, amoebae also use tissue-level barriers to reduce direct contact with bacteria has remained unclear. We have explored this question in the social amoeba Dictyostelium discoideum, which forms plaques on lawns of bacteria that expand as amoebae divide and bacteria are consumed. We show that CadA, a cell adhesion protein that functions in D. discoideum development, is also a bacterial agglutinin that forms a protective interface at the plaque edge that limits exposure of vegetative amoebae to bacteria. This interface is important for amoebal survival when bacteria-to-amoebae ratios are high, optimizing amoebal feeding behavior, and protecting amoebae from oxidative stress. Lectins also control bacterial access to the gut epithelium of mammals to limit inflammatory processes; thus, this strategy of antibacterial defense is shared across a broad spectrum of eukaryotic taxa.
Collapse
Affiliation(s)
- Timothy Farinholt
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christopher Dinh
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adam Kuspa
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Corresponding author.
| |
Collapse
|
3
|
Abundant Perithecial Protein (APP) from Neurospora is a primitive functional analog of ocular crystallins. Biochem Biophys Res Commun 2019; 516:796-800. [PMID: 31255285 DOI: 10.1016/j.bbrc.2019.06.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/18/2019] [Indexed: 11/21/2022]
Abstract
The eye arose during the Cambrian explosion from pre-existing proteins that would have been recruited for the formation of the specialized components of this organ, such as the transparent lens. Proteins suitable for the role of lens crystallins would need to possess unusual physical properties and the study of such earliest analogs of ocular crystallins would add to our understanding of the nature of recruitment of proteins as lens/corneal crystallins. We show that the Abundant Perithecial Protein (APP) of the fungi Neurospora and Sordaria fulfils the criteria for an early crystallin analog. The perithecia in these fungal species are phototropic, and APP accumulates at a high concentration in the neck of the pitcher-shaped perithecium. Spores are formed at the base of the perithecium, and light contributes to their maturation. The hydrodynamic properties of APP appear to exclude dimer formation or aggregation at high protein concentrations. APP is also deficient in Ca2+ binding, a property seen in its close homolog, the calcium-binding cell adhesion molecule (DdCAD-1) from Dictyostelium discoidum. Comparable to crystallins, APP occurs in high concentrations and seems to have dispensed with Ca2+ binding in exchange for greater stability. These crystallin-like attributes of APP lead us to demonstrate that it is a primitive form of ocular crystallins.
Collapse
|
4
|
Goh ET, Lin Z, Ahn BY, Lopes-Rodrigues V, Dang NH, Salim S, Berger B, Dymock B, Senger DL, Ibáñez CF. A Small Molecule Targeting the Transmembrane Domain of Death Receptor p75NTR Induces Melanoma Cell Death and Reduces Tumor Growth. Cell Chem Biol 2018; 25:1485-1494.e5. [DOI: 10.1016/j.chembiol.2018.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/24/2018] [Accepted: 09/11/2018] [Indexed: 12/29/2022]
|
5
|
Swaroop Srivastava S, Raman R, Kiran U, Garg R, Chadalawada S, Pawar AD, Sankaranarayanan R, Sharma Y. Interface interactions between βγ-crystallin domain and Ig-like domain render Ca 2+ -binding site inoperative in abundant perithecial protein of Neurospora crassa. Mol Microbiol 2018; 110:955-972. [PMID: 30216631 DOI: 10.1111/mmi.14130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2018] [Indexed: 11/30/2022]
Abstract
We describe a set of proteins in which a βγ-crystallin domain pairs with an Ig-like domain, and which are confined to microbes, like bacteria, slime molds and fungi. DdCAD-1 (Ca2+ -dependent cell adhesion molecule-1) and abundant perithecial protein (APP) represent this class of molecules. Using the crystal structure of APP-NTD (N-terminal domain of APP), we describe its mode of Ca2+ binding and provide a generalized theme for correct identification of the Ca2+ -binding site within this class of molecules. As a common feature, one of the two Ca2+ -binding sites is non-functional in the βγ-crystallin domains of these proteins. While APP-NTD binds Ca2+ with a micromolar affinity which is comparable to DdCAD-1, APP surprisingly does not bind Ca2+ . Crystal structures of APP and Ca2+ -bound APP-NTD reveal that the interface interactions in APP render its Ca2+ -binding site inoperative. Thus, heterodomain association provides a novel mode of Ca2+ -binding regulation in APP. Breaking the interface interactions (mutating Asp30Ala, Leu132Ala and Ile135Ala) or separation from the Ig-like domain removes the constraints upon the required conformational transition and enables the βγ-crystallin domain to bind Ca2+ . In mechanistic detail, our work demonstrates an interdomain interface adapted to distinct functional niches in APP and its homolog DdCAD-1.
Collapse
Affiliation(s)
| | - Rajeev Raman
- CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad, 500 007, India
| | - Uday Kiran
- CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad, 500 007, India
| | - Rupsi Garg
- CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad, 500 007, India
| | - Swathi Chadalawada
- CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad, 500 007, India
| | - Asmita D Pawar
- CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad, 500 007, India
| | - Rajan Sankaranarayanan
- CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad, 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Yogendra Sharma
- CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad, 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
6
|
Yeruva VC, Savanagouder M, Khandelwal R, Kulkarni A, Sharma Y, Raghunand TR. The Mycobacterium tuberculosis desaturase DesA1 (Rv0824c) is a Ca2+ binding protein. Biochem Biophys Res Commun 2016; 480:29-35. [DOI: 10.1016/j.bbrc.2016.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 10/25/2022]
|
7
|
Itoh Y, Kida K, Hanawa-Suetsugu K, Suetsugu S. Yeast Ivy1p Is a Putative I-BAR-domain Protein with pH-sensitive Filament Forming Ability in vitro. Cell Struct Funct 2015; 41:1-11. [PMID: 26657738 DOI: 10.1247/csf.15014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Bin-Amphiphysin-Rvs161/167 (BAR) domains mold lipid bilayer membranes into tubules, by forming a spiral polymer on the membrane. Most BAR domains are thought to be involved in forming membrane invaginations through their concave membrane binding surfaces, whereas some members have convex membrane binding surfaces, and thereby mold membranes into protrusions. The BAR domains with a convex surface form a subtype called the inverse BAR (I-BAR) domain or IRSp53-MIM-homology domain (IMD). Although the mammalian I-BAR domains have been studied, those from other organisms remain elusive. Here, we found putative I-BAR domains in Fungi and animal-like unicellular organisms. The fungal protein containing the putative I-BAR-domain is known as Ivy1p in yeast, and is reportedly localized in the vacuole. The phylogenetic analysis of the I-BAR domains revealed that the fungal I-BAR-domain containing proteins comprise a distinct group from those containing IRSp53 or MIM. Importantly, Ivy1p formed a polymer with a diameter of approximately 20 nm in vitro, without a lipid membrane. The filaments were formed at neutral pH, but disassembled when pH was reverted to basic. Moreover, Ivy1p and the I-BAR domain expressed in mammalian HeLa cells was localized at a vacuole-like structure as filaments as revealed by super-resolved microscopy. These data indicate the pH-sensitive polymer forming ability and the functional conservation of Ivy1p in eukaryotic cells.
Collapse
Affiliation(s)
- Yuzuru Itoh
- Laboratory of Membrane and Cytoskeleton Dynamics, Institute of Molecular and Cellular Biosciences, The University of Tokyo
| | | | | | | |
Collapse
|
8
|
Loomis WF. Genetic control of morphogenesis in Dictyostelium. Dev Biol 2015; 402:146-61. [PMID: 25872182 PMCID: PMC4464777 DOI: 10.1016/j.ydbio.2015.03.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/12/2015] [Accepted: 03/25/2015] [Indexed: 01/06/2023]
Abstract
Cells grow, move, expand, shrink and die in the process of generating the characteristic shapes of organisms. Although the structures generated during development of the social amoeba Dictyostelium discoideum look nothing like the structures seen in metazoan embryogenesis, some of the morphogenetic processes used in their making are surprisingly similar. Recent advances in understanding the molecular basis for directed cell migration, cell type specific sorting, differential adhesion, secretion of matrix components, pattern formation, regulation and terminal differentiation are reviewed. Genes involved in Dictyostelium aggregation, slug formation, and culmination of fruiting bodies are discussed.
Collapse
Affiliation(s)
- William F Loomis
- Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
9
|
Mishra A, Krishnan B, Srivastava SS, Sharma Y. Microbial βγ-crystallins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:42-51. [PMID: 24594023 DOI: 10.1016/j.pbiomolbio.2014.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 01/24/2023]
Abstract
βγ-Crystallins have emerged as a superfamily of structurally homologous proteins with representatives across the domains of life. A major portion of this superfamily is constituted by members from microorganisms. This superfamily has also been recognized as a novel group of Ca(2+)-binding proteins with huge diversity. The βγ domain shows variable properties in Ca(2+) binding, stability and association with other domains. The various members present a series of evolutionary adaptations culminating in great diversity in properties and functions. Most of the predicted βγ-crystallins are yet to be characterized experimentally. In this review, we outline the distinctive features of microbial βγ-crystallins and their position in the βγ-crystallin superfamily.
Collapse
Affiliation(s)
- Amita Mishra
- CSIR - Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | - Bal Krishnan
- CSIR - Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | | | - Yogendra Sharma
- CSIR - Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|
10
|
Srivastava SS, Mishra A, Krishnan B, Sharma Y. Ca2+-binding motif of βγ-crystallins. J Biol Chem 2014; 289:10958-10966. [PMID: 24567326 DOI: 10.1074/jbc.o113.539569] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
βγ-Crystallin-type double clamp (N/D)(N/D)XX(S/T)S motif is an established but sparsely investigated motif for Ca(2+) binding. A βγ-crystallin domain is formed of two Greek key motifs, accommodating two Ca(2+)-binding sites. βγ-Crystallins make a separate class of Ca(2+)-binding proteins (CaBP), apparently a major group of CaBP in bacteria. Paralleling the diversity in βγ-crystallin domains, these motifs also show great diversity, both in structure and in function. Although the expression of some of them has been associated with stress, virulence, and adhesion, the functional implications of Ca(2+) binding to βγ-crystallins in mediating biological processes are yet to be elucidated.
Collapse
Affiliation(s)
- Shanti Swaroop Srivastava
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad-500 007, India
| | - Amita Mishra
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad-500 007, India
| | - Bal Krishnan
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad-500 007, India
| | - Yogendra Sharma
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad-500 007, India.
| |
Collapse
|
11
|
TgrC1 mediates cell–cell adhesion by interacting with TgrB1 via mutual IPT/TIG domains during development of Dictyostelium discoideum. Biochem J 2013; 452:259-69. [DOI: 10.1042/bj20121674] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cell–cell adhesion plays crucial roles in cell differentiation and morphogenesis during development of Dictyostelium discoideum. The heterophilic adhesion protein TgrC1 (Tgr is transmembrane, IPT, IG, E-set, repeat protein) is expressed during cell aggregation, and disruption of the tgrC1 gene results in the arrest of development at the loose aggregate stage. We have used far-Western blotting coupled with MS to identify TgrB1 as the heterophilic binding partner of TgrC1. Co-immunoprecipitation and pull-down studies showed that TgrB1 and TgrC1 are capable of binding with each other in solution. TgrB1 and TgrC1 are encoded by a pair of adjacent genes which share a common promoter. Both TgrB1 and TgrC1 are type I transmembrane proteins, which contain three extracellular IPT/TIG (immunoglobulin, plexin, transcription factor-like/transcription factor immunoglobulin) domains. Antibodies raised against TgrB1 inhibit cell reassociation at the post-aggregation stage of development and block fruiting body formation. Ectopic expression of TgrB1 and TgrC1 driven by the actin15 promoter leads to heterotypic cell aggregation of vegetative cells. Using recombinant proteins that cover different portions of TgrB1 and TgrC1 in binding assays, we have mapped the cell-binding regions in these two proteins to Lys537–Ala783 in TgrB1 and Ile336–Val360 in TgrC1, corresponding to their respective TIG3 and TIG2 domain.
Collapse
|
12
|
Yang C, Hou L, Yang Q, Siu CH. ATP-Binding Cassette Transporter B4 Anchors the Cell Adhesion Molecule DdCAD-1 to Cell Membrane in Dictyostelium discoideum. Indian J Microbiol 2013; 53:460-6. [PMID: 24426151 DOI: 10.1007/s12088-013-0393-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/16/2013] [Indexed: 12/13/2022] Open
Abstract
In Dictyostelium, soluble cell adhesion molecule, DdCAD-1, regulates cell-cell interaction through an unknown anchoring protein on the plasma membrane. Far western blot analysis using different probes revealed that the potential DdCAD-1 interacting protein was between 64 and 98 kDa. To isolate and identify the anchoring protein, GST-DdCAD-1 and anchoring protein were cross-linked in vivo by chemical cross-linker and stable protein complex was isolated by co-immunoprecipitation assays. The protein cross-linked to DdCAD-1 was extracted from the gel slice and trypsinized. The peptides were subjected to analysis by mass spectrometry, which showed that the putative anchoring protein belongs to ATP-binding cassette transporter family.
Collapse
Affiliation(s)
- Chunxia Yang
- School of Life Science, East China Normal University, 200062 Shanghai, China
| | - Liansheng Hou
- School of Life Science, East China Normal University, 200062 Shanghai, China
| | - Qixiu Yang
- Banting and Best Department of Medical Research and the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8 Canada
| | - Chi-Hung Siu
- Banting and Best Department of Medical Research and the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8 Canada
| |
Collapse
|
13
|
Sriskanthadevan S, Brar SK, Manoharan K, Siu CH. Ca(2+) -calmodulin interacts with DdCAD-1 and promotes DdCAD-1 transport by contractile vacuoles in Dictyostelium cells. FEBS J 2013; 280:1795-806. [PMID: 23441816 DOI: 10.1111/febs.12203] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/18/2013] [Accepted: 01/25/2013] [Indexed: 11/28/2022]
Abstract
UNLABELLED The Ca(2+) -dependent cell-cell adhesion molecule DdCAD-1, encoded by the cadA gene of Dictyostelium discoideum, is synthesized at the onset of development as a soluble protein and then transported to the plasma membrane by contractile vacuoles. Calmodulin associates with contractile vacuoles in a Ca(2+) -dependent manner, and co-localizes with DdCAD-1 on the surface of contractile vacuoles. Bioinformatics analysis revealed multiple calmodulin-binding motifs in DdCAD-1. Co-immunoprecipitation and pull-down studies showed that only Ca(2+) -bound calmodulin was able to bind DdCAD-1. Structural integrity of DdCAD-1, but not the native conformation, was required for its interaction with calmodulin. To investigate the role of calmodulin in the import of DdCAD-1 into contractile vacuoles, an in vitro import assay consisting of contractile vacuoles derived from cadA(-) cells and recombinant proteins was employed. Prior stripping of the bound calmodulin from contractile vacuoles by EGTA impaired import of DdCAD-1, which was restored by addition of exogenous calmodulin. The calmodulin antagonists W-7 and compound 48/80 blocked the binding of calmodulin onto stripped contractile vacuoles, and inhibited the import of DdCAD-1. Together, the data show that calmodulin forms a complex with DdCAD-1 and promotes the docking and import of DdCAD-1 into contractile vacuoles. STRUCTURED DIGITAL ABSTRACT CaM physically interacts with DdCAD-1 by pull down (View Interaction: 1, 2) DdCAD-1 binds to CaM by far western blotting (View interaction) DdCAD-1 physically interacts with CaM by anti bait coimmunoprecipitation (View interaction).
Collapse
|
14
|
Hulpiau P, Gul IS, van Roy F. New insights into the evolution of metazoan cadherins and catenins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:71-94. [PMID: 23481191 DOI: 10.1016/b978-0-12-394311-8.00004-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
E-Cadherin and β-catenin are the best studied representatives of the superfamilies of transmembrane cadherins and intracellular armadillo catenins, respectively. However, in over 600 million years of multicellular animal evolution, these two superfamilies have diversified remarkably both structurally and functionally. Although their basic building blocks, respectively, the cadherin repeat domain and the armadillo repeat domain, predate metazoans, the specific and complex domain compositions of the different family members and their functional roles in cell adhesion and signaling appear to be key features for the emergence of multicellular animal life. Basal animals such as placozoans and sponges have a limited number of distinct cadherins and catenins. The origin of vertebrates, in particular, coincided with a large increase in the number of cadherins and armadillo proteins, including modern "classical" cadherins, protocadherins, and plakophilins. Also, α-catenins increased. This chapter introduces the many different family members and describes the putative evolutionary relationships between them.
Collapse
Affiliation(s)
- Paco Hulpiau
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
| | | | | |
Collapse
|
15
|
Oda H, Takeichi M. Evolution: structural and functional diversity of cadherin at the adherens junction. ACTA ACUST UNITED AC 2011; 193:1137-46. [PMID: 21708975 PMCID: PMC3216324 DOI: 10.1083/jcb.201008173] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adhesion between cells is essential to the evolution of multicellularity. Indeed, morphogenesis in animals requires firm but flexible intercellular adhesions that are mediated by subcellular structures like the adherens junction (AJ). A key component of AJs is classical cadherins, a group of transmembrane proteins that maintain dynamic cell-cell associations in many animal species. An evolutionary reconstruction of cadherin structure and function provides a comprehensive framework with which to appreciate the diversity of morphogenetic mechanisms in animals.
Collapse
Affiliation(s)
- Hiroki Oda
- JT Biohistory Research Hall, Takatsuki, Osaka 569-1125, Japan.
| | | |
Collapse
|
16
|
Barnwal RP, Devi KM, Agarwal G, Sharma Y, Chary KVR. Temperature-dependent oligomerization in M-crystallin: lead or lag toward cataract, an NMR perspective. Proteins 2011; 79:569-80. [PMID: 21117061 DOI: 10.1002/prot.22905] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The oligomerization and/or aggregation of proteins is of critical importance in a wide variety of biomedical situations, ranging from abnormal disease states like Alzheimer's and Parkinson's disease to the production of inclusion bodies, stability, and delivery of protein drugs. In the case of eye-lens proteins, oligomerization is implicated in cataract formation. In the present study, we have investigated the temperature driven oligomerization of M-crystallin, a close homologue of eye-lens proteins, using NMR spectroscopy and dynamic-light scattering (DLS). The NMR data primarily included R(1), R(2) relaxation rates and nOes of the backbone amide groups recorded at three different temperatures, 25, 20, and 15° C. The major outcome of the study is the two fold increase in the overall tumbling time (τ(c)) of M-crystallin on lowering the temperature from 25 to 15° C. An extrapolation of τ(c) to a further lower temperature (5° C) may lead to a τ(c) of ∼19 ns that would correspond to a τ(c) value of a tetrameric M-crystallin. These results also validate the observed changes in the hydrodynamic radius of M-crystallin, determined using DLS data. Further, the temperature-dependent protein dynamics of M-crystallin reveal considerable variation at/near the Ca(2+)-binding sites. A concerted analysis of the temperature dependent relaxation parameters and DLS data reveals that the self-association of the protein is not only a monomer-dimer equilibrium, but also goes to tetramers or other multimeric states. These higher states may co-exist in fast exchange with the monomeric and dimeric M-crystallin at milli-molar to sub-millimolar concentrations and at lower temperature.
Collapse
Affiliation(s)
- Ravi P Barnwal
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India.
| | | | | | | | | |
Collapse
|
17
|
Siu CH, Sriskanthadevan S, Wang J, Hou L, Chen G, Xu X, Thomson A, Yang C. Regulation of spatiotemporal expression of cell-cell adhesion molecules during development of Dictyostelium discoideum. Dev Growth Differ 2011; 53:518-27. [DOI: 10.1111/j.1440-169x.2011.01267.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Sriskanthadevan S, Zhu Y, Manoharan K, Yang C, Siu CH. The cell adhesion molecule DdCAD-1 regulates morphogenesis through differential spatiotemporal expression in Dictyostelium discoideum. Development 2011; 138:2487-97. [PMID: 21561987 DOI: 10.1242/dev.060129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
During development of Dictyostelium, multiple cell types are formed and undergo a coordinated series of morphogenetic movements guided by their adhesive properties and other cellular factors. DdCAD-1 is a unique homophilic cell adhesion molecule encoded by the cadA gene. It is synthesized in the cytoplasm and transported to the plasma membrane by contractile vacuoles. In chimeras developed on soil plates, DdCAD-1-expressing cells showed greater propensity to develop into spores than did cadA-null cells. When development was performed on non-nutrient agar, wild-type cells sorted from the cadA-null cells and moved to the anterior zone. They differentiated mostly into stalk cells and eventually died, whereas the cadA-null cells survived as spores. To assess the role of DdCAD-1 in this novel behavior of wild-type and mutant cells, cadA-null cells were rescued by the ectopic expression of DdCAD-1-GFP. Morphological studies have revealed major spatiotemporal changes in the subcellular distribution of DdCAD-1 during development. Whereas DdCAD-1 became internalized in most cells in the post-aggregation stages, it was prominent in the contact regions of anterior cells. Cell sorting was also restored in cadA(-) slugs by exogenous recombinant DdCAD-1. Remarkably, DdCAD-1 remained on the surface of anterior cells, whereas it was internalized in the posterior cells. Additionally, DdCAD-1-expressing cells migrated slower than cadA(-) cells and sorted to the anterior region of chimeric slugs. These results show that DdCAD-1 influences the sorting behavior of cells in slugs by its differential distribution on the prestalk and prespore cells.
Collapse
Affiliation(s)
- Shrivani Sriskanthadevan
- The Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
19
|
Abedin M, King N. Diverse evolutionary paths to cell adhesion. Trends Cell Biol 2010; 20:734-42. [PMID: 20817460 DOI: 10.1016/j.tcb.2010.08.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 07/24/2010] [Accepted: 08/03/2010] [Indexed: 12/24/2022]
Abstract
The morphological diversity of animals, fungi, plants, and other multicellular organisms stems from the fact that each lineage acquired multicellularity independently. A prerequisite for each origin of multicellularity was the evolution of mechanisms for stable cell-cell adhesion or attachment. Recent advances in comparative genomics and phylogenetics provide critical insights into the evolutionary foundations of cell adhesion. Reconstructing the evolution of cell junction proteins in animals and their unicellular relatives exemplifies the roles of co-option and innovation. Comparative studies of volvocine algae reveal specific molecular changes that accompanied the evolution of multicellularity in Volvox. Comparisons between animals and Dictyostelium show how commonalities and differences in the biology of unicellular ancestors influenced the evolution of adhesive mechanisms. Understanding the unicellular ancestry of cell adhesion helps illuminate the basic cell biology of multicellular development in modern organisms.
Collapse
Affiliation(s)
- Monika Abedin
- Department of Molecular and Cell Biology, Division of Genetics, Genomics, and Development, University of California at Berkeley, Berkeley, California 94720-3200, USA
| | | |
Collapse
|
20
|
Guardiani C, Marsili S, Procacci P, Livi R. Fragment 101-108 of myelin oligodendrocyte glycoprotein: a possible lead compound for multiple sclerosis. J Am Chem Soc 2009; 131:17176-84. [PMID: 19891505 DOI: 10.1021/ja905154j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multiple Sclerosis (MS) is a highly invalidating autoimmune disease of the central nervous system, leading to progressive paralysis and, sometimes, to premature death. One of the potential targets of the autoimmune reaction is the myelin protein MOG (Myelin Oligodendrocyte Glycoprotein). Since the 101-108 fragment of MOG plays a key role in the interaction with the MS-autoantibody 8-18C5, we performed an analysis of the equilibrium conformations of this peptide using the Replica Exchange Molecular Dynamics technique in conjunction with the Generalized Born continuum solvent model. Four variants of the peptide, stabilized by a disulfide bond, were also studied. We found that a significant fraction of the equilibrium population retains the original beta-hairpin conformation, and the amount of crystal-like conformations increases in the disulfide-closed analogues. When the equilibrium structures were used in docking simulations with the 8-18C5 autoantibody, we discovered the existence of a docking funnel whose bottom is populated by stable complexes where the peptide occupies the same region of space that was occupied in the crystal. It follows that the MOG 101-108 fragment represents a promising starting point for the design of a drug capable of blocking the 8-18C5 antibody. The molecule may also be used for the development of a diagnostic assay for multiple sclerosis.
Collapse
Affiliation(s)
- Carlo Guardiani
- Centro Interdipartimentale per lo Studio delle Dinamiche Complesse, Universita di Firenze, Italy.
| | | | | | | |
Collapse
|
21
|
Sriskanthadevan S, Lee T, Lin Z, Yang D, Siu CH. Cell adhesion molecule DdCAD-1 is imported into contractile vacuoles by membrane invagination in a Ca2+- and conformation-dependent manner. J Biol Chem 2009; 284:36377-36386. [PMID: 19875452 DOI: 10.1074/jbc.m109.057257] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The cadA gene in Dictyostelium encodes a Ca(2+)-dependent cell adhesion molecule DdCAD-1 that contains two beta-sandwich domains. DdCAD-1 is synthesized in the cytoplasm as a soluble protein and then transported by contractile vacuoles to the plasma membrane for surface presentation or secretion. DdCAD-1-green fluorescent protein (GFP) fusion protein was expressed in cadA-null cells for further investigation of this unconventional protein transport pathway. Both morphological and biochemical characterizations showed that DdCAD-1-GFP was imported into contractile vacuoles. Time-lapse microscopy of transfectants revealed the transient appearance of DdCAD-1-GFP-filled vesicular structures in the lumen of contractile vacuoles, suggesting that DdCAD-1 could be imported by invagination of contractile vacuole membrane. To assess the structural requirements in this transport process, the N-terminal and C-terminal domains of DdCAD-1 were expressed separately in cells as GFP fusion proteins. Both fusion proteins failed to enter the contractile vacuole, suggesting that the integrity of DdCAD-1 is required for import. Such a requirement was also observed in in vitro reconstitution assays using His(6)-tagged fusion proteins and purified contractile vacuoles. Import of DdCAD-1 was compromised when two of its three Ca(2+)-binding sites were mutated, indicating a role for Ca(2+) in the import process. Spectral analysis showed that mutations in the Ca(2+)-binding sites resulted in subtle conformational changes. Indeed, proteins with altered conformation failed to enter the contractile vacuole, suggesting that the import signal is somehow integrated in the three-dimensional structure of DdCAD-1.
Collapse
Affiliation(s)
- Shrivani Sriskanthadevan
- Banting and Best Department of Medical Research and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Teresa Lee
- Banting and Best Department of Medical Research and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Zhi Lin
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Chi-Hung Siu
- Banting and Best Department of Medical Research and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
22
|
Dictyostelium discoideum paxillin regulates actin-based processes. Protist 2009; 160:221-32. [PMID: 19213599 DOI: 10.1016/j.protis.2008.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 09/13/2008] [Indexed: 10/21/2022]
Abstract
Paxillin is a key player in integrating the actin cytoskeleton with adhesion, and thus is essential to numerous cellular processes, including proliferation, differentiation, and migration in animal cells. PaxB, the Dictyostelium discoideum orthologue of paxillin, has been shown to be important for adhesion and development, much like its mammalian counterpart. Here, we use the overproduction of PaxB to gain better insight into its role in regulating the actin cytoskeleton and adhesion. We find that PaxB-overexpressing (PaxBOE) cells can aggregate and form mounds normally, but are blocked in subsequent development. This arrest can be rescued by addition of wild-type cells, indicating a non-cell autonomous role for PaxB. PaxBOE cells also have alterations in several actin-based processes, including adhesion, endocytosis, motility, and chemotaxis. PaxBOE cells exhibit an EDTA-sensitive increase in cell-cell cohesion, suggesting that PaxB-mediated adhesion is Ca(2+) or Mg(2+) dependent. Interestingly, cells overexpressing paxB are less adhesive to the substratum. In addition, PaxBOE cells display decreased motility under starved conditions, decreased endocytosis, and are unable to efficiently chemotax up a folate gradient. Taken together, the data suggest that proper expression of PaxB is vital for the regulation of development and actin-dependent processes.
Collapse
|
23
|
Barnwal RP, Jobby M, Devi KM, Sharma Y, Chary KV. Solution Structure and Calcium-Binding Properties of M-Crystallin, A Primordial βγ-Crystallin from Archaea. J Mol Biol 2009; 386:675-89. [PMID: 19138688 DOI: 10.1016/j.jmb.2008.12.058] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 12/15/2008] [Accepted: 12/18/2008] [Indexed: 10/21/2022]
|
24
|
Hulpiau P, van Roy F. Molecular evolution of the cadherin superfamily. Int J Biochem Cell Biol 2008; 41:349-69. [PMID: 18848899 DOI: 10.1016/j.biocel.2008.09.027] [Citation(s) in RCA: 309] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 09/19/2008] [Accepted: 09/24/2008] [Indexed: 02/02/2023]
Abstract
This review deals with the large and pleiotropic superfamily of cadherins and its molecular evolution. We compiled literature data and an in-depth phylogenetic analysis of more than 350 members of this superfamily from about 30 species, covering several but not all representative branches within metazoan evolution. We analyzed the sequence homology between either ectodomains or cytoplasmic domains, and we reviewed protein structural data and genomic architecture. Cadherins and cadherin-related molecules are defined by having an ectodomain in which at least two consecutive calcium-binding cadherin repeats are present. There are usually 5 or 6 domains, but in some cases as many as 34. Additional protein modules in the ectodomains point at adaptive evolution. Despite the occurrence of several conserved motifs in subsets of cytoplasmic domains, these domains are even more diverse than ectodomains and most likely have evolved separately from the ectodomains. By fine tuning molecular classifications, we reduced the number of solitary superfamily members. We propose a cadherin major branch, subdivided in two families and 8 subfamilies, and a cadherin-related major branch, subdivided in four families and 11 subfamilies. Accordingly, we propose a more appropriate nomenclature. Although still fragmentary, our insight into the molecular evolution of these remarkable proteins is steadily growing. Consequently, we can start to propose testable hypotheses for structure-function relationships with impact on our models of molecular evolution. An emerging concept is that the ever evolving diversity of cadherin structures is serving dual and important functions: specific cell adhesion and intricate cell signaling.
Collapse
Affiliation(s)
- Paco Hulpiau
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
| | | |
Collapse
|
25
|
Xu Y, Long D, Yang D. Rapid data collection for protein structure determination by NMR spectroscopy. J Am Chem Soc 2007; 129:7722-3. [PMID: 17536800 DOI: 10.1021/ja071442e] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yingqi Xu
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | | | | |
Collapse
|